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Abstract

Expectation propagation (EP) is a family of algorithms for performing approxi-
mate inference in probabilistic models. The updates of EP involve the evaluation
of moments—expectations of certain functions—which can be estimated from
Monte Carlo (MC) samples. However, the updates are not robust to MC noise
when performed naively, and various prior works have attempted to address this
issue in different ways. In this work, we provide a novel perspective on the
moment-matching updates of EP; namely, that they perform natural-gradient-based
optimisation of a variational objective. We use this insight to motivate two new
EP variants, with updates that are particularly well-suited to MC estimation. They
remain stable and are most sample-efficient when estimated with just a single sam-
ple. These new variants combine the benefits of their predecessors and address key
weaknesses. In particular, they are easier to tune, offer an improved speed-accuracy
trade-off, and do not rely on the use of debiasing estimators. We demonstrate their
efficacy on a variety of probabilistic inference tasks.

1 Introduction

Expectation propagation (EP) [37, 40] is a family of algorithms that is primarily used for performing
approximate inference in probabilistic models [9, 10, 12, 13, 16, 18, 20, 19, 21, 22, 23, 24, 28,
29, 30, 32, 35, 36, 38, 39, 41, 44, 47, 48, 50, 52, 53], although it can be used more generally for
approximating certain kinds of functions and their integrals [14].

EP involves the evaluation of moments—expectations of certain functions—under distributions that
are derived from the model of interest. EP is usually applied to models for which these moments
have convenient closed-form expressions or can be accurately estimated using deterministic methods.
Moments can also be estimated using Monte Carlo (MC) samples, significantly expanding the set of
models EP can be applied to. However, the updates of EP are not robust to MC noise when performed
naively, and various prior works have attempted to address this issue in different ways [17, 48, 52].

In this work we provide a novel perspective on the moment-matching updates of EP; namely, that
they perform natural-gradient-based optimization of a variational objective (Section 3). We use this
insight to motivate two new EP variants, EP-η (Section 3.2) and EP-µ (Section 3.3), with updates that
are particularly well-suited to MC estimation, remaining stable and being most sample-efficient when
estimated with just a single sample. These new variants combine the benefits of their predecessors
and address key weaknesses. In particular, they are easier to tune, offer an improved speed-accuracy
trade-off, and do not rely on the use of debiasing estimators. We demonstrate their efficacy on a
variety of probabilistic inference tasks (Section 4).

2 Background

In this section, we first introduce the problem setting. We then give an overview of EP, followed by a
discussion of issues related to sampled estimation of EP updates.
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Let F be the tractable, minimal exponential family of distributions (see Appendix A), defined by the
statistic function s(.) with respect to base measure ν(.). Let Ω,M, A(.) denote the natural domain,
mean domain and log-partition function of F , respectively, and A∗(.) the convex dual of A(.).

Let p0 be the member of F with natural parameter η0, so that p0(z) = exp(η⊤0 s(z)−A(η0))
1, and

assume that a distribution of interest p∗, the target distribution, has a density of the form

p∗(z) ∝ p0(z)
∏m

i=1
exp

(
ℓi(z)

)
. (1)

In Bayesian inference settings, p∗ would be the posterior distribution over parameters z given some
observed data D, where p0 may correspond to a prior distribution, and {ℓi(z)}i to log-likelihood
terms given some partition of D.2 However, we consider the more general setting in which the target
distribution is simply a product of factors. Note that we can assume form (1) without loss of generality
if we allow p0 to be improper. The inference problem typically amounts to computing quantities
derived from the normalised density p∗(z), such as samples, summary statistics, or expectations
of given functions. In some special cases, these quantities can be computed exactly, but this is not
feasible in general, and approximations must be employed.

2.1 Expectation propagation (EP)

Given a target distribution density of form (1), EP aims to find an approximation p ∈ F such that

p(z) ∝ p0(z)
∏

i
exp

(
λ⊤
i s(z)

)
≈ p∗(z). (2)

By assumption F is tractable, and so provided that (η0 +
∑

i λi) ∈ Ω, p is a tractable member
of F . Each factor exp(λ⊤

i s(z)) is known as a site potential, and can be roughly interpreted as a
F-approximation to the i-th target factor, exp(ℓi(z)).3 λi is known as the i-th site parameter.

Variational problem EP, and several of its variants [17, 24, 37], can be viewed as solving a
variational problem which we now introduce following the exposition of Hasenclever et al. [17].

Let the i-th locally extended family, denoted Fi, be the exponential family defined by the statistic
function si(z) = (s(z), ℓi(z)) with respect to base measure ν(.). Let Ωi,Mi and Ai(.) denote the
natural domain, mean domain, and log partition function of Fi, respectively. Note that a member of
Fi roughly corresponds to a distribution whose density is the (normalised) product of a member of F
with the i-th target factor raised to a power. Unlike F , we do not assume Fi is minimal.

Fixed points of EP correspond to the solutions of the saddle-point problem

max
θ∈Ω

min
{λi}i

L(θ, λ1, . . . , λm), where

L(θ, λ1, . . . , λm) = A
(
η0 +

∑
i
λi

)
+
∑

i
βi

[
Ai((θ − β−1

i λi, β
−1
i ))−A(θ)

]
. (3)

At a solution to (3), the EP approximation is given by (2). The hyperparameters {βi}i control the
characteristics of the approximation, and correspond to the power parameters of power EP.

EP updates EP [37, 40], power EP [34] and double-loop EP [24], can all be viewed as alternating
between some number (≥ 1) of inner updates to decrease L with respect to {λi}i, with an outer
update to increase L with respect to θ [17, 25]. EP is not typically presented in this way, but by doing
so we will be able to present a unified algorithm that succinctly illustrates the relationship between
the different variants. We show equivalence with the conventional presentation of EP in Appendix B.
The inner and outer updates are given by

Inner update: λi ← λi − α
(
η0 +

∑
j
λj −∇A∗(Epi(z)[s(z)])

)
, (4)

Outer update: θ ← η0 +
∑

j
λj , (5)

1We use e.g. p to refer to a distribution, and p(.) or p(z) for its density, throughout.
2Going forward, we assume i and j to be taken from the index set {1, . . . ,m} unless otherwise specified.
3This interpretation is not precise, since it is not necessarily the case that λi ∈ Ω.
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where pi ∈ Fi denotes the i-th tilted distribution, with density

pi(z) ∝ exp
(
(θ − β−1

i λi)
⊤s(z) + β−1

i ℓi(z)
)
. (6)

The hyperparameter α controls the level of damping, which is used to aid convergence. An undamped
inner update (with α = 1) can be seen as performing moment matching between p and pi. The
expectation in (4) is most often computed analytically, or estimated using deterministic numerical
methods. It can also be estimated by sampling from pi, however, we will later show that the resulting
stochasticity can lead to a biased and unstable procedure. The inner updates can be performed either
serially or in parallel (over i). In this work we assume they are applied in parallel, but the ideas
presented can easily be extended to the serial case. Heskes and Zoeter [25] showed that (4) follows a
decrease direction in L with respect to λi, and so is guaranteed to decrease L when α is small enough.
See Appendix C for a derivation of the inner update. When {λi}i are at a partial minimum of L (for
fixed θ), the outer update performs an exact partial maximisation of the primal form of the variational
problem – see Hasenclever et al. [17] for details. All of the EP variants considered in this paper differ
only in their handling of the inner minimisation, and this is our focus.

Unified EP algorithm The double-loop EP algorithm of Heskes and Zoeter [24] repeats the inner
update to convergence before performing each outer update, which ensures convergence of the overall
procedure. The usual presentation of EP combines (4) and (5) into a single update in λi (see Appendix
B), however, Jylänki et al. [30] observed that it can also be viewed as performing double-loop EP
with just a single inner update per outer update (which is not guaranteed to converge in general). By
taking this view, we are we are able to present EP, power EP, and their double-loop counterparts as a
single algorithm, presented in Algorithm 1. We do so primarily to illustrate how these variants are
related to one another, and to the new variants of Section 3.

Algorithm 1 EP (βi=1,ninner=1), power EP (βi ̸=1,ninner=1), and their double-loop variants (ninner>1)

Require: F , η0, {βi}i, {ℓi(z)}i, {λi}i, ninner, α
while not converged do

θ ← η0 +
∑

jλj

for 1 to ninner do
for i = 1 to m in parallel do

Stochastic estimation of this expectation
can lead to biased and unstable updates.

λi ← λi − α(η0 +
∑

jλj −∇A∗(Epi(z)[s(z)]))
return {λi}i

Note that dependence on {βi}i comes through the definition of pi(.). We can think of “exact”
double-loop EP as corresponding to ninner =∞, with the inner loop exiting once some convergence
criterion has been satisfied. In practice, a truncated inner loop is often used by setting ninner to some
small number [17, 30]. Upon convergence of Algorithm 1, the approximation p(z) ≈ p∗(z) is given
by (2). Going forwards we will refer to the family of algorithms encompassed by Algorithm 1 simply
as EP.

Stochastic moment estimation EP is typically applied to models for which the updates either
have closed-form expressions, or can be accurately estimated using deterministic numerical methods.
However, as update (4) only depends on the target distribution through expectations under the tilted
distributions, this suggests that updates could also be performed using sampled estimates of those
expectations. By using MC methods to estimate the tilted distribution moments, EP can be used
in a black-box manner, dramatically expanding the set of models it can be applied to. Instead of
performing a single large sampling task—as would be required by applying MC methods directly—
EP can instead solve several simpler ones, gaining significant computational advantages [17, 48, 52].
Unfortunately, when performed naively, update (4) is not robust to MC noise. This is because the
moment estimates are converted to the natural (site) parameter space by mapping through ∇A∗(.),
which is not linear in general, and so MC noise in the estimates leads to biased updates of λi.

3 Fearlessly stochastic EP algorithms

In this section we show an equivalence between the moment-matching updates of EP and natural
gradient descent (NGD). We use this view to motivate two new EP variants which have several
advantages when updates are estimated using samples. We conclude with a review of related work.
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3.1 Natural gradient view of EP

Several EP variants—EP [40, 37], power EP, double loop EP [34], stochastic natural gradient EP
[17], and the new ones to follow—differ only in how they perform the inner optimisation in (3) with
respect to {λi}i. The optimisation can be viewed as one with respect to the m + 1 distributions
p, p1, . . . , pm, which are jointly parameterised by {λi}i [17]. Natural gradient descent (NGD) [1],
which involves preconditioning a gradient with the inverse Fisher information matrix (FIM) of a
distribution, is an effective method for optimising parameters of probability distributions. It would
therefore seem desirable to apply NGD to the inner optimisation, yet doing so is not straightforward.
While the FIM can be naturally extended to the product of statistical manifolds that is the solution
space, computing and inverting it will not generally be tractable, making (the natural extension of)
NGD in this space infeasible.

Consider instead p̃i
(t) ∈ F with natural parameter ηi(t)(λi) = η0 +

∑
j λj

(t) + α−1(λi − λi
(t)).

The t superscript on the site parameters indicates that they are fixed for the current iteration, and
so the distribution is fully parameterised by λi. Note that when λj = λj

(t) ∀ j, we have p̃i
(t) = p.

Proposition 1, which we prove in Appendix D, states that the moment-matching updates of EP can be
viewed as performing NGD in L with respect to mean parameters of p̃i(t).

We will make use of the following properties: for an exponential family with log partition function
A(.), the gradient ∇A(.) provides the map from natural to mean parameters, and this mapping is
one-to-one for minimal families, with the inverse given by∇A∗(.). See Appendix A for details.
Proposition 1. For α > 0, the moment-matching update of EP (4) is equivalent to performing
an NGD step in L with respect to the mean parameters of p̃i(t) with step size α−1. That is, for
µi = Ep̃i

(t)(z)[s(z)], and F̃i
(t)(µi) the FIM of p̃i(t) with respect to µi, we have

µi − α−1
[
F̃

(t)
i (µi)

]−1 ∂L

∂µi
=
(
∇A ◦ η(t)i

)(
λi − α

(
η0 +

∑
j
λj −∇A∗(Epi(z)[s(z)])

))
. (7)

Note that the right hand side of (7) just maps update (4) to mean parameters of p̃i(t). 4 We discussed
in Section 2 that noise in the moment estimates results in bias in the update to λi of EP, due to the
noise being passed through the nonlinear map ∇A∗(.). This alone would not be a problem if the
updates followed unbiased descent direction estimates in some other fixed parameterisation. Let
ηi = ∇A∗(µi), then, from the definition of L and µi, we have

∂L

∂µi
=

∂ηi
∂µi

∂λi

∂ηi

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
, (8)

and so when Epi(z)[s(z)] is estimated with unbiased samples, the NGD update (7) in µi is also
unbiased. However, a sequence of updates introduces bias. This is because the parameterisation
changes from one update to the next, with the mean parameters of p̃i(t) mapped to those of p̃i(t+1) by

µ
(t+1)
i =

(
∇A ◦ η(t+1)

i ◦
(
η
(t)
i

)−1 ◦ ∇A∗
)(

µ
(t)
i

)
, (9)

where (ηi(t))
−1(.) is the inverse of ηi(t)(.), and ηi

(t+1)(.) is defined using the site parameters after
the update at time t. This map is not linear in general, and so an unbiased, noisy update of µi

at one time step, results in bias when mapped to the next. This bias can make the EP updates
unstable in the presence of MC noise, leading previous work to use methods, specific to F , for
obtaining approximately unbiased natural parameter estimates from samples. However, even with
these debiasing methods, a relatively large number of samples is still needed in practice [48, 52]. Here
we have assumed parallel application of (4), but the bias at site i is induced whenever the parameters
for other sites change from one update to the next, which occurs in both parallel and serial settings.

We now use the natural gradient interpretation of the EP updates to motivate two new variants that are
far more robust to MC noise. In particular, they are stable, and most sample-efficient, when updates
are estimated with just a single sample. Furthermore, unlike methods that rely on deibasing estimators,
they do not require sample thinning (see Section 3.4). This largely eliminates two hyperparameters
for the practitioner. While practical considerations, such as ensuring efficient use of parallel hardware,
may justify using more than one sample per update, this can in principle be tuned a priori, much like
the batch size hyperparameter of stochastic gradient descent.

4Note the apparent contradiction that by decreasing α (increasing the damping) we actually increase the
NGD step size. This is resolved by observing that the definition of p̃(t)i also changes with α.
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Figure 1: The effect of step size (α or ϵ) and number of MC samples (nsamp) on different EP
variants in a stochastic version of the clutter problem of Minka [37]. EP (naive) uses maximum
likelihood estimation for the updates, and EP (debiased) uses the estimator of Xu et al. [52]. Step
size corresponds to α for EP, and ϵ for EP-µ and EP-η. Only EP-η and EP-µ can perform 1-sample
updates, hence the other traces are not visible. The left panel shows the expected decrease in L after
100/nsamp steps. Performing e.g. 100× 1-sample steps, or 10× 10-sample steps, achieves a much
larger decrease in L than a single 100-sample step. The right panel shows the magnitude of the bias
in λi after a single parallel update, averaged over all sites and dimensions. The bias of EP-µ shrinks
far faster as the step size decreases than that of EP. EP-η is always unbiased and so is not visible.

3.2 EP-η

We showed in the previous section that bias is introduced into the sequence of NGD updates due
to a nonlinear map from one parameterisation to the next. If the map were affine, the sequence
would remain unbiased. This can be achieved by performing NGD with respect to ηi, the natural
parameters of p̃i(t). Then, the map from one parameterisation to the next (by equating λi) is given by
ηi

(t+1) ◦ (ηi(t))−1, which is linear. The NGD direction in L with respect to p̃i
(t) and ηi is given by

−
[
F̃i(ηi)

]−1 ∂L

∂ηi
= −α ∂ηi

∂µi

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
. (10)

See Appendix E for a derivation. Note that α plays a similar role as the NGD step size in this
parameterisation, but it also affects p̃i(t), and so to obtain a more faithful NGD interpretation we fix
α = 1 and introduce an explicit NGD step size ϵ to decouple from the effect on p̃i

(t). The resulting
update can be expressed directly as an update in λi, by applying (ηi(t))

−1 to the updated ηi, giving

λi ← λi − ϵ
∂ηi
∂µi

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
. (11)

We can use automatic differentiation to efficiently compute (11), by recognising the second term as
a Jacobian-vector product (JVP) with respect to ηi(µi) = ∇A∗(µi).5 In summary, by performing
NGD with respect to natural parameters of p̃i(t), instead of mean parameters, the resulting sequence
of updates is unbiased in λi. We call the resulting procedure—which is given in Algorithm 2—EP-η,
to emphasise that we have simply changed the NGD parameterisation of EP. The unbiased updates of
EP-η allow it to be more sample-efficient than EP by using a smaller number of samples per iteration.
The left panel of Figure 1 demonstrates this effect in a stochastic version of the clutter problem [37].

3.3 EP-µ

The bias introduced by the updates of EP cannot be mitigated by reducing α (increasing the damping)
without also proportionally sacrificing the amount of progress made by each update. More concretely,
let the bias in dimension d of µi

(t+1), after an update at time t, be defined as E[µi
(t+1) − µ̄i

(t+1)]d,
where µ̄i

(t+1) is the value of µi
(t+1) after a noise-free update, and expectation is taken over the

sampling distributions of all parallel updates at time t. Then, Proposition 2 below, which we prove in
Appendix G, summarises the effect of decreasing α on EP.

5This can be computed using either forward or reverse mode automatic differentiation, as ∂ηi
∂µi

is symmetric.
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Proposition 2. After update (4) is executed in parallel over i, as α→ 0+, both the expected decrease
in L, and the bias E[µi

(t+1) − µ̄i
(t+1)]d, are O(α) for all d.

Proposition 1 at the beginning of this section states that update (4) can be viewed as performing
an NGD step with respect to µi with a step size of α−1. However, changing α also has the effect
of changing the definition of p̃i(t). It is then natural to wonder what happens if we fix α = 1 and
introduce an explicit step size for NGD, ϵ, resulting in the update

µi ← µi − ϵ
(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
. (12)

See Appendix F for a derivation. It turns out that in doing so, when we decrease ϵ, the bias shrinks
far faster than the expected decrease in L.
Proposition 3. After update (12) is executed in parallel over i, as ϵ→ 0+, the expected decrease in
L is O(ϵ), and the bias E

[
µi

(t+1) − µ̄i
(t+1)

]
d

is O(ϵ2), for all d.

Proposition 3, which we prove in Appendix G, tells us that by using update (12), we can reduce the
bias to arbitrarily small levels while still making progress in decreasing L. Update (12) can also be
expressed directly as an update in λi by applying (η(t))−1 ◦ ∇A∗, giving

λi ← ∇A∗
(
(1− ϵ)∇A

(
η0 +

∑
j
λj

)
+ ϵEpi(z)[s(z)]

)
− η0 −

∑
j ̸=i

λj , (13)

which has the simple interpretation of performing EP, but with damping of the moments instead
of the site (natural) parameters. In summary, if we perform NGD with respect to the same mean
parameterisation as EP, but treat the NGD step size as a free parameter, ϵ, we can obtain updates that
are approximately unbiased while still making progress. We call this variant EP-µ, again to indicate
that we are simply performing the NGD update of EP in the mean parameter space.6 The resulting
procedure is also given by Algorithm 2.

Algorithm 2 EP-η and EP-µ (differences with Algorithm 1 are highlighted in green)

Require: F , η0, {βi}i, {ℓi(z)}i, {λi}i, ninner, ϵ
while not converged do

θ ← η0 +
∑

jλj

for 1 to ninner do
for i = 1 to m in parallel do

update λi using (11) for EP-η, or (13) for EP-µ
return {λi}i

The computational cost of EP-µ is lower than that of EP-η because it does not require JVPs through
∇A∗(.).7 The drawback is that the updates of EP-µ do still retain some bias, however, we find that
the bias of EP-µ typically has negligible impact on its performance relative to EP-η. This is evident
in the clutter problem of Minka [37], as demonstrated in the left panel of Figure 1, as well as in the
larger scale experiments of Section 4. The right panel of Figure 1 illustrates how quickly the bias in
λi shrinks as the step size of EP-µ is decreased. Note that the results of this subsection are stated
in terms of bias in µi, but it is straightforward to show that equivalent results also hold for λi using
Taylor series arguments.

3.4 Related work

The link between natural gradients and moment matching in an exponential family is well known
[6], but the connection with EP shown here – which relies on identification of the distribution p̃i

(t)

and parameterisation ηi
(t) – is new, to the best of our knowledge. Bui et al. [11] showed that the

updates of (power) EP are equivalent to performing NGD in a local variational free energy objective
when taking the limit of the power parameter as βi →∞, and Wilkinson et al. [51] showed that this
extends to the (global) variational free energy objective for models with a certain structure. Our result
is different in that it relates to NGD of the EP variational objective, and applies for all values of βi.

6EP too is performing NGD in mean parameters, but using a “step size” that also affects the distribution p̃i.
7See Appendix I for a detailed discussion of the computational costs of EP-η and EP-µ.
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EP was combined with Markov chain Monte Carlo (MCMC) moment estimates by Xu et al. [52] in a
method called sampling via moment sharing (SMS), and later by Vehtari et al. [48] in the context of
hierarchical models. In both works, when F was multivariate normal (MVN) —arguably the most
useful case—the authors used an estimator for the updates that is unbiased when p̃i is also MVN.
Although this estimator is only approximately unbiased in general, it can help to stabilise the updates
significantly. Even so, it is necessary to use a relatively large number of samples for the updates, with
several hundred or more being typical. Using many samples per update is inefficient, as the update
direction can change from one iteration to the next. Furthermore, such estimators typically rely
on a known number of independent samples. Samples drawn using MCMC methods are generally
autocorrelated, necessitating the use of sample thinning before the estimators can be applied. This
adds another hyperparameter to the procedure—the thinning ratio—and it is also inefficient due to
the discarding of samples. The practitioner is required to choose the number of samples, the thinning
ratio, and the amount of damping, all of which affect the accuracy, stability, and computational
efficiency of the procedure. There is no easy way to choose these a priori, forcing the practitioner to
either set them conservatively (favouring accuracy and stability), or to find appropriate settings by
trial and error, both of which are likely to expend time and computation unnecessarily.

The stochastic natural gradient EP (SNEP) method of Hasenclever et al. [17], which is closely related
to our work, also optimises the EP variational objective using a form of NGD. The SNEP updates are
unbiased in the presence of MC noise, allowing them to be performed with as little as one sample,
without relying on F -specific debiasing estimators, or the sample thinning that would entail. In SNEP,
NGD is performed with respect to mean parameters of the site potentials, which are treated as bona
fide distributions in F . In contrast, we showed that EP can already be viewed as performing NGD,
but with respect to the distributions {p̃i(t)}i, and our new variants, EP-η and EP-µ, are able to gain
the same advantages as SNEP, but using the same distributions for NGD as EP. Hasenclever et al.
[17] showed that in some settings, SNEP can obtain accurate point estimates fairly rapidly. However,
we find that it typically converges far slower than both EP and our new variants, consistent with
findings in Vehtari et al. [48]. We argue that this is because the site potentials (when considered as
distributions) bear little resemblance with the distributions that are ultimately being optimised, and
so their geometry is largely irrelevant for the optimisation of L. In contrast, the geometry of pi(t) is
closely related to that of L, as we show in Appendix H.

We note that Xu et al. [52] and Hasenclever et al. [17] also proposed methods for performing updates
in an asynchronous fashion, significantly reducing the frequency and cost of communication between
nodes in distributed settings. In principle, these methods could be combined with those presented in
this paper, but we do not consider them further here.

4 Evaluation

In this section we demonstrate the efficacy of EP-η and EP-µ on a variety of probabilistic inference
tasks. In each experiment, the task was to perform approximate Bayesian inference of unobserved
parameters z, given some observed data D. All of the models in these experiments followed the same
general structure, consisting of a minimal exponential family prior over z, p0, and a partition of the
data {Di}mi , where each blockDi depends on both z and an additional vector of local latent variables
wi that also depend on z. That is, the joint density has the form

p0(z)
∏

i
p(wi | z)p(Di | wi, z), (14)

where p0 ∈ F . This structure is shown graphically in Appendix J. To perform approximate inference
of z, we first define ℓi(z) as the log likelihood of Di given z, with wi marginalised out. That is,

ℓi(z) = log

∫
p(Di, wi | z)dwi. (15)

Then, given p0(z) and {ℓi(z)}i, we define p∗(z) as (1), and proceed to find an approximation
p(z) ≈ p∗(z) using the methods described in earlier sections. Note that sampling from the tilted
distribution pi(z) requires jointly sampling over z and wi and taking the marginal. EP is a particularly
appealing framework for performing inference in this setting, as the dimensionality of the sampled
distributions is constant with respect to m, mitigating the curse of dimensionality experienced by
conventional MCMC approaches [48]. In our experiments we used NUTS [27] to perform the
sampling, consistent with prior work [48, 52]. In each experiment we compared EP-η and EP-µ with
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Figure 2: Pareto frontiers showing the number of NUTS steps (x-axis) against the KL divergence
from p to an estimate of the optimum (y-axis). Each point on the plot marks the lowest average KL
divergence attained by any hyperparameter setting by that step count. Error bars mark the full range
of values for the marked hyperparameter setting across 5 random seeds.

EP, in the manner used by Xu et al. [52] and Vehtari et al. [48]. When F was MVN we also compared
to SNEP [17]. For the models with normal-inverse Wishart (NIW) F , we were unable to find an
initialisation for SNEP that would allow us to perform a meaningful comparison. We discuss this
point further in Appendix J.

To evaluate the performance of the different variants, we monitored KL divergence to an estimate
of the optimum, obtained by running EP with a large number of samples. We used 500 different
hyperparameter settings for each variant, chosen using random search, and repeated each run 5 times
using different random seeds for NUTS. All runs of EP-η and EP-µ were performed with nsamp = 1
and ninner = 1. The results of our evaluation are summarised by the Pareto frontiers in Figure 2.

We see that EP-η and EP-µ can typically reach a given level of accuracy (distance from an estimate of
the optimum) faster than EP, often significantly so. We stress that the frontiers for EP-η and EP-µ are
traced out with nsamp and ninner each fixed to 1, with no sample thinning, varying only the step size
hyperparameter ϵ, with higher accuracy/cost regions of the frontier corresponding to lower values of
ϵ. In contrast, to trace out the frontier of EP we must jointly vary α, nsamp, and the thinning ratio. See
Appendix K for examples of this effect. The performances of EP-η and EP-µ are very similar. We
found SNEP to be significantly slower than the other methods, consistent with findings by Vehtari
et al. [48]. Pareto frontiers with respect to wall-clock time can be found in Appendix L. Code for
these experiments can be found at https://github.com/cambridge-mlg/fearless-ep. We
now provide a brief overview of individual experiments, with further details given in Appendix J.

Hierarchical logistic regression with MVN prior Hierarchical logistic regression (HLR) is used
to perform binary classification in a number of groups when the extent to which data should be pooled
across groups is unknown [15]. We performed approximate Bayesian inference in a HLR model using
a MVN prior over the group-level parameters. We applied this model to synthetic data, generated
using the same procedure as Vehtari et al. [48], which was designed to be challenging for EP. In this
experiment z ∈ R8, wi ∈ R4 ∀ i, and each of the m = 16 groups had n = 20 observations. In the
upper-left panel of Figure 2 we see that EP-η and EP-µ typically reach a given level of accuracy
faster than EP and SNEP.
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Hierarchical logistic regression with NIW prior We also performed approximate Bayesian
inference in a similar HLR model, but using a normal-inverse Wishart (NIW) prior over group-level
parameters, allowing for correlation of regression coefficients within groups. We applied this model
to political survey data, where each of m = 50 groups corresponded to responses from a particular
US state, with 7 predictor variables corresponding to characteristics of a given survey respondent,
so that wi ∈ R7 ∀ i. There were n = 97 survey respondents per state. The data, taken from the
2018 Cooperative Congressional Election Study, related to support for allowing employers to decline
coverage of abortions in insurance plans [33, 43]. The upper-right panel of Figure 2 shows that EP-η
and EP-µ consistently reach a given level of accuracy significantly faster than EP.

Cosmic radiation model A hierarchical Bayesian model was used by Vehtari et al. [48] to capture
the nonlinear relationship between diffuse galactic far ultraviolet radiation and 100-µm infrared
emission in various sectors of the observable universe, using data obtained from the Galaxy Evolution
Explorer telescope. In this model each wi ∈ R9 parameterised a nonlinear regression model using
data obtained from one of m sections of the observable universe. The m regression problems were
related through hyperparameters z ∈ R18, which parameterised the section-level parameter densities.
The prior, p0 ∈ F , was MVN. The specifics of the nonlinear regression model are quite involved and
we refer the reader to Vehtari et al. [48] for details. We were unable to obtain the dataset, and so we
generated synthetic data using parameters that were tuned by hand to try and match the qualitative
properties of the original data – see Appendix N for examples. We used a reduced number of m = 36
sites and n = 200 observations per site to allow us to perform a comprehensive hyperparameter
search. The lower-left panel of Figure 2 shows once again that EP-η and EP-µ consistently reach a
given level of accuracy significantly faster than EP and SNEP.

Neural response model A common task in neuroscience is to model the firing rates of neurons
under various conditions. We performed inference in a hierarchical Bayesian neural response model,
using recordings of V1 complex cells in an anesthesised adult cat [4]. In this dataset, 10 neurons in a
specific area of cat V1 were simultaneously recorded under the presentation of 18 different visual
stimuli, each repeated 8 times, for a total of 144 trials. We modelled the observed spike counts of the
10 neurons in each trial as Poisson, with latent (log) intensities being MVN, with mean and covariance
(collectively z ∈ R65) drawn from a NIW prior p0 ∈ F . Inference of z amounted to inferring the
means, and inter-neuron covariances, of latent log firing rates across stimuli. We grouped the data
into m = 8 batches of n = 18 trials each, so that the latent log firing rates for all trials in batch i were
jointly captured by wi ∈ R180. The lower-right panel of Figure 2 shows that EP-η and EP-µ either
match or beat the speed of EP for reaching any given level of accuracy. For high levels of accuracy
the performances of the methods appear to converge with one another, but note that the asymptote is
not exactly zero because the optimal solution was estimated by running EP with a large (but finite)
number of samples.

5 Limitations

In this work we have largely assumed that the drawing of MC samples is the dominant cost. In
practice, other costs become relevant, which may shift the balance in favour of using more samples to
estimate updates. We discuss this in Appendix I, along with strategies for reducing computational
overheads. We note, however, that wall-clock time results for our evaluation experiments (in Appendix
L) are in line with the results of Section 4, indicating that the drawing of MC samples was indeed the
dominant cost.

When EP and its variants—including those introduced here—are combined with MC methods, the
underlying samplers typically have hyperparameters of their own, which are often adapted using
so-called warmup phases. While EP-η and EP-µ significantly reduce the complexity of tuning
hyperparameters specific to EP, they do not help with those of the underlying samplers. This means
that the complexity of hyperparameter tuning (for all EP variants) is still greater than that for direct
MC methods. We used comprehensive hyperparameter searches in our experiments in order to
perform a meaningful comparison with baseline methods, necessarily limiting the scale of problems
we could tackle.

Our focus has been on developing improved methods for performing EP when the updates must be
estimated with noise, with the motivation for this kind of setting having been discussed by prior
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Figure 3: Comparison of EP-η with conjugate-computation variational inference (CVI) on a hierarchi-
cal logistic regression model. The two leftmost plots show forward (solid) and reverse (dashed) KL
divergences between the approximation of each method and a MVN distribution estimated directly
from MCMC samples. The left panel shows a comparison with respect to wall-clock time, when
NUTS is used as the underlying sampling kernel for EP-η. The left-middle panel shows a similar
comparison, but with respect to the number of samples drawn, and using an “oracle” sampling kernel
for EP-η. Hyperparameters were tuned for each method and shaded regions show the range of
trajectories across 5 random seeds. The right and right-middle panels show pairwise marginals of the
various MVN approximations overlaid on contours of the true posterior. Coloured dots and ellipses
correspond to means and 2-standard-deviation contours, respectively. See Section 5 for discussion of
these results, and Appendix M for further details.

work [52, 17, 48]. EP and its variants are agnostic to the choice of sampling kernel, and as such we
have not discussed issues relating to the performance of the underlying samplers. In the left panel of
Figure 3 however, we highlight the relative inefficiency of using EP-η with NUTS as the underlying
sampler when compared to conjugate-computation variational inference (CVI), an efficient variational
inference method [31]. While EP-η is able to obtain much more faithful posterior approximations
than CVI, it is significantly slower when measured in wall-clock time, despite the gains made over its
predecessors. However, this is due to the relative cost of drawing independent samples with NUTS,
as the sample efficiency of EP-η is roughly equivalent to that of CVI when an (illustrative) “oracle”
sampling kernel is used, as demonstrated in the left-middle panel of Figure 3. Further discussion and
details of the experiments behind Figure 3 can be found in Appendix M.

6 Future work

In Section 5, we demonstrated that the efficiency of EP variants is constrained by that of of the
underlying samplers. There are several ways in which their performance could be improved by using
knowledge of p to guide sampling from pi. One such improvement would be to use p to set MCMC
hyperparameters directly, obviating the need to adapt them during warm-up phases, e.g. when p ∈ F
is MVN, its precision matrix could be used directly as the mass matrix in Hamiltonian Monte Carlo
schemes. Another potential improvement is that samples from p could be used to re-initialise MCMC
chains at each iteration, providing approximate independence between updates for a small additional
cost. It would also be worthwhile considering how our methods can be efficiently implemented
on modern compute hardware to better take advantage of the inherently parallel nature of EP, e.g.
practical performance could be improved by using sampling kernels that are themselves designed
for efficient parallel execution [26]. Performance may be further improved in distributed settings by
using asynchronous extensions of EP in order to minimise communication-related overheads and
delays [17, 52]. We leave investigation of these ideas to future work.

7 Conclusion

In this work, we used a novel interpretation of the moment-matching updates of EP to motivate two
new EP variants that are far more robust to MC noise. We demonstrated that these variants can offer
an improved speed-accuracy trade-off compared to their predecessors, and are easier to tune.
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A Exponential families of distributions

In this appendix, we give a very brief overview of exponential families of distributions. This is largely
a condensed summary of relevant material from Wainwright and Jordan [49], and we refer the reader
to the original work for a far more detailed treatment.

The exponential family of distributions F , defined by the d-dimensional, vector-valued sufficient
statistic function s(.), and base measure ν(.), has density function

p(z) = exp(η⊤s(z)−A(η)), (16)

taken with respect to ν(.), where A(η) = log
∫
exp(η⊤s(z))dν(z) is known as the log-partition

function. η ∈ Ω are known as the natural parameters, and are used to index a specific member of F .
Ω is the set of normalisable natural parameters of F , given by

Ω =

{
η ∈ Rd

∣∣∣∣∣
∫

exp(η⊤s(z))dν(z) <∞

}
, (17)

and is known as the natural domain of F . Ω is a convex set, and when it is open, the family F is said
to be regular – we shall only consider regular families in this work. When the components of s(.) are
linearly independent, F is said to be minimal. For minimal families, each distribution in the family is
associated with a unique natural parameter vector η. An exponential family that is not minimal is said
to be overcomplete, in which case, each distribution is associated with an entire affine subspace of Ω.

The expected sufficient statistics of a distribution with density p(.) with respect to base measure ν(.),
are given by Ep(z)[s(z)]. LetM be defined as the set of expected sufficient statistics that can be
attained by any density p(.) with respect to base measure ν(.) – that is,

M =

{
µ ∈ Rd

∣∣∣∣∣ ∃p(.) :
∫

p(z)s(z)dν(z) = µ

}
. (18)

All vectors in the interior ofM,M◦, are realisable by a member of F , and so µ ∈M◦ provides an
alternative parameterisation of F , in which µ are known as the mean parameters, andM◦ is known
as the mean domain,.

For minimal families, A(.) is strictly convex on Ω. The convex dual of A(.) is defined as

A∗(µ) = sup
η∈Ω

η⊤µ−A(η), (19)

and onM◦, A∗(µ) is equal to the negative entropy of the member of F with mean parameter µ.

The mean parameters of the member of F with natural parameter η can be obtained by µ = ∇A(η).
For minimal families, this mapping is one-to-one, and the reverse map is given by η = ∇A∗(µ). For
this reason, ∇A(.) and ∇A∗(.) are sometimes referred to as the forward mapping and backward
mapping respectively. In this work, we say that a family F is tractable if both the forward and
backward mappings can be evaluated efficiently.

The Fisher information matrix (FIM) of an exponential family distribution, with respect to natural
parameters η, is given by, F (η) = ∇2A(η). Furthermore, in minimal families, the FIM with respect
to mean parameters µ is given by F (µ) = ∇2A∗(µ). Using the forward and backward mappings, we
also have

F (η) =
∂µ

∂η
(20)

F (µ) =
∂η

∂µ
, (21)

and from the inverse function theorem,

F (η)−1 =
∂η

∂µ
(22)

F (µ)−1 =
∂µ

∂η
. (23)
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B Conventional presentation of EP updates

In this appendix we give a more conventional presentation of the EP updates, and show equivalence
with the atypical presentation of Section 2. We will assume here that βi = 1 ∀ i, but similar reasoning
can be used to show equivalence in the power EP case, where βi ̸= 1. Note that the update of power
EP is often presented as having scale proportional to βi, with a separate damping parameter. We
subsume both into α, with α = 1 corresponding to the default damping suggested by Minka [34].

Given a target distribution with the form

p∗(z) ∝ exp
(
η⊤0 s(z)

)∏m

i=1
exp

(
ℓi(z)

)
, (24)

EP attempts to find an approximation p ∈ F such that

p(z) ∝ exp
(
η⊤0 s(z)

)∏
i
exp

(
λ⊤
i s(z)

)
≈ p∗(z). (25)

The i-th site parameter λi can loosely be interpreted as the natural parameters of a F -approximation
to the i-th target factor, exp(ℓi(z)). EP is also often used to approximate the normalising constant of
p∗(z) – we have omitted details here, but see e.g. Bishop [3].

In order to update λi, EP performs a KL-divergence minimisation between p(z) and a local approxi-
mation to the target distribution, consisting of just one “real” factor and (m− 1) approximate ones.
Specifically,

λi ← argmin
λi

KL[p̄i(z) ∥ p(z;λi)], (26)

where
p̄i(z) ∝ exp

(
ℓi(z)

)∏
j ̸=i

exp
(
λ⊤
j s(z)

)
, (27)

and we have used the notation p(z;λi) to make the dependence on λi explicit. It can be easily shown
that the solution to (26) is found by moment matching. That is, the KL-divergence is minimised when

Ep(z;λi)[s(z)] = Ep̄i(z)[s(z)]. (28)
For a minimal exponential family F , there is a unique member of F with mean parameters
Ep̄i(z)[s(z)], and its natural parameters are given by ∇A∗(Ep̄i(z)[s(z)]). By equating this with
the parameters of p(z), we have

λi = ∇A∗(Ep̄i(z)[s(z)])− η0 −
∑

j ̸=i
λj . (29)

Update (29) is the “standard” update of EP, and can be performed either serially or in parallel (over
i). Often a damping factor α is used, giving

λi = (1− α)λi + α
(
∇A∗(Ep̄i(z)[s(z)])− η0 −

∑
j ̸=i

λj

)
. (30)

In Section 2 we presented EP and several variants as performing some number of “inner” updates, to
decrease L with respect to λi, with an “outer” update with respect to θ. These updates are given by

Inner update: λi ← λi − α
(
η0 +

∑
j
λj −∇A∗(Epi(z)[s(z)])

)
, (31)

Outer update: θ ← η0 +
∑

j
λj . (32)

Immediately after an outer update we have that θ = η0 +
∑

j λj , and so for βi = 1 we have

pi(z) ∝ exp
(
(θ − λi)

⊤s(z) + ℓi(z)
)

= exp
(
(η0 +

∑
j ̸=i

λj)
⊤s(z) + ℓi(z)

)
∝ p̄i(z). (33)

We stated in Section 2 that (non-double-loop) EP can be viewed as performing a single inner update
per outer update, and so by rolling (31) and (32) into a single update for λi, we have

λi ← λi − α
(
η0 +

∑
j
λj −∇A∗(Ep̄i(z)[s(z)])

)
= (1− α)λi + α

(
∇A∗(Ep̄i(z)[s(z)])− η0 −

∑
j ̸=i

λj

)
, (34)

which is identical to (30).
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C EP inner update derivation

Begin by taking gradients of (3), with respect to λi, giving

∇λi
L(θ, λ1, . . . , λm) = ∇A

(
η0 +

∑
j
λj

)
+ βi∇λi

Ai((θ − β−1
i λi, β

−1
i )). (35)

At a minimum of L with respect to λi, both sides of (35) must be equal to zero. We can use this to
define a fixed-point condition with respect to λi, and its updated value λ′

i

∇A
(
η0 + λ′

i +
∑

j ̸=i
λj

)
= −βi∇λi

Ai((θ − β−1
i λi, β

−1
i ))

= Epi(z)[s(z)] (36)

where pi ∈ Fi denotes the i-th tilted distribution, defined by (6). Applying ∇A∗(.), the inverse of
∇A(.), to both sides of (36), and rearranging terms, we recover the moment-matching update of EP

λi ← ∇A∗(Epi(z)[s(z)]
)
− η0 −

∑
j ̸=i

λj . (37)

Often a damping parameter is used to aid convergence, giving the more general update

λi ← (1− α)λi + α
(
∇A∗(Epi(z)[s(z)]

)
− η0 −

∑
j ̸=i

λj

)
← λi + α

(
∇A∗(Epi(z)[s(z)]

)
− η0 −

∑
j
λj

)
, (38)

where the level of damping is given by (1 − α). It was shown by Heskes and Zoeter [25] that (4)
follows a decrease direction in L with respect to λi, and so is guaranteed to decrease L when α is
small enough.

D Natural gradient view of EP

Let p̃i(t) be the member of F with natural parameter ηi(t)(λi) = η0 +
∑

jλj
(t) + α−1(λi − λi

(t)).
Proposition 1 states that that the moment-matching updates of EP can be viewed as performing NGD
in L with respect to the mean parameters, µi, of p̃i(t). We restate the proposition below, and give a
proof. Note that the right hand side of (7) maps the EP update (4) onto mean parameters of p̃i(t). The
left hand side of (7) is simply a NGD update in µi.
Proposition 1. For α > 0, the moment-matching update of EP (4) is equivalent to performing
an NGD step in L with respect to the mean parameters of p̃i(t) with step size α−1. That is, for
µi = Ep̃i

(t)(z)[s(z)], and F̃i
(t)(µi) the FIM of p̃i(t) with respect to µi, we have

µi − α−1
[
F̃

(t)
i (µi)

]−1 ∂L

∂µi
=
(
∇A ◦ η(t)i

)(
λi − α

(
η0 +

∑
j
λj −∇A∗(Epi(z)[s(z)])

))
. (7)

Proof. Taking the left hand side of (7), we have

µi − α−1
[
F̃

(t)
i (µi)

]−1 ∂Li

∂µi
= µi − α−1

[
F̃

(t)
i (µi)

]−1 ∂λi

∂µi

∂L

∂λi

= µi − α−1

(
∂ηi
∂µi

)−1
∂ηi
∂µi

∂λi

∂ηi

∂L

∂λi

= µi −
∂L

∂λi

= µi −
(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
= µi −

(
µi − Epi(z)[s(z)]

)
= Epi(z)[s(z)], (39)

where the penultimate equality follows from the definition µi = Ep̃i
(t)(z)[s(z)], and the fact that

λj
(t) = λj ∀ j before the update. All that remains is to show that the right hand side of (7) is equal
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to Epi(z)[s(z)]. (
∇A ◦ η(t)i

)(
λi − α

(
η0 +

∑
j
λj −∇A∗(Epi(z)[s(z)]))

))
= ∇A

(
α−1(λi − λ

(t)
i ) +∇A∗(Epi(z)[s(z)]))

)
= Epi(z)[s(z)] (40)

E EP-η update direction derivation

Using the relation ηi = ηi
(t)(λi), and therefore λi = (ηi(t))

−1(ηi), we have

−
[
F̃i(ηi)

]−1 ∂L

∂ηi
= −

[
F̃i(ηi)

]−1 ∂λi

∂ηi

∂L

∂λi

= −α
(∂µi

∂ηi
F̃i(µi)

∂µi

∂ηi

)−1 ∂L

∂λi

= −α
( ∂ηi
∂µi

F̃i(µi)
−1 ∂ηi

∂µi

) ∂L

∂λi

= −α
( ∂ηi
∂µi

∂µi

∂ηi

∂ηi
∂µi

) ∂L

∂λi

= −α ∂ηi
∂µi

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
. (41)

F EP-µ update derivation

For α = 1, we have

µi − ϵ
[
F̃i(µi)

]−1 ∂L

∂µi
= µi − ϵ

[
F̃i(µi)

]−1 ∂ηi
∂µi

∂λi

∂ηi

∂L

∂λi

= µi − ϵ
( ∂ηi
∂µi

)−1 ∂ηi
∂µi

∂λi

∂ηi

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
= µi − ϵ

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]

)
. (42)

G Bias of EP and EP-µ

Let the bias in dimension d of µi
(t+1), after an update at time t, be defined as E[µi

(t+1) − µ̄i
(t+1)]d,

where µ̄i
(t+1) is the value of µi

(t+1) after a noise-free update, and expectation is taken over the
sampling distributions of all parallel updates at time t. Propositions 2 and 3, which we restate and
prove below, summarise the effect of decreasing α and ϵ on EP and EP-µ, respectively.

Proposition 2. After update (4) is executed in parallel over i, as α→ 0+, both the expected decrease
in L, and the bias E[µi

(t+1) − µ̄i
(t+1)]d, are O(α) for all d.

Proof. Let ηi(t) and µi
(t) be the pre-update natural and mean parameters of p̃i

(t) respectively.
Furthermore, let

µ
′(t)
i = µ

(t)
i − α−1

[
F̃

(t)
i (µi)

]−1 ∂λi

∂µi

∂L

∂λi
+ ξi

= Epi(z)[s(z)] + ξi, (43)

be the mean parameters of p̃i(t) after an EP inner update (4) but before being mapped to mean
parameters of p̃i(t+1) through map (9). ξi is some zero-mean noise, e.g. due to MC variation. The
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second equality follows from the results of Appendix D. Similarly, let η′i
(t) = ∇A∗(µ′

i
(t)) be the

corresponding natural parameters. Now apply map (9) to convert to mean parameters of p̃i(t+1),

µ
(t+1)
i =

(
∇A ◦ η(t+1)

i ◦
(
η
(t)
i

)−1 ◦ ∇A∗
)(

µ
′(t)
i

)
= ∇A

((
η
(t+1)
i ◦

(
η
(t)
i

)−1
)(
∇A∗(µ′(t)

i

)))
= ∇A

(
∇A∗(µ(t)

i

)
+ α

∑
j

(
∇A∗(µ(t)′

j

)
−∇A∗(µ(t)

j

)))
, (44)

where the last equality follows from the definition of ηi(t)(.), and by observing that

λ
(t+1)
j − λ

(t)
j = α(η′j − ηj)

= α
(
A∗(µ(t)′

j

)
−∇A∗(µ(t)

j

))
, (45)

for all j. Let µ̄′
i
(t) be the mean parameters of p̃i(t) after a noise-free update, but before mapping to

mean parameters of p̃i(t+1), so that µ′
i
(t) = µ̄′

i
(t) + ξi. Substituting this in, we have

µ
(t+1)
i = ∇A

(
∇A∗(µ(t)

i

)
+ α

∑
j

(
∇A∗(µ̄(t)′

j + ξj
)
−∇A∗(µ(t)

j

)))
. (46)

Taking a Taylor expansion around α = 0, we have

µ
(t+1)
i = µ

(t)
i + α

[
∇2A

(
∇A∗(µ(t)

i

))](∑
j
∇A∗(µ̄(t)′

j + ξj
)
−∇A∗(µ(t)

j

))
+O(α2). (47)

Now subtract the noise-free update µ̄i
(t+1), and take expectations with respect to ξj for j = 1, . . . ,m,

E
[
µ
(t+1)
i − µ̄

(t+1)
i

]
= E

[
α

[
∇2A

(
∇A∗(µ(t)

i

))](
∑

j
∇A∗(µ̄(t)′

j + ξj
)
−∇A∗(µ̄(t)′

j

))
+O(α2)

]
. (48)

the first term on the right hand side does not have zero expectation in general—∇A∗(.) is not
generally affine—and so the bias is O(α) as α→ 0+.

To see that the expected change in L is also O(α), take the Taylor expansion of L along the update
direction—obtained by subtracting λi from the right hand side of (4))—as a function of the step size
around α = 0,

−α
(
η0 +

∑
j ̸=i

λj −∇A
(
Epi(z)[s(z)] + ξi

))⊤ ∂L

∂λi
+O(α2), (49)

which is clearly O(α) as α→ 0+.

Proposition 3. After update (12) is executed in parallel over i, as ϵ→ 0+, the expected decrease in
L is O(ϵ), and the bias E

[
µi

(t+1) − µ̄i
(t+1)

]
d

is O(ϵ2), for all d.

Proof. Let ηi(t) and µi
(t) be the pre-update natural and mean parameters of p̃i

(t) respectively.
Furthermore, let

µ
′(t)
i = µ

(t)
i − ϵ

(
∇A

(
η0 +

∑
j
λj

)
− Epi(z)[s(z)]− ξi

)
= µ

(t)
i − ϵ

(
µ
(t)
i − Epi(z)[s(z)]− ξi

)
, (50)

be the mean parameters of p̃i(t) after an EP-µ update (12) but before being mapped to mean parameters
of p̃i(t) through (9). ξi is some zero-mean noise, e.g. due to MC variation. The second equality
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follows from the definition µi
(t) = Ep̃i

(t)(z)[s(z)], and the fact that p̃i(t) = p before an update. Now
apply map (9) to convert to mean parameters of p̃i(t+1),

µ
(t+1)
i =

(
∇A ◦ η(t+1)

i ◦
(
η
(t)
i

)−1 ◦ ∇A∗
)(

µ
′(t)
i

)
= ∇A

((
η
(t+1)
i ◦

(
η
(t)
i

)−1 )(
∇A∗

(
µ
′(t)
i

)))
= ∇A

(
∇A∗

(
µ
(t)
i

)
+
∑

j

(
∇A∗

(
µ
(t)′

j

)
−∇A∗

(
µ
(t)
j

)))
, (51)

where the last equality is obtained from the definition of ηi(t)(.) for α = 1, and using

λ
(t+1)
j − λ

(t)
j = η′j − ηj

= A∗(µ(t)′

j

)
−∇A∗(µ(t)

j

)
(52)

for all j. Substituting in the definition of µ′
j
(t), we have

µ
(t+1)
i = ∇A

(
∇A∗(µ(t)

i

)
+
∑

j

[

∇A∗
(
(1− ϵ)µ

(t)
j + ϵ

(
Epj(z)[s(z)] + ξj

))
−∇A∗

(
µ
(t)
j

)])
. (53)

Taking a Taylor expansion around ϵ = 0, we have

µ
(t+1)
i = µ

(t)
i + ϵ

[
∇2A

(
∇A∗(µ(t)

i

))]∑
j

∂

∂ϵ

{
∇A∗

(
(1− ϵ)µ

(t)
j + ϵ

(
Epj(z)[s(z)] + ξj

))}∣∣∣
0
+O(ϵ2)

= µ
(t)
i + ϵ

[
∇2A

(
∇A∗(µ(t)

i

))] [
∇2A∗(µ(t)

i

)]∑
j

∂

∂ϵ

{
(1− ϵ)µ

(t)
j + ϵ

(
Epj(z)[s(z)] + ξj

)}∣∣∣
0
+O(ϵ2)

= µ
(t)
i + ϵ

[
∇2A

(
∇A∗(µ(t)

i

))] [
∇2A∗(µ(t)

i

)]∑
j

(
Epj(z)[s(z)] + ξj − µ

(t)
j

)
+O(ϵ2). (54)

Finally, subtract the noise free µ̄i
(t+1), and take expectations (over ξj for j = 1, . . . ,m) to obtain the

bias

E
[
µ
(t+1)
i − µ̄

(t+1)
i

]
= E

[
ϵ
[
∇2A

(
∇A∗(µ(t)

i

))] [
∇2A∗(µ(t)

i

)]∑
j
ξj +O(ϵ2)

]
. (55)

By assumption E[ξj ] = 0 ∀ j, hence the first order term disappears, and the bias is O(ϵ2).

To see that the expected decrease in L is also O(ϵ), note that we are simply following the gradient in
L with respect to µ, multiplied by the inverse Fisher and scaled by ϵ. Neither the reparameterisation
(from λi to µi) or the Fisher depend on ϵ, and so the change in L must be O(ϵ) as ϵ→ 0+ by simple
Taylor expansion arguments.

H Implicit geometries of EP variants

In this paper we have shown that the updates of EP, EP-η, and EP-µ can be interpreted as performing
NGD of L with respect to the distributions {pi(t)}i. The SNEP method of Hasenclever et al. [17], in
contrast, performs NGD of L with respect to the site potentials, treating them as bona fide distributions
in F for the purposes of NGD – that is, NGD is performed with respect to the distributions with
densities given by exp(λ⊤

i s(z) − A(λi)) for i = 1, . . . ,m. In Section 3.4, we argued that the
statistical manifolds of {pi(t)}i are far more relevant for the optimisation of L than those of the site
potential pseudo-distributions. In this appendix we shall justify this claim.
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The loss function L, given by (3), has a unique optimum with respect to {λi}i when
∇λiL(θ, λ1, . . . , λm) = 0 ∀ i, which implies that

∇A(η0 +
∑

j
λj) = −βi∇λi

Ai(θ − β−1λi, β
−1)⇔

Ep(x)[s(z)] = Epi(x)[s(z)]. (56)

The minimisation of L with respect to {λi}i can therefore be viewed as a joint optimisation in the
m+ 1 distributions p, p1, . . . , pm, with the minimum found when their expected F -statistics match.
Intuitively, it seems that optimisation of L with respect to λi should be performed with consideration
for the geometry of p and pi. By instead performing NGD with respect to the distributions {pi(t)}i,
in the case of EP, EP-η and EP-µ, or with respect to the site potential psuedo-distributions, in the
case of SNEP, these methods can be interpreted as using surrogate distributions for NGD [46]. It
is possible to show that the Fisher information matrix (FIM) of p̃i(t) with respect to λi is equal to
that of p, up to a scalar constant, and furthermore, it can also be seen as a close approximation to
that of pi. This motivates the use of NGD with respect to p̃i

(t) for the optimisation of L. In contrast,
the FIMs of the site-potential pseudo-distributions, used by SNEP, can bear little relation to those
of p or pi. In particular, the difference will be greatest when the full approximation η0 +

∑
jλj is

significantly different than λi, and we believe this may be why Hasenclever et al. [17] found that
increasing the number of sites reduced the convergence speed of SNEP.

We can make these arguments more concrete by considering the curvature of L. Taking second
derivatives of L with respect to λi, we have

∇2
λi
L(θ, λ1, . . . , λm) = ∇2

λi
A(η0 +

∑
j
λj) + βi∇2

λi
Ai((θ − β−1

i λi, β
−1
i )). (57)

Let λ(t)
j = λj at time t for j = 1, . . .m, then

∇2

λi=λ
(t)
i

L(θ, λ1, . . . , λm) = ∇2
λi
A(η0 +

∑
j
λ
(t)
j + (λi − λ

(t)
i )) + βi∇2

λi
Ai((θ − β−1

i λi, β
−1
i ))

=
∂µi

∂ηi
+ βi∇2

λi
Ai((θ − β−1

i λi, β
−1
i )), (58)

where ηi and µi are the natural and mean parameters of p̃i(t), respectively. The Hessian of the second
term will not generally be available in closed form, or easily invertible. We can however find a
convenient approximation. Note that after an outer update, at time t, we have θ = η0 +

∑
jλj

(t).
Also we have that c exp

(
λ⊤
i s(z)

)
≈ exp(ℓi(z)), at least near convergence, where c is some unknown

scalar constant. Combining these, we have

∇2
λi
Ai((θ − β−1

i λi, β
−1
i )) = ∇2

λi

{
log

∫
exp

(
(θ − β−1λi)

⊤s(z) + β−1ℓi(z)
)
dν(z)

}
≈ ∇2

λi

{
log

∫
exp

(
(
η0 +

∑
j
λ
(t)
j − β−1λi + β−1λ

(t)
i

)⊤
s(z)

)
dν(z)

}
= ∇2

λi
A
(
η0 +

∑
j
λ
(t)
j + β−1(λ

(t)
i − λi)

)
= ∇2

λi
A
(
η0 +

∑
j
λ
(t)
j + β−1(λi − λ

(t)
i )
)

= β−2 ∂µi

∂ηi
. (59)

Combining this with (58), we have

∇2

λi=λ
(t)
i

L(θ, λ1, . . . , λm) ≈ (1 + β−1
i )

∂µi

∂ηi
, (60)

and if we use this curvature approximation to perform a quasi-Newton step in L with respect to λi

and step size ϵ̃, we have

λi ← λi − ϵ̃(1 + β−1
i )−1 ∂ηi

∂µi
∇λiL(θ, λ1, . . . , λm)

= λi − ϵ̃(1 + β−1
i )−1 ∂ηi

∂µi

(
∇A(η0 +

∑
j
λj)− Epi(z)[s(z)]

)
. (61)
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By letting ϵ = ϵ̃(1 + β−1
i )−1 we have equivalence with the update of EP-η, given by (11). We

therefore have that EP-η is equivalent to performing a quasi-Newton step in L. Furthermore, the
approximate curvature becomes exact at the optimum if ℓi(z) is an affine function of s(z), e.g. if
exp(ℓi(z)) is an (unnormalised) member of F .

In contrast, let us consider the implicit curvature approximation used by SNEP. Let γi be mean
parameters of the member of F with natural parameter λi. To perform the inner minimisation of the
variational objective, SNEP performs NGD in L with respect to γi. The implicit curvature matrix
used by the SNEP update is then the Fisher with respect to γi, which is given by ∂λi

∂γi
= ∇A∗(γi).

Now consider the actual curvature of L with respect to γi,

∇2
γi
L(γi) =

∂λi

∂γi
∇2

λi
L(θ, λ1, . . . , λm)

∂λi

∂γi
+
∑d

k=1

[
∂L

∂λi

]
k

∇2
γi
λi(γi), (62)

where we have used λi(γi) = ∇A∗(γi) to denote the backwards map. Near the optimum we have
∂L
∂λi
≈ 0, and so the curvature will be approximately equal to the first term as we approach the

optimum. We have already shown that

∇2
λi
L(θ, λ1, . . . , λm) ≈ (1− β−1

i )
∂µi

∂ηi
= (1− β−1

i )∇A(η0 +
∑

j
λj), (63)

and so the curvature with respect to γi is

∇2
γi
L(γi) ≈ (1− β−1

i )
∂λi

∂γi
∇2A(η0 +

∑
j
λj)

∂λi

∂γi

= (1− β−1
i )

∂λi

∂γi
∇2A(η0 +

∑
j
λj)
(
∇2A(λi)

)−1
. (64)

Compare this with the implicit curvature used by SNEP of ∂λi

∂γi
, and it is clear that the two are

proportional only when η0 +
∑

jλj = λi. This suggests that if there are many sites (m is large), or if
the prior is very informative, the curvature matrix implicity used by SNEP is likely to be significantly
different from the true curvature, even near the optimum.

I Computational cost analysis

Let csamp be the cost of drawing a single sample from one of the tilted distributions. Let cfwd be the
cost of converting from natural to mean parameters in the base family F (the forward mapping).
Similarly, let cbwd be the cost of converting from mean to natural parameters in F (the backward
mapping). Recall that m is the number of sites. We now state the computational complexity of a
round of parallel updates in each of the EP variants evaluated in this paper.

EP EP draws nsamp samples from each of the m sites. It then performs m backward mappings, to
map from moments back to updated site parameters. The total cost is then mnsampcsamp +mcbwd.

EP-η EP-η draws nsamp samples from each of the m sites. Each update also involves one forward
mapping per iteration. In addition, each iteration also requires m JVPs through the backward mapping
∇A∗(.). The primals of this JVP are the same for each site, so the linearisation only needs to be
performed once per update, costing ≈ 2cbwd, but we have m tangents. The overall cost of an EP-η
iteration is therefore ≈ mnsampcsamp + cfwd + (2 +m)cbwd.

EP-µ EP-µ draws nsamp samples from each of the m sites. Each update involves one forward
mapping, and m backward mappings per iteration, but notably does not require any JVPs. The overall
cost of an EP-µ iteration is therefore mnsampcsamp + cfwd +mcbwd.

SNEP SNEP draws nsamp samples from each of the m sites, and performs m backward mappings
per iteration. The total cost is then mnsampcsamp +mcbwd, which is the same as EP.

In this work we largely assume that csamp is the dominant cost. This is often the case when the
sampling is performed using MCMC. For example, in the NUTS sampler with default numpyro
settings – as used in our evaluation – each sample can involve evaluating up to 1024 gradients of the
tilted distribution log density.
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The other costs, cfwd and cbwd, depend on F . In the case of a MVN family with dense covariance, the
foward and backward mappings are O(d3), for d the dimensionality of z. When d is large, cfwd and
cbwd become more significant, in which case the balance will shift in favour of using more samples
per update (and taking larger steps). When d is very large, however, it may be necessary to choose a
diagonal covariance base family instead, in which case the mappings can be performed in O(d) time.
Also note that when d increases, csamp will also typically increase at a rate faster than d, even with
optimal tuning [8]. In our evaluation we used just a single sample per update for EP-η and EP-µ, and
they significantly outperformed the baselines when measure in both NUTS steps and wall-clock-time.

We also note that the per-iteration cost of cfwd and cbwd could be reduced by exploiting the results of
previous iterations. For example, in the case of a MVN with dense covariance, the cost of the forward
and backward mappings are dominated by matrix inversions. This cost could be significantly reduced
by using the result from the previous iteration to warm-start a Newton-style iterative inversion routine.
This approach was used by Anil et al. [2] to reduce the cost of computing inverse matrix roots as part
of a wider deep-learning optimisation scheme. We did not make use of such optimisations in our
experiments.

J Evaluation details

In this appendix, we give details about the experiments presented in Section 4. To evaluate the
performance of the different variants, we monitored KL divergence to an estimate of the optimum,
obtained by running EP to convergence with a large number of samples (nsamp = 105 for the final
iterations). We used 500 different hyperparameter settings for each variant, chosen using random
search, and repeated each run using 5 different random seeds, which were used to seed the MCMC
samplers. Hyperparameter settings that failed in any of the 5 runs were discarded. We used this setup
for all experiments in Section 4.

The x-axis in Figure 2 of Section 4 corresponds to the number of NUTS steps, or more specifically,
the number of NUTS candidate evaluations. This number is hardware and implementation agnostic,
and roughly corresponds to the total computational cost incurred up to that point. Wall-clock time
results are given in Appendix L.

Hyperparameter search spaces The step size for EP, α, was drawn log-uniformly in the range
(10−4, 1), and nsamp was drawn log-uniformly between [d+ 2.5, 10000.5) and then rounded to the
nearest integer, where d is the dimensionality of z. Note that the debiasing estimator used by Xu et al.
[52] for MVN families is not defined for nsamp ≤ d+ 2. The thinning ratio was drawn uniformly from
{1, 2, 3, 4}. The step size for EP-η and EP-µ, ϵ, was drawn log-uniformly in the range (10−5, 10−2),
and nsamp was fixed to 1. The step size for SNEP was drawn log-uniformly in the range (10−5, 10−2),
with nsamp and ninner (independently) drawn log-uniformly in the range [.5, 10.5) and then rounded to
the nearest integer.

Double-loops All the methods considered can be used in a double-loop manner by taking ninner > 1
inner steps per outer update. We did not find this necessary in any of our experiments, and so we fixed
ninner = 1 for EP, EP-η and EP-µ. For SNEP we included ninner in the search space (as described
above) to ensure that setting it to 1 was not negatively impacting its performance.

Hardware All experiments were executed on 76-core Dell PowerEdge C6520 servers, with 256GiB
RAM, and dual Intel Xeon Platinum 8368Q (Ice Lake) 2.60GHz processors. Each individual run was
assigned to a single core.

Software Implementations were written in JAX [7], with NUTS [27] used as the underlying sampler.
We used the numpyro [42] implementation of NUTS with default settings. For experiments with a
NIW base family, we performed mean-to-natural parameter conversions using the method of So [45],
with JAXopt [5] used to perform implicit differentiation through the iterative solve.

MCMC hyperparameter adaptation We performed regular warm-up phases in order to adapt
the samplers to the constantly evolving tilted distributions, consistent with prior work [52, 48]. The
frequency and duration of these warm-up phases was also included in the hyperparameter search as
follows. We drew the duration (number of samples) of each warm-up phase log-uniformly in the
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range [99.5, 1000.5) and then rounded to the nearest integer. We then drew the sampling-to-warm-up
ratio log-uniformly in the range (1, 4). This ratio then determined how frequently the warm-up was
performed, which we rounded to the nearest positive integer number of updates. Note that the Pareto
frontier plots in Figures 2 and 7 include the computation / time spent during warm-up phases.

Site parameter initialisation For EP, EP-η and EP-µ, we initialised the site parameters to λi =
0 ∀ i for all models, with the exception of the cosmic radiation model for reasons we discuss later.
SNEP is not compatible with improper site potentials, and so for models where F was MVN we used
λi = (2m)−1η0 ∀ i, consistent with Vehtari et al. [48]. Unfortunately this initialisation strategy for
SNEP is not always valid when F is NIW. This is because the site potentials in SNEP are restricted
to being proper distributions, and this constraint was violated when using this initialisation in our
experiments. We tried various other initialisation strategies, but none produced satisfactory results
or allowed us to make a meaningful comparison, hence we omitted SNEP from the experiments
with NIW F ; namely, the political survey hierarchical logistic regression and neural response model
experiments.

Dwz

i = 1, . . . ,m

Figure 4: Directed graphical model for the experiments of Section 4.

We set βi = 1 ∀ i in all experiments, corresponding to the original (not power) EP of Minka [37]. All
of the models in these experiments followed the same general structure, given by

p0(z)
∏

i
p(wi | z)p(Di | wi, z), (65)

where p0 is a member of a tractable, minimal exponential family F . This is shown graphically in
Figure 4. We now provide details about individual experiments.

J.1 Hierarchical logistic regression

In the hierarchical logistic regression (HLR) experiments, there were m groups (logistic regression
problems) each with n covariate/response pairs, so that Di = {(xi,j , yi,j)}, xi,j ∈ Rd, and yi,j ∈
{0, 1}, for i = 1 to m, and j = 1 to n. Each group had its own unobserved vector of regression
coefficients wi ∈ Rd, with density p(wi | z) parameterised by global parameters z.

Synthetic data with MVN prior In the synthetic experiment, we had m = 16 groups, with d = 4
and n = 20. F was an MVN family, and z = (µ1, log σ

2
1 , ..., µ4, log σ

2
4) ∈ R8 corresponded to

the means and log-variances for the independent normal density p(wi | z) =
∏

jN (wi,j | µj , σ
2
j ).

8

The prior on z had density p0(z) = N (0, diag((4, 2, 4, 2, . . .))), where diag(.) constructs a diagonal
matrix from its vector-valued argument. The dataset was generated using the same procedure as
Vehtari et al. [48].

Political survey data with NIW prior In the political survey data experiment, F was a normal-
inverse-Wishart (NIW) family of distributions, and z = (µ, vech(Σ)) was used to parameterise
the group-level coefficient density p(wi | z) = N (wi | µ,Σ). p0 was a NIW prior on µ and Σ,
with parameters µ0 = 0, ν = 9, λ = 1, and Ψ = I (following Wikipedia notation). We used a
log-Cholesky parameterisation of Σ for the purposes of sampling. The dataset consisted of binary
responses to the statement “Allow employers to decline coverage of abortions in insurance plans
(Support / Oppose)”. We constructed m = 50 regression problems, corresponding to the 50 US
states, and truncated the data so that there were exactly n = 97 responses for each state. We used 6
predictor variables from the dataset, corresponding to characteristics of a given survey participant.
The predictors were binary variables conveying: age (3 groups), ethicity (2 groups), education (3

8Note that in this section we use µ to denote the mean of a normal or multivariate normal distribution. This
should not to be confused with the usage for exponential family mean parameters in the main text.
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groups) and gender. We also included a state-level intercept to capture variation in the base response
level between states, so that d = 7. This setup is based on one used by Lopez-Martin et al. [33]. The
data is available at https://github.com/JuanLopezMartin/MRPCaseStudy.

J.2 Cosmic radiation model

In this experiment, there were m nonlinear regression problems, each corresponding to a model of
the relationship between diffuse galactic far ultraviolet radiation (FUV) and 100-µm infrared (i100)
emission in a particular sector of the observable universe.

The nonlinear regression model for sector i had parameters wi ∈ R9. The m regression problems were
related through common hyperparameters z ∈ R18, which parameterised the section-level densities
p(Di, wi | z) where Di is the observed data for sector i. F was the family of MVN distributions,
and the prior on z ∈ R18 had density p0(z) = N (0, 10I). The specifics of p(Di, wi | z) are quite
involved and we refer the reader to Vehtari et al. [48] for further details.

Vehtari et al. [48] applied this model to data obtained from the Galaxy Evolution Explorer telescope.
We were unable to obtain the dataset, and so we generated synthetic data using hyperparameters that
were tuned by hand to try and match the qualitative properties of the original data set (see Appendix
N for examples). We used a reduced number of m = 36 sites and n = 200 observations per site to
reduce computation, allowing us to perform a comprehensive hyperparameter search.

Using the conventional site parameter initialisation of λi = 0 ∀ i resulted in most runs of EP failing
during early iterations. We found that this was resolved by initialising with the method used by
Vehtari et al. [48] for SNEP, that is, λi = (2m)−1η0 ∀ i, and so we used this initialisation for all
methods. We note, however, that the performances of EP-η and EP-µ were largely unaffected by this
change.

J.3 Neural response model

In this experiment we performed inference in a hierarchical Bayesian neural response model, using
recordings of V1 complex cells in an anaesthetised adult cat. 10 neurons in a specific area of cat V1
were simultaneously recorded under the presentation of 18 different visual stimuli, each repeated
8 times, for a total of 144 trials. Neural data were recorded by Tim Blanche in the laboratory of
Nicholas Swindale, University of British Columbia, and downloaded from the NSF-funded CRCNS
Data Sharing website https://crcns.org/data-sets/vc/pvc-3 [4].

z = (µ, vech(Σ)) ∈ R65 was used to parameterise N (log rj ;µ,Σ), the density for latent log firing
rates in trial j, for j = 1, . . . , 144. p0 ∈ F was NIW with parameters µ0 = 1, ν = 12, λ = 2.5, and
Ψ = 1.25I (again following Wikipedia notation). The observed spike count for neuron k in trial j,
xj,k ∈ N, was modelled as Poisson(cj,k, exp(rj,k)), for j = 1, . . . , 144, k = 1, . . . , 10. We again
used a log-Cholesky parameterisation of Σ for sampling.

We grouped trials together into m = 8 batches of n = 18 trials, so that
wi = (log r180(i−1)+1, . . . , log r180i) ∈ R180 was the concatenation of log firing rates for all 10 neu-
rons across 18 trials, withDi = {(xj,1, . . . , xj,10)} the observed spike counts, for j = 180(i−1)+1
to 180i.

K Hyperparameter sensitivity

In this appendix, we examine the effect of varying hyperparameters of EP and EP-η on the synthetic
hierarchical logistic regression experiment of Section 4. The results for EP-µ are similar to those of
EP-η and so we do not consider it separately here.

EP In the left panel of Figure 5 we show the effect of varying the number of samples used for
estimating updates in EP – more accurate regions of the frontier generally require more samples.
The middle panel, similarly, shows the effect of varying the step size, and the right panel shows
the effect of varying the thinning ratio τ . Together these plots illustrate the difficulty of tuning EP
in stochastic settings – tracing out the frontier is a three-dimensional problem. For example, to
achieve the best accuracy within a compute budget of 107 steps, the practitioner would need to set
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400 < nsamp ≤ 500, 0.1 < α ≤ 0.3, and τ = 2, and any deviation from this would seemingly result
in suboptimal accuracy.
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Figure 5: The effect of varying EP hyperparameters. Partial Pareto frontiers show the number of
NUTS steps (x-axis) against the KL divergence from p to an estimate of the optimum (y-axis).

EP-η In the left panel of Figure 6 we show the effect of varying the number of samples used for
estimating updates in EP-η – the frontier is traced out with nsamp = 1. We note however that the
difference between nsamp = 1 and nsamp = 10 is relatively small, and so it may be sensible to choose
nsamp > 1 to make efficient use of parallel hardware, or to minimise per-iteration overheads (see
Appendix I). The middle panel, similarly, shows the effect of varying the step size, with more accurate
regions of the frontier corresponding to a smaller step size. This also suggests that in practice it may
make sense to set ϵ relatively large at first and then gradually decay it to improve the accuracy. Finally,
the right panel shows the effect of varying ninner, the number of inner steps performed per outer
update. ninner > 1 corresponds to using EP-η in “double-loop” mode. We did not find it necessary to
increase ninner above one to obtain convergence in our experiments, but Figure 6 (right) demonstrates
that doing so would have a relatively small impact on performance. Together these plots illustrate that
hyperparameter tuning for EP-η is relatively straightforward. The frontier can be largely be traced
out by varying ϵ, and is relatively insensitive to nsamp and ninner.
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Figure 6: The effect of varying EP-η hyperparameters. Partial Pareto frontiers show the number of
NUTS steps (x-axis) against the KL divergence from p to an estimate of the optimum (y-axis).

L Pareto frontiers in wall-clock time

In Figure 7, we show Pareto frontiers, with the y-axis showing the lowest KL divergence achieved by
any hyperparameter setting, and the x-axis shows the cumulative number of seconds elapsed – that
is, the wall-clock time equivalent of Figure 2. These results are in broad agreement with those of
Figure 2, which suggests that the sampling cost does indeed dominate the computational overheads
of EP-η and EP-µ in these experiments. The wall-clock time results for EP-η and EP-µ would likely
be improved by using more than one sample per update, by making more efficient use of hardware
resources and minimising per-iteration overheads.

We note that these times are necessarily implementation and hardware dependent. We did not make
particular efforts to optimise for wall-clock time. In Appendix I we discuss approaches for minimising
per-iteration overheads. These would likely improve wall-clock time performance for all methods, but
should disproportionately favour EP-η and EP-µ, due to their frequent updates and larger per-iteration
overheads compared to EP and SNEP.
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Figure 7: Pareto frontiers showing the number of seconds elapsed (x-axis) against the KL divergence
from p to an estimate of the optimum (y-axis). Each point on the plot marks the lowest KL divergence
attained by any hyperparameter setting by that time. Error bars mark the full range of values for the
marked hyperparameter setting across 5 random seeds.

M Comparison with conjugate-computation variational inference (CVI)

Our focus in this work has been on developing improved methods for performing EP when the updates
must be estimated with noise. A major motivation for this setting is that it potentially enables EP to
be used as a so-called black-box inference method, significantly expanding the set of models it can be
applied to. EP has several computational advantages over direct MCMC approaches, the prevailing
dominant class of black-box mehods, as discussed by earlier works [52, 17, 48]. There is another
popular class of black-box inference methods however; namely, those of variational inference (VI).9
In order to understand the trade-offs involved in using EP and its variants over VI, we performed
experiments to explore the relative strengths and weaknesses of EP-η and conjugate-computation
variational inference (CVI) [31], an efficient VI method.

Experimental setup We used EP-η and CVI to perform approximate Bayesian inference using the
same hierarchical logistic regression model (with MVN prior) and synthetic dataset as Section 4. For
our evaluation metrics, we used both forward and reverse KL divergences between the current (MVN)
approximation, and a MVN “target” distribution. The target distribution was a MVN distribution
fitted using 500,000 samples from the posterior, obtained by running NUTS for 1 million samples
and then discarding the first half as a warm-up. For CVI, we used a structured MVN approximation
that had the same conditional independence structure as the true posterior – that is, it modelled all
pairwise dependencies within z, within each wi, and between z and each wi, but did not model direct
dependence between wi, wj for i ̸= j. We used 500 random hyperparameter settings for each method,
using the search spaces described below. Unless stated otherwise (below), all other details were as
described in Appendix J.

Hyperparameter search spaces For EP-η we used the same hyperparameter search space as
described in Section J. For CVI, the step size was drawn log-uniformly in the range (10−5, 1), and
the number of samples used to estimate the update was drawn log-uniformly in the range [.5, 100.5)
and then rounded to the nearest integer. The site parameters for CVI were initialised to be the

9Expectation propagation is also a variational inference method, but we follow convention here by using
variational inference to refer specifically to variational optimisation of the free energy / evidence lower bound.
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parameters of a zero-mean MVN distribution with scaled identity covariance matrix, with the scale
drawn log-uniformly from (10−5, 105).

Wall-clock time performance comparison We compared the wall-clock time performance of
EP-η and CVI, with the former using NUTS as the underlying sampler. For both methods, we chose
the hyperparameters that gave the lowest reverse divergence between the approximation and the
MCMC target distribution after 100 seconds. The results of this experiment are shown in the left
panel of Figure 3. We can see that EP-η converges at least one order of magnitude slower than CVI
on this problem, when measured in wall-clock time. This difference is largely due to the relative cost
of drawing samples for the two methods. While CVI also uses samples to estimate its updates, it uses
samples from the current MVN approximation, which are cheap to generate using standard methods.
EP-η on the other hand (as with other EP variants), requires samples from the tilted distributions
to estimate the updates, and in this experiment we used NUTS to draw those samples. Each NUTS
sample can involve many evaluations of the energy function gradient, and furthermore, because
MCMC samples are generally autocorrelated, the cost of drawing approximately independent samples
can be even higher. We used NUTS to be consistent with prior work, and because our focus in this
work has primarily been the relative performance of different EP variants, we did not make particular
efforts to improve the performance of the underlying samplers, beyond tuning their hyperparameters
in a fairly standard manner. However, all of the EP variants considered in this paper, including EP-η,
are agnostic to the choice of sampling kernel used, and we believe there is scope to significantly
improve the efficiency of the underlying samplers, for reasons we briefly discuss in Section 6.

Sample efficiency In order to decouple the performance of EP-η from that of the underlying sampler,
we repeated the experiment using an “oracle” sampling kernel for EP-η. This oracle kernel was
simply NUTS but with a thinning ratio of 100, so that each sample was an approximately independent
sample from the tilted distribution. We then compared EP-η and CVI using the same metrics as the
previous experiment, but with “time” measured in samples. We chose the hyperparameter setting for
each method that achieved the lowest reverse KL divergence after 1,500 samples. When measured on
this basis we see that the convergence speeds of CVI and EP-η are roughly equivalent, demonstrating
that the sample efficiency of the two methods are similar. This should not be too surprising, as CVI is
(mathematically, but not algorithmically) equivalent to the limiting case of power EP (as βi →∞)
[11, 51].

Approximation quality Figure 3 demonstrates that EP-η is able to achieve a more faithful ap-
proximation of the target distribution when measured by either the forward or reverse KL. At first
it may seem surprising that EP is able to obtain a lower reverse KL divergence than CVI, but there
are two reasons for this apparent anomaly. First, with EP, we have a MVN approximation for z
only, with the approximate posterior over local variables (wi for i = 1, . . . ,m) represented only
implicitly with samples. CVI on the other hand necessarily optimises a joint MVN over all variables,
and the z marginal of the optimal VI posterior over all variables is not the same as the optimal VI
posterior over z. The second reason is that our target distribution is essentially a moment-matched
MVN approximation of the true posterior, which would naturally tend to favour the forward KL
divergence that is (approximately) targeted by EP. Nevertheless, a qualitative assessment of the
pairwise marginals, as seen in the two rightmost panels of Figure 3, shows that the true posterior
is more faithfully approximated by EP-η than CVI, with the latter significantly underestimating
uncertainty in the inter-group variability parameters, {log σi}i. The full set of pairwise posterior
marginals can be seen in Figure 8. Note that the CVI approximation appears more constrained than
might be expected based on the marginal plots alone. This is due to the zero-avoiding nature of the
reverse KL divergence – non-Gaussianity in one variable can constrain the marginal distributions
of others, particularly when there is strong dependence. The local variables, {wi}, can have both
significant non-Gaussian posterior structure, and strong dependence on {log σi}i.

N Cosmic radiation data

Vehtari et al. [48] used a hierarchical Bayesian model to capture the nonlinear relationship between
diffuse galactic far ultraviolet radiation (FUV) and 100-µm infrared emission (i100) in various sectors
of the observable universe, using data obtained from the Galaxy Evolution Explorer telescope. We
were unable to obtain the dataset, and so we generated synthetic data using hyperparameters that
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Figure 8: Contours of pairwise posterior marginals for the hierarchical logistic regression experiment
of Section 4, overlaid with the MVN approximations of EP-η, CVI, and one obtained by fitting
directly to MCMC samples.

were tuned by hand to try and match the qualitative properties of the original data set. Example data
generated using these hyperparameters is shown in Figure 9. For comparison, see Figure 9 of Vehtari
et al. [48].
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Figure 9: Synthetic data, generated using the cosmic radiation model of Vehtari et al. [48]. Each plot
shows galactic far ultraviolet radiation (FUV) versus infrared radiation (i100) for a single sector of
the observable universe.
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advantages in the results of Section 4, and Appendices K and L. The abstract and introduction
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to be estimated with MC samples.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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judgment and recognize that individual actions in favor of transparency play an impor-
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chosen hyperparameter settings over 5 random seeds, which were used to seed the MCMC
samplers, as we state in Section 4.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix J gives details of the hardware used to run the experiments, as well
as the number of runs carried out. This, combined with the wall-clock time results in L, give
an estimate of the compute resources needed to recreate our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and believe our work confirms with
it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper proposes ways to improve the practicality and efficiency of existing
probabilistic inference methods, and we cannot foresee direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe there is a reasonable risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, see Appendix J.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have made our experiment code public, but do not consider it one of the
paper’s main contributions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourced experiments or research involving human subjects were
conducted as part of this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No research involving human subjects was conducted as part of this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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