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ABSTRACT
An important problem in contemporary statistics is to understand the relationship among a large number
of variables based on a dataset, usually with p, the number of the variables, much larger than n, the sam-
ple size. Recent efforts have focused on modeling static covariance matrices where pairwise covariances
are considered invariant. In many real systems, however, these pairwise relations often change. To char-
acterize the changing correlations in a high-dimensional system, we study a class of dynamic covariance
models (DCMs) assumed to be sparse, and investigate for the first time a unified theory for understand-
ing their nonasymptotic error rates and model selection properties. In particular, in the challenging high-
dimensional regime, we highlight a new uniform consistency theory in which the sample size can be seen
as n4/5 when the bandwidth parameter is chosen as h ∝ n−1/5 for accounting for the dynamics.We show that
this result holds uniformly over a range of the variable used for modeling the dynamics. The convergence
rate bears the mark of the familiar bias-variance trade-off in the kernel smoothing literature. We illustrate
the results with simulations and the analysis of a neuroimaging dataset. Supplementary materials for this
article are available online.

1. Introduction

A common feature of contemporary datasets is their complex-
ity in terms of dimensionality. To understand the relationship
between the large number of variables in a complex dataset,
a number of approaches are proposed to study a covariance
matrix, or its inverse, sometimes with additional structures,
built on the premise that many variables are either marginally
independent or conditionally independent (Yuan and Lin 2006;
Bickel and Levina 2008a, 2008b; Rothman, Levina, and Zhu
2009; Yuan 2010; Cai and Liu 2011; Cai, Liu, and Luo 2011;
Chandrasekara, Parrilo, and Willsky 2012; Xue, Ma, and Zou
2012; Cui, Leng, and Sun 2016).

The existing literature on estimating a sparse covariance
matrix (or a sparse precision matrix) in high dimensions has
an implicit assumption that this matrix is static, treating its
entries as constant. Under this assumption, manymethods were
proposed to estimate the static covariance matrix consistently.
Bickel and Levina (2008a) considered the problem of estimating
this matrix by banding the sample covariance matrix, if a natu-
ral ordering of the variables or a notion of distance between the
variables exists. Bickel and Levina (2008b), Rothman, Levina,
and Zhu (2009), and Cai and Liu (2011) proposed to threshold
a sample covariance matrix when an ordering of the variables
is not available. Xue, Ma, and Zou (2012) developed a positive
definite l1-penalized covariance estimator. Yuan and Lin (2006)
proposed a penalized likelihood based method for estimating
sparse inverse covariance matrices. Yuan (2010) and Cai, Liu,
and Luo (2011) estimated the static precision matrix under a
sparsity assumption via linear programming. Guo et al. (2011)
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and Danaher, Wang, and Witten (2014) studied the estimation
ofmultiple graphical models when several datasets are available.

The aforementioned papers all treat the matrix of interest as
static. Thus, the resulting covariance matrix remains a constant
matrix throughout the entire course of data collection. In real-
ity, however, the assumption that the covariance matrix is con-
stant may not be true. To illustrate this point, we considered the
fMRI data collected byNewYorkUniversity Child Study Center.
This particular experiment we considered has 172 scans from
one subject, each recording the BOLD signals of 351 regions of
interests (ROIs) in the brain. The detail of this dataset is dis-
cussed in Section 4.2. If we simply divide the dataset into two
equal parts, with the first 86 scans in population one and the
remaining 86 scans in population two, a formal test of the equal-
ity of the two 351 × 351 covariance matrices gives a p-value
less than 0.001 (Li and Chen 2012). This result implies that it
may be more appropriate to use different covariance matrices
for the scans at different time. Indeed, it is reasonable to expect
that in a complex data situation, the covariance matrix often
behaves dynamically in response to the changes in the underly-
ing data collection process. This phenomenon is severely over-
looked when the dimensionality is high. Other important exam-
ples where the underlying processes are fundamentally varying
include genomics, computational social sciences, and financial
time series (Kolar et al. 2010).

The main purpose of this article is to develop a general
class of dynamic covariance models (DCMs) for capturing the
dynamic information in large covariancematrices. In particular,
we make use of kernel smoothing (Wand and Jones 1995; Fan
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and Gijbels 1996) for estimating the covariance matrix locally,
and apply entrywise thresholding afterward to this locally esti-
matedmatrix for achieving consistency uniformly over the vari-
able used for capturing dynamics. The proposed method is sim-
ple, intuitive, easy to compute, and as demonstrated by the
nonasymptotic analysis, possesses excellent theoretical proper-
ties. To the best of our knowledge, this is the first piece of
work that demonstrates the power of nowadays classical ker-
nel smoothing in estimating large covariance matrices. Yin et al.
(2010) studied this model for fixed dimensional problems with-
out considering sparsity. In high-dimensional cases, Ahmed and
Xing (2009) andKolar et al. (2010) considered time-varying net-
works by presenting pointwise convergence and model selec-
tion results. Zhou, Lafferty, andWasserman (2010) estimated the
time-varying graphical models. These papers established theo-
retical results at each time point. However, it is not clear whether
the results provided in these papers hold simultaneously over
the entire time period under consideration. This concern greatly
hinders the use of dynamic information for modeling high-
dimensional systems. In contrast, we show that the convergence
rate of the estimated matrices via the proposed approach holds
uniformly over a compact set of the dynamic variable of interest.
A detailed analysis reveals the familiar bias-variance trade-off
commonly seen in kernel smoothing (Fan and Gijbels 1996; Yu
and Jones 2004). In particular, by choosing a bandwidth param-
eter as h ∝ n−1/5, the effective sample size becomes of order
n4/5 which is used for estimating a covariance matrix locally.
Although this result matches that when the dimension is fixed,
we allow the dimensionality p to be exponentially high com-
pared to the sample size n and the conclusion holds uniformly.
This is the first rigorous uniform consistency result combining
the strength of kernel smoothing and high-dimensional covari-
ance matrix modeling.

The rest of the article is organized as follows. In Section
2, we elaborate the proposed DCMs that require simply local
smoothing and thresholding. A unified theory demonstrating
that DCMswork for high dimensionality uniformly is presented
in Section 3. In this section, we also discuss a simple ad hoc
method to obtain a positive definite estimate in case that thresh-
olding gives a nonpositive definite matrix. We present finite-
sample performance of the DCMs by extensive simulation stud-
ies and an analysis of the fMRI data in Section 4. Section 5 gives
concluding remarks. All the proofs are relegated to the online
Appendix and the supplementary materials.

2. Themodel andmethodology

Let Y = (Y1, . . . ,Yp)
T be a p-dimensional random vector and

U = (U1, . . . ,Ul )
T be the associated index random vector. In

many cases, a natural choice ofU is time for modeling temporal
dynamics. We write the conditional mean and the conditional
covariance of Y given U as m(U ) = (m1(U ), . . . ,mp(U ))T

and �(U ), respectively, where � jk(U ) = cov(Yj,Yk|U ). That
is, we allow both the conditional mean and the conditional
covariance matrix to vary with U . When U denotes time, our
model essentially states that both the mean and the covariance
of the response vector are time dependent processes. Previous
approaches for analyzing large dimensional data often assume

m(U ) = m and �(U ) = �, where both m and � are indepen-
dent of U . Suppose that {Yi,Ui} with Yi = (Yi1, . . . ,Yip)T is a
random sample from the population {Y,U }, for i = 1, . . . , n
with n � p. We are interested in the estimation of the condi-
tional covariance matrix �(u). In this article, we focus on uni-
variate dynamical variables where l = 1. The result can be easily
extended to multivariate cases with l > 1 as long as l is fixed.

To motivate the estimates, recall that for fixed p, the usual
consistent estimates of the static mean and covariancem and �

can be written as m̂ = n−1∑n
i=1Yi and �̂ = n−1∑n

i=1YiY
T
i −

m̂m̂T , respectively. The basic idea of kernel smoothing is to
replace the weight 1/n for each observation in these two expres-
sions by aweight that depends on the distance of the observation
to the target point. By having larger weights for the observations
closer to the target U , we estimate m(U ) and �(U ) locally in
a loose sense. More specifically, by notingm(U ) = E(Y |U ), we
can estimatem(U ) atU = u as

m̂(u) =
{ n∑

i=1

Kh(Ui − u)Yi
}{ n∑

i=1

Kh(Ui − u)
}−1

, (1)

where Kh(·) = K(·/h)/h for a kernel function K(·) and h is a
bandwidth parameter (Wand and Jones 1995; Fan and Gijbels
1996). Similarly, a kernel estimate of E(Y1 jY T

1k|U = u) is simply

{ n∑
i=1

Kh(Ui − u)Yi jYT
ik

}{ n∑
i=1

Kh(Ui − u)
}−1

,

which is consistent at each u under appropriate conditions
(Wand and Jones 1995; Fan and Gijbels 1996). Putting these
pieces together, we have the following empirical sample condi-
tional covariance matrix:

�̂(u) : =
{ n∑

i=1

Kh(Ui − u)YiYT
i

}{ n∑
i=1

Kh(Ui − u)
}−1

−
{ n∑

i=1

Kh(Ui − u)Yi
}{ n∑

i=1

Kh(Ui − u)YT
i

}

×
{ n∑

i=1

Kh(Ui − u)
}−2

. (2)

Based on a normality assumption, Yin et al. (2010) derived a
slightly different covariance estimator as

�̂1(u) =
[ n∑

i=1

Kh(Ui − u){Yi − m̂(Ui)}{Yi − m̂(Ui)}T
]

×
{ n∑

i=1

Kh(Ui − u)
}−1

.

Both �̂(u) and �̂1(u) are consistent for estimating �(u) when
p is fixed and n goes to infinity. However, in high-dimensional
settings where the dimension p can vastly outnumber the sam-
ple size n, both �̂(u) and �̂1(u) become singular, and neither
can be used to estimate the inverse of a covariance matrix. With
the increasing availability of large datasets, there is great demand
to develop new methods to estimate the dynamic covariance
matrix with desirable theoretical properties.

Bickel and Levina (2008b) proposed to use hard thresh-
olding on individual entries of the sample covariance matrix.
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1198 Z. CHEN AND C. LENG

They showed that as long as log p/n → 0, the thresholded esti-
mator is consistent in the operator norm uniformly over the
class of matrices satisfying their notion of sparsity. By using a
generalized notion of shrinkage for thresholding that includes
hard thresholding, Lasso (Tibshirani 1996), adaptive Lasso (Zou
2006), and SCAD (Fan and Li 2001) as special cases, Rothman,
Levina, and Zhu (2009) proposed the generalized thresholding
operator. Denoted as a function sλ : R → R, this operator satis-
fies the following three conditions for all z ∈ R: (i) |sλ(z)| ≤ |z|;
(ii) sλ(z) = 0 for z ≤ λ; (iii) |sλ(z) − z| ≤ λ. In particular, for
hard thresholding, sλ(z) = zI(|z| ≥ λ); for soft thresholding,
sλ(z) = sign(z)(|z| − λ)+ with (z)+ = z if z > 0 and (z)+ = 0
if z ≤ 0; for adaptive lasso, sλ(z) = sign(z)(|z| − λ2/|z|)+; and
for SCAD, sλ(z) is the same as the soft thresholding if |z| ≤ 2λ,
and equals {2.7z − sign(z)3.7λ}/1.7 for |z| ∈ [2λ, 3.7λ], and z
if |z| > 3.7λ. We follow this notion of generalized shrinkage to
construct our estimator as

sλ(u)(�̂(u)) =
[
sλ(u)(�̂ jk(u))

]
p×p

,

where λ(u) is a dynamic thresholding parameter depending on
U . We collectively name our covariance estimates as dynamic
covariance models (DCMs) to emphasize the dependence of the
conditional mean and the conditional covariance matrix on the
dynamic index variableU . We remark that we allow the thresh-
olding parameter λ to depend on the dynamic variableU . Thus,
the proposed DCMs can be made fully adaptive to the sparsity
levels at differentU .

3. Theory

Throughout this article, we implicitly assume p � n. We first
present the exponential-tail condition (Bickel andLevina 2008b)
for deriving our asymptotic result. Namely, for i = 1, . . . , n and
j = 1, . . . , p, it is assumed that

EetY
2
i j ≤ K1 < ∞, for 0 < |t| < t0, (3)

where t0 is a positive constant. We establish the convergence of
our proposed estimator in the matrix operator norm (spectral
norm) defined as ||A||2 = λmax(AAT ) for a matrix A = (ai j) ∈
Rp×r. The following conditions are mild and routinely made in
the kernel smoothing literature (Fan and Gijbels 1996; Pagan
and Ullah 1999; Einmahl and Mason 2005; Fan and Huang
2005). These conditions may not be the weakest possible condi-
tions for establishing the results of this article, and are imposed
to facilitate the proofs.

Regularity Conditions:
(a) We assume thatU1, . . . ,Un are independent and identi-

cally distributed from a pdf f (·) with compact support
�. In addition, f is twice continuously differentiable and
is bounded away from 0 on its support.

(b) The kernel function K(·) is a symmetric density func-
tion about 0 and has bounded variation. Moreover,
supu K(u) < M3 < ∞ for a constantM3.

(c) The bandwidth satisfies h → 0 and nh → ∞ as n → ∞.
(d) All the components of the mean function m(u) and all

the entries of�(u) have continuous second order deriva-
tives. Moreover, supu E(Y 4

i j|Ui = u) < M4 < ∞, for i =
1, . . . , n; ˜ j = 1, . . . , p, whereM4 is a constant.

The following result shows that the proposed estimator con-
verges to the true dynamic covariance matrix uniformly over
u ∈ �, which holds uniformly over the set of the covariance
matrices defined as

U (q, c0(p),M2;�) =
{
{�(u), u ∈ �} | sup

u∈�

σii(u)

< M2 < ∞, sup
u∈�

⎛
⎝ p∑

j=1

|σi j(u)|q
⎞
⎠ ≤ c0(p),∀i

}
,

where � is a compact subset of R and 0 ≤ q < 1. When q = 0,

U (0, c0(p),M2;�) =
{
{�(u), u ∈ �} | sup

u∈�

σii(u)

< M2 < ∞, sup
u∈�

⎛
⎝ p∑

j=1

I{σi j(u) �= 0}
⎞
⎠ ≤ c0(p),∀i

}
.

The dynamic covariance matrices �(u) in U (q, c0(p),M2;�)

are assumed to satisfy the densest sparse condition over u ∈ �,
that is, supu∈�(

∑p
j=1 |σi j(u)|q) ≤ c0(p). Loosely speaking, for

q = 0, the densest �(u) over u ∈ � has at most c0(p) nonzero
entries on each row. This condition is necessary, because oth-
erwise, with a limited sample size, one cannot estimate a
dense covariance matrix well. Clearly, the family of covariance
matrices over u ∈ � defined in U (q, c0(p),M2;�) generalizes
the notion of static covariance matrices in Bickel and Levina
(2008b). We remark that the results presented in this article
apply to any compact subset �1 ⊂ � where {�(u), u ∈ �1} ∈
U (q, c0(p),M2;�1). Thus, even if the densest sparse condition
fails on �, we can still apply our method to subregions of �

where this condition holds. We have the following strong uni-
form results for the consistency of the proposed DCMs.

Theorem 1 [Uniform consistency in estimation]. Under Condi-
tions (a)–(d), suppose that the exponential-tail condition in (3)
holds and that sλ is a generalized shrinkage operator. Uniformly

on U (q, c0(p),M2;�), if λn(u) = M(u)(

√
log p
nh + h2

√
log p),

log p
nh → 0 and h4 log p → 0, we have

sup
u∈�

||sλn(u)(�̂(u)) − �(u)||

= Op

⎛
⎝c0(p)

(√
log p
nh

+ h2
√
log p

)1−q
⎞
⎠ ,

where M(u) depending on u ∈ � is large enough and
supu∈� M(u) < ∞.

The proof of Theorem1 can be found in the onlineAppendix.
The uniform convergence rate in Theorem 1 has the famil-
iar bias-variance trade-off in the kernel smoothing literature
(Wand and Jones 1995; Fan and Gijbels 1996), suggesting that
the bandwidth should be selected carefully to balance bias
and variance for optimally estimating the dynamic covariance
matrices. In particular, for q = 0, the bias is bounded uni-
formly by O(c0(p)h2

√
log p) and the variance is of the order

Op(c0(p)
√

log p
nh ) uniformly. The existence of p here demon-

strates clearly the dependence of these two quantities on the
dimensionality, the bandwidth and the sample size. From this
theorem, we immediately know that the optimal convergence
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rate is achieved when h ∝ n−1/5, consistent with the band-
width choice in the traditional kernel smoothing (Wand and
Jones 1995; Fan and Gijbels 1996). When the optimal band-
width parameter h ∝ n−1/5 is adopted, the uniform conver-
gence rate in Theorem 1 is Op(c0(p)(

log p
n4/5 )(1−q)/2). Thus, if

c0(p) is bounded, we can allow the dimension to be of order
o(exp(n4/5)) to have a meaningful convergent estimator. Intu-
itively, our result is also consistent with that of Bickel and Levina
(2008b) and Rothman et al. (2009) for estimating a static sparse
covariance matrix. A key difference is that the effective sample
size for estimating each �(u) can be seen as nh ∝ n4/5 with a
bandwidth parameter h ∝ n−1/5 for accounting for the dynam-
ics. Most importantly, our result holds uniformly over a range
of the variable used for modeling dynamics. It is noted that the
uniform convergence rate depends explicitly on how sparse the
truth is through c0(p), and that the fundamental result underly-
ing this theorem is Lemma A.4. This is the first uniform result
combining the strength of kernel smoothing and covariance
matrix estimation in the challenging high-dimensional regime.

We remark that, when the optimal bandwidth parameter h ∝
n−1/5 is used, the proposed estimators are also optimal in the
sense of Cai, Zhang, and Zhou (2010) and Cai and Zhou (2012)
if c0(p) is bounded from above by a constant. This is discussed
in detail in the supplementary materials. Our results generalize
the results in these two papers to the situation where the entries
in the covariance matrix vary with covariates.

Remark 1. The conditions on the kernel function are mild, and
Theorem1holds for awide range of kernel functions. The kernel
function used only affects the convergence rate of the estimators
up tomultiplicative constants and thus has no impact on the rate
of convergence. See, for example, Fan and Gijbels (1996) for a
detailed analysis when the dimensionality is fixed.

Under appropriate conditions, shrinkage estimates of a large
static covariancematrix are consistent in identifying the sparsity
pattern (Lam and Fan 2009; Rothman, Levina, and Zhu 2009).
The sparsity property of our proposed thresholding estimator of
a dynamic covariance matrix also holds in a stronger sense that
the proposed DCMs are able to identify the zero entries uni-
formly overU on a compact set �.

Theorem 2 [Uniform consistency in estimating the spar-
sity pattern]. Under Conditions (a)–(d), suppose that the
exponential-tail condition in (3) holds, that sλ is a generalized
shrinkage operator, and that supu∈� σii(u) < M2 < ∞ for all

i. If λn(u) = M(u)(

√
log p
nh + h2

√
log p) with M(u) depending

on u ∈ � large enough and satisfying supu∈� M(u) < ∞,
log p
nh → 0, and h4 log p → 0, we have

sλn(u)(σ̂ jk(u)) = 0 for σ jk(u) = 0,∀( j, k),

with probability tending to 1 uniformly in u ∈ �. If we assume
further that, for each u ∈ �, all nonzero elements of�(u) satisfy
|σ jk(u)| > τn(u) where log p

nh infu∈�(τn(u)−λn(u))2
→ 0, we have that

sign{sλn(u)(σ̂ jk(u)) · σ jk(u)} = 1forσ jk(u) �= 0,∀( j, k),

with probability tending to 1 uniformly in u ∈ �.

Theorem 2 states that with probability going to one, the
proposed DCMs can distinguish the zero and nonzero
entries in �(u). The conditions |σ jk(u)| > τn(u) and

log p
nh infu∈�(τn(u)−λn(u))2

→ 0 assure that the nonzero elements
of �(u) can be distinguished from the noise stochastically. As
is the case with the thresholding approach for estimating large
covariance matrices, one drawback of our proposed approach is
that the resulting estimator is not necessarily positive-definite.
See Rothman (2012) and Xue, Ma, and Zou (2012) for some
examples. To overcome this difficulty, we apply the following ad
hoc step. Let −â(u) be the smallest eigenvalue of sλn(u)(�̂(u))

when â(u) ≥ 0. Let cn = O(c0(p)(
√

log p
nh + h2

√
log p)1−q) be

a positive number. To guarantee positive definiteness, we add
â(u) + cn to the diagonals of sλn(u)(�̂(u)); that is, we define a
corrected estimator as

�̂C(u) = sλn(u)(�̂(u)) + {â(u) + cn}Ip×p,

where Ip×p is the p× p identity matrix. The smallest eigenvalue
of �̂C(u) is now cn > 0. Therefore, �̂C(u) is positive definite.
If sλn(u)(�̂(u)) is already positive definite, no such correction is
needed. Taking together, to guarantee positive definiteness, we
define a modified estimator of �(u) as

�̂M(u) = �̂C(u)I[λmin{sλn(u)(�̂(u))} ≤ 0]

+sλn(u)(�̂(u))I[λmin{sλn(u)(�̂(u))} > 0].

For any u ∈ � such that λmin{sλn(u)(�̂(u))} ≤ 0, it holds that

â(u) ≤ | − â(u) − λmin(�(u))| ≤ ||sλn(u)(�̂(u)) − �(u)||.

Thus, we obtain immediately

||�̂C(u) − �(u)|| ≤ ||sλn(u)(�̂(u)) − �(u)|| + â(u) + cn
≤ 2 sup

u
||sλn(u)(�̂(u)) − �(u)|| + cn.

We see that under the conditions in Theorem 1,

sup
u∈�

||�̂M(u) − �(u)|| = Op

(
c0(p)

(√
log p
nh

+ h2
√
log p

)1−q )
.

That is, the modified estimator of �(u) is guaranteed to be pos-
itive definite, with the same convergence rate as that of the orig-
inal thresholding estimator sλn (�̂(u)). Since the modified esti-
mating procedure does not change the sparsity pattern of the
thresholding estimator when n is large enough, Theorem 2 still
holds for �̂M(u).

Remark 2. Similar toYin et al. (2010), Bickel andLevina (2008b),
Cai and Liu (2011) and Xue, Ma, and Zou (2012), we can also
show the convergence rate of the proposed estimator under a
polynomial-tail condition. To this end, assume that for some
γ > 0 and c1 > 0, p = c1nγ , and for some τ > 0,
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1200 Z. CHEN AND C. LENG

sup
u∈�

E(|Yi j|5+5γ+τ | Ui = u) ≤ K2 < ∞,

for i = 1, . . . , n; j = 1, . . . , p. (4)

Let h = c2n−1/5 for a positive constant c2. Under the moment

condition (4) and Conditions (a)–(d), if λn(u) = M(u)

√
log p
n4/5 ,

we have that, uniformly on U (q, c0(p),M2;�),

sup
u∈�

||sλn(u)(�̂(u)) − �(u)|| = Op

(
c0(p)

(
log p
n4/5

)(1−q)/2
)

, (5)

where M(u) depending on u ∈ � is large enough and
supu∈� M(u) < ∞. The proof of (5) is found in the online
Appendix.

Define

U (q, c0(p),M2, ε;�) =
{
{�(u), u ∈ �} | {�(u), u ∈ �}

∈ U (q, c0(p),M2;�),

inf
u

{λmin(�(u))} ≥ ε > 0
}
,

which is a set consisting of only positive-definite dynamic
covariances in U (q, c0(p),M2;�). From Theorem 1, we can
derive that the inverse of the covariance matrix estima-
tor converges to the true inverse with convergence rate

Op(c0(p)(
√

log p
nh + h2

√
log p)1−q) uniformly in u ∈ �. The

detailed proof of Proposition 3 appears in the online Appendix.

Proposition 3 [Uniform consistency of the inverse of the estimated
dynamic matrix]. Under Conditions (a)–(d), suppose that the
exponential-tail condition in (3) holds and that sλ is a general-

ized shrinkage operator. If λn(u) = M(u)(

√
log p
nh + h2

√
log p),

log p
nh → 0, h4 log p → 0 and c0(p)(

√
log p
nh + h2

√
log p)1−q → 0,

we have that uniformly in U (q, c0(p),M2, ε;�),

sup
u∈�

||[sλn(u)(�̂(u))]−1 − �−1(u)||

= Op

(
c0(p)(

√
log p
nh

+ h2
√
log p)1−q

)
,

where M(u) depending on u ∈ � is large enough and
supu∈� M(u) < ∞.

Bandwidth selection and the choice of the threshold. The per-
formance of the proposed DCMs depends critically on the
choices of two tuning parameters: the bandwidth parameter h
for kernel smoothing and the dynamic thresholding parame-
ter λ(u). We propose a simple two-step procedure for choosing
them in a sequential manner. Namely, we first determine a data-
driven choice of the bandwidth parameter, followed by selecting
λ(u) at each point u.

Since the degree of smoothing is controlled by the bandwidth
parameter h, a good bandwidth should reflect the smoothness
of the true nonparametric functions m(u) and �(u). Impor-
tantly, to minimize the estimating error, the bandwidth parame-
ter should be selected carefully to balance the bias and the vari-
ance of the estimate as in Theorem 1. In our implementation,

we choose one bandwidth for m̂(·) in (1) and another band-
width for �̂(·) in (2). For choosing the bandwidth in estimat-
ing the mean function m(·), we use the leave-one-out cross-
validation approach in Fan and Gijbels (1996) and denote the
chosen bandwidth as h1. Next, we discuss the bandwidth choice
for estimating �̂(u) defined in (2). When the dimension p
is large and the sample size n is small, �̂(u) is not positive
definite. Therefore, the usual log-likelihood-type leave-one-out
cross-validation (Yin et al. 2010) fails to work. Instead, we pro-
pose a subset-y-variables cross-validation procedure to over-
come the effect of high dimensionality. Specifically, we choose
k (k < n) y-variables randomly from (y1, . . . , yp)T (i.e., Ys =
(y j1 , . . . , y jk )T ) and repeat this N times. Denote var(Ys|U ) =
�s(U ) and define

CV(h) = 1
N

N∑
s=1

{ 1
n

n∑
i=1

[
{Yis − m̂s(Ui)}T �̂−1

s(−i)(Ui)

×{Yis − m̂s(Ui)} + log(|�̂s(−i)(Ui)|)
]}

,

where �̂s(−i)(·) is estimated by leaving out the ith observa-
tion according to (2) using responses Ys with the bandwidth h,
and m̂s(u) = {∑n

i=1 Kh1 (Ui − u)Yis}{
∑n

i=1 Kh1 (Ui − u)}−1. The
optimal bandwidth for estimating the dynamic covariance
matrices is the value thatminimizes CV(h).We observed empir-
ically that this choice gives good performance in the numerical
study.

Now we consider how to choose λ(u). For high-dimensional
static covariance matrix estimation, Bickel and Levina (2008b)
proposed to select the threshold by minimizing the Frobenius
norm of the difference between the estimator after thresholding
and the sample covariance matrix computed from an indepen-
dent data. We adopt this idea. Specifically, we divide the origi-
nal sample into two samples at random of size n1 and n2, where
n1 = n(1 − 1

log n ) and n2 = n
log n , and repeat this N1 times. Let

�̂1,s(u) and �̂2,s(u) be the empirical dynamic covariance esti-
mators according to (2) based on n1 and n2 observations respec-
tively with the bandwidth selected by the subset-y-variables
cross-validation. Given u, we select the thresholding parameter
λ̂(u) by minimizing

R(λ, u) := 1
N1

N1∑
s=1

||sλ(�̂1,s(u)) − �̂2,s(u)||2F ,

where ||M||2F = tr(MMT ) is the squared Frobenius norm of a
matrix.

4. Numerical studies

In this section, we investigate the finite sample performance
of the proposed procedure with Monte Carlo simulation stud-
ies. We compare our method to the static covariance matrix
estimates in Rothman, Levina, and Zhu (2009) when gener-
alized thresholding, including hard, soft, adaptive lasso, and
SCAD thresholding, is considered.We also include themodified
estimator �̂M(u) that guarantees positive definiteness and the
empirical sample dynamic covariance matrix in (2) for compar-
ison purposes. Throughout the numerical demonstration, the
Gaussian kernel functionK(a) = 1√

2π
exp(−a2/2)was used for

kernel smoothing.
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4.1. Simulation studies

Study 
We consider two dynamic covariance matrices in this study to
investigate the accuracy of our proposed estimating approach in
terms of the spectral loss and the Frobenius loss of a matrix.

Model 1: (Dynamic banded covariancematrices). Let�(u) =
{σi j(u)}1≤i, j≤p, where σi j(u) = exp(u/2)[{φ(u) + 0.1}I(|i −
j| = 1) + φ(u)I(|i − j| = 2) + I(i = j)] and φ(u) is the den-
sity of the standard normal distribution.

Model 2: (Dynamic AR(1) covariance model). Let �(u) =
{σi j(u)}1≤i, j≤p, where σi j(u) = exp(u/2)φ(u)|i− j|.

Model 2 is not sparse, although many of the entries in �(u)

are close to zero for large p. This model is used to assess
the accuracy of the sparse DCMs for approximating nonsparse
matrices.

For each covariance model, we generate 50 datasets, each
consisting of n = 150 observations.We sampleUi, i = 1, . . . , n,
independently from the uniform distribution with support
[−1, 1]. The response variable is generated according to
Yi ∼ N(0, �(Ui)), i = 1, . . . , n, for p = 100, 150, or 250,
respectively. The k and N in the subset-y-variables cross-
validation are set to be [p/12] and p, respectively, with [p/12]
denoting the largest integer no greater than p/12, and the N1
in cross-validation for choosing λ(u) is set to be 100. We use
the spectral and Frobenius losses as the criteria to compare the
estimators produced by various approaches. Specifically, for
each dataset, we estimate the DCMs at the following 20 points ui
∈ A = {−0.95,−0.85, . . . ,−0.05, 0.05, 0.15, . . . , 0.85, 0.95}.
Then for each method, we calculate the medians of 20 spectral
and Frobenius losses, defined as

Median Spectral Loss = median{�S(ui), i = 1, . . . , 20},
Median Frobenius Loss = median{�F (ui), i = 1, . . . , 20},

where �S(u) = max1≤ j≤p |λ j{�̂(u) − �(u)}| and �F (u) =√
trace[{�̂(u) − �(u)}2] are spectral loss and Frobenius loss,

respectively. For brevity, the two losses, median spectral loss
and median Frobenius loss, are referred to as MSL and MFL,
respectively.

Tables 1 and 2 summarize the results of the spectral (Frobe-
nius) losses for various estimators of the dynamic covari-
ance matrices in Models 1 and 2, respectively. Here, Sam-
ple represents the sample conditional covariance estimate in
(2). Several conclusions can be drawn from Tables 1 and 2.
First, there is a drastic improvement in accuracy by using
thresholded estimators over the kernel smoothed conditional
covariance matrix in (2), and this improvement increases with
dimension p. Second, as is expected, our proposed estimat-
ing method produces more accurate estimators than the static
covariance estimation approach independent of the threshold-
ing rule used. Third, the modified estimators perform simi-
larly as the unmodified dynamic estimates. However, we observe
that the unmodified estimate is not positive-definite some-
times. For example, when n = 100 in Model 2, we observe that
about 0.6% of the estimated covariancematrices are not positive
definite.

Study 
In this study, we consider a dynamic covariance model whose
sparsity pattern varies as a function of the covariateU . The pur-
pose of this study is to assess the ability of our proposedmethod
for recovering the varying sparsity, evaluated via the true posi-
tive rate (TPR) and the false positive rate (FPR), defined as

TPR(u) = #{(i, j) : sλn(u)(σ̂i j(u)) �= 0 and σi j(u) �= 0}
#{(i, j) : σi j(u) �= 0} ,

FPR(u) = #{(i, j) : sλn(u)(σ̂i j(u)) �= 0 and σi j(u) = 0}
#{(i, j) : σi j(u) = 0} ,

respectively (Rothman, Levina, and Zhu 2009). For each given
point u, we also evaluate the estimation accuracy of various
approaches in terms of the spectral loss and the Frobenius loss.

Model 3: (Varying-sparsity covariance model). Let �(u) =
{σi j(u)}1≤i, j≤p, where

σi j(u) = exp(u/2)
[
0.5 exp

{
− (u − 0.25)2

0.752 − (u − 0.25)2

}
×I(−0.5 ≤ u ≤ 1)I(|i − j| = 1)

+0.4 exp
{
− (u − 0.65)2

0.352 − (u − 0.65)2

}

×I(0.3 ≤ u ≤ 1)I(|i − j| = 2) + I(i = j)
]
.

For this model, we assess the estimated covariance matrices
at three points {−0.75, 0.25, 0.65}. Note that from the data gen-
erating process, the sparsity of this dynamic covariance model
varies with the value of U , and that the covariance matrices
at −0.75, 0.25, and 0.65 are diagonal, tridiagonal, and five-
diagonal, respectively.

The data are generated following the procedure in Study 1.
We report the spectral losses, Frobenius losses, TPRs, and FPRs
in Tables 3–5 at point −0.75, 0.25, and 0.65, respectively. In
these tables, “NA” means “not applicable.” Since the modified
dynamic covariance estimator does not change the sparsity, we
do not report the performance of thismethod for sparsity identi-
fication. The following conclusions can be drawn from the three
tables. First, the accuracy statement in terms of the spectral loss
and Frobenius loss made in Study 1 continues to hold in this
study. Second, for each thresholding rule, our proposed dynamic
covariance estimatingmethod has generally higher true positive
rates compared to the method for estimating static covariance
matrices. Third, our proposed approach using the soft and the
SCAD thresholding rules seems to have higher TPRs than using
the hard and the adaptive thresholding rules.

Study 
In this study, we demonstrate the effectiveness of our proposed
method for estimating a dynamic covariancemodel whose posi-
tions of the nonzero elements varied as a function of the covari-
ateU .

Model 4: (Varying-nonzero-position covariance model).
The dynamic covariance model is similar to the random graph
model in Zhou, Lafferty, and Wasserman (2010). Specifically,
we examine nine time points {−1,−0.75,−0.5,−0.25, 0, 0.25,
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Table . Average (standard error) MSLs and MFLs for Model .

MSL MFL

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Table . Average (standard error) MSLs and MFLs for Model .

MSL MFL

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Table . Average (standard error) spectral loss, Frobenius loss, TPR, and FPR whenU = −0.75 for Model  in Study .

Spectral loss Frobenius loss

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

TPR FPR

p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample NA NA NA NA NA NA
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)
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Table . Average (standard error) spectral loss, Frobenius loss, TPR and FPR whenU = 0.25 for Model  in Study .

Spectral loss Frobenius loss

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

TPR FPR

p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample NA NA NA NA NA NA
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

0.5, 0.75, 1}. Let R(u) be the correlation matrix at point
u. We randomly choose p entries {ri j : i = 2, . . . , p; j < i}
of R(−1) such that each of these p elements was a ran-
dom variable generated from the uniform distribution
with support [0.1, 0.3]. The other correlations in R(−1)
are all set to zero. For each of the other eight time points
{−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}, we change p/10
existing nonzero correlations to zero and add p/10 new

nonzero correlations. For each of the p/10 new entries having
nonzero correlations, we choose a target correlation, and the
correlation on the entry is gradually changed to ensure smooth-
ness. Similarly, for each of the p/10 entries to be set as zero, the
correlation decays to zero gradually. Thus, there exist p+ p/10
nonzero correlations and there exist p/5 correlations that varied
smoothly. The covariance matrix is then set as exp(u/2)R(u).
We generate data following the procedure in Study 1 with

Table . Average (standard error) spectral loss, Frobenius loss, TPR, and FPR whenU = 0.65 for Model  in Study .

Spectral loss Frobenius loss

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

TPR FPR

p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample NA NA NA NA NA NA
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)
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Table . Average (standard error) spectral loss, Frobenius loss, TPR, and FPR whenU = −1 for Model  in Study  with n = 150.

Spectral loss Frobenius loss

Methods p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .( .) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .( .) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .( .) .(.) .(.) .(.)

TPR FPR

p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample NA NA NA NA NA NA
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

n = 100 or n = 150. The results for estimating the covariance
matrix at pointU = −1 (Zhou, Lafferty, and Wasserman 2010)
are reported in Table 6 for n = 150 and Table 7 for n = 100. We
find that the proposed method performs better than the sample
estimates and the static estimates in terms of the spectral loss,
Frobenius loss, and TPR.

Finally, we investigate the performance of the proposed
bandwidth selection procedure using the model in this study.

For a given bandwidth parameter h, our proposed estima-
tor of �(u) is denoted as sλn(u)(�̂(u; h)). The oracle that
knows the true dynamic covariance matrix �(u) prefers to
select the bandwidth parameter h (i.e., horacle) that mini-
mizes

∑n
i=1 ||sλn(Ui )(�̂(Ui; h)) − �(Ui)||F , where || · ||F is the

Frobenius loss. The bandwidth parameter selected by our pro-
posed cross-validation procedure is denoted as hCV. We use the
absolute relative error |hCV − horacle|/horacle as the criterion to

Table . Average (standard error) spectral loss, Frobenius loss, TPR, and FPR whenU = −1 for Model  in Study  with n = 100.

Spectral loss Frobenius loss

Method p = 100 p = 150 p = 250 p = 100 p = 150 p = 250

Sample .(.) .(.) .(.) .(.) .(.) .(.)
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Modified Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

TPR FPR

p = 100 p = 150 p = 250 p = 100 p = 150 p = 250
Sample NA NA NA NA NA NA
Dynamic Hard .(.) .(.) .(.) .(.) .(.) .(.)

Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

Static Hard .(.) .(.) .(.) .(.) .(.) .(.)
Soft .(.) .(.) .(.) .(.) .(.) .(.)
Adaptive .(.) .(.) .(.) .(.) .(.) .(.)
SCAD .(.) .(.) .(.) .(.) .(.) .(.)

D
ow

nl
oa

de
d 

by
 [

M
d 

A
nd

er
so

n 
C

an
ce

r 
C

en
te

r]
 a

t 1
9:

53
 0

1 
Ja

nu
ar

y 
20

18
 



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1205

Figure . The ROIs from the CC functional parcellation atlases.

measure the performance of hCV. Setting p = 100, we explore
the performance based on 50 simulations for n = 100, 150, and
200, respectively. The medians of 50 absolute relative errors for
sample sizes 100, 150, and 200 are 0.12, 0.06, and 0.01, respec-
tively. The percentages of absolute relative errors less than 20%
for sample sizes 100, 150, and 200 are 0.82, 0.96, and 0.98,
respectively. It is concluded that the estimated bandwidth con-
verges fast to its oracle counterpart when the sample size grows.

Figure . Selected entries of the correlationmatrix as functions of time using () for
the ADHD data. Cor(k, l) represents the (k, l)th element of the correlation matrix.

4.2. Real data analysis

As an illustration, we apply the dynamic covariance method to
the resting state fMRI data obtained from the attention deficit
hyperactivity disorder (ADHD) study conducted by New York
University Child Study Center. ADHD is one of the most com-
mon childhood and adolescents disorders and can continue
through adulthood. Symptoms of ADHD include difficulty stay-
ing focused and paying attention, difficulty controlling behavior,
and over-activity. AnADHDpatient tends to have high variabil-
ity in brain activities over time. Because fMRI measures brain
activity by detecting associated changes in blood flow through
low frequency BOLD signal in the brain (Biswal et al. 1995),
it is believed that the temporally varying information in fMRI
datamay provide insight into the fundamental workings of brain
networks (Calhoun et al. 2014; Lindquist et al. 2014). Thus, it
is of great interest to study the dynamic changes of association
among different regions of interest (ROIs) of the brain for an
ADHD patient at the resting state. For this dataset, we exam-
ine the so-called CC400 ROI atlases with 351 ROIs derived by
functionally parcellating the resting state data as discussed in
Craddock et al. (2012). An illustration of these ROIs is found in
Figure 1.

The experiment included 222 children and adolescents. We
focus on Individual 0010001. The BOLD signals of p = 351
ROIs of the brain were recorded over n = 172 scans equally
spaced in time. We treat the time as the index variablesU after
normalizing the 172 scanning time points onto [0, 1]. The main
aim is to assess how the correlations of BOLD signals change
with the scanning time, as changing correlations can illustrate
the existence of distinctive temporal associations. Based on
the time index variable and 351 ROIs, we apply the proposed
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Figure . Heatmaps of the estimated correlations of the ADHD data. (a), (b), and (c) are the estimated correlationmatrices by our proposed dynamic covariance estimating
method when the index random variableU is 50/172, 90/172, and 130/172, respectively; (d) shows the cluster centroids using K-means clustering with K = 10; (e) is the
estimated correlation matrix by the static covariance estimating method.

dynamic covariance estimating method and compare it to the
static method in Rothman, Levina, and Zhu (2009).

We first obtain the sample covariance estimate as defined in
(2), and plot selected entries of this matrix in Figure 2. We can
see that the correlations of BOLD signals for different pairs of
ROIs varywith time. For example, the entries (1, 7) and (14, 30)
as functions of the time change signs, one from negative to
positive and the other from positive to negative. Entries (1, 2)
and (3, 4) seem to remain negative and positive respectively
over the entire time, while entry (1, 12) is very close to zero
before becoming positive. As discussed in the Introduction, a
test of the equality of the two covariance matrices, one for the
first 86 scans and the other for the last 86 scans, is rejected. These
motivate the use of the proposed dynamic covariance method.
For the dynamic sparse estimates, we only report the results
using the soft thresholding rule, since simulation studies indi-
cate that this thresholding rule performs satisfactorily in recov-
ering the true sparsity of the covariance matrices. We examine

the estimated dynamic covariancematrices at the 50th, 90th, and
130th scans.

The heatmaps of the estimated dynamic correlation matrices
of the first 30 ROIs are shown in Figures 3(a)–(c) for time 50, 90,
and 130, respectively. We can see a clear varying pattern in pan-
els (a)–(c), as compared to the static covariance matrix estimate
in panel (e). To appreciate the dynamic characteristics of the
BOLD signals, in panel (d), we useK-means clustering to cluster
the 351 time series, one from each ROI, with K = 10, and plot
these ten centroids. We can see different correlation patterns for
the BOLD signals during different time periods, indicating the
need for dynamically capturing the time-varying phenomenon.

We comment on the dynamic nature of the three estimated
matrices. The matrices at time 50, 90, and 130 have 42,615,
46,778, and 48,137 nonzero correlations, respectively. That is,
the covariance matrix at time = 130 is denser than those at
time = 50 and 90. This tells that the sparsity of the covariance
varies with time. Moreover, the positions of the nonzero (or
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Table . Qualitative summary of the estimated correlations at time 50 and 130.

Time=

Time= 130 Positive Negative Nonzero Zero

Positive   – –
Negative   – –
Nonzero – –  
Zero – –  

zero) correlations change with time. For example, as Table 8
shows, there are 7387 and 36,714 entries (correlations) of the
estimated covariancematrices at time= 50 and 130 to be simul-
taneously zero and nonzero, respectively. However, there are
5901 entries (correlations) that are nonzero in the estimated
covariance matrix at time = 50 but are zero in the estimated
matrix at time= 130. There are 11,423 entries (correlations) that
are zero in the estimated matrix at time = 50 but are zero in the
estimated matrix at time = 130. Furthermore, the signs of the
correlations are time varying. As Table 8 shows, the numbers of
the entries (correlations) of the two estimated covariance matri-
ces being simultaneously positive and negative are 14,739 and
13,973, respectively. Meanwhile, there are 4068 entries (corre-
lations) that are negative in the estimated covariance matrix at
time= 50 but are positive in the estimatedmatrix at time= 130.
And there are 3934 entries (correlations) that are positive in the
estimated covariance matrix at time= 50 but are negative in the
estimated matrix at time = 130. We found that, at time = 50,
two ROIs have more than 325 associations with other ROIs, and
that eight ROIs have fewer than 10 associations with other ROIs.
When time = 130, the number of the ROIs having more than
325 associations becomes 11, and the number of the ROIs hav-
ing fewer than 10 associations is 3, indicating that there aremore
active ROIs at this time. However, the static covariance estimat-
ing method cannot show these dynamics.

As brain activities are oftenmeasured through low-frequency
BOLD signals in the brain, our model indicates that the correla-
tions of different areas of the brain varied over time, which coin-
cides with the high variability of brain function for an ADHD
patient and makes sense for the purpose of locating the ADHD
pathology.

5. Discussion

Westudy for the first time a novel uniform theory of the dynamic
covariance model that combines the strength of kernel smooth-
ing andmodeling sparsity in high-dimensional covariances.Our
numerical results show that our proposed method can capture
dynamic behaviors of these varying matrices and outperforms
its competitors. We are currently studying similar uniform the-
ory for high-dimensional regression and classification where
dynamics are incorporated.

We identify several directions for future study. First, the ker-
nel smoothing employed in this article uses local constant fit-
ting. It is interesting to study local linear models that is known
to reduce bias (Fan and Gijbels 1996). A first step was taken
by Chen and Leng (2015) when the dimensionality is fixed, but
more research is warranted. Second, it is of great interest to
develop more adaptive thresholding rules such as those in Cai
and Liu (2011). A difficulty in extending our method in that

direction is that the sample dynamic covariance matrix in (2)
is biased entrywise, unlike the sample static covariance matrix
in Cai and Liu (2011). Third, it is of great interest to study a new
notion of rank-based estimation of a large dimensional covari-
ance matrix in a dynamic setting (Liu et al. 2012; Xue and Zou
2012) that is more robust to the distributional assumption of
the variables. Fourth, it is possible to study dynamic estima-
tion of the inverse of a covariance matrix that elucidates condi-
tional independence structures among the variables (Yuan and
Lin 2007). These topics are beyond the scope of the current arti-
cle and will be pursued elsewhere.

Supplementarymaterials

The online supplementarymaterials for this article contain the lower bound
theory for estimating sparse nonparametric covariance matrices, and the
article appendices.
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