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ABSTRACT

We study online learning in episodic constrained Markov decision processes
(CMDPs), where the goal of the learner is to collect as much reward as possible
over the episodes, while guaranteeing that some long-term constraints are satisfied
during the learning process. Rewards and constraints can be selected either stochas-
tically or adversarially, and the transition function is not known to the learner.
While online learning in classical (unconstrained) MDPs has received considerable
attention over the last years, the setting of CMDPs is still largely unexplored. This
is surprising, since in real-world applications, such as, e.g., autonomous driving,
automated bidding, and recommender systems, there are usually additional con-
straints and specifications that an agent has to obey during the learning process.
In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with
long-term constraints. Our algorithm is capable of handling settings in which
rewards and constraints are selected either stochastically or adversarially, with-
out requiring any knowledge of the underling process. Moreover, our algorithm
matches state-of-the-art regret and constraint violation bounds for settings in which
constraints are selected stochastically, while it is the first to provide guarantees in
the case in which they are chosen adversarially.

1 INTRODUCTION

The framework of Markov decision processes (MDPs) (Puterman, 2014) has been extensively em-
ployed to model sequential decision-making problems. In reinforcement learning (RL) (Sutton &
Barto, 2018), the goal is to learn an optimal policy for an agent interacting with an environment
modeled as an MDP. A different line of work (Even-Dar et al., 2009; Neu et al., 2010) is concerned
with problems in which an agent interacts with an unknown MDP with the goal of guaranteeing that
the overall reward achieved during the learning process is as much as possible. This approach is more
akin to online learning problems, and it is far less investigated than classical RL approaches.

In real-world applications, there are usually additional constraints and specifications that an agent has
to obey during the learning process, and these cannot be captured by the classical definition of MDP.
For instance, autonomous vehicles must avoid crashing while navigating (Wen et al., 2020; Isele
et al., 2018), bidding agents in ad auctions are constrained to a given budget (Wu et al., 2018; He
et al., 2021), while recommender systems should not present offending items to users (Singh et al.,
2020). In order to model such features of real-world problems, Altman (1999) introduced constrained
MDPs (CMDPs) by extending classical MDPs with cost constraints which the agent has to satisfy.

We study online learning in episodic CMDPs in which the agent is subject to long-term constraints.
In such a setting, the goal of the agent is twofold. On the one hand, the agent wants to minimize
their (cumulative) regret, which is how much reward they lose compared to that achieved by playing
the same best-in-hindsight, constraint-satisfying policy in all the episodes. On the other hand, while
the agent is allowed to violate the constraints in a given episode, they want that the (cumulative)
constraint violation over all the episodes stays under control by growing sublinearly in the number of
episodes. Long-term constraints can naturally model many features of real world problems, such as,
e.g., budget depletion in automated bidding (Balseiro & Gur, 2019; Gummadi et al., 2012).

All the existing works studying online learning problems in CMDPs with long-term constraints
address settings in which the constraints are selected stochastically according to an unknown (sta-
tionary) probability distribution. While these works address both the case where the rewards are
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stochastic (see, e.g., (Zheng & Ratliff, 2020; Efroni et al., 2020)) and the one in which they are chosen
adversarially (see, e.g., (Wei et al., 2018; Qiu et al., 2020)), to the best of our knowledge there is
no work addressing settings with adversarially-selected constraints. Some works (see, e.g., (Ding &
Lavaei, 2023; Wei et al., 2023)) consider the case in which rewards and constraints are non-stationary,
assuming that their variation is bounded. However, such results are not applicable to general settings
with adversarial constraints. A detailed discussion of related works can be found in Appendix A.

In this paper, we pioneer the study of CMDPs in which the constraints are selected adversarially.
In doing so, we introduce a best-of-both-worlds algorithm that provides optimal (in the number of
episodes T ) regret and constraint violation bounds when rewards and constraints are selected either
stochastically or adversarially, without requiring any knowledge of the underling process. While al-
gorithms of this kind have been recently introduced in online learning settings (see, e.g., (Liakopoulos
et al., 2019)), to the best of our knowledge ours is the first of its kind in CMDPs.

When the constraints are selected stochastically, we show that our algorithm provides Õ(
√
T )

cumulative regret and constraint violation when a suitably-defined Slater-like condition concerning
the satisfiability of constraints is satisfied. Moreover, whenever such a condition does not hold, our
algorithm still ensures Õ(T 3/4) regret and constraint violation. Instead, whenever the constraints are
chosen adversarially, our analysis revolves around a parameter ρ which is related to our Slater-like
condition, and in particular to the “margin” by which it is possible to strictly satisfy the constraints.
Indeed, under adversarial constraints, Mannor et al. (2009) show that it is impossible to simultaneously
achieve sublinear regret and sublinear cumulative constraint violation. We prove that our algorithm
achieves no-α-regret with α = ρ/(1+ ρ), while guaranteeing that the cumulative constraint violation
is sublinear in the number of episodes. This matches the regret guarantees derived for other best-
of-both-worlds algorithms in (non-sequential) online learning settings (Castiglioni et al., 2022a;b).
Moreover, differently from previous works on online learning with adversarial constraints, we also
relax the strong assumption that the algorithm has to know the value of the feasibility parameter ρ. A
summary of our contributions compared to those of prior works is reported in Table 1.

adv. rewards adv. constraints unknown ρ w/o. Slater MDPs
(Efroni et al., 2020) ✗ ✗ ✓ ✓ ✓

(Qiu et al., 2020) ✓ ✗ ✓ ✗ ✓

(Castiglioni et al., 2022b) ✓ ✓ ✗ ✓ ✗

(Wei et al., 2023) ✗† ✗† ✓ ✗ ✓

Our Work ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of our work and the state-of-the-art. We group together previous works that
provide similar guarantees. For each group, we only cite the most recent paper. The third column
concerns the possibility of learning without the knowledge of the parameter ρ, while the fourth one
specifies if the algorithm is capable of learning when the parameter ρ is arbitrarily small. † These
works do not apply to general adversarial settings, but only to settings with bounded non-stationarity.

2 PRELIMINARIES

2.1 CONSTRAINED MARKOV DECISION PROCESSES

We study episodic constrained MDPs (Altman, 1999), which we call CMDPs for short and are
defined as tuples M =

(
X,A, P, {rt}Tt=1 , {Gt}Tt=1

)
, where:

• T is a number of episodes, with t ∈ [T ] denoting a specific episode.1

• X and A are the finite state and action spaces, respectively.

• P : X ×A×X → [0, 1] is the transition function, where, for ease of notation, we denote
by P (x′|x, a) the probability of going from state x ∈ X to x′ ∈ X by taking action a ∈ A.

1We denote with [a .. b] the set of all consecutive integers from a to b, while [b] = [1 .. b].
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• {rt}Tt=1 is a sequence of vectors describing the rewards at each episode t ∈ [T ], namely
rt ∈ [0, 1]|X×A|. We refer to the reward of a specific state-action pair x ∈ X, a ∈ A for an
episode t ∈ [T ] as rt(x, a). Rewards may be stochastic, in that case rt is a random variable
distributed according to a distributionR for every t ∈ [T ], or chosen by an adversary.

• {Gt}Tt=1 is a sequence of constraint matrices describing the m constraint violations at each
episode t ∈ [T ], namely Gt ∈ [−1, 1]|X×A|×m, where non-positive violation values stand
for satisfaction of the constraints. For i ∈ [m], we refer to the violation of the i-th constraint
for a specific state-action pair x ∈ X, a ∈ A at episode t ∈ [T ] as gt,i(x, a). Constraint
violations may be stochastic, in that case Gt is a random variable distributed according to a
probability distribution G for every t ∈ [T ], or chosen by an adversary.

Algorithm 1 Learner-environment Interaction
1: for t = 1, . . . , T do
2: rt and Gt are chosen stochastically or adversarially
3: the learner chooses a policy πt : X ×A→ [0, 1]
4: the state is initialized to x0

5: for k = 0, . . . , L− 1 do
6: the learner plays ak ∼ πt(·|xk)
7: the environment evolves to xk+1 ∼ P (·|xk, ak)
8: the learner observes xk+1

9: end for
10: the learner is revealed rt, Gt

11: end for

W.l.o.g., in this work we consider
loop-free CMDPs. Fromally, this
means that X is partitioned into L
layers X0, . . . , XL such that the first
and the last layers are singletons, i.e.,
X0 = {x0} and XL = {xL}, and that
P (x′|x, a) > 0 only if x′ ∈ Xk+1

and x ∈ Xk for some k ∈ [0 .. L− 1].
Notice that any episodic CMDP with
horizon L that is not loop-free can be
cast into a loop-free one by suitably
duplicating the state space L times,
i.e., a state x is mapped to a set of new
states (x, k), where k ∈ [0 .. L].

The learner chooses a policy π : X ×A→ [0, 1] at each episode, defining a probability distribution
over actions at each state. For ease of notation, we denote by π(·|x) the probability distribution
for a state x ∈ X , with π(a|x) denoting the probability of action a ∈ A. Algorithm 1 depicts the
interaction between the learner and the environment in a CMDP. Furthermore, we assume that the
learner knows X and A, but they do not know anything about P .

2.2 OCCUPANCY MEASURES

Next, we introduce the notion of occupancy measure (Rosenberg & Mansour, 2019a). Given a
transition function P and a policy π, the occupancy measure qP,π ∈ [0, 1]|X×A×X| induced by P
and π is such that, for every x ∈ Xk, a ∈ A, and x′ ∈ Xk+1 with k ∈ [0 .. L− 1]:

qP,π(x, a, x′) = Pr[xk = x, ak = a, xk+1 = x′|P, π]. (1)

Moreover, we also define:

qP,π(x, a) =
∑

x′∈Xk+1

qP,π(x, a, x′), (2)

qP,π(x) =
∑
a∈A

qP,π(x, a).

Then, we can introduce the following lemma, which characterizes valid occupancy measures.

Lemma 1 (Rosenberg & Mansour (2019b)). For every q ∈ [0, 1]|X×A×X|, it holds that q is a valid
occupancy measure of an episodic loop-free MDP if and only if, for every k ∈ [0 .. L − 1], the
following three conditions hold:

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x) ∀x ∈ Xk

P q = P

where P is the transition function of the MDP and P q is the one induced by q (see Equation (3)).
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Notice that any valid occupancy measure q induces a transition function P q and a policy πq as:

P q(x′|x, a) = q(x, a, x′)

q(x, a)
, πq(a|x) = q(x, a)

q(x)
. (3)

2.3 OFFLINE CMDPS OPTIMIZATION

We define the parametric linear program LPr,G (4) with parameters r and G as follows:

OPTr,G :=

{
maxq∈∆(M) r⊤q

s.t. G⊤q ≤ 0,
(4)

where q ∈ [0, 1]|X×A| is the occupancy measure vector whose values are defined in Equation (2),
∆(M) is the set of valid occupancy measures, r is the reward vector, and G is the constraint matrix.
Furthermore, we introduce the following condition.
Condition 1. Given a constraint matrix G, the Slater’s condition holds when there is a strictly
feasible solution q⋄ such that G⊤q⋄ < 0.

Then, we define the Lagrangian function for Problem (4).
Definition 1 (Lagrangian function). Given a reward vector r and a constraint matrix G, the La-
grangian function Lr,G : ∆(M)× Rm

≥0 → R of Problem (4) is defined as:

Lr,G(q, λ) := r⊤q − λ⊤(G⊤q).

It is well known (see, e.g., (Altman, 1999)) that strong duality holds for CMDPs assuming Slater’s
condition. Therefore, we have that the following corollary holds.
Corollary 1. Given a reward vector r and a constraint matrix G such that the Slater’s condition
holds, we have:

OPTr,G = min
λ∈Rm

≥0

max
q∈∆(M)

Lr,G(q, λ) = max
q∈∆(M)

min
λ∈Rm

≥0

Lr,G(q, λ).

Notice that the min-max problem in Corollary 1 corresponds to the optimization problem associated
with a zero-sum Lagrangian game.

2.4 CUMULATIVE REGRET AND CONSTRAINT VIOLATION

We introduce the notion of cumulative regret and cumulative constraint violation up to episode T .

The cumulative regret is defined as RT := T OPTr,G −
∑T

t=1 r
⊤
t q

P,πt , where:

r :=

{
Er∼R[r] with stochastic rewards
1
T

∑T
t=1 rt with adversarial rewards,

G :=

{
EG∼G [G] with stochastic rewards
1
T

∑T
t=1 Gt with adversarial rewards.

Notice that the regret is computed with respect to the optimal safe strategy in hindsight in the
adversarial case. We will refer to the optimal occupancy measure (the one associated with OPTr,G)

as q∗, so that OPTr,G = r⊤q∗ and the regret reduces to RT :=
∑T

t=1 r
⊤(q∗ − qP,πt).

The cumulative constraint violation is defined as VT := maxi∈[m]

∑T
t=1

[
G⊤

t q
P,πt

]
i
. For the sake

of notation, we will refer to qP,πt by using qt, thus omitting the dependency on P and π.

2.5 FEASIBILITY PARAMETER

We introduce a problem-specific parameter ρ ∈ [0, L], which is strictly related to the feasibility
of Problem (4). Formally, in settings with stochastic constraints chosen from a fixed distribution,
the parameter ρ is defined as ρ := maxq∈∆(M) mini∈[m]−

[
G

⊤
q
]
i
. Instead, with adversarial

constraints, the parameter ρ is defined as ρ := maxq∈∆(M) mint∈[T ] mini∈[m]−
[
G⊤

t q
]
i
. In both

cases, the occupancy measure leading to the value of ρ is denoted with q◦. Finally, we state the
following condition on the value of ρ which plays a central role when providing algorithm guarantees.

Condition 2. It holds that ρ ≥ T− 1
8L
√
20m.
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3 BEST-OF-BOTH-WORLDS CMDP OPTIMIZATION ALGORITHM

In this section, we present our algorithm named primal-dual gradient descent online policy search
(PDGD-OPS). Its rationale is to instantiate two no-regret algorithms, referred to as primal and
dual player, respectively. Precisely, the primal player optimizes on the primal variable space of the
Lagrangian function, namely on the set ∆(M), while the dual player does it on the dual variable space
Rm

≥0, which, in our algorithm, is properly shrunk to
[
0, T 1/4

]m
. As concerns the objective functions,

the primal player aims to maximize the Lagrangian function, while the dual one to minimize it,
as described in the Lagrangian 0-sum game defined in Corollary 1. Notice that, while the space
of the dual variables is known apriori, the occupancy measure space needs be estimated online
as the transition probabilities are unknown. Thus, it is necessary to employ a no-regret algorithm
working with adversarial MDPs for the primal player. Moreover, in order to provide guarantees on
the dynamics of the Lagrange multipliers—necessary to bound the cumulative regret and cumulative
constraint violation—we require the primal player to satisfy the weak no-interval regret property (see
the following Definition 3 for a formalization of such a property).

Algorithm 2 provides the pseudo-code of PDGD-OPS. As mentioned before, the algorithm employs
two regret minimizers, named UC-O-GDPS and OGD, working on the space of the primal and dual
variables, respectively. The occupancy measure is initialized uniformly (Line 1) by the primal
player. We refer to Section 4 for the description of the UC-O-GDPS initialization. The dual player is
initialized by the OGD.INIT procedure which takes as input the decision space D and a learning
rate η, and it returns the vector λ1 = 0 associated with the dual variable (Line 2).

During the learning process, at each episode t ∈ [T ], PDGD-OPS plays the policy πq̂t induced by
the occupancy measure q̂t computed in the previous episode (Line 5). The feedback received by the
learner once the episode is concluded concerns the trajectory (xk, ak)

L−1
k=0 traversed in the CMDP,

the reward vector, and the constraint matrix for that specific episode.

Given the observed feedback, the algorithm builds the Lagrangian objective function (Line 6) as
the loss ℓt = Gtλt − rt and feeds it to the primal player along with the trajectory and the adaptive
learning rate (Line 7). The trajectory is needed to estimate the transition probabilities, while the
rationale of the adaptive learning rate is to remove the quadratic dependence from ∥λ∥1 in the regret
bound of the primal player. See Section 4 for the description of UC-O-GDPS.UPDATE (Line 8).

To conclude, we notice that the dual player receives only the loss−G⊤
t q̂t, as, r⊤t q̂t has no dependence

on the optimization variable λt, thus, it does not affect the optimization process. For the sake of
completeness, we report the OGD update of the dual player, namely OGD.UPDATE (Line 9) :

λt+1 := ΠD
(
λt + ηG⊤

t q̂t
)
, (5)

where ΠD is the Euclidean projection on the decision space D, η =

[
K
√

T ln
(
T 2

δ

)]−1

and K is an

instance-dependent quantity that does not depend on T and δ. From here on, we refer to the regret
suffered by OGD with respect to a general Lagrange multiplier λ as RD

T (λ), where D stands for dual.
Please notice that, thanks to the properties of OGD Orabona (2019) and using the aforementioned
learning rate η, we obtain RD

T (λ) ≤ Õ
(
(1 + ||λ||22)

√
T
)

.

4 ADVERSARIAL MDP OPTIMIZATION ALGORITHM

We focus on the algorithm employed by the primal player. As aforementioned, this algorithm resorts
to online learning techniques as the decision space of the primal player is not known beforehand.
In particular, the algorithm is an online adversarial MDP optimizer, as Algorithm 2 deals with both
stochastic and adversarial settings.

4.1 UC-O-GDPS ALGORITHM

Upper confidence online gradient descent policy search (UC-O-GDPS) follows the rationale of the
UC-O-REPS algorithm by Rosenberg & Mansour (2019b), from which we highlight two major
differences. The first difference concerns the update step. In particular, while in UC-O-REPS
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the update is performed by online mirror descent when the unnormalized KL is used as Bregman
divergence, in UC-O-GDPS such a step is performed by online gradient descent. The use of online
gradient descent allows the UC-O-GDPS algorithm to satisfy the weak no-interval regret property
(see Definition 3) which plays a central role in our regret analysis. We also notice that, to the best of
our knowledge, the weak no-interval regret property has never been studied in episodic adversarial
MDPs, and thus our result may be of independent interest. The second difference concerns the design
of an adaptive learning rate which depends on the losses previously observed. The satisfaction of
weak no-interval regret property and the adoption of our adaptive learning rate allow us to attain a
regret bound of Õ(

√
T ) for PDGD-OPS in place of Õ

(
T 3/4

)
.

Algorithm 2 PDGD-OPS
Require: T , X , A, δ

1: q̂1 ← UC-O-GDPS.INIT (X,A, δ)

2: λ1 ← OGD.INIT
([

0, T 1/4
]m

, η
)

3: for t = 1 to T do
4: Play πq̂t and observe trajectory (xk, ak)

L−1
k=0 , reward

5: vector rt, and constraint matrix Gt

6: ℓt ← Gtλt − rt
7: ηt =

1
ℓtC

√
T

with ℓt = max{||ℓτ ||∞}tτ=1

8: q̂t+1 ← UC-O-GDPS.UPDATE
(
ℓt, ηt, (xk, ak)

L−1
k=0

)
9: λt+1 ← OGD.UPDATE

(
−G⊤

t q̂t
)

10: end for

Algorithm 3 UC-O-GDPS.UPDATE
Require: ℓt, ηt, (xk, ak)

L−1
k=0

1: for k ∈ [0..L− 1] do
2: Update counters:

Ni (xk, ak)← Ni (xk, ak) + 1,

Mi (xk+1 | xk, ak)←Mi (xk+1 | xk, ak) + 1

3: end for
4: if ∃k,Ni (xk, ak) ≥ max {1, 2Ni−1 (xk, ak)} then
5: Increase epoch index i← i+ 1
6: Initialize new counters: for all (x, a, x′),

Ni(x, a) = Ni−1(x, a)

Mi (x
′ | x, a) = Mi−1 (x

′ | x, a)
7: Update confidence set Pi as in Equation (6)
8: end if
9: Update occupancy measure:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

Transitions confidence set Initially,
we discuss how UC-O-GDPS updates
the confidence set, denoted with P ,
on the transition probabilities P . This
is done by following the approach
prescribed by Rosenberg & Mansour
(2019b). However, for the sake of
clarity, we summarize the functioning.
In particular, the update of the con-
fidence set requires a non-negligible
computational effort, however it is
possible to update the confidence set
at a subset of episodes to make the
UC-O-GDPS algorithm more efficient
without worsening the regret bounds.
More precisely, the episodes are di-
vided dynamically in epochs depend-
ing of the observed feedback, and
the update of the confidence bound
is only performed at the first episode
of every epoch. UC-O-GDPS adopts
counters of visits for each state-action
pair (x, a) and each state-action-state
triple (x, a, x′) to estimate the empir-
ical transition function as:

P i (x
′ | x, a) = Mi (x

′ | x, a)
max {1, Ni(x, a)}

,

where Ni(x, a) and Mi (x
′ | x, a) are

the initial values of the counters, that
is, the total number of visits of pair
(x, a) and triple (x, a, x′), respec-
tively, observed in the epochs pre-
ceding epoch i. Furthermore, a new
epoch starts whenever there is a state-
action pair whose counter is doubled
compared to its initial value at the be-
ginning of the epoch. The confidence
set Pi is updated at every epoch i as,
for every (x, a) ∈ X ×A:

Pi =

P̂ :
∥∥∥P̂ (·|x, a)− P i (·|x, a)

∥∥∥
1
≤ ϵi (x, a) :=

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

 , (6)

where k(x) denotes the index of the layer to which x belongs and δ ∈ (0, 1) is the given confidence.

The next result, which directly follows from Rosenberg & Mansour (2019b), shows that the cumulative
error due to the estimation of the transition probabilities grows sublinearly during time.
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Lemma 2. If the confidence set P is updated as in Equation (6), with probability at least 1 − 2δ∑T
t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ ≤ Õ(

√
T ).

Initialization UC-O-GDPS.INIT procedure (Line 1 of Algorithm 2) initializes the epoch index as
i = 1 and confidence set P1 as the set of all possible transition functions. For all k ∈ [0..L−1] and all
(x, a, x′) ∈ Xk×A×Xk+1, the counters are initialized as N0(x, a) = N1(x, a) = M0 (x

′ | x, a) =
M1 (x

′ | x, a) = 0. Finally, the following occupancy measure

q̂1 (x, a, x
′) =

1

|Xk∥A| |Xk+1|

is returned by the initialization procedure for all k ∈ [0..L− 1] and all (x, a, x′) ∈ Xk ×A× Xk+1.

Update The pseudo-code of UC-O-GDPS.UPDATE procedure (used in Line 8 of Algorithm 2)
is provided in Algorithm 3. Initially, it updates the estimate of the confidence set P (Lines 1–7) as
described above, and, subsequently, it performs an update step according to projected online gradient
descent (Line 9).

4.2 INTERVAL REGRET

Initially, we provide the definition of interval regret for adversarial online MDPs.

Definition 2 (Interval regret). Given an interval [t1..t2] ⊆ [1..T ], the interval regret with respect to a
general occupancy measure q is defined as:

Rt1,t2(q) :=

t2∑
t=t1

ℓ⊤t (qt − q).

Now, we define the notion of weak no-interval regret. This notion plays a crucial role when proving
the properties of Algorithm 2, and it is defined as follows.

Definition 3 (Weak no-interval regret). An online MDP optimizer satisfies the weak no-interval regret
property if:

Rt1,t2(q) ≤ Õ
(√

T
)
∀[t1..t2] ⊆ [1..T ].

For the sake of clarity, in the following, we use the superscript P in the regret to distinguish the regret
associated with the primal optimizer (RP) from the regret associated with the dual optimizer (RD),
and we use RP

T (q) in place of RP
1,T (q). Next, we state the main result of this section.

Theorem 3. With probability at least 1− 2δ, when ηt =
(
ℓtC
√
T
)−1

, UC-O-GDPS satisfies for

any q ∈ ∩i∆(Pi):

RP
t1,t2(q) ≤ ℓt1,t2E

q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

,

where ℓt1,t2 := max{||ℓt||∞}t2t=t1 , ℓt := ℓ1,t and δ ∈ [0, 1].

Furthermore, it follows from Theorem 3 that, when t1 = 1, t2 = T , it holds RP
T ≤ Õ

(
ℓT
√
T
)

.

5 THEORETICAL RESULTS

In this section we provide the theoretical results attained by Algorithm 2 in terms of cumulative
regret and cumulative constraint violation. We start providing a fundamental result on the Lagrange
multiplier dynamics. Then, we distinguish two cases, which require different treatments. In the first,
constraints are stochastic (Section 5.1), while in the second case they are adversarial (Section 5.2).

The main technical challenge when bounding the cumulative regret and constraint violation concerns
bounding the space of the dual variables. We recall that, when employing standard no-regret
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techniques, an unbounded dual space would lead to an unbounded loss for the primal regret minimizer,
resulting in a linear regret. Our choice D = [0, T 1/4]m of the dual decision space allows us to
circumvent such an issue and PDGD-OPS to achieve a cumulative regret bound of RT ≤ Õ(T 3/4),
while keeping the cumulative violation sublinear. Nevertheless, when ρ is large enough (namely,
Condition 2 holds), the Õ

(
T 3/4

)
dependency in the upper bounds is not optimal. In particular, in this

case, we can show that the Lagrangian vector never touches the boundaries of D, and this property
can be used to show that the regret and violation bounds are Õ(

√
T ). In the following, we present

our result on how the Lagrange multipliers can be bounded, providing a proof sketch and referring to
Appendix D for the complete proof.

Theorem 4. If Condition 2 holds and PDGD-OPS is used, then, when ζ := 20mL2

ρ2 , it holds

||λt||1 ≤ ζ ∀t ∈ [T + 1]

with probability at least 1− 2δ in the stochastic constraint setting and with probability at least 1− δ
in the adversarial constraint setting.

Proof sketch. The proof exploits the fact that both the primal and dual player satisfy the weak no-
interval regret property. Precisely, the sum of the values of the Lagrangian function in [t1..t2] can be
lower bounded by using the interval regret of UC-O-GDPS, while the same quantity can be upper
bounded with the interval regret of OGD, showing a contradiction concerning the value Lagrange
multipliers can achieve for an opportune choice of constants and learning rates.

5.1 STOCHASTIC CONSTRAINT SETTING

The peculiarity of this setting is that, at every episode t ∈ [T ] the constraint matrix G is sampled from
a fixed distribution, namely Gt ∼ G. Instead, rewards rt can be sampled from a fixed distributionR
or chosen adversarially.

Azuma-Hoeffding bounds Initially, we bound the error between the realizations of reward vectors
and their corresponding mean values when the rewards are chosen stochastically. The proof is
provided in Appendix D.
Lemma 3. If the rewards are stochastic, then, with probability at least 1− δ, it holds:∣∣∣∣∣

T∑
t=1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≤ Erδ ,
where Erδ := L√

2

√
T ln

(
2
δ

)
.

Now, we bound the error between the realizations of constraint violations and their corresponding
mean values.
Lemma 4. If the constraints are stochastic, given a sequence of occupancy measures (qt)Tt=1, then
with probability at least 1− δ, for all [t1..t2] ⊆ [1..T ], it holds:∣∣∣∣∣

t2∑
t=t1

λ⊤
t

(
G⊤

t −G
⊤)

qt

∣∣∣∣∣ ≤ λt1,t2EGt1,t2,δ,

where EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and λt1,t2 := max{∥λt∥1}t2t=t1 .

For the sake of notation, we use EGδ in place of EG1,T,δ . Let us remark that Erδ , EGδ ≤ Õ(
√
T ).

Analysis when Condition 2 holds We start by analyzing the case in which Condition 2 holds.
By Theorem 4, we know that the maximum 1-norm of the dual vectors selected by OGD during the
learning process is upper-bounded by the constant ζ. Since ζ essentially determines the range of
the Lagrangian function, we can prove optimal regret and violation bounds of order Õ

(
ζ
√
T
)

for
PDGD-OPS, as stated in the following theorem.

8
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Theorem 5. In the stochastic constraint setting, when Condition 2 holds, the cumulative regret
and constraint violation incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ ζEGδ + ζEqδ +RD

T (0) +

RP
T (q

∗) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability at least 1 − 5δ

Algorithm 2 provides RT ≤ Erδ + ζEGδ + ζEqδ +RD
T (0)+RP

T (q
∗), and VT ≤ 1

η ζ + E
q
δ . In both cases:

RT ≤ Õ
(
ζ
√
T
)
, VT ≤ Õ

(
ζ
√
T
)
.

Notice that, if Condition 2 does not hold, the bounds stated in Theorem 5 can become of order
Õ
(
T 3/4

)
or even linear. We conclude the analysis of the stochastic constraint setting when Condi-

tion 2 holds with the following remark.

Remark 1. In Theorem 5, the regret bound when the rewards are adversarial is better than the one
when the rewards are chosen stochastically. This result may seem counter-intuitive as the adversarial
setting is the hardest setting a learner might face. Informally, this is due to the different definition of
the optimization baseline used in the stochastic and adversarial settings.

Analysis when Condition 2 does not hold. We focus on the case in which Condition 2 does not
hold. As previously observed, in this case the regret and violation bounds given in Theorem 5 are
not meaningful anymore, as they could become linear in T (in fact, this is exactly the case when
ρ ∝ T− 1

4 ). Nevertheless, by constraining the dual player to the decision space D = [0, T 1/4]m, we
are able to prove worst-case regret and violation bounds of order Õ

(
T 3/4

)
. This result is formalized

in the following theorem.

Theorem 6. In the stochastic constraint setting, when Condition 2 does not hold, the cumulative
regret and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the
rewards are adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ mT

1
4 EGδ +

mT
1
4 Eqδ +RD

T (0) +RP
T (q

∗) and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . If the rewards are stochastic, then with

probability at least 1− 5δ Algorithm 2 provides RT ≤ Erδ +mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0)+RP
T (q

∗)

and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . In both cases, it holds:

RT ≤ Õ
(
T

3
4

)
, VT ≤ Õ

(
T

3
4

)
.

5.2 ADVERSARIAL CONSTRAINT SETTING

We recall that in this setting, at every episode t ∈ [T ], the constraint matrix Gt is chosen adversarially.
Instead, rewards rt can be sampled from a fixed distribution R or chosen adversarially. This case
corresponds to the hardest scenario the learner can face. As stated in Section 2.5, the treatment of this
case requires a definition of ρ stronger than that used in the stochastic constraint setting. Thanks to
such a redefinition, it is possible to achieve guarantees on the cumulative constraint violation of the
same order of those attainable in the stochastic setting, while obtaining at least a constant fraction of
the optimal reward. Such a result can be achieved when Condition 2 holds. Notice that both sublinear
cumulative regret and sublinear cumulative constraint violation cannot be achieved in our setting, as
shown by Mannor et al. (2009).

The following theorem summarizes our result for the adversarial constraint setting.

Theorem 7. In the adversarial constraint setting, when Condition 2 holds, the cumulative regret
and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1 − 2δ Algorithm 2 provides RT ≤ 1

1+ρT · OPTr,G +

ζEqδ + RD
T (0) + RP

T (q̃) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability

at least 1 − 3δ Algorithm 2 provides RT ≤ 1
1+ρT · OPTr,G + Erδ + ζEqδ + RD

T (0) + RP
T (q̃) and

VT ≤ 1
η ζ + E

q
δ . In both cases, it holds:

T∑
t=1

r⊤t qt ≥ Ω

(
ρ

1 + ρ
T · OPTr,G

)
, VT ≤ Õ

(
ζ
√
T
)
.
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A RELATED WORKS

In the following, we survey some previous works that are tightly related to ours. In particular, we
first describe works dealing with the online learning problem in MDPs, and, then, we discuss some
works studying the constrained version of the classical online learning problem.

Online Learning in MDPs. There is a considerable literature on online learning problems (Cesa-
Bianchi & Lugosi, 2006) in MDPs (see (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010)
for some initial results on the topic). In such settings, two types of feedback are usually investigated:
in the full-information feedback model, the entire loss function is observed after the learner’s choice,
while in the bandit feedback model, the learner only observes the loss due to the chosen action. Azar
et al. (2017) study the problem of optimal exploration in episodic MDPs with unknown transitions
and stochastic losses when the feedback is bandit. The authors present an algorithm whose regret
upper bound is Õ(

√
T ), thus matching the lower bound for this class of MDPs and improving the

previous result by Auer et al. (2008). Rosenberg & Mansour (2019b) study the online learning
problem in episodic MDPs with adversarial losses and unknown transitions when the feedback is full
information. The authors present an online algorithm exploiting entropic regularization and providing
a regret upper bound of Õ(

√
T ). The same setting is investigated by Rosenberg & Mansour (2019a)

when the feedback is bandit. In such a case, the authors provide a regret upper bound of the order of
Õ(T 3/4), which is improved by Jin et al. (2020) by providing an algorithm that achieves in the same
setting a regret upper bound of Õ(

√
T ).

Online Learning in CMDPs with Long-term Constraints. All the previous works on the topic
study settings in which constraints are selected stochastically. In particular, Zheng & Ratliff (2020)
deal with episodic CMDPs with stochastic losses and constraints, where the transition probabilities
are known and the feedback is bandit. The regret upper bound of their algorithm is of the order of
Õ(T 3/4), while the cumulative constraint violation is guaranteed to be below a threshold with a
given probability. Wei et al. (2018) deal with adversarial losses and stochastic constraints, assuming
the transition probabilities are known and the feedback is full information. The authors present
an algorithm that guarantees an upper bound of the order of Õ(

√
T ) on both regret and constraint

violation. Bai et al. (2020) provide the first algorithm that achieves sublinear regret when the
transition probabilities are unknown, assuming that the rewards are deterministic and the constraints
are stochastic with a particular structure. Efroni et al. (2020) propose two approaches to deal with
the exploration-exploitation dilemma in episodic CMDPs. These approaches guarantee sublinear
regret and constraint violation when transition probabilities, rewards, and constraints are unknown
and stochastic, while the feedback is bandit. Qiu et al. (2020) provide a primal-dual approach based
on optimism in the face of uncertainty. This work shows the effectiveness of such an approach when
dealing with episodic CMDPs with adversarial losses and stochastic constraints, achieving both
sublinear regret and constraint violation with full-information feedback. Wei et al. (2023) and Ding
& Lavaei (2023) consider the case in which rewards and constraints are non-stationary, assuming that
their variation is bounded. Thus, their results are not applicable to general adversarial settings.

Online Learning with Long-term Constraints. A central result is provided by Mannor et al.
(2009), who show that it is impossible to suffer from sublinear regret and sublinear constraint
violation when an adversary chooses losses and constraints. Liakopoulos et al. (2019) try to overcome
such an impossibility result by defining a new notion of regret. They study a class of online learning
problems with long-term budget constraints that can be chosen by an adversary. The learner’s regret
metric is modified by introducing the notion of a K-benchmark, i.e., a comparator that meets the
problem’s allotted budget over any window of length K. Castiglioni et al. (2022a;b) deal with the
problem of online learning with stochastic and adversarial losses, providing the first best-of-both-
worlds algorithm for online learning problems with long-term constraints.
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B EVENTS

Here we state the events that we use in the rest of the Appendix.

The following event states that the true occupancy measure space is always contained in the confidence
set:

Event E∆(δ): ∆(M) ⊆ ∩i∆(Pi).

In particular, under E∆(δ), we have that q◦, q∗ ∈ ∩i∆(Pi). E∆(δ) holds with probability at least
1− δ (See Lemma 5).

The following event states that the cumulative error after T episodes due to the difference between
qP,πt and qP

q̂t ,πt is small enough:

Event E q̂(δ):
∑T

t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ := 4L|X|
√
2T ln

(
1
δ

)
+

6L|X|
√
2T |A| ln

(
T |X||A|

δ

)
≤ Õ(

√
T ).

In the next sections we will often condition on the intersection of the previous events:

Event E∆,q̂(δ): E q̂(δ) ∩ E∆(δ)

E∆,q̂(δ) holds with probability at least 1− 2δ (See Lemma 2).

The next event states that, in case the rewards are stochastic, the reward accumulated is not too far
from the mean reward accumulated.

Event Er
q∗(δ):

∣∣∣∑T
t=1 (rt − r)

⊤
q∗
∣∣∣ ≤ Erδ , where Erδ = L√

2

√
T ln

(
2
δ

)
≤ Õ

(√
T
)

Er
q∗(δ) holds with probability at least 1− δ (See Lemma 3).

For the stochastic constraint setting, we define the quantity EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and then two events bounding the cumulative difference between the dual utility with the average
constraints and that with the sampled constraints.

Event EG
q◦(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q◦
∣∣∣ ≤ λt1,t2EGt1,t2,δ

Event EG
q∗(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q∗
∣∣∣ ≤ λt1,t2EGt1,t2,δ

EG
q◦(δ), E

G
q∗(δ) each hold with probability at least 1− δ (See Lemma 4). We denote EGδ := EG1,T,δ
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C ADDITIONAL DETAILS AND OMITTED PROOF OF SECTION 4

C.1 ALGORITHM

Algorithm 4 Upper Confidence Online Gradient Descent Policy Search (UC-O-GDPS)
Require: state space X , action space A, episode number T , and confidence parameter δ

1: Initialize epoch index i = 1 and confidence set P1 as the set of all transition functions. For all
k ∈ [0..L− 1] and all (x, a, x′) ∈ Xk ×A× Xk+1, initialize counters N0(x, a) = N1(x, a) =
M0 (x

′ | x, a) = M1 (x
′ | x, a) = 0 and occupancy measure

q̂1 (x, a, x
′) =

1

|Xk∥A| |Xk+1|

Initialize policy π1 = πq̂1

2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain trajectory xk, ak for k ∈ [0..L− 1] and loss ℓt
4: for k ∈ [0..L− 1] do
5: Update counters:

Ni (xk, ak)← Ni (xk, ak) + 1,

Mi (xk+1 | xk, ak)←Mi (xk+1 | xk, ak) + 1

6: end for
7: if ∃k,Ni (xk, ak) ≥ max {1, 2Ni−1 (xk, ak)} then
8: Increase epoch index i← i+ 1
9: Initialize new counters: for all (x, a, x′),

Ni(x, a) = Ni−1(x, a)

Mi (x
′ | x, a) = Mi−1 (x

′ | x, a)
10: Update confidence set Pi based on Equation (6)
11: end if
12: Update occupancy measure:
13: ηt =

1
ℓtC

√
T

with ℓt = max{||ℓt||∞}tt=1

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

14: Update policy πt+1 = πq̂t+1

15: end for

Confidence Set. The description of how Confidence Set on the Transition Probability functions are
built and used, follows precisely the description of Rosenberg & Mansour (2019b). We report the
functioning for completeness.
UC-O-GDPS keeps counters of visits of each state-action pair (x, a) and each state-action-state triple
(x, a, x′), in order to estimate the empirical transition function as:

P i (x
′ | x, a) = Mi (x

′ | x, a)
max {1, Ni(x, a)}

where Ni(x, a) and Mi (x
′ | x, a) are the initial values of the counters, that is, the total number of

visits of pair (x, a) and triple (x, a, x′) respectively, before epoch i. Epochs are used to reduce the
computational complexity; in particular, a new epoch starts whenever there exists a state-action whose
counter is doubled compared to its initial value at the beginning of the epoch. Next, the confidence
set for epoch i is defined as:

Pi =
{
P̂ :

∥∥∥P̂ (·|x, a)− P i (·|x, a)
∥∥∥
1
≤ ϵi (x, a) ∀ (x, a) ∈ X ×A

}
(7)

with ϵi (x, a) defined as:

ϵi (x, a) =

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}
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using k(x) for the index of the layer that x belongs to and for some confidence parameter δ ∈ (0, 1).
We state the following Lemma by Rosenberg & Mansour (2019b), which provides the results related
to the confidence set ϵi(x, a).
Lemma 5. Rosenberg & Mansour (2019b) For any δ ∈ [0, 1]:

∥∥P (·|x, a)− P i (·|x, a)
∥∥
1
≤

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

holds with probability at least 1− δ simultaneously for all (x, a) ∈ X ×A and all epochs.

Lemma 5 implies that, with high probability, the occupancy measure space ∆(M) is included in the
estimated one ∆(Pi) ∀i.

Occupancy Measure Update. The update of the occupancy measure is performed on the space
∆(Pi), which is built on the estimated transition function set Pi. More formally:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

with ℓt = max{||ℓt||∞}tt=1, and C constant. The employment of Online Gradient
Descent has been necessary to achieve the interval regret results, while the adaptive learning rate was
chosen to improve the performance in terms of Regret bounds.

C.2 INTERVAL REGRET

In the following subsections, we prove the theorem related to the interval regret of Algorithm 4. First,
we will present the main theorem, then, all the necessary lemmas.

Theorem 3. With probability at least 1− 2δ, when ηt =
(
ℓtC
√
T
)−1

, UC-O-GDPS satisfies for

any q ∈ ∩i∆(Pi):

RP
t1,t2(q) ≤ ℓt1,t2E

q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

,

where ℓt1,t2 := max{||ℓt||∞}t2t=t1 , ℓt := ℓ1,t and δ ∈ [0, 1].

Proof. Assume Event E∆,q̂(δ) holds. By definition 2:

Rt1,t2(q) =

t2∑
t=t1

ℓ⊤t (qt − q)

=

t2∑
t=t1

ℓ⊤t (qt − q̂t)︸ ︷︷ ︸
1

+

t2∑
t=t1

ℓ⊤t (q̂t − q)︸ ︷︷ ︸
2

≤ ℓt1,t2E
q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

where the Inequality holds by Lemmas 9 and 10. We focus on bounding the first term 1 and the
second term 2 .

C.2.1 BOUND ON THE FIRST TERM

In order to bound the first term of the Interval Regret, we state some useful Lemmas by Rosenberg &
Mansour (2019b).
Lemma 6. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions. Then,
T∑

t=1

||qPt,πt−qP,πt ||1 ≤
T∑

t=1

∑
x∈X

∑
a∈A

|qPt,πt(x, a)−qP,πt(x, a)|+
T∑

t=1

∑
x∈X

∑
a∈A

qP,πt(x, a)||Pt(·|x, a)−P (·|x, a)||1

(8)
where Pt = P q̂t .
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The following Lemma, shows how to bound the first term in Equation (8) with the second one.

Lemma 7. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions. Then, for every k ∈ [1..L− 1] and every t = 1, ..., T it holds that:

∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)−qP,πt(xk, ak)| ≤
k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)−P (·|xs, as)||1

where Pt = P q̂t .

and finally, Equation (8) is upper bounded given:

Lemma 8. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions such that qPt,πt ∈ ∆(Pi) for every t. Then, with probability at least 1− 2δ Event E∆(δ)
holds and:

T∑
t=1

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)−P (·|xs, as)||1 ≤ 2L|X|

√
2T ln

(
1

δ

)
+3L|X|

√
2T |A| ln

(
T |X||A|

δ

)

where Pt = P q̂t .

From the previous Lemmas, it easy to show that:

Lemma 2. If the confidence set P is updated as in Equation (6), with probability at least 1 − 2δ∑T
t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ ≤ Õ(

√
T ).

Proof. Following Rosenberg & Mansour (2019b), by Lemmas 6, 7 and 8 we obtain that with

probability at least 1− 2δ Event E∆(δ) holds and:
∑T

t=1 ||qPt,πt − qP,πt ||1 ≤ 4L|X|
√
2T ln

(
1
δ

)
+

6L|X|
√
2T |A| ln

(
T |X||A|

δ

)

Now, we are ready to bound 1 .

Lemma 9. Under Event E∆,q̂(δ) it holds:

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤ ℓt1,t2E
q
δ

with ℓt1,t2 := max{||ℓt||∞}t2t=t1

Proof.

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤
t2∑

t=t1

||ℓt||∞||qt − q̂t||1

≤ ℓt1,t2

t2∑
t=t1

||qt − q̂t||1

≤ ℓt1,t2

T∑
t=1

||qt − q̂t||1

≤ ℓt1,t2E
q
δ (9)

with ℓt1,t2 := max{||ℓt||∞}t2t=t1 and where Inequality (9) holds under the event E q̂(δ).
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C.2.2 BOUND ON THE SECOND TERM

Lemma 10. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Proof. By the standard analysis of Projected Online Gradient Descent [Lemma 2.12 Orabona (2019)]
we have:

ℓ⊤t (q̂t − q) ≤ 1

2ηt
||q̂t − q||22 −

1

2ηt
||q̂t+1 − q||22 +

ηt
2
||ℓt||22.

Observe that for any two occupancy measures q1, q2 it holds:

||q1 − q2||22 ≤ ||q1||22 + ||q2||22
≤ ||q1||1 + ||q2||1
≤ 2L

where the second Inequality follows from q(x, a) ∈ [0, 1] ∀x, a. Then, summing over the interval
[t1.. t2] we get:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ 1

2ηt1
||q̂t1 − q||22−

1

2ηt2
||q̂t2+1 − q||22︸ ︷︷ ︸

≤0

+
1

2

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
||q̂t+1 − q||22 +

1

2

t2∑
t=t1

ηt||ℓt||22

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
+

1

2C
√
T

t2∑
t=t1

1

ℓt

∑
x,a

ℓt(x, a)
2 (10)

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

= 1
ηt2

− 1
ηt1

+
1

2C
√
T

t2∑
t=t1

||ℓt||∞
max{||ℓτ ||∞}tτ=1︸ ︷︷ ︸

≤1

||ℓt||∞
∑
x,a

1

≤Lℓt2C
√
T +

|X||A|
2

ℓt1,t2
(t2 − t1 + 1)

C
√
T

(11)

where Inequality (10) follows from the definition of ηt, and from ηt > ηt+1, while Inequality (11)
comes from the telescopic sum over [t1..t2] and from the definition of ηt2 .

D OMITTED PROOF OF SECTION 5

D.1 INTERVAL REGRETS

In this section, we show the Interval Regrets, attained by both primal and dual player, in our specific
framework.
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D.1.1 INTERVAL REGRET OF THE DUAL

In this subsection, we show the Interval Regret obtained by dual player. Recall that the dual variables
are updated with Projected Online Gradient Descent as shown in (5) or equivalently:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T 1/4

}
(12)

with η =

[
K
√
T ln

(
T 2

δ

)]−1

.

Let

RD
t1,t2(λ) :=

t2∑
t=t1

(λ− λt)
⊤
G⊤

t q̂t

denote the regret accumulated by OGD from episode t1 to episode t2 with respect to the constant
multiplier λ. By standard analysis of OGD Orabona (2019) we have that:

RD
t1,t2(λ) ≤

||λt1 − λ||22
2η

+
η

2

t2∑
t=t1

||G⊤
t q̂t||22

We can upper-bound the quantity ||G⊤
t q̂t||22 as:

||G⊤
t q̂t||22 =

m∑
i=1

(∑
x,a

gt,i(x, a)q̂t(x, a)

)2

≤
m∑
i=1

(∑
x,a

q̂t(x, a)

)2

≤ mL2

obtaining:

RD
t1,t2(λ) ≤ D1

||λt1 − λ||22
η

+D2η(t2 − t1 + 1)

with D1 = 1
2 , D2 = mL2

2 .

We bound the distance between lagrange multipliers for consecutive episodes.

Lemma 11. If the dual player employs Projected Online Gradient Descent as in Update (12), it
holds:

||λt+1||1 − ||λt||1 ≤ mηL

Proof. Since the dual minimizer is performing projected gradient descent with learning rate η, and
the gradient of the Lagrangian at time t with respect to λ is equal to q̂⊤t G

⊤
t , element-wise it holds

that:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T

1
4

}
≤ max

{
0, λt,i + η[G⊤

t ]iq̂t
}

≤ max
{
0, λt,i + η||[G⊤

t ]i||∞||q̂t||1
}

≤ max {0, λt,i + ηL}
= λt,i + ηL

Thus,

||λt+1||1 − ||λt||1 =

m∑
i=1

λt+1,i −
m∑
i=1

λt,i ≤
m∑
i=1

λt,i +

m∑
i=1

ηL−
m∑
i=1

λt,i = mηL

D.1.2 INTERVAL REGRET OF THE PRIMAL

We restate Lemma 10:

18
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Lemma 10. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Let

λt1,t2 := max{||λt||1}t2t=t1 .

Then it holds ℓt1,t2 ≤ 1 + λt1,t2 and we can restate the interval regret of the primal in terms of the
1-norm of the Lagrange multipliers as:

t2∑
t=t1

rLt
⊤
(q − q̂t) ≤ U1

(1 + λ1,t2)

2
C
√
T + U2

(1 + λt1,t2)

2

(t2 − t1 + 1)

C
√
T

. (13)

D.2 BOUND ON THE LAGRANGE MULTIPLIERS

We prove Theorem 4, which we restate for convenience.

Theorem 4. If Condition 2 holds and PDGD-OPS is used, then, when ζ := 20mL2

ρ2 , it holds

||λt||1 ≤ ζ ∀t ∈ [T + 1]

with probability at least 1− 2δ in the stochastic constraint setting and with probability at least 1− δ
in the adversarial constraint setting.

Proof. Suppose event E∆(δ) holds. If the constraints are stochastic, suppose event EG
q◦(δ) holds too.

Let M > 1 be a constant. We prove the statement by absurd. Suppose by absurd that there exists
t2 ∈ [T ] such that:

∀t ≤ t2 ||λt||1 ≤
2LM

ρ2
∧ ||λt2+1||1 >

2LM

ρ2

and let t1 < t2 be such that:

||λt1−1||1 ≤
2L

ρ
∧ ∀t : t1 ≤ t ≤ t2 ||λt||1 ≥

2L

ρ
.

By construction it holds that 1 < 2L
ρ ≤ ||λt||1 ≤ 2LM

ρ2 for all t1 ≤ t ≤ t2. Also notice that by
Lemma 11, for η ≤ 1

mL it holds that:

||λt1 ||1 ≤ ||λt1−1||1 +mηL ≤ 2L

ρ
+mηL ≤ 4L

ρ
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Focus on the quantity
∑t2

t=t1
−λ⊤

t G
⊤
t q

◦: in the stochastic constraint setting we have, under the event
EG

q◦(δ):

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

−λ⊤
t G

⊤
q◦ − λt1,t2EGt1,t2

≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G

⊤
q◦
]
i
− λt1,t2EGt1,t2

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i − λt1,t2EGt1,t2

= ρ

t2∑
t=t1

||λt||1 − λt1,t2EGt1,t2

≥ ρ
2L

ρ
(t2 − t1 + 1)− λt1,t2EGt1,t2

= 2L(t2 − t1 + 1)− λt1,t2EGt1,t2
While in the adversarial setting it holds:

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G⊤

t q
◦]

i

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i

= ρ

t2∑
t=t1

||λt||1

≥ ρ
2L

ρ
(t2 − t1 + 1)

= 2L(t2 − t1 + 1)

In particular, we have that:

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2

is true in both settings under the required events.

We can lower bound the cumulative value of the Lagrangian function, namely rLt
⊤
q̂t, from t1 to t2

by that achievable by the primal minimizer by always playing the feasible occupancy measure q◦:

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

rLt
⊤
q◦ −

t2∑
t=t1

rLt
⊤
(q◦ − q̂t)

=

t2∑
t=t1

r⊤t q
◦

︸ ︷︷ ︸
≥0

+

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t)

≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2,δ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t)
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Applying Lemma 10 and observing that by construction 1 ≤ λt1,t2 ≤ 2LM
ρ2 , we can bound 1+λt1,t2 ≤

4LM
ρ2 and obtain:

t2∑
t=t1

rLt
⊤
q̂t ≥ 2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ − U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

since under E∆(δ) we have that q◦ ∈ ∩i∆(Pi).

We can upper-bound the same quantity with the value achievable by the dual by always playing a
vector of zeroes.

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

r⊤t q̂t −
t2∑

t=t1

λ⊤
t G

⊤
t q̂t

≤
t2∑

t=t1

r⊤t q̂t −
t2∑

t=t1

0⊤G⊤
t q̂t +RD

t1,t2(0)

≤
t2∑

t=t1

L+D1
||λt1 ||22

η
+D2η(t2 − t1 + 1)

≤
t2∑

t=t1

L+D1
||λt1 ||21

η
+D2η(t2 − t1 + 1)

≤ L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1)

With D3 = 4D1.

Combining the bounds on the cumulative value of the Lagrangian, we have:

2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ−U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

≤

L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1)

Observing that EGt1,t2,δ = 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
≤ U3l1

√
t2 − t1 + 1 with l1 =

√
ln
(
T 2

δ

)
and U3 = 2L

√
2 and rearranging the terms we obtain:

L(t2 − t1 + 1) ≤ U3
2LM

ρ2
l1
√
t2 − t1 + 1 +

+ U1
2LM

ρ2
C
√
T +

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+

+D2η(t2 − t1 + 1) +

+D3
1

η

L2

ρ2

We will make use of the following lemma:

Lemma 12. For η ≤ 1
mL and M

ρ > 4 it holds:

(t2 − t1 + 1) >
M

ρ2mη
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Proof. By Lemma 11 we have:
t2∑

t=t1

(||λt+1||1 − ||λt||1) ≤
t2∑

t=t1

mηL

which, since the sum in the LHS is telescopic, implies:
||λt2+1||1 − ||λt1 ||1 ≤ (t2 − t1 + 1)mηL.

Also note that:
2LM

ρ2
− 4L

ρ
≤ ||λt2+1||1 − ||λt1 ||1.

Rearranging the terms, we obtain, for M
ρ > 4:

M

ρ2mη
<

2L(Mρ − 2)

ρmηL
≤ (t2 − t1 + 1)

Applying Lemma 12 we show that the above leads to a contradiction for some choices of C, M and
η, namely, we show that:

L(t2 − t1 + 1) > U3
2LM

ρ2
l1
√
t2 − t1 + 1 + (1)

+ U1
2LM

ρ2
C
√
T + (2)

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+ (3)

+D2η(t2 − t1 + 1) + (4)

+D3
1

η

L2

ρ2
(5)

In the followings, we prove that each of the terms on the RHS is upper bounded by 1
5L(t2 − t1 + 1):

1. By trivial computations and applying Lemma 12:
1

5
L(t2 − t1 + 1) > U3

2LM

ρ2
l1
√
T ≥ U3

2LM

ρ2
l1
√
t2 − t1 + 1

(t2 − t1 + 1) > U3
10M

ρ2
l1
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ U3

10M

ρ2
l1
√
T

1

mη
≥ 10U3l1

√
T

which is ensured by:

η ≤ 1

10mU3l1
√
T

2. Then applying again Lemma 12:
1

5
L(t2 − t1 + 1) > U1

2LM

ρ2
C
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ 10U1

M

ρ2
C
√
T

which is true for:

η ≤ 1

10mU1C
√
T
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3. We solve the third term with respect to C.

1

5
L(t2 − t1 + 1) ≥ U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

which is ensured by:

C ≥ 10U2
M

ρ2
1√
T

4.
1

5
L(t2 − t1 + 1) > D2η(t2 − t1 + 1)

1

5
L > D2η

Which is ensured by

η <
L

5D2

5. Applying Lemma 12, we solve the Inequality with respect to M:

1

5
L(t2 − t1 + 1) > D3

1

η

L2

ρ2

(t2 − t1 + 1) >
M

ρ2mη
≥ 5D3

1

η

L

ρ2

M

m
≥ 5D3L

from which:
M ≥ 5mD3L

We recall all the constants: D2 = mL2

2 , D3 = 2, U1 = 2L, U2 = |X||A|, U3 = 2L
√
2. We choose

M = 10mL and recall Condition 2:

ρ ≥ T− 1
8L
√
20m ⇒ 20mL2

ρ2
≤ T

1
4 ≤
√
T

We now focus on the condition on C:

C ≥ 10U2
10mL

ρ2
1√
T

= 5
U2

L

20mL2

ρ2
1√
T

is thus always ensured by C = 5U2

L . The conditions on η are satisfied if:

η ≤ min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
.

Observe that:

min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
= min

{
1

2.5mL
,

1

10mU1

(
5U2

L

)√
T
,

1

20
√
2mLl1

√
T

}
which, if we plug in the value of l1, leads to the choice:

η =
1

50mmax
{

U1U2

L , L
}√

T ln
(
T 2

δ

)
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The remaining conditions M
ρ > 4, η ≤ 1

mL are trivially satisfied. Summing the conditions (1− 5)

proves the contradiction.

If we plug the values of U1 and U2 corresponding to UC-O-GDPS, we have max
{

U1U2

L , L
}
=

max {2|X||A|, L} = 2|X||A| and thus obtain:

η =
1

100m|X||A|
√
T ln

(
T 2

δ

)

D.3 ANALYSIS WITH STOCHASTIC CONSTRAINTS

D.3.1 LOWER BOUND ON THE DUAL CUMULATIVE UTILITY

We start proving a useful Lemma in which we lower bound the dual cumulative utility. This Lemma
holds both for the stochastic constraints and the adversarial constraint setting.

Lemma 13. Under the event E q̂(δ), the cumulative dual utility
∑T

t=1 λ
⊤
t G

⊤
t qt is lower bounded as:

T∑
t=1

λ⊤
t G

⊤
t qt ≥ −λ1,TEqδ −RD

T (0)

where λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. We exploit the fact that the dual is no-regret with respect to the 0 vector:

T∑
t=1

λ⊤
t G

⊤
t qt =

T∑
t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

λ⊤
t G

⊤
t q̂t

≥
T∑

t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

0⊤G⊤
t q̂t −RD

T (0)

≥
T∑

t=1

−∥λt∥1︸ ︷︷ ︸
≤λ1,T

∥∥G⊤
t

∥∥
∞︸ ︷︷ ︸

≤1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,T

T∑
t=1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,TEqδ −RD
T (0)

where the last Inequality holds under E q̂(δ).

D.3.2 ANALYSIS WHEN CONDITION 2 HOLDS

We start by introducing the notation v̂t,i := [G⊤
t ]iq̂t, that is the violation of the i-th constraint

incurred by q̂t. We further denote V̂t,i :=
∑t

τ=1 v̂τ,i. Observe that, when Condition 2 holds, thanks
to Theorem 4 we have ||λt||1 ≤ T

1
4 for all t and thus λt,i ≤ T

1
4 . This means that λt,i never gets past

the upper extreme and the update of the dual is effectively equivalent to that of OGD working on the
set Rm

≥0:

λt,i = max{λt,i + ηv̂t,i, 0}

Lemma 14. If Condition 2 holds, then for each episode t ∈ [T ] and each constraint i it holds:

λt,i ≥ ηV̂t−1,i
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Proof. We prove the result by induction. Suppose that the statement holds for episode t. Then

λt+1,i = max{λt,i + ηv̂t,i, 0}
≥ λt,i + ηv̂t,i

≥ ηV̂t−1,i + ηv̂t,i

= ηV̂t,i

Observe that for t = 1 the statement holds as the sum on the RHS evaluates to 0.

Lemma 15. If Condition 2 holds, under the events E∆(δ), E q̂(δ) and EG
q◦(δ) for the stochastic

constraint setting and under the events E∆(δ) and E q̂(δ) for the adversarial constraints one, it
holds:

VT ≤ V̂T,i∗ + Eqδ

Proof. Let i∗ denote the most violated constraint, e.g. i∗ = argmaxi
∑T

t=1[G
⊤
t qt]i. Then we have:

VT =

T∑
t=1

[G⊤
t qt]i∗

=

T∑
t=1

[G⊤
t q̂t]i∗ +

T∑
t=1

[G⊤
t (qt − q̂t)]i∗

= V̂T,i∗ +

T∑
t=1

[G⊤
t ]i∗(qt − q̂t)

≤ V̂T,i∗ +

T∑
t=1

||[G⊤
t ]i∗ ||∞||qt − q̂t||1

≤ V̂T,i∗ + Eqδ

Where the last step holds under E q̂(δ) since ||[G⊤
t ]i∗ ||∞ ≤ 1.

We are now ready to prove the regret and violation bounds for the stochastic constraint setting.

Theorem 5. In the stochastic constraint setting, when Condition 2 holds, the cumulative regret
and constraint violation incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ ζEGδ + ζEqδ +RD

T (0) +

RP
T (q

∗) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability at least 1 − 5δ

Algorithm 2 provides RT ≤ Erδ + ζEGδ + ζEqδ +RD
T (0)+RP

T (q
∗), and VT ≤ 1

η ζ + E
q
δ . In both cases:

RT ≤ Õ
(
ζ
√
T
)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events EG
q◦(δ), E

G
q∗(δ), E

∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the events E∆(δ) and EG
q◦(δ) since Condition 2 holds (see proof of

Theorem 4).
By Lemma 15 we have:

VT ≤ V̂T,i∗ + Eqδ

≤ 1

η
λT+1,i∗ + Eqδ

≤ 1

η
||λT+1||1 + Eqδ

≤ 1

η
ζ + Eqδ
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Where the third Inequality holds for Lemma 14. By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (14)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
q∗ − λ1,TEGδ − λ1,TEqδ −RD

T (0)−RP
T (q

∗) (15)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (16)

≥
T∑

t=1

r⊤t q
∗ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗)

where Inequality (14) holds for Lemma 13, and Inequality (15) holds under Event EG
q∗(δ). We now

focus on the case in which the rewards are adversarial. We have:

T∑
t=1

r⊤t q
∗ = T · r⊤q∗ = T · OPTr,G

and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − ζEGδ − ζEqδ −RD
T (0)−RP

T (q
∗)

By union bound on EG
q◦(δ), E

G
q∗(δ) and E∆,q̂(δ), the result holds with probability at least 1− 4δ.

For the stochastic rewards case, we require also event Er
q∗(δ) to hold. Thus,

T∑
t=1

r⊤t q
∗ ≥

T∑
t=1

r⊤q∗ − Erδ = T · OPTr,G − E
r
δ

and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗)

By union bound on EG
q◦(δ), E

G
q∗(δ), E

∆,q̂(δ) and Er
q∗(δ), the result holds with probability at least

1− 5δ.

Observe that under E∆,q̂(δ) it holds:

RP
T (q

∗) ≤ Õ
(
(1 + λ1,T )

√
T
)
= Õ

(
ζ
√
T
)

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T)
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D.3.3 ANALYSIS WHEN CONDITION 2 DOES NOT HOLD

Lemma 16. If Condition 2 does not hold, then

V̂T,i ≤ (2 + 2L)
1

η
T

1
4 ∀T, i

holds under the event E∆(δ) in the adversarial constraint setting and under the events E∆(δ),
EG

q◦(δ), in the stochastic constraint setting.

Proof. Assume events E∆(δ), EG
q◦(δ) hold and suppose by absurd that V̂T,i = (2 + 2L+ ϵ) 1ηT

1
4 ,

with ϵ > 0, for some T and i.

We can lower bound the quantity
∑T

t=1 r
L
t
⊤
q̂t:

T∑
t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q
◦

︸ ︷︷ ︸
≥0

−
T∑

t=1

λ⊤
t G

⊤
t q

◦ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)

≥ −
T∑

t=1

λ⊤
t G

⊤
q◦︸ ︷︷ ︸

≥0

−λ1,TEGδ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)

≥ −mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t) (17)

Where Inequality (17) holds since ||λt||1 ≤ mV
1
4 by construction of the dual space. Observe

that, if we are in the Adversarial setting, then from the (stronger) definition of ρ and q◦ it holds
−
∑T

t=1 λ
⊤
t G

⊤
t q

◦ ≥ 0 and we obtain the tighter bound
T∑

t=1

rLt
⊤
q̂t ≥ −

T∑
t=1

rLt
⊤
(q◦ − q̂t)

The dual is no regret with respect to the vector λ̃, whose elements are 0 for j ̸= i and T
1
4 in position

j = i:
T∑

t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q̂t −
T∑

t=1

λ⊤
t G

⊤
t q̂t

≤
T∑

t=1

r⊤t q̂t −
T∑

t=1

λ̃⊤G⊤
t q̂t +RD

T (λ̃)

=

T∑
t=1

r⊤t q̂t − T
1
4

T∑
t=1

[G⊤
t q̂t]i +RD

T (λ̃)

≤ LT − T
1
4 V̂T,i +RD

T (λ̃)

Combining the bounds we have:

−mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t) ≤ LT − T

1
4 V̂T,i +RD

T (λ̃)

T
1
4 V̂T,i ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃)

√
T

η
(2 + 2L+ ϵ) ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃) (18)
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Observe that:

RD
T (λ̃) ≤

1

2

||λ̃||22
η

+
mL2

2
ηT =

√
T

2η
+

mL2

2

1

100m|X||A|
√
T ln

(
T 2

δ

)T ≤ L

√
T

η

Since |X| ≥ L.

For the primal it holds by Lemma 10:
T∑

t=1

rLt
⊤
(q◦ − q̂t) =

T∑
t=1

ℓt
⊤(q̂t − q◦)

≤ λ1,TU1C
√
T + λ1,TU2

√
T

C

≤ mT
1
4

√
T

(
U1C +

U2

C

)
= m

(
U1

U2

5
+ 5

)√
T T

1
4

= m

(
2L
|X||A|

5
+ 5

)√
T T

1
4

≤ 6mL|X||A|
√
T T

1
4

≤ L

η
T

1
4 ≤ L

√
T

η

And for the Azuma-Hoeffding term it holds:

mT
1
4 EGδ = mT

1
4 2L

√
2T ln

(
T 2

δ

)
≤ 1

η
T

1
4 =

√
T

η

Observe that LT ≤
√
T
η holds trivially.

Dividing both the terms in Equation (18) by
√
T
η , we obtain

2 + 2L+ ϵ ≤ 2 + 2L

which is absurd.

We are now ready to prove the Regret and Violation bounds when Assumption 2 does not hold:
Theorem 6. In the stochastic constraint setting, when Condition 2 does not hold, the cumulative
regret and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the
rewards are adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ mT

1
4 EGδ +

mT
1
4 Eqδ +RD

T (0) +RP
T (q

∗) and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . If the rewards are stochastic, then with

probability at least 1− 5δ Algorithm 2 provides RT ≤ Erδ +mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0)+RP
T (q

∗)

and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . In both cases, it holds:

RT ≤ Õ
(
T

3
4

)
, VT ≤ Õ

(
T

3
4

)
.

Proof. Assume events E∆(δ), E q̂(δ), EG
q∗(δ), E

G
q◦(δ) hold. We avoid the computations and restart

from (16), since the previous part of the proofs are identical:
T∑

t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)
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By the same reasoning as in the proof of Theorem 5, we obtain that if the rewards are adversarial then

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)

with probability at least 1− 4δ by union bound on E∆,q̂(δ), EG
q∗(δ) and EG

q◦(δ), while if the rewards
are stochastic, under the event Er

q∗(δ) we have that:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)

with probability at least 1− 5δ by union bound on E∆,q̂(δ), EG
q∗(δ), E

G
q◦(δ) and Er

q∗(δ).

Observe that:
RP

T (q
∗) ≤ Õ

(
T

3
4

)
and

RD
T (0) =

mL2

2
ηT ≤ Õ

(√
T
)

.

In order to bound the violation, we apply Lemma 16:

VT ≤ V̂T,i∗ + Eqδ ≤ (2 + 2L)
1

η
T

1
4 + Eqδ

D.4 ANALYSIS WITH ADVERSARIAL CONSTRAINTS

D.4.1 ANALYSIS WHEN CONDITION 2 HOLDS

Theorem 7. In the adversarial constraint setting, when Condition 2 holds, the cumulative regret
and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1 − 2δ Algorithm 2 provides RT ≤ 1

1+ρT · OPTr,G +

ζEqδ + RD
T (0) + RP

T (q̃) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability

at least 1 − 3δ Algorithm 2 provides RT ≤ 1
1+ρT · OPTr,G + Erδ + ζEqδ + RD

T (0) + RP
T (q̃) and

VT ≤ 1
η ζ + E

q
δ . In both cases, it holds:

T∑
t=1

r⊤t qt ≥ Ω

(
ρ

1 + ρ
T · OPTr,G

)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events E∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the event E∆(δ) since Condition 2 holds (see the proof of Theorem 4).
Following the same steps of the proof of Theorem 5, we obtain:

VT ≤
1

η
ζ + Eqδ

Let q̃ = ρ
1+ρq

∗ + 1
1+ρq

◦, observe that it holds for all t and for all i:

[G⊤
t q̃]i =

ρ

1 + ρ
[G⊤

t q
∗]i︸ ︷︷ ︸

≤1

+
1

1 + ρ
[G⊤

t q
◦]i︸ ︷︷ ︸

≤−ρ

≤ 0

r⊤t q̃ =
ρ

1 + ρ
r⊤t q

∗ +
1

1 + ρ
r⊤t q

◦ ≥ ρ

1 + ρ
r⊤t q

∗
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By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q̃ −
T∑

t=1

λ⊤
t G

⊤
t q̃ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i [G
⊤
t q̃]i︸ ︷︷ ︸
≤0

+

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − λ1,TEqδ −RD

T (0)−RP
T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − ζEqδ −RD

T (0)−RP
T (q̃)

where the third Inequality holds for Lemma 13.
By the same reasoning as in the proof of Theorem 5, we obtain that if the rewards are adversarial it
holds:

T∑
t=1

r⊤t qt ≥
ρ

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃)

= T · OPTr,G −
1

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃)

with probability at least 1− 2δ, since we are conditioning on E∆,q̂(δ).
If the rewards are stochastic, requiring also event Er

q∗(δ) to hold we obtain:

ρ

1 + ρ

T∑
t=1

r⊤t q
∗ ≥ ρ

1 + ρ

T∑
t=1

r⊤q∗ − ρ

1 + ρ
Erδ ≥

ρ

1 + ρ
T · OPTr,G − E

r
δ

And thus,

T∑
t=1

r⊤t qt ≥ T · OPTr,G −
1

1 + ρ
T · OPTr,G − E

r
δ − ζEqδ −RD

T (0)−RP
T (q̃)

with probability at least 1 − 3δ. Finally observe that, under Assumption 2 and event E∆,q̂(δ), it
holds:

RP
T (q̃) ≤ Õ

(
(1 + λ1,T )

√
T
)
≤ Õ

(
ζ
√
T
)

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T)

D.5 AZUMA-HOEFFDING BOUNDS AND PROOFS

In this subsection we prove that events Er
q∗(δ), E

G
q◦(δ), E

G
q∗(δ) each hold with probability at least

1− δ.

Lemma 3. If the rewards are stochastic, then, with probability at least 1− δ, it holds:∣∣∣∣∣
T∑

t=1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≤ Erδ ,
where Erδ := L√

2

√
T ln

(
2
δ

)
.
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Proof. Observe that:

max
t∈[t1..t2]

∣∣∣(rt − r)
⊤
q∗
∣∣∣ ≤ max

t∈[t1..t2]
∥rt − r∥∞︸ ︷︷ ︸

≤1

∥q∗∥1

≤ L

where the second Inequality holds since since q∗(x, a) ≥ 0. By the Azuma-Hoeffding inequality for
martingales we have that:

P

[∣∣∣∣∣
t2∑

t=t1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≥ L√
2

√
T ln

(
2

δ

)]
≤ δ.

We perform the same analysis for the constraints, obtaining:
Lemma 4. If the constraints are stochastic, given a sequence of occupancy measures (qt)Tt=1, then
with probability at least 1− δ, for all [t1..t2] ⊆ [1..T ], it holds:∣∣∣∣∣

t2∑
t=t1

λ⊤
t

(
G⊤

t −G
⊤)

qt

∣∣∣∣∣ ≤ λt1,t2EGt1,t2,δ,

where EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. Observe that:

max
t∈[t1..t2]

∣∣∣λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣ ≤ max
t∈[t1..t2]

∥λt∥1
∥∥∥G⊤

t −G
⊤
∥∥∥
∞︸ ︷︷ ︸

≤2

∥qt∥1

≤ max
t∈[t1..t2]

2||λt||1L

= 2λt1,t2L

where the second Inequality holds since qt(x, a) ≥ 0 and λt,i ≥ 0. By the Azuma-Hoeffding
inequality for martingales we have that:

P

[∣∣∣∣∣
t2∑

t=t1

λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣∣∣ ≥ 2λt1,t2L

√
2(t2 − t1 + 1) ln

(
2

δ

T 2

2

)]
≤ 2δ/T 2.

A union bound over all the t1, t2 such that [t1..t2] ⊆ [1..T ] concludes the proof.
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