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Abstract. This paper addresses the growing application of data-driven
approaches within the Private Equity (PE) industry, particularly in
sourcing investment targets (i.e., companies) for Venture Capital (VC)
and Growth Capital (GC). We present a comprehensive review of
the relevant approaches and propose a novel approach leveraging a
Transformer-based Multivariate Time Series Classifier (TMTSC) for pre-
dicting the success likelihood of any candidate company. The objective
of our research is to optimize sourcing performance for VC and GC
investments by formally defining the sourcing problem as a multivari-
ate time series classification task. We consecutively introduce the key
components of our implementation which collectively contribute to the
successful application of TMTSC in VC/GC sourcing: input features,
model architecture, optimization target, and investor-centric data pro-
cessing. Our extensive experiments on two real-world investment tasks,
benchmarked towards three popular baselines, demonstrate the effective-
ness of our approach in improving decision making within the VC and
GC industry.

Keywords: Company success prediction · Venture capital · Growth
equity · Private equity · Investment · Multivariate time series

1 Introduction

Private Equity (PE) is a rapidly growing segment of the investment industry
that manages funds on behalf of institutional and accredited investors. PE firms
acquire and manage companies with the goal of achieving high, risk-adjusted
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returns through subsequent sales [8]. These acquisitions can involve majority
shares of private or public companies, or investments in buyouts as part of
a consortium. Common PE investment strategies, as identified by [6], include
Venture Capital (VC), Growth Capital (GC), and Leveraged Buyouts (LBO).
These strategies offer varying degrees of risk and return potential, depending
on the investment objectives and time horizon of the PE fund. The ability to
accurately assess the likelihood of company success is crucial for PE firms in
identifying attractive investment targets. Traditional evaluation of company per-
formance often relies on manual analysis of financial statements or proprietary
information, which may not be sufficient for capturing the dynamic nature of
companies, especially those in early-stage or high-growth industries. This eval-
uation approach is often time consuming and as a result not every potential
company can be properly evaluated. Therefore, there is a growing interest in
leveraging data-driven methods to (1) debias decisions, so that the individual
investment decision made for a particular deal is expected to drive lower risk
and higher ROI (return on investment); and (2) enable automation, so that
more companies can be evaluated without the need for additional resources [9].

For LBO in the PE industry, data-driven approaches may be less relevant due
to the combination of two reasons: (1) LBO professionals often track and main-
tain in-depth knowledge of late-stage companies1 in a few focus sectors, resulting
in unique knowledge and understanding that can hardly be entirely replaced by
public (or even proprietary) data; (2) the number of LBO investments is usually
less than VC and GC leading to a lower sourcing frequency. VC investments
often involve early-stage companies with prone-to-change business models and
limited revenue, making data-driven approaches valuable for evaluating their
growth potential. Additionally, VC investors typically manage larger portfolios
with higher investment frequency, necessitating the use of data-driven models for
efficient decision-making in identifying and evaluating investment opportunities.
In practice, historical financial data (e.g., revenue) of startup2 or scaleup3 com-
panies are commonly perceived as a good approximation of their true valuations
[10]. The financial information of GC targets (scaleups) is much more accessible
than that of VC targets (startups). Therefore, GC practitioners often directly
use financial metrics to calculate the company’s valuation for sourcing, which
is why the adoption of big data in GC sourcing may not be as intensive as in
VCs. However, data-driven approaches may still provide additional insights in
assessing the growth potential and financial performance of the GC targets.

1 Generally, a company is considered late-stage when it has proven that its concept
and business model work, and it is out-earning its competitors.

2 A startup is a dynamic, flexible, high risk, and recently established company that
typically represents a reproducible and scalable business model. It provides innova-
tive products or services, and has limited funds and resources [5,9,35,37].

3 A startup moves into scaleup territory after proving the scalability and viability of
its business model and experiencing an accelerated cycle of revenue growth. This
transition is usually accompanied by the fundraising of outside capital [11].
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Our contributions significantly advance data-driven strategies for sourcing
investment opportunities in the VC and GC sectors by predicting the potential
success of companies. These advancements include:

– We formally define the sourcing problem for VC/GC investments as a multi-
variate time series classification task and propose to employ a Transformer-
based Multivariate Time Series Classifier (TMTSC) to address it.

– We introduce key components of our implementation, including input fea-
tures, model architecture and optimization target, which all contribute to the
successful application of TMTSC in VC/GC sourcing.

– We carry out extensive experiments, comparing TMTSC with widely adopted
baselines on two real-world tasks, and demonstrate the effectiveness of our
approach using a diverse set of evaluation metrics and strategies.

2 Related Work

Over the past two decades, data-driven approaches have been dominating
research on deal sourcing for VC, i.e. identifying startups that eventually turn
into unicorns4. In recent years, however, research has begun to intensify on
GC deal sourcing, transforming the way scaleup companies are identified and
assessed. Based on our extensive literature survey, data-driven methods for
VC/GC deal sourcing can be broadly categorized into Statistical and Analyti-
cal (S&A) methods, conventional Machine Learning (ML) methods, and Deep
Learning (DL) methods. S&A work [22,27,32,35] typically starts with defining
some hypotheses followed by testing them using statistical tools. However, devel-
oping effective hypotheses for S&A approaches is a challenging task that requires
simplicity, conciseness, precision, testability, and most importantly, a grounding
in existing literature or established theory, as emphasized in [41]. It is worth
mentioning that while DL methods technically fall under the broader umbrella
of ML, we discuss DL work separately in recognition of its increasing popularity
and relevance to our research.

2.1 Conventional Machine Learning Methods

Over the last few years, there has been a growing interest in leveraging ML algo-
rithms for hypothesis mining from data, as an alternative to manually defining
hypotheses upfront. Hypothesis mining involves conducting explainability anal-
ysis on trained ML models to summarize, rather than explicitly define, hypothe-
ses [24]. For instance, by training an ML model on a labeled dataset containing
features of various companies, and quantifying how changes in these features
impact the prediction target (i.e. success probability), one can distill hypotheses
that describe the relationships between the relevant features and the prediction

4 Unicorn and near-unicorn startups are private, venture-backed firms with a valuation
of at least $500 million at some point [14].
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target. Compared to S&A, hypothesis mining is a much more structured proce-
dure that trains an ML model using the entire dataset at hand. In general, ML
based approaches, as demonstrated in previous works such as [3,7,27,29,43], typ-
ically require practitioners to define the input data x and annotation y (labeling
“good” or “bad” investment according to some criteria) before training a model
f(·) that maps x to y, i.e., y = f(x). With the rapid growth of dataset size and
diversity (origin and modality), conventional ML models5 sometimes struggle to
fit the large and unstructured6 data due to lack of capacity and expressivity7.

2.2 Deep Learning Methods

Most recently, DL algorithms have attracted an increasing number of researchers
hunting for good VC/GC investment targets. DL is implemented (entirely or
partly) with ANNs (artificial neural networks) that utilize at least two hidden
layers of neurons. The capacity of DL can be controlled by the number of neurons
(width) and layers (depth) [23]. Deep ANNs are exponentially expressive with
respect to their depth [34]. While structured data is commonly used in many
DL methods, such as [2,4,18], unstructured data is increasingly recognized as
an important complement to structured data in recent studies [12,20,26,31,38],
or even as a standalone input to the model [39,45]. Unstructured data often
contains large-scale and intact-yet-noisy signals, which may result in superior
performance when a proper DL approach is applied [19].

The main types of unstructured data seen include text [12], graph [1],
image [13], video [39], audio [36] and time series [12]. Among these, fine-grained
multivariate time series, which encompass various aspects of a company over
time, hold particular significance for deal sourcing in the VC/GC domain. Some
examples of these aspects include financial performance, team dynamics, funding
rounds, market conditions, and other key indicators. Especially for GC, financial
time series become highly relevant for evaluating scaleup companies whose peri-
odical financial data points are usually available to the potential investor [10].
Due to the proprietary, costly, and scarce nature of multivariate time series com-
pany data, there is a limited number of DL based approaches in the literature
that utilize time series as model input. To the best of our effort, we identified
only three such studies [12,26,38], highlighting the challenges associated with
utilizing multivariate time series data to source investment targets for Venture
and Growth Capital. Inspired by [44], we frame the problem as a multivariate
time series classification task and propose a solution that leverages a Trans-
former model. Our approach also incorporates carefully designed input features,
optimization target, and investor-centric data processing [9].
5 The frequently applied conventional ML models include many such as decision
tree [3], random forest [29], logistic regression [27], and gradient boosting [43].

6 Unstructured data, such as image and timeseries, is a collection of many varied types
that maintains their native form, while structured data is aggregated from original
(raw) data and is usually stored in a tabular form.

7 Expressivity describes the classes of functions a model can approximate, and capacity
measures how much “brute force” the model has to fit the data.
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Fig. 1. An illustration of multivariate time series dataset (N samples) to train models
for VC and GC sourcing.

3 The Approach

Our approach tackles the problem of identifying good investment targets for VC
and GC by framing it as a multivariate time series classification task. Specifi-
cally, each potential investment target (i.e. candidate company) is represented by
a multivariate time series X ∈ RT×K , as shown in Fig. 1. X consists of T obser-
vations, each containing K variables that describe different aspects (e.g., fund-
ing, revenue, etc.) of the corresponding company. Formally, each sample X is
a sequence of T feature vectors: X = [x1,x2, . . . ,xt, . . . ,xT ], where xt ∈ RK .
At each time step t, we collect K numerical or categorical features about the
company to form the vector xt, which captures a multi-view snapshot of the
company at that time point. The last vector xT represents the most recent state
of the company. Depending on the data available, the time interval between two
adjacent time points, t and t+1, can be set to a month, a quarter, or any other
length of choice. By adopting this representation, we can model a multi-view
evolution of each company over time and make informed predictions about their
future success.

We collect a set of N samples, each corresponding to a company, denoted by
X1,X2, . . . ,Xn, . . . ,XN . For each sample Xn, we have a binary ground truth
label yn ∈ {0, 1} indicating a “bad” or “good” investment target according to
some criteria. Details of how we define and collect these labels are explained
in Sect. 3.3. We construct a dataset U from these samples and labels as U =
{(X1, y1), (X2, y2), . . . , (XN , yN )}, where n ∈ Z ∩ [1, N ]. Our objective then is
to train a model on U to accurately predict the ground truth labels
yn using Xn. We use ŷn ∈ [0, 1] to denote the predicted probability of future
success of the company represented by Xn, in order to distinguish it from the
ground truth label yn. For the sake of brevity, we use general terms X, y, and ŷ
to denote Xn, yn, and ŷn, respectively.

3.1 Time Series Features

We define the input time series featuresX by constructing 16 time series that fall
into 6 feature categories, as summarized in [9]. These categories are 1 funding,
2 founder/owner, 3 team, 4 investor, 5 web, and 6 context, and
below we will introduce the selected features under each category. Each time
series feature contains precisely T values corresponding to the T time steps. For
a concrete example of X, see Fig. 1. All time series features are numerical, with
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the exception of the first one (round type), which is categorical. Each time step
corresponds to a calendar month, and the steps are aligned monthly.
1 Funding category contains statistics of historical funding received by the
company, showing recognition from investors.
– round type indicates the latest funding round type that a company has

received up to time t, such as Seed or Series A, providing insights into its
funding stage and maturity. It is a categorical feature with 60 unique values.

– total funding is the cumulative amount of funding in USD that the company
has received up to time t, indicating the amount of capital it has been able
to attract. The value range is from 1 to approximately 2 × 1011.

– valuation: the estimated USD valuation of the company immediately after
its latest funding round and is included to provide insight into a company’s
overall financial value. It is a numerical feature with values ranging from 1 to
about 1 × 1012.

2 Founder/Owner: this category captures attributes of the founding team,
which are critical to a company’s short-term success and long-term survival [21].
– n founder shows the number of a company’s founders still with the company

at time t. The value ranges from 0 to 38.

3 Team: this category captures the statistics of the employees of the company.
– n employee: the number of employees at time t, implying the company’s

growth trajectory. The feature has a value range of 1 to 113,757.

4 Investor category captures the statistics of investors who have funded the
company, indicating its early attractiveness.

– n investor represents the total number of unique investors who have provided
funding to the company up to time t. This feature provides insights into the
diversification of the company’s investment sources. The value ranges from 1
to 240.

– growth investor rate is the ratio of unique GC investors8 among the com-
pany’s unique investors up to time t. This feature indicates the investors’
beliefs in the company’s future growth potential.

– average cagr is the average Compound Annual Growth Rate (CAGR)9 of
all exited deals made by the company’s investors up to time t. This feature
is meant to demonstrate the past investment performance of the involved
investors.

– 2x cagr rate is calculated as the ratio of investment deals up to time t with
a CAGR ≥ 2 among all exited deals made by the company’s investors. This
feature reflects the proportion of investors with a history of impressive returns
who are currently invested in the company.

8 GC investors are defined as those who have participated in a funding round of 50
million USD or valuation above 200 million USD.

9 CAGR = (EV/SV)1/Y−1 is calculated for each deal the investor has exited, where
SV and EV stand for the starting and exiting value of the investment, respectively;
Y is the number of holding years (from investment till divestment) of the invested
asset.
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5 Web: this category covers any feature extracted from web pages that are
related to the company in focus.

– cu popularity describes the company’s domain name popularity rank at time
t. This rank is determined based on the domain’s network traffic as measured
by Cisco Umbrella (CU)10.

– sw global rank describes at time t the monthly unique visitors and pageviews
of the company website(s). The higher this sum, the higher the site’s rank.
This feature is obtained from SimilarWeb11.

– n desktop visitor and n mobile visitor are two features indicating the num-
ber of unique visitors to the company’s website utilizing a desktop and mobile
device, respectively. Both are sourced from SimilarWeb.

– n news counts the number of times a company is mentioned across approxi-
mately 3,700 news websites to a time point t, reflecting its media visibility
and recognition. The value range of the dataset is 1 to 389.

6 Context: this category captures extrinsic factors12 that may be (but are not
limited to) competition, regional, environmental, cultural or economical based.

– n regional seed round represents the number of seed funding rounds in the
company’s region13 between adjacent time points t−1 and t. This feature offers
context on the company’s performance relative to regional competitors and
financial conditions, highlighting potential company success even if regional
investments are low.

– n regional series ab: same as the previous one except that it is counting the
Series A and B rounds instead.

3.2 TMTSC Architecture

As illustrated in Fig. 2, TMTSC learns to predict ŷn using time series input X.
At the t-th time step, each input feature vector xt consists of a numerical part
(often normalized), denoted as ut, and a categorical part, denoted as vt. Thus,
xt = [ut;vt], where “;” represents a vector concatenation operation. To convert
the categorical features vt into dense embeddings, we utilize embedding layers,
which can be collectively represented by a learnable function E . The embedded
categorical features are then given by v′

t = E(vt). As a result, the K-dimensional
vector xt is transformed to a new numerical vector x′

t that has K ′ (K ′ > K)
dimensions:

x′
t = [ut; E(vt)] ∈ RK′

and xt = [ut;vt] ∈ RK . (1)

Then, x′
t is linearly projected onto a D-dimensional vector space, where D

is the dimension of the Transformer model sequence element representations:
10 http://s3-us-west-1.amazonaws.com/umbrella-static/index.html.
11 https://support.similarweb.com/hc/en-us/articles/213452305-Rank.
12 While intrinsic features act from within a company, extrinsic ones wield their influ-

ence from the outside. The company may impact the former, yet not the latter.
13 A region is a collection of countries such as Great Britain, DACH, France Benelux,

Southern Europe, Nordics, South Asia, South East Asia, and so on.

http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://support.similarweb.com/hc/en-us/articles/213452305-Rank
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ht = Wx′
t + b, (2)

where W ∈ RD×K′
and b ∈ RD are learnable parameters and ht ∈ RD, t ∈ Z ∩

[1, T ] are the input vectors to the Transformer model. Although Eqs. (1) and (2)
show the operation for a single time step for clarity, all raw input vectors xt, t ∈
Z∩[1, T ] are embedded in the same way concurrently. It is worth mentioning that
the above formulation can also accommodate univariate time series (i.e., K =
1), though in the scope of this work, we will only evaluate the approach on
multivariate time series.

It is important to note that the Transformer is a feed-forward architec-
ture that does not inherently account for the order of input elements. To
address the sequential nature of time series data, we incorporate positional
encodings, denoted as P = [p1,p2, . . . ,pT ] ∈ RT×D, to the input vectors
H = [h1,h2, . . . ,hT ]∈RT×D, resulting in the final input H′:

H′ = H+P = [h′
1,h

′
2, . . . ,h

′
T ] ∈ RT×D, (3)

where h′
t ∈ RD = ht + pt. Closely following the approach in [44], we employ

fully learnable positional encodings, as they have been reported to yield better
performance compared to deterministic sinusoidal encodings [40] for multivariate
time series classification tasks. We also utilize batch normalization (rather than
layer normalization), as it is considered effective in mitigating the impact of
outlier values in time series data, an issue that does not arise for textual inputs.

Fig. 2. TMTSC architecture: ut and vt are
numerical and categorical part respectively.

The Transformer-based model
architecture depicted in Fig. 2 gener-
ates T output vectors zt correspond-
ing to the T input time steps. These
output vectors are concatenated to
form a single output matrix Z =
[z1; z2; . . . ; zT ], which serves as the
input for a linear layer. As shown in
Eq. (4), the linear layer is param-
eterized by Wout ∈ RC×(T ·D) and
bout ∈ RC , where C denotes the
number of classes to be predicted.

ŷ = Softmax(WoutZ+ bout). (4)

3.3 Optimization Target

In the absence of a universally
agreed-upon definition of “true suc-
cess” of startups and scaleups, most
existing definitions tend to focus on
“growth”, which can be measured
from various perspectives, such as
funding, revenue, employee count,
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Table 1. Specification of tasks/datasets: split with an investor-centric strategy [9].

Dataset#feat.#sample#time step#class#train#val. #test

VC 16 86,886 24 2 63,562 11,178 12,146

GC 16 21,163 24 2 16,275 – 4,888

and valuation, among others [9]. As a well-established investment firm, we have
access to a large volume of expert evaluations (akin to [4,28]) that represent
quantified assessments from human experts. These evaluations encompass mul-
tiple categories/terms, such as “inbound”, “reviewing”, “reach-out”, “follow”,
“negotiating”, and “out-of-scope”14, which are updated periodically by invest-
ment professionals for companies in the context of VC and GC. To further sim-
plify the prediction task, we assign each evaluation term to either a good (“1”)
or bad (“0”) binary bucket denoted by yn in Fig. 1, implying C = 2 in Eq. (5).
In this way, each company is annotated with two ground-truth binary labels –
one for VC and the other for GC; and the loss function L is

L = − 1
N

N∑

n=1

[yn log(ŷn) + (1 − yn) log(1 − ŷn)] . (5)

4 Experiments on Real-World Investment Tasks

Following the details introduced in the previous section, we prepare two real-
world proprietary datasets: “VC” for the VC context and “GC” for the GC
context, performing data augmentation to obtain monthly time steps. To elimi-
nate overly sparse time series, we discard the samples whose time series features
are all shorter than six months. Missing valuation values are approximated with
the cumulative funding received up to that point. Missing total funding values
are filled by taking the value of the previous month (if available) or 0 other-
wise. For the time steps where the values are still missing, we fill them with
“−1”. Finally, we pad all time series to the same length of 24 months. As for
scaling, we empirically apply log-transform to 13 numerical features (excluding
cu popularity and n employee). The specification is presented in Table 1. It is
worth noting that we also experimented with two public TSC (time series classi-
fication) benchmark datasets15: Ethanol [30] and PEMS-SF [17]. Since they do
not directly relate to the investment business domain, we chose to leave them
outside the scope of this paper. For in-depth information about experiments on
public datasets, we recommend reading [25].

14 The complete evaluation framework is withheld as it is proprietary.
15 The overall performance can be found on Motherbrain’s blog post: https://motherbrain.

ai/applying-transformers-to-score-potentially-successful-startups-7893284efb01.

https://motherbrain.ai/applying-transformers-to-score-potentially-successful-startups-7893284efb01
https://motherbrain.ai/applying-transformers-to-score-potentially-successful-startups-7893284efb01
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Fig. 3. U-GRU: each univariate time series is modeled by a BiGRU block.

Fig. 4. M-GRU: all time series features are modeled by one single BiGRU block.

Fig. 5. TE architecture with 4 Transformer encoder blocks.

4.1 Baselines and Hyper-parameters

GRU (Gated Recurrent Unit) [16] is a highly relevant baseline for comparison
due to its ability to model sequential dependencies and capture long-term depen-
dencies in time series data. We experiment both U-GRU (Univariate GRU) and
M-GRU (Multivariate GRU), whose architectures are illustrated in Figs. 3 and 4
respectively. We adopt the implementation of BiGRU (Bidirectional GRU) [15],
masking, embedding, dropout, and dense layers from Keras16. In both archi-
tectures, the masking layer is added to inform the model to ignore any values
marked as missing in its computation. As a close relative and foundation of
TMTSC, the Transformer Encoder (TE) [40] is also selected as a baseline. As
shown in Fig. 5, we adopt the same layers as the original implementation [40]. For
comparability, the input features are ingested, embedded and concatenated in
the same way as M-GRU as shown in Fig. 4. The hyper-parameters are selected
based on the highest AUC-ROC (“Area Under the Curve” of the Receiver Oper-
ating Characteristic curve) score on the validation split of the dataset. Refer to
[25] for the searched and selected hyper-parameter values.

16 Keras Layer documentation: https://keras.io/api/layers.

https://keras.io/api/layers
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4.2 Overall Performance: A Precision-Centric Comparison

When interpreting the results in Table 2, the costs of different types of prediction
errors must be considered. The outcome from false negatives (failing to identify a
successful company) is that investors are simply not made aware of a successful
company and therefore no action is taken. In that regard, there is an upside
loss in terms of lost profit but no detriment in terms of time or money invested.
False positives (incorrectly predicting a company will be successful), on the other
hand, can lead to wasted time spent on due diligence, or, in the worst case, an
investment that loses money. For that reason, it is more important to evaluate
a model with respect to its precision, or the number of its positive predictions
that are actually positive. Observing the precision scores in Table 2, TMTSC
outperforms all other methods, achieving scores of 0.86 and 0.83 for VC and
GC scenario, respectively. Additionally, Fig. 6 provides a more balanced and
comprehensive view using AUC-ROC metric. TMTSC clearly outperforms on the
VC task, achieving an average score of 0.92, 12% better than M-GRU, the next

Table 2. Overall performance comparison.

Task Metric U-GRU M-GRU TE TMTSC

VC Accuracy ±
STDEV

0.548 ±
0.013

0.731 ±
0.026

0.655 ±
0.081

0.863 ±
0.015

Precision ±
STDEV

0.704 ±
0.015

0.740 ±
0.044

0.699 ±
0.062

0.864 ±
0.016

AUC-ROC

± STDEV

0.628 ±
0.015

0.819 ±
0.020

0.780 ±
0.081

0.924 ±
0.009

GC Accuracy ±
STDEV

0.934 ±
0.011

0.924 ±
0.027

0.933 ±
0.021

0.956 ±
0.004

Precision ±
STDEV

0.701 ±
0.058

0.794 ±
0.101

0.765 ±
0.108

0.831 ±
0.026

AUC-ROC

± STDEV

0.977

± 0.008

0.939 ±
0.002

0.971 ±
0.002

0.971 ±
0.001

Table 3. The comparison of train-
ing efficiency. Underlined values
indicate shortest time per step for
each dataset.

Task Method Sec./Step Relative Time

VC U-GRU 2.000 83.3 ×
M-GRU 0.024 1.0 ×
TE 0.057 2.4 ×
TMTSC 0.100 4.2 ×

GC U-GRU 1.232 46.6 ×
M-GRU 0.026 1.0 ×
TE 0.056 2.1 ×
TMTSC 0.101 3.8 ×

(a) VC dataset (b) GC dataset

Fig. 6. ROC (Receiver Operating Characteristic) curves.
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(a) VC dataset (b) GC dataset

Fig. 7. Portfolio simulation: success rate vs. portfolio size.

best method. All methods perform extremely well on GC task, and TMTSC’s
AUC-ROC score of 0.97 is less than 1% lower than the winner U-GRU.

4.3 Training Stability and Efficiency

The standard deviation values (STDEV) in Table 2 indicate that the TMTSC
training is relatively stable in both the VC and GC datasets, as the values are
relatively low compared to the other baselines. To measure training efficiency, we
record per-step training time for each dataset and method using the same batch
size (=512) and hardware configurations. The results are presented in Table 3,
where the “Relative Time” column shows how the time consumption for the
corresponding method relates to the fastest method (i.e., “1.0 ×”). Take the VC
task for example, “2.4 ×” for TE would therefore mean TE took over twice as
long as M-GRU. It is evident that M-GRU requires the least amount of training
time, largely due to its design, which favors simplicity. TMTSC and TE take
only a small amount of extra time to train, despite their increased complexity.
This is likely due to their multi-head architecture, allowing parallelization of
self-attention computations.

4.4 Portfolio Simulation

To further evaluate the model in the context of the real-world investment sce-
nario, portfolio simulations are executed and visualized in Fig. 7. Concretely,
we assemble a set by isolating the companies confirmed to be potentially good
investment targets in the VC or GC datasets (i.e., that are positively labeled).
From this set, we randomly sample i companies to simulate forming VC/GC
investment portfolios of size i and calculate the percentage of companies each
model predicts to be successful within the sample. To address the stochasticity
of this process, we perform each simulation 100 times. Different portfolio sizes
(i.e., values of i) are simulated; and for each i (X-axis), the mean and standard
deviations are plotted (Y-axis), resulting in a colored line with a shaded area in
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Fig. 7. In VC and GC contexts, we can see that (1) TMTSC performs the best
among all methods, (2) performance becomes less variable as simulated portfolio
size increases, and (3) the models evaluated performed more variably on the VC
dataset than the GC dataset.

To roughly compare these methods against real-world VC and GC fund per-
formance, Fig. 7(a), includes the portfolio size and performance of five VC funds
[42], showing a performance largely on par with M-GRU and inferior to TMTSC
and TE. For the GC simulation, a horizontal line representing the real-world GC
success rate of 86.3% [33] is included in Fig. 7(a). Here, the real-world GC suc-
cess rate is outperformed by M-GRU and TMTSC. It is important to note that
investment firms are much more constrained than the simulation: they cannot
invest in every attractive company they encounter due to factors like founders’
preference, portfolio conflict, investment focus, and available funds.

5 Conclusion and Future Work

In this work, we propose using a Transformer-based Multivariate Time Series
Classifier (TMTSC) to facilitate sourcing investment targets for Venture Capi-
tal (VC) and Growth Capital (GC). Specifically, TMTSC utilizes multivariate
time series as input to predict the probability that any candidate company will
succeed in the context of a VC or GC fund. We formally define the sourcing
problem as a multivariate time series classification task, and introduce the key
components of our implementation, including input features, model architecture,
and optimization target. Our extensive experiments on two proprietary datasets
(collected from real-world VC and GC contexts) demonstrate the effectiveness,
stability, and efficiency of our approach compared with three popular baselines.
To further evaluate the model in the context of the real-world investment sce-
nario, portfolio simulations are executed, showing TMTSC’s high success rate
in both VC and GC sourcing. The main future work includes (1) incorporat-
ing global features along with time series input, (2) and learning generic and
condensed representations for multivariate time series for varies downstream
prediction tasks.
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