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ABSTRACT

Anomaly localization in images—identifying regions that deviate from expected
patterns—is vital in applications such as medical diagnosis and industrial inspec-
tion. A recent trend is the use of image generation models in anomaly local-
ization, where these models generate normal-looking counterparts of anomalous
images, thereby allowing flexible and adaptive anomaly localization. However,
these methods inherit the uncertainty and bias implicitly embedded in the em-
ployed generative model, raising concerns about the reliability. To address this,
we propose a statistical framework based on selective inference to quantify the
significance of detected anomalous regions. Our method provides p-values to as-
sess the false positive detection rates, providing a principled measure of reliability.
As a proof of concept, we consider anomaly localization using a diffusion model
and its applications to medical diagnoses and industrial inspections. The results
indicate that the proposed method effectively controls the risk of false positive
detection, supporting its use in high-stakes decision-making tasks.

1 INTRODUCTION

Anomaly localization using image generation models, particularly diffusion models, has shown great
promise across diverse domains such as medical diagnosis and industrial inspection Li et al. (2023);
Iqbal et al. (2023); Lu et al. (2023); Zhang et al. (2023); Fontanella et al. (2024); Tebbe & Tayyub
(2024); Sheng et al. (2024). These models reconstruct a normal-looking version of an input image,
and differences between the input and the reconstruction highlight potential anomalies. Compared
to traditional methods, generative approaches are highly suitable for settings where annotations for
anomalous regions are unavailable. Moreover, generative approaches can flexibly handle hetero-
geneity by adapting to individual images–e.g., patient-specific characteristics in medical diagnosis
and product-specific traits in industrial inspection. Among various image generation models, dif-
fusion models, in particular, offer high fidelity and stability, outperforming other methods in image
quality and anomaly localization.

While generative approaches offer powerful and flexible capabilities for anomaly localization, a
major concern is that the inherent uncertainty and bias in generative models can affect localization
performance Fithian et al. (2014); Taylor & Tibshirani (2015); Lee et al. (2016); Duy & Takeuchi
(2022); Miwa et al. (2023); Shiraishi et al. (2024). These models are trained on specific datasets
composed of normal images, and the quality of the generated normal-looking images depends heav-
ily on the distribution of the dataset and how well the model has learned the underlying distribution.
As a result, uncertainties or biases in the dataset or training process can cause incorrect reconstruc-
tions, leading to inaccurate localizations and misidentification of anomalies. Such risks are espe-
cially critical in high-stakes domains such as medical diagnosis and industrial inspection, where
even minor errors can have serious consequences. Therefore, it is essential to incorporate rigor-
ous uncertainty quantification framework and statistical safeguards to ensure reliable deployment in
critical applications.

To address this issue, we propose a statistical testing framework based on Selective Inference (SI)
to assess the statistical significance of detected anomalies. SI has recently emerged as a promising
approach for conducting statistical inference on hypotheses that are selected based on observed data.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this framework, inference is performed using the conditional distribution given the selection event,
thereby accounting for the uncertainty and bias associated with the hypothesis selection. Following
this SI framework, our key idea is to apply statistical testing to detected anomalies, conditioned on
the fact that the anomalous regions were identified using a specific generative model. This allows us
to quantify the statistical significance of detected anomalies as a valid p-value, providing a rigorous
estimate of the false positive rate and offering a principled metric for reliability.

In this paper, as a proof of concept for the proposed statistical testing framework, we focus on
a standard denoising diffusion probabilistic model (DDPM) Ho et al. (2020); Song et al. (2022)
among various diffusion-based anomaly detection (AD) methods , and its applications to medical
diagnostics and industrial inspections. However, the proposed framework is readily generalizable to
a broader range of diffusion model architectures and is applicable to semi-supervised AD problems
in other domains.

Related works Diffusion models have been effectively utilized in anomaly localization prob-
lems Pinaya et al. (2022); Fontanella et al. (2024); Wyatt et al. (2022); Mousakhan et al. (2023).
In this context, the DDPM is commonly used Ho et al. (2020); Song et al. (2022). During the train-
ing phase, a DDPM model learns the distribution of normal medical images by iteratively adding
and then removing noise. In the test phase, the model attempts to reconstruct a new test image. If
the image contains anomalous regions, such as tumors, the model may struggle to accurately recon-
struct these regions, as it has been trained primarily on normal regions. The discrepancies between
the original and the reconstructed image are then analyzed to identify and highlight anomalous re-
gions. Other types of generative AI has also been used for anomalous region detection task Baur
et al. (2021); Chen & Konukoglu (2018); Chow et al. (2020); Jana et al. (2022).

SI was first introduced within the context of reliability evaluation for linear model features when
they were selected using a feature selection algorithm Lee & Taylor (2014); Lee et al. (2016); Tib-
shirani et al. (2016), and then extended to more complex feature selection methods Yang et al.
(2016); Suzumura et al. (2017); Hyun et al. (2018); Rügamer & Greven (2020); Das et al. (2021).
Then, SI proves valuable not only for feature selection problems but also for statistical inference
across various data-driven hypotheses, including unsupervised learning tasks Chen & Bien (2020);
Tsukurimichi et al. (2021); Tanizaki et al. (2020); Duy et al. (2022); Le Duy et al. (2024); Lee et al.
(2015); Gao et al. (2022); Duy et al. (2020); Jewell et al. (2022). The fundamental idea of SI is to
perform an inference conditional on the hypothesis selection event, which mitigates the selection
bias issue even when the hypothesis is selected and tested using the same data. To conduct SI, it is
necessary to derive the sampling distribution of test statistic conditional on the hypothesis selection
event. To the best of our knowledge, SI was applied to statistical inferences on several deep learning
models Duy et al. (2022); Miwa et al. (2023); Shiraishi et al. (2024); Miwa et al. (2024), but none
of them works on image generation by diffusion models.

Our contributions The main contributions of our study are summarized as follows. 1

• We propose a novel statistical testing framework to assess the significance of anomaly
localization results derived from diffusion model-based methods, offering a principled basis
for evaluating the reliability of detected anomalies.

• We implement the SI framework for diffusion models by deriving the sampling distribution
conditional on the selection event induced by the diffusion model, which requires develop-
ing non-trivial computational techniques tailored to the generative sampling process.

• We provide theoretical justification for the proposed method and validate its effectiveness
through extensive numerical experiments in medical diagnosis and industrial inspection
scenarios. The results highlight the robustness and practical utility of our method.

The implementation code for reproducing all experimental results is provided as supplementary
material.

1We note that our contribution is not the development of a new diffusion-based anomaly localization algo-
rithm, but rather the introduction of a rigorous statistical testing framework designed to quantify the statistical
reliability of anomalous regions identified by diffusion-based AD methods.
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Figure 1: Schematic illustration of anomaly localization on a brain MRI image dataset using a diffu-
sion model and the proposed DAL-Test. When a test image—potentially containing an anomalous
region—is fed into a trained diffusion model, its normal-looking version is generated through the
forward and reverse processes. By comparing the input image with the generated normal-looking
version, the anomalous region can be identified. We propose the Diffusion-based Anomaly Localiza-
tion (DAL) Test, which leverages the selective inference framework to compute valid p-values that
quantify the statistical significance of anomalous regions detected by a diffusion model, based on a
test statistic defined over the input and reference images.

2 ANOMALY LOCALIZATION BY DIFFUSION MODELS

This section describes the anomaly localization task based on a diffusion model, which is explored
as a proof of concept in this study. The process of anomaly localization using generative models
can generally be divided into two phases. First, during the training phase, a denoising diffusion
probabilistic model (DDPM) is trained using a dataset composed exclusively of normal images. The
model learns the distribution of normal images through two key processes: the diffusion process, in
which noise is gradually added to an image, and the reverse diffusion process, in which the original
image is reconstructed from noise. Through this procedure, the model enhances its capacity to
reconstruct normal image structures by acquiring denoising capabilities at each step. Next, during
the testing phase, the reverse diffusion process is conditionally applied to an unseen input test image.
In this step, the model reconstructs an image that closely resembles the input but conforms to its
learned notion of “normality”, causing anomalous regions to be poorly reproduced. An anomaly
score is then computed based on the difference between the reconstructed image and the input test
image, and the spatial distribution of this score is analyzed to localize anomalies. By applying
thresholding to the score map, anomalous regions can be clearly identified.

In this study, for the purpose of proof of concept, we adopt standard denoising diffusion models as
our choice of diffusion model Ho et al. (2020); Song et al. (2022). The following outlines the image
reconstruction process of a trained DDPM. Given a test image which possibly contain anomalous
regions, a denoising diffusion model is used to generate the corresponding normal image. The recon-
struction process consists of two processes called forward process (or diffusion process) and reverse
process. In the forward process, noise is sequentially added to the test image so that it converges to a
standard Gaussian distributionN (0, I). Let x be an image represented as a vector with each element
corresponding to a pixel value. Given an original test image x0, noisy images x1,x2, . . . ,xT are
sequentially generated, where T is the number of noise addition steps. We consider the distribution
of the original and noisy test images, which is denoted by q(x), and approximate the distribution
by a parametric model pθ(x) with θ being the parameters. Using a sequence of noise scheduling
parameters 0 < β1 < β2, < · · · < βT < 1, the forward process is written as

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) := N (
√
1− βtxt−1, βtI).

By the reproducibility of the Gaussian distribution, xt can be rewritten by a linear combination of
x0 and ϵt, i.e.,

xt =
√
αtx0 +

√
1− αtϵt, with ϵt ∼ N (0, I), (1)

3
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where αt =
∏t

s=1(1−βs). In the reverse process, a parametric model in the form of pθ(xt−1|xt) =
N (xt−1;µθ(xt, t), βtI) is employed, where µθ(xt, t) is obtained by using the predicted noise com-
ponent ϵ(t)θ (xt). Typically, a U-Net is used as the model architecture for ϵ(t)θ (xt). In DDPM Ho
et al. (2020), the loss function for training the noise component is simply written as ||ϵ(t)θ (xt)−ϵt||22.
Based on (1), given a noisy image xt after t steps, the reconstruction of the image in the previous
step xt−1 is obtained as

xt−1 =
√
αt−1 · f (t)

θ (xt) +
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt) + σtϵt, (2)

where
f
(t)
θ (xt) := (xt −

√
1− αt · ϵ(t)θ (xt))/

√
αt, (3)

and
σt = η

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1. (4)

Here, η is a hyperparameter that controls the randomness in the reverse process. By setting η = 1,
we can create new images by stochastic sampling. On the other hand, if we set η = 0, determin-
istic sampling is used for image generation. By recursively sampling as in (2), we can obtain a
reconstructed image of the original input x0.

In practice, the reverse process starts from xT ′ with T ′ < T . Namely, we reconstruct the original
input image not from the completely noisy one, but from a one which still contains individual infor-
mation of the original input image. The smaller T ′ ensures that the reconstructed image preserves
fine details of the input image. Conversely, the larger T ′ results in the retention of only large scale
features, thereby converting more of the anomalous regions into normal regions Ho et al. (2020);
Mousakhan et al. (2023).

Algorithm 1 Reconstruction Process

Require: Input image x
1: xT ′ ← √αT ′x+

√
1− αT ′ϵ

2: for t = T ′, . . . , 1 do
3: f

(t)
θ (xt)← (xt −

√
1− αt · ϵ(t)θ (xt))/

√
αt

4: xt−1 ←
√
αt−1 · f (t)

θ (xt) +
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt) + σtϵt

5: end for
Ensure: Reconstructed image x0

3 STATISTICAL TEST FOR DIFFUSION-BASED ANOMALOUS LOCALIZATION

In this section, we formulate the statistical test for detecting anomalous regions by a trained diffusion
model. As shown in Figure 1, anomalous region detection by diffusion models is conducted as
follows. First, in the training phase, the diffusion model is trained only on normal images. Then, in
the test phase, we feed a test image which might contain anomalous regions into the trained diffusion
model, and reconstruct it back from a noisy image xT ′ at step T ′ < T . By appropriately selecting
T ′, we can generate a normal image that retain individual characteristics of the test input image. If
the image does not contain anomalous regions, the reconstructed image is expected to be similar to
the original test image. On the other hand, if the image contains anomalous regions, such as tumors,
the model may struggle to accurately reconstruct these regions, as it has been trained primarily on
normal regions. Therefore, the anomalous regions can be detected by comparing the original test
image and its reconstructed one.

Problem formulation We develop a statistical test to quantify the reliability of decision-making
based on images generated by diffusion models. To develop a statistical test, we interpret an image
as a sum of a true signal component µ ∈ Rn and a noise component ε ∈ Rn. We emphasize that the
noise component ε should not be confused with the noise ϵ used in the forward process. Regarding
the true signal component, each pixel can have an arbitrary value without any particular assumption
or constraint. On the other hand, regarding the noise component, it is assumed to follow a Gaussian
distribution, and their covariance matrix is estimated using normal data different from that used for
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the training of the diffusion model, which is the standard setting of SI. Namely, an image with n
pixels can be represented as an n-dimensional random vector

X = (X1, X2, . . . , Xn)
⊤ = µ+ ε, ε ∼ N (0,Σ),

where µ ∈ Rn is the unknown true signal vector and Σ is the covariance matrix. In the following,
we use capital X to emphasize that an image is considered as a random vector, while the observed
image vector is denoted as x.

Let us denote the reconstruction process of the trained diffusion model in Algorithm 1 as the map-
ping from an input image to the reconstructed image D : Rn ∋ X → D(X) ∈ Rn. The difference
between the input image X and the reconstructed image D(X) indicates the reconstruction error.
When identifying anomalous regions based on reconstruction error, it is useful to apply some fil-
ter to remove the influence of pixel-wise noise. In this study, we simply used an averaging filter.
Let us denote the averaging filter as F : Rn → Rn. Then, the process of obtaining the (filtered)
reconstruction error is written as

E : Rn ∋X 7→ |F(X −D(X))| ∈ Rn,

where absolute value is taken pixel-wise. Anomalous regions are then obtained by applying a thresh-
old to the filtered reconstruction error Ei(X) for each pixel i ∈ [n]. Specifically, we define the
anomalous region as the set of pixels whose filtered reconstruction error is greater than a given
threshold λ ∈ R+, i.e.,

MX = {i ∈ [n] | Ei(X) ≥ λ} . (5)

Statistical test for diffusion models In order to quantify the statistical significance of the anoma-
lous regions detected by using the diffusion model, we consider the concrete example of two-sample
test. Note that our method can be extended to other statistical tests using various statistics. In the
two-sample test, we compare the test image and the randomly chosen reference image in the anoma-
lous region. Let us define an n-dimensional reference input vector,

Xref = (Xref
1 , Xref

2 , . . . , Xref
n )⊤ = µref + εref , with εref ∼ N (0,Σ),

where µref ∈ Rn is the unknown true signal vector of the reference image and the εref ∈ Rn is the
noise component. Then, we consider the following null and alternative hypotheses:

H0 :
1

|Mx|
∑

i∈Mx

µi =
1

|Mx|
∑

i∈Mx

µref
i v.s. H1 :

1

|Mx|
∑

i∈Mx

µi ̸=
1

|Mx|
∑

i∈Mx

µref
i , (6)

where H0 is the null hypothesis that the mean pixel values are the same between the test image and
the reference images in the observed anomalous regionMx, while H1 is the alternative hypothesis
that they are different. A reasonable test statistic for the statistical test in (6) is the difference in
mean pixel values between the test image and the reference image in the anomalous region Mx,
i.e.,

T (X,Xref) =
1

|Mx|
∑

i∈Mx

Xi −
1

|Mx|
∑

i∈Mx

Xref
i = ν⊤

(
X

Xref

)
, (7)

where ν ∈ R2n denotes a vector that depends on the anomalous regionMx, and hence on x itself,
and is defined as

ν =
1

|Mx|

(
1n
Mx

−1n
Mx

)
∈ R2n,

where 1n
C ∈ Rn is an n-dimensional vector whose elements are 1 if they belong to the set C and 0

otherwise. In this case, the p-value called naive p-value, and defined as

pnaive = PH0

(
|T (X,Xref)| ≥ |T (x,xref)|

)
. (8)

If we can identify the sampling distribution of the test statistic T (X,Xref), we can compute a valid
p-value that control the false positive detection rate (i.e., the type I error rate).

4 SELECTIVE INFERENCE FOR DIFFUSION-BASED ANOMALY LOCALIZATION

In this section, we introduce selective inference (SI) framework for testing the anomalous regions
detected by a diffusion model and propose a method to perform valid hypotheses tests.

5
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4.1 COMPUTING VALID p-VALUES VIA SELECTIVE INFERENCE

Complexity of sampling distribution As mentioned in §3, we need to identify the sampling dis-
tribution of the test statistic T (X,Xref) to compute the p-values. If we ignore the fact that the
anomalous region is identified by a diffusion model, the test statistic in (7) is simply a linear trans-
formation of the Gaussian random vectors X and Xref , and hence itself follows a Gaussian distri-
bution:

T (X,Xref) ∼ N (0,ν⊤Σ̃ν), where Σ̃ =

(
Σ On

On Σ

)
.

However, as mentioned in §3, in reality the dependence of ν on x via the diffusion model is more
intricate, making the sampling distribution intractably complex. Consequently, obtaining this sam-
pling distribution directly is challenging.

Selective p-value via conditional sampling distribution Then, we consider the sampling distri-
bution of the test statistic conditional on the event that the anomalous regionMX is the same as the
observed anomalous regionMx, i.e.,

T (X,Xref) | {MX =Mx} .
In the context of SI, to make the characterization of the conditional sampling distribution manage-
able, we also incorporate conditioning on the nuisance parameter that is independent of the test
statistic. As a result, the calculation of the conditional sampling distribution in SI can be reduced
to a one-dimensional search problem in an n-dimensional data space. The sufficient statistics of the
nuisance parameter QX,Xref is written as

QX,Xref =

(
I2n −

Σ̃νν⊤

ν⊤Σ̃ν

)(
X

Xref

)
,

where I2n is the identity matrix of size 2n. By additional conditioning on the nuisance parameter,
the selective p-value is defined as

pselective = PH0

(
|T (X,Xref)| ≥ |T (x,xref)|

∣∣MX =Mx,QX,Xref = Qx,xref

)
. (9)

The following theorem establishes that the selective p-value is a valid p-value for controlling the
false positive detection rate for any significance level α ∈ (0, 1).
Theorem 4.1. The selective p-value in (9) is valid for controlling the false positive detection rate,
i.e,

PH0

(
pselective ≤ α

∣∣MX =Mx,QX,Xref = Qx,xref

)
= α, ∀α ∈ (0, 1).

Then, the selective p-value satisfies the following condition:

PH0
(pselective ≤ α) = α, ∀α ∈ (0, 1).

The proof of Theorem 4.1 is given in Appendix A.1. The following theorem tells that the selective
p-value can be analytically derived from the conditional sampling distribution, which follows a
truncated Gaussian distribution.
Theorem 4.2. Consider the truncation intervals defined as

Z =
{
z ∈ R

∣∣MX(z) =Mx

}
, (10)

where X(z) are defined as

X(z) = a1:n + b1:nz, where a = Qx, b =
Σ̃ν

ν⊤Σ̃ν
, (11)

and a1:n and b1:n denote the first n elements of a, b ∈ R2n , respectively. Then, the selective p-value
in (9) can be rewritten as

pselective = PH0

(
|T (X(Z),Xref(Z))| ≥ |T (x,xref)|

∣∣ Z ∈ Z) . (12)

The conditional sampling distribution of the test statistic T (X(Z),Xref(Z)) | {Z ∈ Z} follows a
truncated Gaussian distribution T N (0,ν⊤Σ̃ν).

The proof of the Theorem 4.2 is given in Appendix A.2. Once the truncation intervals Z are iden-
tified, computing the selective p-value in (12) becomes straightforward. Therefore, the remaining
task is the identification of Z .

6
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+

Figure 2: Schematic illustration of the selective inference procedure for diffusion models. It shows
how the image X(z) changes with z. The truncation intervals that yield the same anomalous region
MX(z) as the observed anomalous region Mx define the conditional sampling distribution. The
pselective denotes the proportion of probability mass within the truncation intervals.

4.2 IDENTIFICATION OF SUBINTERVAL Zsub IN Z

To tackle the identification of the truncation invervals Z , we employ a divide-and-conquer strategy.
Directly characterizingZ is challenging due to the complexity of the diffusion model’s computation.
Our method decomposes the n-dimensional data space into a collection of polyhedra by imposing
additional conditioning, a process we refer to as over-conditioning (OC) Duy & Takeuchi (2022).
Each polyhedron in the n-dimensional space corresponds to an interval in the one-dimensional space
Z . Thus, we can examine these intervals sequentially in Z to determine whether they yield the same
selected anomalous regions as observed. To this end, we need to identify a subinterval Zsub ⊆ Z .
We show that the anomalous region from a diffusion model can be characterized by a piecewise-
linear mapping, and that for each z ∈ R, the subinterval Zsub(a+bz) can be computed analytically
by solving a system of linear inequalities (see Appendix B for details).

4.3 IDENTIFICATION OF Z

Over-conditioning causes a reduction in power due to excessive conditioning. A technique called
parametric programming is utilized to explore all intervals along the one-dimensional line, resulting
in (10). The truncation intervals Z can be represented using Zsub as

Z =
⋃

z∈R|MX(z)=Mx

Zsub(a+ bz).

An algorithm for computing the selective p-value is summarized in Algorithm 2. Figure 2 illus-
trates the example of conditional sampling distribution. It shows how the subintervals determine the
conditional sampling distribution.

Algorithm 2 Selective p-value by Parametric Programming

Require: x,xref

1: Initialize Z ← ∅
2: ComputeMx, a, b, and T (x,xref) by (5), (11), (7)
3: Initialize z to a sufficiently small value
4: while z is not large enough do
5: Compute Zsub(a+ bz) andMX(z) by (13)
6: ifMX(z) =Mx then
7: Z ← Z ∪ Zsub(a+ bz)
8: end if
9: z ← maxZsub(a+ bz) + γ, where 0 < γ ≪ 1

10: end while
11: pselective = PH0

(
|T (X(Z),Xref(Z))| ≥ |T (x,xref)|

∣∣ Z ∈ Z)
Ensure: pselective

7
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Figure 3: Type I error rate comparison
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Figure 4: Power comparison

5 EXPERIMENTS

We compared our proposed method (proposed) on type I error rate and power with the following
methods (see Appendix C for details of those methods):

• w/o-pp: An ablation study without the parametric programming technique described in
§4.3. The p-value is computed using (12), with Z replaced by Zsub(a+ bzobs).

• naive: This method is conventionally used in practice. The p-value is computed as (8).

• bonferroni: This method uses the Bonferroni correction. Bonferroni correction is
widely used for multiple testing correction.

• permutation: This method uses the permutation test. A permutation test is widely used
for non-parametric hypothesis testing.

The architecture of diffusion models used in all experiments is detailed in Appendix D. We executed
all experiments on AMD EPYC 9474F processor, 48-core 3.6GHz CPU and 768GB memory.

5.1 NUMERICAL EXPERIMENTS

Experimental setup Experiments on the type I error rate and power were conducted with two
types of covariance matrices: independent Σ = In ∈ Rn×n and correlation Σ = (0.5|i−j|)ij ∈
Rn×n. In the type I error rate experiments, we used only normal images. The synthetic dataset
for normal images is generated to follow X ∼ N (0,Σ). We made 1,000 normal images for n ∈
{64, 256, 1024, 4096}. In the power experiments, we used only abnormal images. We generated
1,000 abnormal images X ∼ N (µ,Σ). The mean vector µ is defined as µi = ∆ for all i ∈ S,
and µi = 0 for all i ∈ [n]\S, where S ⊂ [n] is the anomalous region with its position randomly
chosen. The image size of the abnormal images was set to 4096, with signals ∆ ∈ {1, 2, 3, 4}. In all
experiments, we made the synthetic dataset for 1,000 reference images to follow Xref ∼ N (0,Σ).
The threshold was set to λ = 0.8, and the kernel size of the averaging filter was set to 3. All
experiments were conducted under the significance level α = 0.05. The diffusion models were
trained on the normal images from the synthetic dataset. The diffusion models were trained with
T = 1000 and the initial time step of the reverse process was set to T ′ = 460, and the reconstruction
was conducted 5 step samplings (see Appendix E for details). The noise schedule β1, β2, . . . , βT

was set to linear. In all experiment, we generated normal-looking images through probabilistic
sampling, η was set to 1. In addition, we conducted robustness experiments against non-Gaussian
noise. The details of the robustness experiments are described in Appendix F.

Results Figure 3 shows the comparison results of type I error rates. The proposed meth-
ods proposed and w/o-pp can control the type I error rate at the significance level α, and
bonferroni can control the type I error rate below the significance level α. In contrast, naive
and permutation cannot control the type I error rate. Figure 4 shows the comparison results of
powers. Since naive and permutation cannot control the type I error rate, their powers are
not considered. Among the methods that can control the type I error rate, the proposed has the
highest power. The ablation study w/o-pp is over-conditioned and bonferroni is conservative
because there are many hypotheses, so they have low power.
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Table 1: Type I error rate and power comparison on real-world datasets at the significance level of
α(= 0.05). The proposed and bonferroni methods control the type I error rate at or below α
for each dataset, whereas naive fails to do so and is therefore unreliable. Additionally, proposed
achieves higher power than bonferroni. The Figures 9 and 10 show the results of the proposed
and naive methods for the MRI images (BraTS) and MVTec AD dataset, respectively.

naive bonferroni proposed

Dataset Type I Error Power Type I Error Power Type I Error Power

Bottle 0.46 N.A 0.00 0.00 0.04 0.18
Cable 0.88 N.A 0.00 0.00 0.02 0.40
Grid 0.82 N.A 0.00 0.00 0.06 0.34
Transistor 0.86 N.A 0.00 0.00 0.08 0.28
BraTS (T2-FLAIR) 0.59 N.A 0.00 0.00 0.05 0.28

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.527

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.000
(a) bottle (Left: Normal, Right: Anomaly)

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.031, pselective : 0.331

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.003
(b) Brain (Left: Normal, Right: Anomaly)

Figure 5: Real-world examples of the naive and proposed methods. For each sample, the
pselective is high (true negative) for normal images and low (true positive) for abnormal images. In
contrast, the pnaive remains low for all images, indicating that it fails to control the type I error rate.

5.2 REAL-WORLD DATA EXPERIMENTS

Experimental setup We conducted experiments using T2-FLAIR MRI brain scans from the Brain
Tumor Segmentation (BraTS) 2023 dataset Karargyris et al. (2023); LaBella et al. (2023) and MVtec
AD dataset Bergmann et al. (2019). The details of the experimental settings are described in Ap-
pendix G.

Results Table 1 shows the comparison of the type I error rate and power. The naive cannot
control the type I error rate, while the proposed and bonferroni can control the type I error
rate below the significance level α. The proposed has higher power than bonferroni. In
addition, the examples of the results for each image are shown in Appendix H.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

We introduced the DAL-Test, a novel statistical procedure for anomaly localizations identified by
a diffusion model. With the proposed DAL-Test, the false positive detection rate can be controlled
with the significance level because statistical inference is conducted conditional on the fact that the
anomalous regions are identified by using a diffusion model. We demonstrated that the DAL-Test
has higher power than the bonferroni correction, the only existing method for controlling the false
positive detection rate. However, the growing the size of the diffusion model also leads to increased
computational demands. In future work, we will focus on improving the computational efficiency
of the DAL-Test.
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A PROOFS

A.1 PROOF OF THEOREM 4.1

Under the null hypothesis, the probability integral transform implies that

pselective | {MX =Mx,QX = QX} ∼ Uniform(0, 1),

and hence for any α ∈ (0, 1),

P (pselective ≤ α | {MX =Mx,QX = QX}) = α, ∀α ∈ (0, 1).

By marginalizing over the nuisance parameter Qx, we have

P (pselective ≤ α | MX =Mx,QX = Qx)

=

∫
Rn

PH0
(pselective ≤ α | MX =Mx,QX = Qx) PH0

(QX = Qx | MX =Mx)dQx

= α

∫
Rn

PH0
(QX = Qx | MX =Mx)dQx.

= α

Therefore, we have

PH0
(pselective ≤ α)

=
∑

Mx∈2[n]

PH0(Mx) PH0(pselective ≤ α | MX =Mx)

= α
∑

Mx∈2[n]

PH0
(Mx)

= α

A.2 PROOF OF THEOREM 4.2

The conditioning on QX,Xref = Qx,xref implies

QX,Xref = Qx,xref ⇔

(
I2n −

Σ̃νν⊤

ν⊤Σ̃ν

)(
X

Xref

)
= Qx,xref ⇔

(
X

Xref

)
= a+ bz,

where z = T (X,Xref) ∈ R. Hence,{(
X

Xref

) ∣∣∣∣MX =Mx,QX,Xref = Qx,xref

}
=

{(
X

Xref

) ∣∣∣∣MX =Mx,

(
X

Xref

)
= a+ bz

}
=

{(
X

Xref

) ∣∣∣∣MX(z) =Mx

}
= {a+ bz | z ∈ Z} ,

where X(z) = a1:n + b1:nz. As a result

T (X,Xref) |
{
MX =Mx,QX,Xref = Qx,xref

}
∼ T N (0,ν⊤Σ̃ν)

B CALCULATING THE SUBINTERVAL Z SUB FOR DIFFUSION MODELS

We now show that a reconstruction error E via diffusion models can be expressed as a piecewise-
linear function of X . To show this, we see that both the forward process and reverse process of the
diffusion model are piecewise-linear functions as long as we employ a class of U-Net described be-
low. It is easy to see the piecewise-linearity of the forward process as long as we fix the random seed
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for ϵt. To make the reverse process a piecewise-linear function, we employ a U-Net composed of
piecewise-linear components such as ReLU activation functions and pooling layers. Then, ϵ(t)θ (xt)

is represented as a piecewise-linear function of xt. Moreover, since f
(t)
θ (xt) in (3) is a composite

function of ϵ(t)θ (xt), it is also a piecewise-linear function. By combining them together, we see that
xt−1 is written as a piecewise-linear function of xt. Therefore, the entire reconstruction process is a
piecewise-linear function since it just repeats the above operation multiple times (see Algorithm 1).
As a result, the entire mapping D(X) of the diffusion model is a piecewise-linear function of the
input image X . Moreover, since the averaging filterF and the absolute operation are also piecewise-
linear functions, |F(X−D(X))|(= E(X)) is piecewise-linear. Exploiting this piecewise-linearity,
the interval Zoc can be computed. The following theorem tells that the subinterval Zsub(a+bz) can
be computed by solving a set of linear inequalities.

Theorem B.1. The piecewise-linear mapping A(X) can be expressed as a linear function of the
input image X on each polyhedral region Pk.

∀X ∈ P(k), A(X) = δ(k) +∆(k)X,

where δ(k) and ∆(k) for k ∈ [K] are the constant vector and the coefficient matrix with appropriate
dimensions for the k-th polyhedron, respectively. Using the notation in (12), since the input image
X(z) is restricted on a one-dimensional line, each component of the output of A is written as

∀z ∈ [L
(k′)
i , U

(k′)
i ], Ai(X(z)) = κ

(k′)
i + ρ

(k′)
i z,

where κ(k′)
i ∈ R and ρ

(k′)
i ∈ R for k′ ∈ [K

′

i ] are the coefficient and the constant of the k′-th interval
[L

(k′)
i , U

(k′)
i ], and K

′

i is the number of linear pieces of Ai. For each i ∈ [n], there exists k′ ∈ [K
′

i ]

such that z ∈ [L
(k′)
i , U

(k′)
i ], then the inequality Ai(X(z)) ≥ λ, can be solved as

[Li(z), Ui(z)] :=


[
max

(
L
(k′)
i , (λ− ρ

(k′)
i )/κ

(k′)
i

)
, U

(k′)
i

]
if κ(k′)

i > 0,[
L
(k′)
i ,min

(
U

(k′)
i , (λ− ρ

(k′)
i )/κ

(k′)
i

)]
if κ(k′)

i < 0.

By applying the above theorem, we denote the subinterval as

Zsub(a+ bz) =
⋂
i∈[n]

[Li(z), Ui(z)] . (13)

C COMPARISON METHODS FOR NUMERICAL EXPERIMENTS

We compared our proposed method with the following methods:

• proposed: The proposed method uses the parametric programming.

• w/o-pp: The proposed method use over-conditioning (without parametric programming).
The p-value is calculated as

pablation = PH0

(
|T (X(Z),Xref(Z))| > |T (x,xref)|

∣∣ Z ∈ Zsub(a+ bzobs)
)

• naive: The naive method. This method uses a conventional z-test without any condition-
ing in (8).

• bonferroni: To control the type I error rate, this method applies the Bonferroni cor-
rection. Given that the total number of anomaly regions is 2n, the p-value is calculated as
,

pbonferroni = min(1, 2n · pnaive).

• permutation: This method uses a permutation test with the steps outlined below:

– Calculate the observed test statistic zobs by applying the observed image x to the
diffusion model.
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– For each i = 1, . . . , B, compute the test statistic z(i) by applying the permuted image
X(i) to the diffusion model, where B represents the total number of permutations, set
to 1,000 in our experiments.

ppermutation =
1

B

∑
b∈[B]

1{|z(b)| > |zobs|},

where 1{·} denotes the indicator function.

This rephrasing aims to maintain the original meaning while enhancing readability and comprehen-
sion.

D ARCHITECTURE OF THE U-NET

Figure 6 shows the architecture of the U-Net used in our experiments. The U-Net has three skip
connections, and the Encoder and Decoder blocks. For image sizes n ∈ {64, 256, 1024, 4096}, the
corresponding spatial dimensions of images are (1, d, d) where d ∈ {8, 16, 32, 64}.
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Figure 6: The architecture of the U-Net

E ACCELERATED REVERSE PROCESSES

Methods for accelerating the reverse process have been proposed in DDPM, DDIM Song et al.
(2022). When taking a strictly increasing subsequence τ from {1, · · · , T}, it is possible to skip the
sampling trajectory from xτi to xτi−1 . In this case, equations (2) and (4) can be rewritten as

xτi−1 =
√
ατi−1

(
xτi −

√
1− ατi · ϵ(τi)(xτi)√

ατi

)
+
√
1− ατi−1 − σ2

τi · ϵ
(τi)
θ (xτi) + στiϵτi ,

where
στi = η

√
(1− ατi−1

)/(1− ατi)
√
1− ατi/ατi−1

.

Therefore, piecewise-linearity is preserved, making the proposed method DMAD-test applicable.

F ROBUSTNESS OF THE PROPOSED METHOD

To evaluate the robustness of our proposed method’s performance, we used various non-Gaussian
distribution families with different levels of deviation from the standard normal distribution
N (0, 1). We considered the following non-Gaussian distributions with a 1-Wasserstein distance
d ∈ {0.01, 0.02, 0.03, 0.04} from N (0, 1):
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• Skew normal distribution family (SND).
• Exponentially modified gaussian distribution family (EMG).
• Generalized normal distribution family (GND) with a shape parameter β. This distribution

family can be steeper than the normal distribution (i.e., β < 2).
• Student’s t-distribution family (t-distribution).

Note that these distributions are standardized in the experiments. Figure 7 shows the probability
density functions for distributions from each family, such that the d is set to 0.04. The significance
levels α were set to 0.05 and 0.10, and the image size was set to 256. Figure 8 shows the results of
the robustness experiments.

DMAD-test maintains good performance on the type I error rate for all the considered distribution
families.
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Figure 7: Non-Gaussian distributions with d = 0.04
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Figure 8: Type I Error Rate for Non-Gaussian distribution families

G EXPERIMENTAL SETTINGS FOR THE MVTEC AD DATASET

G.1 EXPERIMENTAL SETTINGS OF BRAIN TRUMOR SEGMENTATION 2023 DATASET

We evaluate our method on T2-FLAIR MRI brain scans from the Brain Trumor Segmentation 2023
dataset Karargyris et al. (2023); LaBella et al. (2023). T2-FLAIR MRI which comprises 934 non-
skull-stripped 3D scans with dimensions of 240×240×155. From these scans, we extracted 2D
240×240 axial slices at axis 95, resized them to 64×64 pixels, and categorized them based on
the anomaly annotations into 532 normal images (without tumors) and 402 abnormal images (with
tumors). For each scan, we estimated the mean and variance from pixel values excluding both the
non-brain regions and tumor regions identified in the ground truth, followed by standardization. We
randomly selected 312 normal images for model training. The model was trained with T = 1000
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and the initial time step of the reverse process was set at T ′ = 300, with reconstruction performed
through 5 step samplings. We set the threshold λ = 0.6 and the kernel size of the averaging filter to
3. Note that, when testing images of the MRI brain scans, the non-brain regions are not treated as
anomalous regionsMX .

G.2 EXPERIMENTAL SETTINGS OF BRAIN TRUMOR SEGMENTATION 2023 DATASET

We evaluate our method on the MVTec AD dataset Bergmann et al. (2019), which consists of 15
object categories. Each category provides a training set of normal images and a test set containing
both normal and abnormal images, with image resolutions ranging from 900× 900 to 1024× 1024
pixels. For our experiments, we select six categories (bottle, cable, grid) and resize all images to
128× 128 pixels. For the type I error rate experiments, we randomly select 50 normal images from
each category, and for the power experiments, we select 50 abnormal images per category. The
diffusion model is trained on the remaining normal images with T = 1000 total diffusion steps,
of which the first T ′ = 300 steps are used for reconstruction using 4 sampling steps. We apply an
averaging filter with a kernel size of 3. We set the anomaly threshold λ to 1.0 for bottle and to 1.2 for
cable and grid. To demonstrate in the power experiments, we compute the intersection between the
anomalous region detected by the diffusion model and the anomaly annotation. Since the images in
the MVTec AD dataset are RGB, we redefine the image data as X̃ ∈ Rhw×3, where h and w denote
the image height and width. We then vectorize each image by

X = vec(X̃) = (X1,1, X1,2, X1,3, X2,1, X2,2, X2,3, . . . , Xhw,1, Xhw,2, Xhw,3)
⊤ ∈ Rn,

Similarly, we define the reference image X̃ref ∈ Rhw×3 as the average of the training images, and
vectorize it in the same way as above.

Xref = vec(X̃ref) = (X̃1,1, X̃1,2, X̃1,3, X̃2,1, X̃2,2, X̃2,3, . . . , X̃
ref
hw,1, X̃

ref
hw,2, X̃

ref
hw,3)

⊤ ∈ Rn

where n = 3hw, and accordingly redefine the test statistic in (7) as

T (X,Xref) =
1

|MX |
∑

i∈MX

∑
j∈[3]

X̃i,j −
1

|MX |
∑

i∈MX

∑
j∈[3]

X̃ref
i,j

With this setup, the our method can be applied in the same way as in §3.

H EXPERIMENTAL RESULTS FOR THE REAL-WORLD DATASETS

In this section, we show the experimental results for the real-world datasets. We applied the proposed
proposed to the MRI images and MVTec AD dataset and compared with the naive method.
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Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.031, pselective : 0.266
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.031, pselective : 0.331
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.766
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.360
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.031, pselective : 0.646
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.753
Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.011, pselective : 0.768

MRI images without tumors

Input Image Reconstructed Image Reference Image Anomalous Region
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Input Image Reconstructed Image Reference Image Anomalous Region
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Input Image Reconstructed Image Reference Image Anomalous Region
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Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.000
Input Image Reconstructed Image Reference Image Anomalous Region
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Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.000

MRI images with tumors

Figure 9: An example of the results for applying the proposed proposed and the naive test
(an invalid test ignoring that the anomalous region was identified by the diffusion model) to MRI
images. The left column represents the results for normal MRI images without tumors, while the
right column represents the results for abnormal MRI images with tumors. The pselective calculated
by the proposed DAL-Test is high for normal images (True Negative) and low for abnormal images
(True Positive), indicating that the results are desirable. On the other hand, the pnaive obtained by
the naive test is low not only for abnormal images but also for normal images (False Positive),
indicating the invalidness of the naive test.
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Input Image Reconstructed Image Reference Image Anomalous Region
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(a) Bottle (Left: Normal, Right: Anomaly)

Input Image Reconstructed Image Reference Image Anomalous Region
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(b) Cable (Left: Normal, Right: Anomaly)

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.028, pselective : 0.789

Input Image Reconstructed Image Reference Image Anomalous Region

pnaive : 0.000, pselective : 0.018
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Figure 10: An example of applying the proposedmethod and the naive method to six categories
of the MVTec AD dataset (Bottle, Cable, Grid, Transistor). For each category, the left figure shows a
normal image and the right figure shows an anomalous image. The proposed pselective remains high
for normal samples (True Negatives) and low for anomalous samples (True Positives), demonstrating
accurate control of the false detection rate. In contrast, the pnaive yields low p-values across both
normal and anomalous images, indicating an inflated false positive rate and invalidity of the naive
method.
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