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Abstract

We study the multi-objective linear contextual bandit problem, where multiple
possible conflicting objectives must be optimized simultaneously. We propose
MOL-TS, the first Thompson Sampling algorithm with Pareto regret guarantees
for this problem. Unlike standard approaches that compute an empirical Pareto
front each round, MOL-TS samples parameters across objectives and efficiently
selects an arm from a novel effective Pareto front, which accounts for repeated
selections over time. Our analysis shows that MOL-TS achieves a worst-case Pareto
regret bound of Õ(d3/2

√
T ), where d is the dimension of the feature vectors, T is

the total number of rounds, matching the best known order for randomized linear
bandit algorithms for single objective. Empirical results confirm the benefits of
our proposed approach, demonstrating improved regret minimization and strong
multi-objective performance.

1 Introduction

The multi-objective multi-armed bandit (MOMAB) problem [8, 5, 15, 17, 11, 18, 10, 7] generalizes
the classical, single-objective multi-armed bandit to settings with multiple, potentially conflicting
objectives. Pulling an arm yields a vector of objective-specific rewards, so a single “best” arm is
often ill-defined and optimality must account for trade-offs across objectives.

One simple way to handle trade-offs is scalarization [14, 21, 20], which maps reward vectors to a
scalar via, e.g., weighted sums, minimax, or other nonlinear transforms, thereby reducing MOMAB
to a single-objective bandit. However, selecting a suitable scalarization is itself nontrivial, and an
arm optimal under one scalarization can be markedly suboptimal under another. An alternative is
to reason directly in the vector space via Pareto optimality [8, 5, 11, 18, 10, 7]: the Pareto front
comprises arms whose mean reward vectors are not dominated component-wise. Because it compares
reward vectors objective-wise, Pareto optimality is strictly more general than committing to a fixed
scalarization, and we adopt it throughout.

All of the prior MOMAB work in Pareto regret propose and study UCB-based algorithms [8, 11, 18,
10]. To the best of our knowledge, the Pareto regret of Thompson Sampling (TS) [4, 2] has not been
studied for MOMAB. This gap is noteworthy: in many single-objective contextual and non-contextual
bandits, TS and its variants are empirically competitive or superior to UCB methods [16, 6, 4, 2], yet
their worst-case analyses are typically more delicate. Extending TS to MOMAB introduces additional
challenges, including coordinating randomized samples across multiple objectives and handling the
possibility of multiple Pareto-optimal arms.

In this work, we develop a TS algorithm for the multi-objective linear contextual bandit and analyze
its worst-case Pareto regret. Our method samples separate parameters for each objective and evaluates
arms via an optimistic sampling mechanism that ensures a nontrivial probability of being jointly
optimistic across all objectives (Section 5.3), which underpins the regret analysis.
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We also revisit the notion of performance measurement. The standard Pareto regret compares per-
round mean reward vectors; consequently, repeatedly playing a single Pareto-optimal arm can yield
zero regret even when an alternative arm selection would strictly larger cumulative rewards (see
Section 3.3). To address this, we introduce the notion of an effective Pareto-optimal arm (Definition 5):
an arm that is Pareto-optimal per round and remains undominated when evaluated through the lens
of cumulative rewards under any number of repeated selections. Building on this, we define a
corresponding regret notion that penalizes policies vulnerable to such cumulative inefficiencies; our
algorithm targets the effective Pareto front to avoid these failures.

Our main contributions are summarized as follows:

• We propose an algorithm for the multi-objective linear contextual bandit problem: Thompson
sampling for Multi-objective Linear Bandit (MOL-TS). To the best of our knowledge, this
is the first randomized algorithm for multi-objective contextual bandits with Pareto regret
guarantees. Unlike the existing multi-objective algorithms, MOL-TS does not explicitly
compute an empirical Pareto front each round, but rather randomly selects an arm from that
Pareto front, which is much more computationally efficiently.

• We propose the concept of a effective Pareto optimal arm (Definition 5), which satisfies
the condition of Pareto optimal arm, and also the total rewards for every objective with any
number of its repeated selection satisfying Pareto optimality. Any arm that is not effective
Pareto optimal has an alternative selection of arms over the same total number of rounds,
resulting higher total rewards in all objectives. Our proposed algorithm, MOL-TS, operates
on this new notion of the effective Pareto front and samples an arm from the estimated
effective Pareto front. As a result, MOL-TS produces higher cumulative rewards compared to
the methods that selected from the plain Pareto front.

• We establish that MOL-TS is statistically efficient, achieving the Pareto regret bound of
Õ(d3/2

√
T ), where d is the dimension of the feature vectors, T is the total number of

rounds. In order to ensure the provable guarantees of the randomized exploration for
multiple objectives, MOL-TS adopts the optimistic sampling strategy (Section 5.3).

• Numerical experiments demonstrate the effectiveness of our proposed approach, showing
improved performance in regret minimization, and objective-wise total reward maximization.

2 Related works

Multi-objective multi armed bandit setting was first explored by Drugan and Nowe [8], who proposed
UCB algorithms for MOMAB by applying two representative approaches: using Pareto order and
scalarized order. Subsequently, Auer et al. [5] proposed algorithms that identify all Pareto optimal
arms with high probability. More recently, the upper and lower bounds of Pareto regret in the
MOMAB setting have been studied in both stochastic and adversarial settings by Xu and Klabjan
[18]. There are also several studies on multi-objective contextual bandits. For example, Tekin and
Turğay [15] studied MOMAB in a contextual setting where a dominant objective exists, but we do
not assume any dominance among objectives. Turgay et al. [17] developed the PCZ algorithm, which
identifies the Pareto front using the idea of contextual zooming and proved its regret bound. However,
the algorithm is complex, and the paper does not provide specific details on its implementation. Lu
et al. [11] studied the multi-objective generalized linear bandit (MOGLB) problem and analyzed the
upper bound of Pareto regret using the ParetoUCB algorithm. Additionally, Kim et al. [10] explored
Pareto front identification in linear bandit settings. The studies mentioned thus far proposed complex
algorithms that calculate the empirical Pareto front. In contrast, Zhang [20] introduced a hypervolume
scalarization method in stochastic linear bandit settings, which uses random scalarization to explore
the entire Pareto front.

While these studies address significant challenges in multi-objective bandits, surprisingly, although
the practical effectiveness of randomized methods is widely recognized, research on randomized
algorithms in multi-objective bandits has been rare. To the best of our knowledge, only Yahyaa and
Manderick [19] proposed a Thompson Sampling (TS) algorithm for MOMAB, but no theoretical
analysis of this approach has been conducted. Separately, there has been significant research on
randomized scalarization in the multi-objective Bayesian optimization problem [14, 21], including
theoretical analyses of TS algorithms. However, Zhang and Golovin [21] and Paria et al. [14] analyzed
the "Bayes regret" with known Gaussian prior setting, increasing with the number of objectives.
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Figure 1: Example of two objectives and four arms, a(1), a(2), a(3), and a(4). Each subplot shows
the mean reward vector at round t, where the horizontal and vertical axes correspond to the first and
second objective, respectively. Red circles represent Pareto optimal arms, blue triangles that are not.
The mean reward vectors are listed on the right, and the pink line represents the boundary of effective
Pareto front (see Definition 5).

In the single-objective case, the theoretical analysis of Thompson sampling was first introduced by
Agrawal and Goyal [3], and then was extended to the stochastic linear bandit setting in Agrawal
and Goyal [4], where arms were categorized as either saturated or unsaturated to derive theoretical
bounds. From a different perspective, Abeille and Lazaric [2] analyzed Thompson Sampling under
the assumption of fixed probabilities for sampling optimistic parameters. Additionally, Chapelle
and Li [6] showed that, although the theoretical guarantees of Thompson Sampling are weaker than
those of UCB, empirical results have consistently demonstrated that TS algorithms outperform UCB
algorithms in practice. However, there has been a clear gap in extending these theoretical guarantees
from single objective settings to multi-objective bandits.

We provide the first theoretical analysis of a randomized algorithm in the multi-objective bandit setting.
To the best of our knowledge, this is the first work to propose a TS algorithm for multi-objective
linear contextual bandits and to analyze it theoretically.

3 Preliminaries

3.1 Notations

Throughout this paper, we use notations that distinguish between different objectives. For any
positive integer N ∈ N, let [N ] := {1, 2, . . . , N}. We denote L as the number of objectives, and
for ℓ ∈ [L], any real number u corresponding to the ℓth-objective is denoted as u(ℓ). The vector
u ∈ RL comprises all u(ℓ) values and is represented in bold notation, i.e., u = [u(1), u(2), . . . , u(L)]⊤.
Otherwise, individual features of any vector x are typically denoted as x(i). For clarity, ∥ · ∥ denotes
the Euclidean norm, and for a positive semi-definite matrix V , the norm ∥ · ∥V is defined in the inner
product space with the matrix V as ⟨x, y⟩V =

√
x⊤V y. Finally, we define Sn ⊂ Rn as the unit

(n− 1)-simplex.

3.2 Problem settings

We consider a standard stochastic linear contextual bandit problem, extended to the multi-objective
setting. Let A be a finite set of arms. Each arm a ∈ A corresponds to a d-dimensional context vector
xt,a ∈ Rd which is adversarially given at each round t. For each objective ℓ ∈ [L], there exists a
fixed parameter θ(ℓ)∗ ∈ Rd, but unknown to agent. In total, there are L parameters θ(1)∗ , θ

(2)
∗ , . . . , θ

(L)
∗ .

At each round t ∈ [T ], the agent selects an arm at ∈ A and receives a L-dimensional reward
vector rt,at

= [r
(1)
t,at

, r
(2)
t,at

, . . . , r
(L)
t,at

]⊤ ∈ RL, where the reward for each objective ℓ is given by

r
(ℓ)
t,at

= x⊤
t,at

θ
(ℓ)
∗ + ξ

(ℓ)
t , and ξ

(ℓ)
t is a zero-mean random noise. The mean reward for objective ℓ

is defined as µ(ℓ)
t,at

:= E[r(ℓ)t,at
]. And consequently, the mean reward vector of the chosen arm at is

µt,at
= [µ

(1)
t,at

, µ
(2)
t,at

, . . . , µ
(L)
t,at

]⊤ ∈ RL.
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3.3 Pareto optimality

Definition 1 (Pareto order) Let u,v ∈ RL be two distinct vectors. We say that the vector u is
dominated by the vector v (i.e., v dominates u), denoted as u ≺ v, if u(ℓ) ≤ v(ℓ) for all ℓ ∈ [L] and
u(ℓ) < v(ℓ) for some ℓ ∈ [L]. Conversely, the vector u is not dominated by the vector v, denoted as
u ̸≺ v, if there exists at least one ℓ ∈ [L] satisfying u(ℓ) > v(ℓ)

Definition 2 (Pareto optimal arm) An arm is Pareto optimal if its mean reward vector is not domi-
nated by that of any other arm. The set of all Pareto optimal arms is called Pareto Front (P∗

t ),

P∗
t := {a ∈ A | µt,a ̸≺ µt,a′ ,∀a′ ∈ A}.

In linear setting, where the mean rewards of each arm remain fixed, the Pareto front is denoted as P∗.

Definition 3 (Pareto sub-optimality gap) The Pareto sub-optimality gap of an arm a at round t is
the minimum scalar value ϵ ≥ 0 for a to be Pareto optimal, i.e.,

∆PR
t,a := inf{ϵ ≥ 0 | µt,a + ϵ1 ̸≺ µt,a′ ,∀a′ ∈ A}.

The Pareto sub-optimal gap can be defined as ∆PR
t,a := maxa′∈P∗ minℓ∈[L]{µ(ℓ)

t,a′ − µ
(ℓ)
t,a}. For every

Pareto optimal arm a′ ∈ P∗
t , the arm that maximizes ∆PR

t,a′ is a′ itself, which implies ∆PR
t,a′ = 0. Any

other arm is dominated by at least one Pareto optimal arm, ensuring that ∆PR
t,a ≥ 0.

Definition 4 (Pareto regret) Let a1, a2, . . . , aT be the sequence of arms chosen by agent. The
Pareto regret up to round T is defined as PR(T ) :=

∑T
t=1 ∆

PR
t,at

.

In the contextual bandit setting, the Pareto front varies dynamically depending on the given context.
Hence, we can not apply the algorithm of identifying Pareto front in Auer et al. [5] and Kim et al.
[10] as they remove arm from the arm set, which can be Pareto optimal in our setting.

By using the Pareto order relationship, the definition of Pareto regret provides a general measurement
of an agent’s performance in a multi-objective setting. Previous studies of Pareto optimality [8, 11,
17, 10] adopt this measurement and design algorithms that randomly select arms from the Pareto
front, aiming to minimize the Pareto regret. However, this definition of Pareto regret does not fully
account for cumulative rewards. For example, consider a case with two objectives and four arms,
as illustrated in Figure 1. Suppose two agents follow same policy that randomly selects arm from
Pareto front. The first agent sequentially selects a(2), a(4) and a(3), while the second agent selects
a(1), a(4) and a(2). Both agents selected Pareto optimal arms, resulting zero Pareto regret. But total
rewards of the first agent is µ1,a(2)

+ µ2,a(4)
+ µ3,a(3)

= [1.3, 1.3] and the second agent is [1.6, 1.7].
This example highlights the limitation of Pareto regret, as it does not distinguish between policies
that yield different cumulative rewards despite selecting only Pareto optimal arms. Thereby, we
propose the concept of a effective Pareto optimal arm, whose mean reward vector is Pareto optimal
and contributes to maximizing cumulative rewards across all objectives.

3.4 Effective Pareto optimality

Definition 5 (Effective Pareto optimal arm) An arm is effective Pareto optimal (denoted a∗) if its
mean reward vector is either equal to or not dominated by any convex combination of the mean
reward vectors of the other arms. Formally, for any β ∈ S |A|−1,

µt,a∗
=

∑
a∈A\{a∗}

βaµt,a or µt,a∗
̸≺

∑
a∈A\{a∗}

βaµt,a,

where β = (βa)a∈A\{a∗}. The set of all effective Pareto optimal arms at round t is called the effective
Pareto front, denoted as C∗t . In the linear bandit setting, where the mean reward vectors of all arms
remain fixed, the effective Pareto front is denoted as C∗

In this paper, we refer to an arm that is not effective Pareto optimal as sub-optimal. If an arm a′ ∈ A
is sub-optimal, then there exists a convex combination β, such that µt,a′ ≺

∑
a∈A\{a′} βaµt,a.
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Every effective Pareto optimal arm is also a Pareto optimal arm. This can be easily verified by
restricting β to be a one-hot vector, which corresponds to comparing mean reward vectors between
two individual arms. However, the converse does not hold. As can be seen from Figure 1, at the first
round, arm a(2) is Pareto optimal, but not effective Pareto optimal, because its mean reward vector
is dominated by a convex combination of two arms a(1) and a(3). Hence, for any t ∈ [T ], we have
C∗t ⊂ P∗

t . This shows that our definition of effective Pareto optimal arm is strictly defined than the
standard definition of Pareto optimal arm.

As shown in the example in the previous subsection, two agents following the same policy randomly
selected arms from the Pareto front. The second agent consistently selected arms from the effective
Pareto front, while the first agent selected arms from the Pareto front but not the effective Pareto front
in the first and third rounds. This difference led to the first agent achieving lower cumulative rewards
than the second agent for all objectives. Importantly, this disparity becomes increasingly severe as the
total number of rounds T grows, leading to significantly worse long-term performance for policies
that fail to prioritize the effective Pareto front.

The intuition behind an effective Pareto optimal is that repeatedly selecting such arms leads to Pareto
optimal cumulative rewards. In other words, rather than selecting a sub-optimal arm over multiple
rounds, it is preferable to select effective Pareto optimal arms for the same total number of rounds,
which is expected to yield strictly higher cumulative reward in some objectives without worsening the
others. In summary, for large enough total number of rounds T , selecting arms from effective Pareto
front C∗t achieves higher total rewards than selecting arms from Pareto optimal front P∗

t . Based on
this, we propose a theorem that establishes a relationship between the newly defined effective Pareto
optimality and the linear scalarization method.

Theorem 1 For any a∗ ∈ C∗, there exist w ∈ SL satisfying a∗ = argmaxa∈A w⊤µa. Conversely,
for any w ∈ SL, if a∗ = argmaxa∈A w⊤µa is unique arm, then a∗ ∈ C∗.

The theorem is proved in Appendix A where we refer to the proof from Mangasarian [12]. The
theorem shows a one-to-one correspondence: every effective Pareto optimal arm is optimal for some
non-negative weight vector, and every non-negative weight vector guarantees to have an effective
Pareto optimal arm.

Definition 6 (Effective Pareto sub-optimality gap) Let β = (βa)a∈A be a vector in S |A| and
define µt,β =

∑
a∈A βaµt,a. The effective Pareto sub-optimality gap for selecting arm at at

round t is defined as

∆EPR
t,at

:= inf

{
ϵ ≥ 0

∣∣∣∣ µt,at
+ ϵ1 ̸≺ µt,β ,∀β ∈ S |A|

}
.

The effective Pareto sub-optimal gap measures the minimum value ϵ for at not to be dominated
by any convex combination of the mean reward vectors of the other arms. In other words, the gap
quantifies how close arm at is to being effective Pareto optimal. For any effective Pareto optimal
arm, this gap is zero. Also, it is easy to verify that the effective Pareto sub-optimality gap is always
greater than or equal to the standard Pareto sub-optimality gap, i.e., ∆PR

t,at
≤ ∆EPR

t,at
, since the Pareto

sub-optimality gap corresponds to the special case where β is restricted to be a one-hot vector. As
discussed in Section 3.3, the effective Pareto sub-optimality gap can also be expressed as

∆EPR
t,at

:= max
β∈S|C∗

t |
min
ℓ∈[L]

{( ∑
a∗∈C∗

t

βa∗µ
(ℓ)
t,a∗

)
− µ

(ℓ)
t,at

}
, (1)

Definition 7 (Effective Pareto regret) The effective Pareto regret up to round T is defined as
EPR(T ) :=

∑T
t=1 ∆

EPR
t,at

.

4 Algorithm: MOL-TS

We propose a multi-objective linear Thompson Sampling algorithm, MOL-TS, a generic randomized
algorithm designed with multiple regularized MLE, where one need not sample from an actual
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Algorithm 1 Multi-Objective Linear TS (MOL-TS)
Input: λ,M, T > 0, c > 0

Initialize: V1 = λId, θ̂
(ℓ)
1 , Z

(ℓ)
1 = 0 (∀ℓ ∈ [L])

for t = 1→ T do
for objective ℓ = 1, 2, 3, . . . , L do

Sample θ̃
(ℓ)
t,1 , θ̃

(ℓ)
t,2 , . . . , θ̃

(ℓ)
t,M ∼ N (θ̂

(ℓ)
t , c2V −1

t )

Evaluate every arm µ̃
(ℓ)
t,a using Equation (2)

end for
Update the empirical effective Pareto front C̃t using Equation (3)
Sample arm at from C̃t uniformly at random, play at, observe reward vector rt,at

Update Vt+1 ← Vt + xt,at
x⊤
t,at

for objective ℓ = 1, . . . , L do
Update Z

(ℓ)
t+1 ← Z

(ℓ)
t + xt,atr

(ℓ)
t,at

and θ̂
(ℓ)
t+1 ← V −1

t+1Z
(ℓ)
t+1

end for
end for

Bayesian posterior [2]. Our algorithm adopts an optimistic sampling strategy to avoid the theoretical
challenges in worst-case regret analysis [13, 9].

Each round t, the mean reward vector for each arm is estimated based on the history of chosen arms
a1, a2, . . . , at−1, and received reward vectors r1,a1

, r2,a2
, . . . , rt−1,at−1

up to round t. The true
parameter for each objective θ(ℓ)∗ is estimated by regularized least squares (RLS), denoted θ̂

(ℓ)
t . Given

regularizer λ ∈ R+, the matrix and the RLS estimator is defined as

Vt =

t−1∑
s=1

xs,as
x⊤
s,as

+ λId×d, θ̂
(ℓ)
t = V −1

t

t−1∑
s=1

xs,as
r(ℓ)s,as

.

For each objective ℓ, the parameters (θ̃(ℓ)t,m)m∈[M ] are sampled independently M times from Gaussian

posterior distribution N (θ̂
(ℓ)
t , c2V −1

t ), where the tunable parameters c and M are given from the
beginning. A total of ML samples are drawn. The reward for each arm and for each objective is then
optimistically evaluated using the sample that yields the highest value,

µ̃
(ℓ)
t,a = max{x⊤

t,aθ̃
(ℓ)
t,1 , x

⊤
t,aθ̃

(ℓ)
t,2 , . . . , x

⊤
t,aθ̃

(ℓ)
t,M}. (2)

The reward vector for each arm is then constructed as µ̃t,a =
[
µ̃
(1)
t,a µ̃

(2)
t,a . . . µ̃

(L)
t,a

]⊤
.

The number of samples M controls the probability that the estimated rewards are optimistically
evaluated. Increasing M raises the likelihood that the reward estimates are optimistic, which is crucial
for ensuring a high theoretical probability of optimism across multiple objectives (see Section 5.3).
We approximate the empirical effective Pareto front C̃t using the estimated reward vectors, by

C̃t =
{
a ∈ A

∣∣∣∣ µ̃t,a =
∑
a′∈A

βa′µ̃t,a′ or µ̃t,a ̸≺
∑
a′∈A

βa′µ̃t,a′ , ∀βa′ ∈ S |A|

}
. (3)

Note that this optimistic sampling strategy is different from that proposed in [13, 9]. The setting in
[13] considers a dynamic assortment selection problem, and [9] considers a combinatorial selection
problem. Unlike multiple arms selection problem in single objective setting, our setting considers
receiving multiple rewards from single arm selection problem.

5 Regret analysis

In this section, we analyze the expected effective Pareto regret of our algorithm MOL-TS in the
worst-case, where the expectation is taken over all sources of randomness present in the problem
setup. We begin with the general assumptions widely used in the linear bandit literature. We then
outline the challenges in bounding the effective Pareto regret and explain how the number of samples
M affects the worst-case regret bound.
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5.1 Assumptions

Let Ft = σ(x1,a1
, . . . , xt,at

, r1,a1
, . . . , rt−1,at−1

) be the filtration up to round t containing all
historical information about the selected arms and the received rewards. The following assumptions
are commonly used in the stochastic linear bandit literature.

Assumption 1 (Boundedness) For each arm a ∈ A, ∥xt,a∥ ≤ 1. Also, ∥θ(ℓ)∗ ∥ ≤ 1 for all ℓ ∈ [L].

Assumption 2 (Sub-Gaussian) Each noise ξ(ℓ)t is conditionally R-sub-Gaussian, given the filtration
Ft and for some R ∈ R+.

Under the first assumption, each vector is both fixed and bounded for all rounds. If ∥xt,a∥ ≤ C and
∥θ(ℓ)∗ ∥ ≤ C are bounded for some constant C, then our regret bound would increase by a factor of C.
Note that we do not assume any linear independence of the true parameters or noise vectors between
objectives. Our assumptions are essentially the same as those used in the single objective stochastic
linear bandit setting.

5.2 Challenges in bounding the effective Pareto regret

Previously, there are many papers of multi-objective UCB-type algorithm with Pareto regret analysis
[8, 15, 17, 11, 10, 18]. The analysis of UCB algorithm is almost similar to that of single objective
setting, attaining Pareto regret bound where the number of objectives depend up to logarithmic factor.
By contrast, deriving comparable guarantees for TS in the multi-objective linear contextual setting
remains an open problem, and our work is the first to tackle these technical obstacles directly.

Recall the effective Pareto regret Equation (1). For any weight vector w ∈ SL, since ∥w∥1 = 1 ,

min
ℓ∈[L]

{( ∑
a∗∈C∗

t

βa∗µ
(ℓ)
t,a∗

)
− µ

(ℓ)
t,at

}
≤ w⊤

(( ∑
a∗∈C∗

t

βa∗µt,a∗

)
− µt,at

)
.

The algorithm MOL-TS optimistically evaluates reward vector µ̃t,a for each arm, and selects arm at

randomly from the set C̃t. Hence, by Theorem 1, there exist weight vector, denoted wt, satisfying
at = argmaxa∈A w⊤

t µ̃t,a. But for true mean reward vector, let ā∗ = argmaxa∈A w⊤
t µt,a be the

effective Pareto optimal arm for given weight vector wt. Then we have

∆EPR
t,at

≤ max
β∈S|C∗

t |

{
w⊤

t

(( ∑
a∗∈C∗

βa∗µt,a∗

)
− µt,at

)}
≤ w⊤

t (µt,ā∗
− µt,at

).

The key insight is that the effective Pareto regret is bounded by the weighted sum of rewards under
an arbitrary weight vector, and the same holds for Pareto regret. This analysis generalizes the single
objective case, which is recovered by restricting wt to a one-hot vector.

However, since the arm at is randomly selected from the set C̃t, both the weight vector wt, and
the corresponding effective Pareto optimal arm ā∗ are random. Due to the randomness of the
vector wt and the optimal arm ā∗, analyzing the worst-case regret bound of TS algorithm becomes
significantly more difficult. Also, unlike the single objective setting, the multi-objective setting
involves multiple true parameters and corresponding RLS estimates. This complicates the problem
of ensuring optimism, as there are multiple sampled parameters in TS algorithm (see example in
Section 5.3). We resolve these theoretical challenges by adopting an optimistic sampling strategy.

5.3 Why do we need optimistic sampling?

In this section, we explain the necessity of the number of samples M . As we discuss in Section 5.2,
the challenges in the worst-case regret analysis for TS algorithms lie in the difficulty of ensuring
optimism in randomly selected arm at. When wt is one-hot vector, the analysis aligns with the
single objective setting [4, 2]. However, since wt is random, the analysis requires that the randomly
chosen arm is optimistically evaluated under a weighted sum of rewards. This probability can become
exponentially small as the number of objectives increases.
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Before providing a detailed explanation, we first define the event Êt that the true parameters θ(ℓ)∗ are
close enough to the RLS estimate parameters θ̂(ℓ)t , and define c1,t(δ) which is the high probability
bound on the distance between the true parameter and the RLS estimate,

Êt := {∀ℓ ∈ [L] : ∥θ(ℓ)∗ − θ̂
(ℓ)
t ∥Vt

≤ c1,t(δ)}, c1,t(δ) := R

√
d log

(
1 + (t− 1)/(λd)

δ/L

)
+ λ1/2.

By Lemma 8, we have P(Êt) ≥ 1 − δ. The O(
√
logL) dependence in c1,t(δ) is inevitable as the

confidence bound must hold uniformly over all objectives. We define the event Ė(ℓ)t,a for a specific arm
a and objective ℓ, where the event has at least one parameter following anti-concentration property of
being optimistic, i.e.,

Ė(ℓ)t,a := {∃m ∈ [M ] : x⊤
t,a(θ̃

(ℓ)
t,m − θ̂

(ℓ)
t ) ≥ c1,t(δ)∥xt,a∥V −1

t
}.

As the algorithm MOL-TS optimistically evaluate each arm a with Equation (2), the probability
P(Ė(ℓ)t,a ) increases as M increases. Suppose, for example, one follows standard TS algorithm by
setting M = 1, that only one parameter is sampled for each objective. Previous studies [4, 2] have
shown that the probability of an arm a being optimistically evaluated is at least p̃, i.e.,

P{x⊤
t,a(θ̃

(ℓ)
t,1 − θ̂

(ℓ)
t ) ≥ c1,t(δ)∥xt,a∥V −1

t
} ≥ p̃.

where p̃ is constant probability, that depends on the choice of sampling distribution. However, since
wt is random, the probability of ensuring this optimism for every objective is at least p̃L. Since this
probability decreases exponentially with the number of objectives, the regret grows exponentially in
L, yielding Õ(1/p̃L · d3/2

√
T ).

Optimistic sampling strategy resolves this problem as MOL-TS optimistically evaluate the rewards
using M independent parameter samples for each objective. Specifically, the algorithm evaluates the
arm according to the sampled parameter that maximizes the evaluation, i.e.,

θ̃
(ℓ)
a,t = argmax

(θ̃t,m)m∈[M]

{x⊤
t,aθ̃

(ℓ)
t,1 , x

⊤
t,aθ̃

(ℓ)
t,2 , ..., x

⊤
t,aθ̃

(ℓ)
t,M}.

Then, the probability bound for the optimism event is

P{x⊤
t,a(θ̃

(ℓ)
a,t − θ̂

(ℓ)
t ) ≥ c1,t(δ)∥xt,a∥V −1

t
} ≥ (1− (1− p̃)M )L.

To prevent the exponential growth of the probability of ensuring optimism, the number of samples M
must depend on the number of objectives L. The next lemma shows the minimum number of samples
M for ensuring the event of optimism with constant probability.

Lemma 1 (Optimistic Sampling) For any arm a ∈ A, define the event of anti-concentration prop-
erty of being optimism Ėt,a =

⋂
ℓ∈[L] Ė

(ℓ)
t,a . Then on event Êt, with p = 0.15 and M ≥ 1− logL

log(1−p) ,

we have P(Ėt,a) ≥ p.

The event Ėt,a is that the arm a is optimistically evaluated for every objective. Lemma 1 shows that
the lower bound on the probability that arm a being optimistically evaluated remains constant by
taking optimistic sampling strategy. The proof of this lemma is provided in Appendix B.1.

5.4 Worst-case regret bound

We now present the worst-case (frequentist) regret upper bound of MOL-TS, where the expectation is
taken over all sources of randomness present in the problem setup.

Theorem 2 (Effective Pareto regret of MOL-TS) With Assumptions 1 and 2, with c = c1,t(δ) and
M = ⌈1− logL

log(1−p)⌉, the effective Pareto regret of the algorithm MOL-TS is upper-bounded by

E[EPR(T )] =

(
1 +

2

p− δ
T

)
cT (δ)

√
2Td log

(
1 +

T

λ

)
+ 2δ∆max,
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Figure 2: Experimental results with 4 objectives (L = 4). Plots in the left three columns measure the
performances of MOL-TS and the others. Two plots in the first column measure the Pareto regret and
the effective Pareto regret. Four plots in the second and third columns measure the cumulative reward
for each objective. Plots in the right most column measure the performances of MOL-TS with M = 1
and M = O(logL). The error bars represent the 1-sigma standard deviation over 10 instances.

where

cT (δ) =

(
R

√
d log

(
1 + (T − 1)/(λd)

δ/L

)
+ λ1/2

)(
1 +

√
2d log

2LMdT

δ

)
.

Corollary 1 (Pareto regret of MOL-TS) With same assumptions and initialization, the Pareto regret
of the algorithm MOL-TS is upper-bounded by

E[PR(T )] =

(
1 +

2

p− δ
T

)
cT (δ)

√
2Td log

(
1 +

T

λ

)
+ 2δ∆max.

Discussions of Theorem 2 and Corollary 1. Theorem 2 establishes that the expected effective Pareto
regret of MOL-TS is bounded above by Õ(d3/2

√
T ), where the regret has an additional O(logL) and

O(
√
logM) dependence on the number of objectives and the number samples, respectively, both of

which are minimal. Additionally, Corollary 1 holds since ∆PR
t,at
≤ ∆EPR

t,at
. The details of the proof

are provided in Appendix B. To the best of our knowledge, MOL-TS is the first TS algorithm with the
worst-case regret guarantees in both Pareto regret and effective Pareto regret.

6 Experiments

In this section, we empirically evaluate the performance of our algorithm. We measure the Pareto
regret and effective Pareto regret over T = 10000 rounds. Each experimental setup contains 10
different instances with fixed number of arms K, objectives L, and feature dimension d. We
demonstrate the case where K = 50, d = 5, L = 4. The parameter vector for each objective θ(ℓ)∗ has
a norm of 1. Each round, d-dimensional context vectors are revealed for every arm, bounded by 1 in
Euclidean norm. Upon playing an arm, the agent receives a reward vector with an additional noise
term, where the noise values are sampled from a zero mean Gaussian distribution with σ = 1.

We compare the performance of MOL-TS with those basic novel algorithms : the Upper Confidence
Bound algorithm, and ϵ-Greedy algorithm. The Upper Confidence Bound algorithm is MOGLM-UCB
(represented as MOL-UCB in our experiments), from Lu et al. [11] in linear bandit setting and ϵ-
Greedy algorithm MOL-ϵ-Greedy is basic MOMAB algorithm with ϵ = 0.05. Other algorithms
cannot be applied in contextual setting, as they remove sub-optimal arm from the arm set. We also
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compare the performance of MOL-TS with and without the optimistic sampling. As shown in Figure 2,
our proposed algorithm MOL-TS shows greater performance compared to other algorithms, with
minimizing the Pareto regret and effective Pareto regret, and maximizing cumulative rewards in all
objectives. Additionally, MOL-TS with optimistic sampling performs better in minimizing regret.
Additional experiments with different settings of K, d and L are left in Appendix F, with additional
algorithm PFIwR from Kim et al. [10] in linear bandit setting.

We observe that MOL-ϵ-Greedy yields higher Pareto regret and effective Pareto regret, but also total
rewards compared to MOL-UCB. This counterintuitive behavior arises from the averaging of cumulative
rewards: although the algorithm selects arms that are Pareto optimal, averaging their outcomes can
reduce the overall performance because the algorithm randomly samples from the Pareto front. In
other words, by exploring multiple Pareto optimal arms without a consistent preference direction,
averaging total rewards may appear smaller despite balanced trade-offs. This issue could be mitigated
by guiding the arm selection toward a specific scalarization or optimization direction, allowing the
algorithm to maintain both Pareto efficiency and higher total reward.

7 Discussions

In this paper, we study the multi-objective linear contextual bandit problem, where multiple con-
flicting objectives must be optimized simultaneously. We define the effective Pareto regret, whose
definition considers the Pareto optimality of cumulative reward vectors. We propose a Thompson
Sampling algorithm with optimistic sampling strategy, MOL-TS, that achieves the Pareto regret and
effective Pareto regret of Õ(d3/2

√
T ), matching the best known order for randomized linear ban-

dit algorithms for single objective setting. Empirical results confirm the benefits of our proposed
approach, demonstrating improved regret minimization and strong multi-objective performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose the first Thompson Sampling algorithm with Pareto regret guaran-
tees in multi-objective linear contextual bandit. Our contributions are clearly summarized in
Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theorems are presented with assumptions in detail (see Section 5). Details
and explanations of the proofs are given in Appendix A and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All codes of algorithms and experiments are provided in a ZIP file. Experi-
mental results are provided in Section 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All codes of algorithms and experiments are provided in a ZIP file. Experi-
mental results are provided in Section 6 and Appendix F.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of experimental settings are provided in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In both Section 6 and Appendix F, all the bars in regret plots and reward plots
represent the 1-sigma standard deviation of experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include information about the computing environment used to run experi-
ments in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in our paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper has no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly mention the sources of the comparator algorithms in Section 6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper clearly describes our proposed algorithm in Section 4. The codes of
our proposed algorithm are provided in a ZIP file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve any usage of
LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 1

In this section we present the proof for the necessary properties of effective Pareto optimal arms.
Before proving this theorem, we use the following definition that denotes the convex hull of arbitrary
set.

Definition 8 LetM⊂ RL be a set of mean reward vector µa. For all a ∈ A. Define the convex hull
of a setM as Conv(M).

By definition, for any β = (βa)a∈A ∈ S |A|, we have∑
a∈A

βaµa ∈ Conv(M)

This convex hull covers all the convex combination of mean reward vectors of every arms. We note
that, in the convex set Conv(M), the mean reward vector of the effective Pareto optimal arm satisfies
the Pareto optimality in Conv(M). In other words, for all a∗ ∈ C∗, we have

µa∗
̸≺ µ, ∀µ ∈ Conv(M) \ {µa∗

} (4)

However, for the arm a ∈ A \ C∗, there exists µ ∈ Conv(M) satisfying

µa ≺ µ

The arm that is effective Pareto optimal, satisfies the Pareto optimality in Conv(M) (see Definition 5).

Other than the Pareto optimality, the next definition describes the optimality of one specific objective,
with constraint on the other objectives.

Definition 9 (ϵ-constraint optimal) Let ϵℓ be L− 1 dimensional arbitrary constraint vector

ϵℓ =
[
ϵ(1) ... ϵ(ℓ−1) ϵ(ℓ+1) ... ϵ(L)

]⊤ ∈ RL−1

Given the constraint vector ϵℓ, the ϵℓ-constraint optimal vector among the set Conv(M), denoted
µℓ∗ , is defined by

µℓ∗ = argmax
µ∈Conv(M)

{µ(l) | µ(k) ≥ ϵ(k) for all k = 1, 2, ..., L, k ̸= ℓ}

The vector is ϵ-constraint optimal (denoted µ∗) if, for all ℓ ∈ [L], there exists constraint vector ϵℓ
such that the vector µ∗ is ϵℓ-constraint optimal vector.

The constraint vector ϵℓ is the lower bound values, such that the vector µ dominates the constraint
vector, except objective ℓ. Among those vector µ satisfying constraint, the ϵℓ-constraint optimal
vector is the one that has maximum value in objective ℓ. The ϵ-constraint optimal vector is such
constraint vector ϵℓ exists, as to be ϵℓ constraint optimal, for all ℓ ∈ [L].

The next lemma shows the equivalence between ϵ-constraint optimality and Pareto optimality.

Lemma 2 The vector µ∗ ∈ Conv(M) is Pareto optimal if and only if it is ϵ-constraint optimal.

Proof. (=⇒) Let µ∗ be Pareto optimal. Assume it is not ϵℓ-constraint optimal for some ℓ. Let the
constraint vector be ϵ(k) = µ

(k)
∗ for k = 1, ..., L, k ̸= ℓ. Since it is not ϵℓ-constraint optimal, then

there exists vector µ̇ such that µ(k)
∗ ≤ µ̇(k) for k = 1, ..., L and µ

(ℓ)
∗ < µ̇(ℓ). Since µ̇ exists and

dominates µ∗, this contradicts the definition of Pareto optimality.

(⇐=) Let µ∗ be ϵ-constraint optimal. Suppose the constraint vector is defined as ϵ(ℓ) = µ
(ℓ)
∗ for all

ℓ ∈ [L]. Since µ∗ is ϵℓ-constraint optimal for every ℓ = 1, ..., L, there is no other µ ∈ Conv(M)

satisfying µ
(ℓ)
∗ < µ̇(ℓ) and µ

(k)
∗ ≤ µ̇(k) when k ̸= ℓ, for every ℓ = 1, ..., L. This holds the definition

of Pareto optimality.

Above lemma demonstrates that every Pareto optimal arm is also ϵ-constraint optimal. This equiv-
alence also holds for non-convex set. But in the convex set Conv(M), the mean reward vector
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effective Pareto optimal arm satisfies the Pareto optimality in Conv(M), hence, it also satisfies
ϵ-constraint optimal. It is enough to show that, for any ϵ-constraint optimal vector µ∗ ∈ Conv(M),
there exists weight vector w ∈ SL satisfying

µ∗ = argmax
µ∈Conv(M)

w⊤µ

To prove above equation, we prove some of the lemmas that are useful for our proof.

Lemma 3 let Ω be non-empty convex set in RL, not containing origin. Then there exists a vector
w ∈ SL such that w⊤µ ≥ 0 holds for all µ ∈ Ω.

Proof. for µ1,µ2, ...,µm ∈ Ω, define matrix and arbitrary vector as

M = [µ1 µ2 ... µm]
⊤ ∈ Rm×L, β ∈ Sm.

by convexity of set Ω, we have M⊤β ∈ Ω, but 0 ̸∈ Ω. So, there is no solution β, satisfying

M⊤β = 0, β ∈ Sm.

The solution still do not exist even if we remove the constraint ∥β∥1 = 1. By Proposition 1, the
second condition of Gordan’s theorem does not hold. Hence, there exist L-dimensional vector w that
w⊤µi > 0 holds for all i = 1, ...,m. Since w is non-zero vector, we can take w as

∑
ℓ∈[L] |w(ℓ)| = 1.

Define the set
Vµi

= {w ∈ RL |
∑
ℓ∈[L]

|w(ℓ)| = 1,w⊤µi ≥ 0}.

Then we can write ⋂
i=1,...,m

Vµi
̸= ∅.

Each set Vµi
is closed and bounded, hence, it is compact set. Since µi was arbitrary chosen, the

collection (Vµ)µ satisfies finite intersection property. So, we have⋂
µ∈Ω

Vµ ̸= ∅.

Lemma 4 Let Ω be non-empty convex set in RL, such that the vector µ ∈ Ω with all negative entries
do not exist. Then, there exist vector w ∈ SL such that w⊤µ ≥ 0 holds for all µ ∈ Ω.

Proof. For a vector µ ∈ Ω, define the set

Bµ = {y ∈ RL|y(ℓ) > µ(ℓ),∀ℓ ∈ [L]},
B =

⋃
µ∈Ω

Bµ.

If origin is in B, then there exists µ that 0 > µ(ℓ) holds for all ℓ ∈ [L], which contradicts the
assumption. If y1 ∈ Bµ1

, y2 ∈ Bµ2
, we have

γy1 + (1− γ)y2 ∈ Bγµ1+(1−γ)µ2
⊂ B

for γ ∈ [0, 1]. Hence, B is convex set. By Lemma 3, there exist vector w, satisfying w⊤y ≥ 0 for
all y ∈ B. If the vector has negative entry w(ℓ) < 0, we can choose y ∈ B with large y(ℓ) so that
w⊤y < 0. Hence, we must have w(ℓ) ≥ 0 for all ℓ ∈ [L]. Also, since w is non-zero vector, we can
restrict the vector in unit L-dimensional simplex. We now prove w⊤µ ≥ 0 for all µ ∈ Ω. For any
positive real ϵ > 0, we have µ+ ϵ1 ∈ B. If there exist δ > 0,µ with w⊤µ = −δ, we can choose
ϵ < δ, so that

w⊤(µ+ ϵ1) = −δ + ϵ < 0.

Hence, we must have vector w that satisfies w⊤µ ≥ 0 for all µ ∈ Ω, and w ∈ SL

The next lemma is the revision of Generalized Gordan’s Theorem.
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Lemma 5 (Generalized Gordan’s Theorem) Let Ω be non-empty convex set. Either one of the
following statements holds, but not both.

1. There exists µ ∈ Ω whose entries are all negative.

2. There exists L-dimensional vector w ∈ SL satisfying w⊤µ ≥ 0 for all µ ∈ Ω.

Proof. (1̄ =⇒ 2) proof follows by Lemma 4.
(2 =⇒ 1̄) If µ is negative vector, we must have w⊤µ < 0 for all w ∈ SL.

Lemma 6 For any w ∈ SL, letA∗
w be set of optimal arm, that has optimal weight sum reward given

weight vector w, i.e.,
A∗

w = argmax
a∈A

w⊤µa.

Then there exists effective Pareto optimal arm a∗, such that a∗ ∈ A∗
w.

Proof. Suppose there exist w that a∗ ̸∈ A∗
w for any a∗ ∈ C∗. Let ā ∈ A∗

w/C∗ that maximizes
w⊤µa. Since ā ̸∈ C∗, for every effective Pareto optimal arm a∗ ∈ C∗, there exist βa∗ ≥ 0 satisfying

µā ≺
∑

a∗∈C∗

βa∗µa∗
,

∑
a∗∈C∗

βa∗ = 1.

Since w is vector with non-negative entries, we have

w⊤µā =
∑

a∗∈C∗

βa∗w
⊤µā ≤

∑
a∗∈C∗

βa∗w
⊤µa∗

.

We have, at least, one Pareto optimal arm with

w⊤µā ≤ w⊤µa∗

Such existence of a∗ is guaranteed with existence of βa∗ > 0.

Now, we begin the proof of Theorem 1

Proof. Suppose a∗ is effective Pareto optimal. By Equation (4), for any µ ∈ Conv(M) \ {µa∗
},

we have µa∗
̸≺ µ, hence, the vector µa∗

satisfies the Pareto optimality in Conv(M). By Lemma 2,
µa∗

is also ϵ-constraint optimal, with ϵ(ℓ) = µ
(ℓ)
a∗ , such that no vector µ ∈ Conv(M) \ {µa∗

}
satisfies µ(k)

a∗ − µ
(k)
h ≤ 0 for k = 1, ..., L and µ

(ℓ)
a∗ − µ

(ℓ)
h < 0 for some ℓ. By Lemma 5, since the set

Conv(M) is convex, the first statement does not hold. There exists L-dimensional vector w ∈ SL
satisfying w⊤(µa∗

− µ) ≥ 0 for all µ ∈ Conv(M). Hence, we have

a∗ = argmax
a∈A

w⊤µa

Conversly, Suppose a∗w = argmaxa∈A w⊤µa is unique arm. By Lemma 6, the existence of effective
Pareto optimal arm implies a∗w ∈ C∗.

B Analysis of MOLB-TS

In this section, we provide the analysis of the worst-case regret of algorithm MOLB-TS.

We begin with the proof of Lemma 1.

B.1 Proof of Lemma 1

Proof. The parameters (θ̃(ℓ)t,m)m∈[M ] are sampled from Gaussian distributionN (θ̂
(ℓ)
t , c21,tV

−1
t ). Then

for any given d-dimensional vector xt,a, we can rewrite this probability distribution as

x⊤
t,aθ̃

(ℓ)
t,m ∼ N (x⊤

t,aθ̂
(ℓ)
t , c21,t∥xt,a∥2V −1

t
).
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Also, we can see the probability of the event Ė(ℓ)t,a as

P(Ė(ℓ)t,a ) = P{∃m ∈ [M ] : x⊤
t,a(θ̃

(ℓ)
t,m − θ̂

(ℓ)
t ) ≥ c1,t∥xt,a∥V −1

t
}

= P{∃m ∈ [M ] : ηm ≥ 1}
where (ηm)m∈[M ] is sampled from standard normal distributionN (0, 1). For M = 1, the probability
of optimism P(Ė(ℓ)t,a ) is bounded below by p. The probability of optimism, satisfying at least one
sampled parameter, is bounded by

P(Ė(ℓ)t,a ) ≥ 1− (1− p)M .

These optimism events between different objectives are independent. Let the event Ėt,a be defined as

Ėt,a =
⋂

ℓ∈[L]

Ė(ℓ)t,a

The event Ėt,a is the optimism satisfying for all objectives ℓ ∈ [L]. Hence, we have

P(Ėt,a) ≥ (1− (1− p)M )L.

To have P(Ėt,a) ≥ p, we need to choose large enough M so that

(1− (1− p)M )L ≥ p.

Rearrange the equation, we get

M ≥ log(1− p1/L)

log(1− p)

=
log(1− p)− log(1 + p1/L + p2/L...+ p(L−1)/L)

log(1− p)

= 1 +
log(1 + p1/L + p2/L...+ p(L−1)/L)

log 1
1−p

With sampling by Gaussian distribution, we have p = 0.15. However, the probability p can be
different by choosing different sampling distribution. But, as long as p ∈ [0, 1), we have

1 +
logL

log 1
1−p

≥ 1 +
log(1 + p1/L + p2/L...+ p(L−1)/L)

log 1
1−p

Hence, by choosing M as

M ≥ logL

log 1
1−p

,

we get P(Ėt,a) ≥ p

Lemma 1 shows the minimum number of M for the inequality P(Ėt,a) ≥ p to hold.

B.2 Proof of Theorem 2

Dependence on logL. Before proving Theorem 2, we define the events Êt, Ẽt such that the true
parameters θ

(ℓ)
∗ and all sampled parameters (θ̃

(ℓ)
t,m)m∈[M ] are close enough to the RLS estimate

parameters θ̂(ℓ)t for all objectives, respectively.

Êt := {∀ℓ ∈ [L] : ∥θ(ℓ)∗ − θ̂
(ℓ)
t ∥Vt

≤ c1,t(δ)},
Ẽt := {∀m ∈ [M ],∀ℓ ∈ [L] : ∥θ̃(ℓ)t,m − θ̂

(ℓ)
t ∥Vt

≤ c2,t(δ)},
where c1,t(δ) and c2,t(δ) are defined as

c1,t(δ) := R

√
d log

(
1 + (t− 1)/(λd)

δ/L

)
+ λ1/2,

c2,t(δ) := c1,t(δ)

√
2d log

2LMdT

δ
.
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Let Ê =
⋂

t≥0 Êt. By Lemma 8, we have P(Ê) ≥ 1 − δ, and by Lemma 9, on event Ê , we have
Pt(Ẽt) = P(Ẽt | Ft) ≥ 1− δ/T . The high probability bounds c1,t(δ) and c2,t(δ) increased by a factor
of logL due to the union bound over the number of objectives. Consequently, the regret inevitably
depends on logL as this factor arises from the concentration bounds required to hold uniformly over
all objectives.

Bounding the sub-optimality gap. We now prove the following lemma, which bounds the conditional
expectation of the regret of MOLB-TS at round t given the historical information up to that point.

Lemma 7 For any filtration Ft−1, on event Ê , we have

Et[∆
EPR
at

] ≤
(
1 +

2

0.15− δ
T

)
(c1,t(δ) + c2,t(δ))Et[∥xt,at

∥V −1
t

] +
δ

T
∆max

Proof. Let (βt,a∗)a∗∈C∗
t

be one that maximizes ∆EPR
at

.

∆EPR
at

= max
β∈S|C∗

t |
min
ℓ∈[L]

{ ∑
a∗∈C∗

t

βa∗x
⊤
t,a∗

θ
(ℓ)
∗

− x⊤
t,at

θ
(ℓ)
∗

}

= min
ℓ∈[L]

{ ∑
a∗∈C∗

t

βt,a∗x
⊤
t,a∗

θ
(ℓ)
∗

− x⊤
t,at

θ
(ℓ)
∗

}

Let wt be the weight vector in unit L-simplex sampled, described in Section 5.2. Then,

∆EPR
at

= min
ℓ∈[L]

{ ∑
a∗∈C∗

t

βt,a∗x
⊤
t,a∗

θ
(ℓ)
∗

− x⊤
t,at

θ
(ℓ)
∗

}

≤
∑
ℓ∈[L]

w
(ℓ)
t

 ∑
a∗∈C∗

t

βt,a∗x
⊤
t,a∗

θ
(ℓ)
∗

− x⊤
t,at

θ
(ℓ)
∗


=
∑

a∗∈C∗
t

βt,a∗x
⊤
t,a∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 .

By Theorem 1, there exists ā∗ ∈ C∗ satisfying

ā∗ = argmax
a∈A

x⊤
t,a

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗ .

Hence, we have

∆EPR
at

≤
∑

a∗∈C∗
t

βt,a∗x
⊤
t,a∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 (5)

≤ x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 . (6)

From M multiple sampled parameters, we define θ̃
(ℓ)
a,t as optimal sampled parameter with arm a, i.e.,

θ̃
(ℓ)
a,t = argmax

θ̃t,m

{x⊤
t,aθ̃

(ℓ)
t,1 , x

⊤
t,aθ̃

(ℓ)
t,2 , ..., x

⊤
t,aθ̃

(ℓ)
t,M}.

At round t, the arm a is evaluated with the sampled parameters θ̃(ℓ)a,t for all ℓ ∈ [L]. As we described
in Section 5.2, we can write ā∗, at as

ā∗ = argmax
a∈A

x⊤
t,a

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗ ,

at = argmax
a∈A

x⊤
t,a

∑
l∈[L]

w
(ℓ)
t θ̃

(ℓ)
a,t.
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Let ct(δ) = c1,t(δ) + c2,t(δ). We separated arms into two sets with given weight vector, saturated
and unsaturated [4].

• Bt : set of saturated arms, that is, for all a ∈ Bt, we have

x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,a

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 > ct(δ)∥xt,a∥V −1
t

.

• Bt : set of unsaturated arms, that is, for all a ∈ Bt, we have

x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,a

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 ≤ ct(δ)∥xt,a∥V −1
t

.

Note that wt is random variable, since the arm at is uniform randomly selected from C̃t. Hence,
those sets of saturated and unsaturated arms (Bt, B̄t) are not fixed. Let āt = argmina∈B̄t

∥xt,a∥V −1
t

be arm in B̄t with smallest matrix norm. From Equation (6), bounding the sub-optimality gap ∆EPR
at

on event Ê and Ẽt, we have

∆EPR
at

≤ x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗


= x⊤

t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

+ x⊤
t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗


− x⊤

t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗


For any arm a, by the Cauchy-Schwarz inequality of matrix norm, we have∣∣∣∣∣∣x⊤

t,a

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a,t

− x⊤
t,a

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

∣∣∣∣∣∣ ≤ ∥xt,a∥V −1
t

∑
ℓ∈[L]

w
(ℓ)
t ∥θ̃(ℓ)a,t − θ

(ℓ)
∗ ∥Vt

 .

And by triangle inequality of norm, we have∑
ℓ∈[L]

w
(ℓ)
t ∥θ̃(ℓ)a,t − θ

(ℓ)
∗ ∥Vt

≤
∑
ℓ∈[L]

w
(ℓ)
t

(
∥θ̃(ℓ)a,t − θ̂

(ℓ)
t ∥Vt

+ ∥θ̂(ℓ)t − θ
(ℓ)
∗ ∥Vt

)
.

And lastly, on event Ê and Ẽt, we get

∥θ̃(ℓ)a,t − θ̂
(ℓ)
t ∥Vt + ∥θ̂(ℓ)t − θ

(ℓ)
∗ ∥Vt ≤ (c1,t(δ) + c2,t(δ)) = ct(δ)

In total, we get∣∣∣∣∣∣x⊤
t,a

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a,t

− x⊤
t,a

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

∣∣∣∣∣∣ ≤
∑

ℓ∈[L]

w
(ℓ)
t

 ct(δ)∥xt,a∥V −1
t

.
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Hence, on event Ê and Ẽt,

∆EPR
at

≤ x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

+ x⊤
t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
āt,t

+

∑
ℓ∈[L]

w
(ℓ)
t

 ct(δ)∥xt,āt
∥V −1

t

− x⊤
t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
at,t

+

∑
ℓ∈[L]

w
(ℓ)
t

 ct(δ)∥xt,at
∥V −1

t

= x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

+ x⊤
t,āt

∑
l∈[L]

w
(ℓ)
t θ̃

(ℓ)
āt,t

+ ct(δ)∥xt,āt
∥V −1

t

− x⊤
t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,at

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
at,t

+ ct(δ)∥xt,at
∥V −1

t
.

Since

at = argmax
a∈A

x⊤
t,a

∑
l∈[L]

w
(ℓ)
t θ̃

(ℓ)
a,t,

we have

∆EPR
at

≤ x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,āt

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

+ ct(δ)∥xt,āt∥V −1
t

+ ct(δ)∥xt,at∥V −1
t

≤ 2ct(δ)∥xt,āt
∥V −1

t
+ ct(δ)∥xt,at

∥V −1
t

,

where the last inequality holds since āt is unsaturated arm. This inequality holds on event Ê and Ẽt.
Define the conditional probability Pt = P(· | Ft). Then, on event Ê , we have

Et[∆
CPR
at

] ≤ Et[2ct(δ)∥xt,āt∥V −1
t

+ ct(δ)∥xt,at∥V −1
t

] + (1− Pt{Ẽt})∆max

≤ Et[2ct(δ)∥xt,āt
∥V −1

t
+ ct(δ)∥xt,at

∥V −1
t

] +
δ

T
∆max

We bound the term Et[∥xt,āt
∥V −1

t
] with ∥xt,at

∥V −1
t

. We have

Et[∥xt,at
∥V −1

t
] ≥ Et[∥xt,at

∥V −1
t
| at ∈ Bt]Pt{at ∈ Bt}

≥ ∥xt,āt
∥V −1

t
Pt{at ∈ Bt}

The probability Pt{at ∈ Bt} has randomness over algorithm selecting arm from empirical effective
Pareto front C̃t, where the set Bt varies on this random selection. More precisely, the set Bt and Bt
change as wt changes. But, for any given wt, the probability Pt{at ∈ Bt} bounds below by the
probability that at least one unsaturated arm is evaluated higher compared to all saturated arms, i.e.,

Pt{at ∈ Bt} ≥ Pt

{
∃a ∈ Bt : x⊤

t,a

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a,t

 > max
a′∈Bt

x⊤
t,a′

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a′,t

},
where the unsaturated arm exists by ā∗ ∈ Bt. Hence this probability bounds below by the probability
that the arm ā∗ is evaluated higher compared to all saturated arms, i.e.,

Pt{at ∈ Bt} ≥ Pt

{
x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
ā∗,t

 > max
a′∈Bt

x⊤
t,a′

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a′,t

}.
On event Ẽt, those saturated arms a′ ∈ Bt satisfy

x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,a′

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 > ct(δ)∥xt,a′∥V −1
t

(7)
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and

x⊤
t,a′

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a′,t

− x⊤
t,a′

∑
l∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 ≤ ct(δ)∥xt,a′∥V −1
t

. (8)

Subtracting Equation (8) from Equation (7), we get

x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

− x⊤
t,a′

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
a′,t

 ≥ 0.

for all a′ ∈ Bt. Using this inequality, the Probability bounds as

Pt{at ∈ Bt} ≥ Pt

{
x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
ā∗,t

 > x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

 , Ẽt
}

≥ Pt

{
x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
ā∗,t

 > x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

}− (1− Pt{Ẽt})

Since θ̃
(ℓ)
ā∗,t is objective wise independent, the probability bounds by objective wise probability,

Pt

{
x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ̃

(ℓ)
ā∗,t

 > x⊤
t,ā∗

∑
ℓ∈[L]

w
(ℓ)
t θ

(ℓ)
∗

} ≥ ⋂
ℓ∈[L]

Pt{x⊤
t,ā∗

θ̃
(ℓ)
ā∗,t > x⊤

t,ā∗
θ
(ℓ)
∗ }

Removing the random vector wt, this inequality holds for any wt. In other words, this inequality
holds for any random selection of arms from the set C̃t. Hence, we get

Pt{at ∈ Bt} ≥
⋂

ℓ∈[L]

Pt{x⊤
t,ā∗

θ̃
(ℓ)
ā∗,t > x⊤

t,ā∗
θ
(ℓ)
∗ } − (1− Pt{Ẽt})

≥
⋂

ℓ∈[L]

Pt{x⊤
t,ā∗

θ̃
(ℓ)
ā∗,t > x⊤

t,ā∗
θ
(ℓ)
∗ } −

δ

T

= Pt{x⊤
t,ā∗

θ̃
(1)
ā∗,t > x⊤

t,ā∗
θ
(1)
∗ }L −

δ

T

As we remove wt, the probability Pt{at ∈ Bt} gets exponentially small as the number of objective
increases. We remove this by adopting optimistic sampling strategy. With the number multiple
samples M , following Lemma 1, we have

Pt{x⊤
t,ā∗

θ̃
(1)
ā∗,t > x⊤

t,ā∗
θ
(1)
∗ } ≥ 1− (1− p)M .

Hence, we get

Pt{at ∈ Bt} ≥ (1− (1− p)M )L − δ

T

This inequality holds for any wt. With M = ⌈1− logL
log(1−p)⌉, we have (1− (1− p)M )L ≥ p. Finally,

we have

Et[∥xat
∥V −1

t
] ≥ ∥xāt

∥V −1
t

(
p− δ

T

)
Replacing the term ∥xāt

∥V −1
t

to ∥xat
∥V −1

t
, we get.

Et[∆
EPR
at

] ≤
(
1 +

2

p− δ
T

)
ct(δ)Et[∥xat∥V −1

t
] +

δ

T
∆max
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Now we begin the proof of Theorem 2.

Proof. We have

E[EPR(T )] =

T∑
t=1

E[∆EPR
at

]

= P(Ê)
T∑

t=1

E[∆EPR
at

1{Ê}] + (1− P(Ê))∆max

≤
T∑

t=1

E[∆EPR
at

1{Ê}] + δ∆max

=

T∑
t=1

E[Et[∆
EPR
at

]1{Ê}] + δ∆max

By Lemma 7, bounding the term Et[∆
EPR
at

], we have

E[EPR(T )] ≤
T∑

t=1

(
1 +

2

0.15− δ
T

)
ct(δ)E[Et[∥xt,at

∥V −1
t

]1{Ê}] + 2δ∆max

≤
(
1 +

2

0.15− δ
T

)
cT (δ)E[

T∑
t=1

Et[∥xt,at∥V −1
t

]1{Ê}] + 2δ∆max

=

(
1 +

2

0.15− δ
T

)
cT (δ)E[

T∑
t=1

∥xt,at
∥V −1

t
] + 2δ∆max

≤
(
1 +

2

0.15− δ
T

)
cT (δ)

√
2Td log

(
1 +

T

λ

)
+ 2δ∆max,

where the last inequality follows by Proposition 2,

C Additional Technical Tools

Proposition 1 (Gordan’s Theorem, page 31, Mangasarian 12) For given matrix M ∈ Rm×L, ei-
ther one of the following statements holds, but not both.

1. There exists L-dimensional vector w, that Mw has all positive entries.

2. M⊤β = 0, β ≻ 0 has solution β ∈ Rm.

Proposition 2 (Lemma 11, Abbasi-Yadkori et al. 1) Let λ ≥ 1. For arbitrary sequence
(xt,at

)t∈[T ], we have
T∑

t=1

∥xt,at∥2V −1
t
≤ 2d log

(
1 +

T

λ

)
.

Lemma 8 (Theorem 2, Abbasi-Yadkori et al. 1) Let (Ft)t≥0 be a filtration. Let (ξ(ℓ)t ) be a real-
valued stochastic process such that ξ(ℓ)t is conditionally R-sub-Gaussian, given filtration Ft for any
ℓ ∈ [L]. Then with probability at least 1− δ, the event

Êt =
{
∀ℓ ∈ [L] : ∥θ̂(ℓ)t − θ

(ℓ)
∗ ∥Vt

≤ R

√
d log

(
1 + (t− 1)/(λd)

δ/L

)
+ λ1/2

}
holds for all t ≥ 1.

Proof. By Theorem 2 in Abbasi-Yadkori et al. [1], and union bound with L.
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Lemma 9 (Definition 1, Abeille and Lazaric 2) On event Êt, with probability at least 1 − δ, all
sampled parameters (θ̃(ℓ)t,m)m∈[M ],ℓ∈[L] follow concentration property, i.e.,

Ẽt :=
{
∥θ̃(ℓ)t,m − θ̂

(ℓ)
t ∥Vt

≤
√
2d log

2LMd

δ

(
R

√
d log

(
1 + (t− 1)/(λd)

δ/L

)
+ λ1/2

)}
.

for all m ∈ [M ], ℓ ∈ [L].

Proof. By Definition 1 in Abeille and Lazaric [2], and union bound with M and L.

D Discussions

Our proposed algorithm demonstrates strong empirical performance with various settings. But its
theoretical worst-case regret bound is not tighter than that of UCB-based algorithms. This gap
between UCB-type algorithms and TS algorithms is well-known in the regret analysis of previous TS
algorithms [4, 2] bounding the worst-case frequentist regret.

Our work is studied under the standard linear contextual bandit setting. Our framework can be readily
extended to generalized linear contextual bandits. Extension to more complex function class such as
neural networks requires analysis that is beyond the scope of this work, but is certainly the promising
avenue for future work.

Yet, our work introduces the first randomized algorithm with Pareto regret guarantees in the multi-
objective bandit framework. We hope that our work lays a foundation basis for extending such
techniques to follow-up works.

E Computing resources for experiments

All experiments are conducted with INTEL(R) XEON(R) GOLD 6526Y CPU and 4 TB memory.
The software environment includes Python 3.12.7, Scipy 1.14.1, and Numpy 1.26.4. The experiments
took approximately 4 hours to 1 day, as it takes longer with increasing numbers of arms, dimensions,
and objectives.
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F Additional experimental results
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Figure 3: Experimental results with K = 50, d = 10, L = 4
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Figure 4: Experimental results with K = 100, d = 5, L = 4
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Figure 5: Experimental results with K = 100, d = 10, L = 4
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Figure 6: Experimental results with K = 100, d = 15, L = 4
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Figure 7: Experimental results with K = 200, d = 10, L = 4
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Figure 8: Experimental results with K = 200, d = 15, L = 4
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Figure 9: Experimental results with K = 50, d = 5, L = 8
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Figure 10: Experimental results with K = 100, d = 10, L = 8
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Figure 11: Experimental results with K = 100, d = 10, L = 4, linear (non-contextual) setting.
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Figure 12: Experimental results with K = 200, d = 15, L = 8
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Figure 13: Experimental results with K = 200, d = 15, L = 4, linear (non-contextual) setting.
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