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ABSTRACT

In this paper we investigate the connection of topological similarity between
source and target tasks with the efficiency of vanilla transfer learning (i.e., transfer
learning without retraining) between them. We discuss that while it is necessary
to have strong topological similarity between the source and target tasks, the other
direction does not hold (i.e., it is not a sufficient condition). To this extent, we
further investigate what can be done in order guarantee efficient feature represen-
tation transfer that is needed for such vanilla transfer learning. To answer this, we
provide a matrix transformation based homeomorphism (i.e., topology preserving
mapping) that significantly improves the transferability measures while keeping
the topological properties of the source and target models intact. We prove that
while finding such optimal matrix transformation is typically APX-hard, there
exists an efficient randomised algorithm that achieves probably correct approxi-
mation guarantees. To demonstrate the effectiveness of our approach, we run a
number of experiments on transferring features between ImageNet and a number
of other datasets (CIFAR-10, CIFAR-100, MNIST, and ISIC 2019) with a variety
of pretrained models (ResNet50, EfficientNetB3, and InceptionV3). These nu-
merical results show that our matrix transformation can increase the performance
(measured by F-score) by up to 3-fold.

1 INTRODUCTION

Transfer learning is a subarea of machine learning where the main goal is to identify the most effi-
cient ways to reuse pretrained models for new tasks for new tasks, typically in new domains (Pratt,
1996; Daume III & Marcu, 2006; Goodfellow et al., 2016). With the significant increase in both
the size of datasets and models, transfer learning methods are becoming more essential, due to the
fact that they can significantly reduce the cost of model training for the new task, e.g., by using
the learnt parameters of the pretrained model as an initial starting point for the training process
on the new task (Zamir et al., 2018; Achille et al., 2019; Bao et al., 2019; Nguyen et al., 2020).
Therefore, it is no surprise that much work has been conducted on transferability estimation, that
is, to quantitatively estimate how efficient it is to transfer a priori learned knowledge from one task
to another (Ben-David et al., 2007; Mansour et al., 2009; Tran et al., 2019; Nguyen et al., 2020).
Typically, theoretical results regarding transferability estimation involve the divergence between the
input distributions associated with each domain. More specifically, the more alike both distributions
are in terms of statistical distance, the better the generalisation bound. As a result, much research
has focused on learning feature transformations of the target domain so that both input distributions
are closer in terms of statistical divergence (Ben-David et al., 2007; Mansour et al., 2009).

However, work within this line of research, as well as within the broader transfer learning field
in general, typically assume that there is also a retraining phase during the transfer process. The
main reason for this is that even with a good source task with high transferability measures, reusing
it without retraining often results in poor performance, as these measures only provide theoretical
generalisation bounds. Therefore, these transferability measures should only be used as an indi-
cator whether the learnt feature representation of a source task can be a good initialisation for the
(re)training process for the target task (Tran et al., 2019; Nguyen et al., 2020).

In this paper we consider a slightly different problem of vanilla transfer learning, where retraining is
not possible in the transfer process, due to either lack of resources such as compute or time. This set-
ting occurs in many real-world applications, ranging from edge computing where classification tasks
are run on local and computationally limited devices, to rescue drones in disaster response scenarios
where there is no time to retrain the model to adopt to the new situations, or to exploration robotics
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Figure 1: The integration of RMMS, our proposed linear homeomorphism, into the vanilla transfer
learning pipeline.

where both compute and time are sparse resources. As existing techniques do not provide good
solutions for transfer learning without retraining, or do optimise theoretical measures that are not
computable in practice (Nguyen et al., 2020), we ask the question whether there is efficient vanilla
transfer learning method that is both supported by theoretical justification and practical efficiency.

Recently, a number of empirical works suggest topological similarity (we formalise this notion in
Section 2) as a means for measuring transferability between source and target tasks (Ramamurthy
et al., 2019). More specifically, models with decisions boundaries that are topologically similar
to that of the target task often outperform models with decision boundaries which are topological
dissimilar. Unfortunately, to date there have not been any theoretical results which explains this
empirical phenomena.

1.1 OUR CONTRIBUTIONS

1. Topological distance vs. statistical distance. Motivated by this line of observations, we aim
to provide a theoretical investigation on whether topological similarity will lead to efficient fea-
ture representation transfer. To do so, we first investigate how the topological and statistical dis-
tances between input distributions are related. In short, the bottleneck stability theorem tells us
that the topological distance between any two functions is bounded above by their functional dis-
tance (Cohen-Steiner et al., 2006). As a result, our first contribution is to show that small topological
distance between distributions forms a necessary condition for their statistical similarity. This ex-
plains why the topological similarity of decision boundaries can be so effectively used for vanilla
transfer learning.

2. Computationally efficient linear homeomorphism. Note that the necessary condition above
does not guarantee that efficient vanilla transfer learning is achievable when there is a topologi-
cal similarity. Therefore, to further improve the performance of vanilla transfer learning, we ask
whether it is possible to reduce the statistical distance while keeping the topological similarity intact
(as the latter might contain useful information that can be utilised in explainability or further data
processing (Naisat, 2020)). To address this question, we design of an algorithm for learning a feature
transformation of input examples in the target domain, with the goal of reducing the statistical di-
vergence between source and target input distributions. More precisely, our algorithm aims to learn
a linear homeomorphism which reduces the statistical distance of the target input distribution to the
input distribution of the source domain. We choose to learn a homeomorphism so that topological
similarities between both distributions are preserved in their entirety, and restrict ourselves to lin-
ear transformations with computational tractability in mind. To achieve this, we first approximate
the problem of finding optimal linear homeomorphism with a minmax discrete optimisation model.
While we conjecture that the solving latter is likely to be difficult (we prove that a restricted version
of this problem is APX-hard), we provide an algorithm that finds a near optimal solution with high
probability.

3. Application to vanilla transfer learning. In our third contribution, we apply our linear home-
omorphism to a number of vanilla transfer learning cases. In particular, we test how our proposed
homeomorphism performs on transfer learning tasks from ImageNet to CIFAR-10, from ImageNet
to Fashion MNIST, and from ImageNet to the ISIC’19 skin cancer dataset, each with EfficientNetB3,
ResNet50, and Inception V3 architectures. The pipeline of integrating our method into a pretrained
model is shown in Figure 1. With extensive numerical evaluations, we show empirically that apply-
ing our feature transformation leads to a massive improvement in target domain performance. From
ImageNet to CIFAR-10/100 we have an increase in performance of 269.4%, to MNIST an increase
in performance of 114.1%, and to ISIC’19 an increase in performance of 98.3%. For further details
on our pipeline and numerical results see Section 5.
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2 RELATED WORK

Topological Data Analysis. Persistence diagrams provide a planar representation of the topology
of an underlying dataset with strong theoretical guarantees. As such, there has been a research effort
to integrate this additional topological information into machine learning. Persistence diagrams can
be embedded into feature vectors or functional summaries for input into arbitrary machine learning
models (Adams et al., 2017; Bubenik, 2015; Rieck et al., 2019). There are also positive-definite
kernels defined on the space of persistence diagrams, allowing the use of persistence diagrams in
kernel methods (Reininghaus et al., 2015; Carrière et al., 2017). Machine learning has demonstrated
that learning application specific embeddings is generally far better than fixed vectorisation methods,
and indeed such techniques exist to learn embeddings of persistence diagrams as part of a layer in
deep learning (Hofer et al., 2017; 2019b; Carrière et al., 2020). Persistence diagrams and their
embeddings, collectively referred to as persistence-based summaries, can also be used as part of
a topological term in a loss function, either as a topological loss or for topological regularisation
(Chen et al., 2018; Gabrielsson et al., 2020; Clough et al., 2020). These topological loss terms have
also been used to topologically restrict the latent space in autoencoders (Hofer et al., 2019a; Moor
et al., 2020).

Topology has also been used to link the performance of pretrained models on new datasets. Guss &
Salakhutdinov (2018) empirically demonstrate that the topological complexity of decision bound-
aries is linked to the generalisation capability of the neural network. Ramamurthy et al. (2019)
show that if you choose pretrained classifiers with similar topological complexity to that of a dataset
then the pretrained classifier will perform better on the dataset than if you choose a classifier with
dissimilar topological complexity. Davies et al. (2020) cluster the persistence diagrams of the de-
cision boundaries of pretrained models and datasets and demonstrate that models perform better on
datasets that are associated to the same cluster centre. Note that these works choose a pretrained
model that has a similar topology. We only have access to a single pretrained model, and we ex-
plicitly do not change the topology of its decision boundary. In fact, we learn a homeomorphism (a
topology-preserving map) on its decision boundary. Meanwhile,

Transfer Learning. The approach we describe in this work falls into the class of feature repre-
sentation transfer methods. Feature representation transfer methods attempt to learn feature repre-
sentations of both the source and target domain which reduce the distributional divergence between
domains. For example Long et al. (2014) proposed an algorithm for feature learning which aims
to jointly adapt the marginal and conditional distributions of both domains via a dimensionality re-
duction procedure. Ding et al. (2018) learn robust features across domains in a reproducing kernel
Hilbert space via maximum mean discrepancy. Numerous works (Courty et al., 2014; Yan et al.,
2018) leverage optimal transport techniques to ensure the input distribution of the target domain is
close to the input distribution of the source domain in terms of Wasserstein distance. In contrast
to these approaches, our methodology is predicated on the assumption that the topological distance
between both input distributions is low. Our method focuses on transforming the input space of the
target domain via a simple and tractable linear hoemomorphism as a result.

Note that all approaches for developing good feature representations are predicated on theoretical
bounds for domain adaption. That is, generalisation bounds specifying how similar the risk of a
hypothesis in the source domain is to its risk in the target domain. Nearly all such bounds rely on
some measure of statistical divergence between distributions. Ben-David et al. (2007) use the A-
distance, a restricted version of total variation distance, and show that efficient domain adaptation is
impossible when the A-distance is large. Building upon these results, Mansour et al. (2009) derive
generalisation bounds for more general settings using a related distance known as the discrepancy
distance. Shen et al. (2018) devise methods for minimising the empirical Wasserstein distance be-
tween input distributions, whilst Wu & Zhuang (2020) develop for minimising the distance between
the characteristic functions of both distributions. In our work, we focus on minising the total varia-
tion distance between distributions, due to its straightforward and interpretation and its connection
to common statistical divergence measures for domain adaptation used in the literature.
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3 BACKGROUND

3.1 TOPOLOGICAL DATA ANALYSIS

In this section, we give a brief description of the elements of topological data analysis leveraged
throughout this paper. Our intent is not to be rigorous, but provide a conceptual overview of rele-
vant elements of the theory. We direct readers to Cohen-Steiner et al. (2006) for a more rigorous
exposition (we also provide some further definitions in Appendix D).

More precisely, we describe persistence diagrams, a key tool in topological data analysis for cap-
turing topological information regarding a point cloud or function. In particular, we will consider
persistence diagrams constructed from the sublevel sets of tame functions. In short, a persistence
diagram of a function D(f) ⊆ R̄, consists of pairs of real numbers indicating the birth and death
points of topological features possessed by sublevel sets of the function, in union with the diago-
nal. As a result, persistence diagrams, provide a succinct summary of the topological features of a
function.

Two persistence diagrams can be compared through the bottleneck distance.
Definition 3.1. The bottleneck distance between two multisets X and Y is dB(X,Y ) =
infγ supx ‖x− γ(x)‖∞ where x ∈ X and γ ranges over all bijections from X to Y .

Of particular interest is the bottleneck stability theorem, which implies that the bottleneck distance
between the persistence diagrams of two functions is upper bounded by their functional distance.
Proposition 1 (Main Theorem from Cohen-Steiner et al. (2006)). Let X be a triangulable space with
continuous tame functions f, g : X→ R. Then the persistence diagrams satisfy dB(D(f),D(g)) ≤
‖f − g‖∞.

Note that the bottleneck stability theorem provides an explicit link between the geometries of func-
tions and their topologies. More specifically, when the functions f and g play the role of probability
densities, the bottleneck stability theorem links statistical divergence to topology.

3.2 TRANSFER LEARNING

In this subsection, we will formalise the notion of transfer learning used throughout this paper,
largely following the notation of Ben-David et al. (2010). We define a domain as a pair, consisting
of a distribution D on an input space X and a labelling function f : X → [0, 1] indicating the
expected labelling for each member of the input space. For a given domain adaption problem, we
specify two domains, a source domain and a target domain. We denote by 〈DS , fS〉 and 〈DT , fT 〉
the source and target domains respectively.

A hypothesis is a function, h : X → {0, 1}, from the input domain to the unit interval. We define
the source error, εS(h), of a given hypothesis as follows:

εS(h) = Ex∼DS

[
|h(x)− fS(x)|

]
. (1)

That is, the source error of a given hypothesis is the probability it disagrees with the given labelling
function. We define the target risk εT , in a similar manner. We adopt the general definition of
transfer learning in Pan & Yang (2009):
Definition 3.2. (Transfer Learning) Given source domain 〈DS , fS〉 and a target domain 〈DT , fT 〉,
transfer learning aims to improve the learning of the predictive function fT using knowledge of the
source domain.

Additionally, we will assume that we have access to a labelled training sample from both domains.
In what follows, our goal will be to learn a good classifier for the target domain via feature repre-
sentation transfer from source domain. That is, we will attempt to use the source domain to learn a
good feature representation for learning the labelling function for the target domain, fT .

4 A TOPOLOGICALLY MOTIVATED SCHEME FOR TRANSFER LEARNING

Intuitively, the usefulness of source domain in determining a good labelling function for a target
domain depends on two factors: (i) how similar the input distributions for both domains are and (ii)
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the similarity between the labelling functions in both domains. This intuition is typically reflected
in statistical results bounding the performance of a hypothesis in the target domain relative to its
performance in the source domain. For example, consider the following prototypical statistical
transfer learning bound proposed by Ben-David et al. (2007):

εT (h) ≤ εS(h) + dTV (DS ,DT ) + min{EDS
[|fS(x)− fT (x)|] ,EDT

[|fS(x)− fT (x)|]}

where dTV denotes the total variational distance. Of course, theoretical results of this form motivate
the use of source domains with input distributions that have small divergence to the input distribution
of the target domain. Instead, we propose the selection of source domains based on topological
similarity. In other words, we aim to find a source domain whose bottleneck distance to the target
domain is small.

We do so for two reasons. Firstly the bottleneck stability theorem tells us that the total variational
distance between distributions is lower bounded by the bottleneck distance between their corre-
sponding persistence diagrams. As a result, low bottleneck distance is a necessary condition for low
total variational distance between distributions. Secondly, we conjecture that learning the correct
topology for the target domain forms the main difficulty when attempting to generalise well.

Such insights present a simple scheme for learning the predictive function fT . First, we identify
feature mappings for which the input distributions of both the source and target domains are close in
terms of bottleneck distance. Given this feature mapping, we then apply homeomprhisms to try to
reduce the distributional divergence further, whilst preserving the topological similarities between
the distributions.

In what follows, we will outline a computationally cheap method for transfer learning such a home-
omorphism. As previously mentioned, we assume that we have access to labelled training examples
from both the source and target domains and denote byDS the training sample for the source domain
and DT the training sample from the target domain.

Additionally, let φ : X → Rn denote a feature map learned from DS . For example, φ could be
the outputs from an intermediate layer of a deep neural network trained to classify examples in
the source domain. We assume that the distributions of feature mappings ΦS and ΦT are similar
topologically. That is, ΦS and ΦT are close in bottleneck distance. Our goal is then to reduce the
total variational distance between ΦS and ΦT whilst keeping the topological distance small. As
a result, from now on, we restrict our attention to homeomorphisms on the feature space. More
specifically, our goal is to learn a homeomorphism which reduces the total variational distance be-
tween ΦS and ΦT . Of course, we cannot hope to optimise over all possible homeomorphisms, as
this is tantamount to optimising over all continuous bijective open mappings. Instead, we choose
to focus on a restricted family of homeomorphisms. More precisely, we consider the set of linear
homeomorphisms, i.e. the set of full rank matrix transformations on the space Rd.

4.1 LEARNING A LINEAR HOMEOMORPHISM

In order to learn a reasonable linear homeomorphism we employ a randomised algorithm as follows.
First of all, using both the training sets we estimate the probability densities pS and pT of both ΦS
and ΦT . In our experiments, we employ kernel density estimation for this purpose. Let p̂S and p̂T
denote the kernel density estimators of pS and pT respectively. Moreover, let φ(DT ) = {φ(xi)}mi=1
denote the set of feature vectors generated by the domain training set DT .

Since computing the total variation distance between two continuous densities requires integrating
over the entire feature space, which is computationally intractable for problems of high dimension,
we instead consider the same problem for a pair of related discrete distributions with support φ(DT ).
More specifically we compute the discrete distribution p̃S by considering only the values of the
density p̂S and renormalising:

p̃S(φi) =
p̂S(φi)∑m
j=1 p̂S(φj)

Of course, p̃T is defined in a similar fashion. Note that computing the total variation distance
between p̃S and p̃T is simple:

dTV (p̃S , p̃T ) = max

 ∑
φi : p̃S(φi) ≥ p̃T (φi)

(p̃S(φi)− p̃T (φi)) ,
∑

φi : p̃S(φi) < p̃T (φi)

(p̃T (φi)− p̃S(φi))
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Next we apply the following heuristic method for finding a good transformation (i.e., full rank
matrix transformation). Let ui ∈ Rd+1 denote the vector (φi, p̂S(φi) − p̂T (φi)) for each feature
vector φi ∈ DT . Clearly,

dTV (p̃S , p̃T ) = max


m∑

i : ui,d+1≥0

ui,d+1,

m∑
i : ui,d+1<0

−ui,d+1


Now, consider any matrix transform A ∈ Rd+1×d+1 operating on the vectors ui. We consider the
following optimisation problem:

min
A

max

 ∑
i : Ad+1ui ≥ 0

Ad+1ui,
∑

i : Ad+1ui ≤ 0

|Ad+1ui|

 (2)

s.t. ATA = I

This problem has the following interpretation. The most common idea to “bring” ΦS closer to
ΦT is to fix the latter while apply a homeomorphism to the former, as this can be done by e.g.,
retraining the source model. However, the resulting homeomorphism will not be linear, and the cost
of retraining is not cheap either, which is what we want to avoid. Instead, we rely on the following
idea. Notice that if we consider the point cloud {ui} as a manifold, then the hyperplane spanned by
{φi} divides that manifold in to “positive” and “negative” half spaces. As discussed above, the total
variation distance between ΦS and ΦT is either the sum of the points on the positive side or the sum
of the other points on the negative side. This implies that if a transformation of the manifold/point
cloud {ui} can balance these two sides and make both of the sums small, then hopefully it will be
a good heuristic for a good homeomorphism. This idea is formalised in the problem described in
Eq. equation 2. We refer to this problem as MINMAXSUM.

Unfortunately MINMAXSUM is computationally hard. While the exact complexity class of MIN-
MAXSUM is not known, we prove that solving a slightly more restrictive version is indeed APX-
Hard. In particular, we define MINMAXSUM-K as follows:

min
A

max
S∈2{ui},|S|≤K

∑
i∈S

Ad+1ui (3)

s.t. ATA = I

where S ∈ 2{ui} is a set of ui with maximum cardinality of K. It is clear that our MINMAXSUM
problem is equivalent to the case of K =∞ (or unbounded). We state the following:
Theorem 1. MINMAXSUM-K for K <∞ is APX-Hard.

As MINMAXSUM-K is difficult to solve, we conjecture that MINMAXSUM is also a computa-
tionally hard problem. In light of this, we turn to heuristics with provable guarantees. In particular,
we provide a probably approximately correct learning (PAC) guarantee for a randomised algorithm,
which proceeds as follows.

To begin, notice that the main task is to identify the optimal A∗d+1. The remainder of the ma-
trix A will be generated by simply generating a orthanormal basis from starting with the chosen
candidate vector A∗d+1, by e.g., using the Gram-Schmidt orthonormalization process (Trefethen &
Bau III, 1997). Given this, our randomised algorithm, called RMMS (for randomised minmax sum)
first generates random unit vectors n1, . . . , nK . The vectors nk represent candidate choices for the
variables Ad+1. In what follows, we will show that once the number of candidate vectors K is
sufficiently large, there will be a candidate close in performance to the optimal vector A∗d+1. Let
Sk =

∑
i : n>k ui>0 n

>
k ui denote the sum of inner products of nk with all ui such that n>k ui > 0.

Let k∗ denote the index with smallest of such sums, i.e. k∗ = arg mink Sk. The following theorem
guarantees that. with high probability, nk∗ will perform similarly to A∗d+1.
Theorem 2. With parameters θ and K, RRMS returns a solution n∗K which guarantees approxima-
tion error of

ε = max
S∈2{ui}

∑
i∈S

n∗Kui − min
Ad+1

max
S∈2{ui}

∑
i∈S

Ad+1ui ≤
√

2m sin(θ/2)

with a probability of at least δ = exp
(
− sink−1(θ)

3
√
d−1 K

)
.
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Note that, in order for a linear operator A to be a homeomorphism, it is necessary and sufficient
to ensure that A is invertible. Due to the randomised nature of RMMS, the an invertible matrix is
returned almost surely. We discuss this observation more in Appendix A.3.

5 NUMERICAL RESULTS

We wish to demonstrate that transforming our data using the linear transformation can improve the
performance of vanilla transfer learning. That is, we can significantly improve the performance of
a pretrained model on a new task without any additional training. To do so, we apply the proposed
linear homeomorphism which is learnt using RMMS to a pretrained source model as described in
Figure 1. In particular, we take the the chosen pretrained model (e.g., ResNet50), and apply on
both source and target datasets. We then take the feature map of each dataset, generated by the last
representation layer. We estimate the probability density functions for the positive and negative cases
using these feature maps, and use RMMS to compute a linear homeomorphism on the probability
distribution function, approximated by Gaussian kernel density estimation (KDE). Finally we use a
generative classifier to predict the labels.

5.1 EXPERIMENTAL SETUP

We demonstrate the efficacy of this approach on EfficientNetB3 (Tan & Le, 2019), ResNet50 (He
et al., 2016), and InceptionV3 (Szegedy et al., 2016), all pretrained on Imagenet (Deng et al., 2009).1
We transfer learn onto CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), MNIST (Deng, 2012), and
the ISIC 2019 skin cancer datasets (Sreena & Lijiya, 2019).2 Specifically, our scheme for setting up
transfer learning tasks is as follows. We download a model that has been pretrained on ImageNet.
Given a new dataset to transfer learn onto, we choose a specific class from that dataset and use it to
create a binary dataset: the task is to identify whether an image is from the specified class. For each
dataset, we do this for 10 different classes. We then compute the precision (proportion of correctly
classified images) before and after applying our homeomorphism, and see a significant improvement
in performance by applying our approach, as shown in Table 4.

5.2 NUMERICAL EVALUATION

We initially tested our vanilla transfer learning pipeline from Imagenet to CIFAR-10 and CIFAR-
100. We found that we could improve accuracy (measured by F-score) by 3.69-times without train-
ing (Tables 1 and 4). This is mainly due to the fact that our method significantly improves the
sensitivity of the classification process (the improvement is typically a 4 to 5-fold), while precision
is not decreased much (33% decrease on average). A more detailed visualisation of the improvement
in sensitivity can be seen in Figure 2 (due to space limitations we defer the visualisation of changes
in precision to the appendix). This results imply that before applying our linear transformation, the
pre-trained network would reject most of the data with positive label. After the applying the linear
transformation, however, most of the positive labels will be correctly detected, while the number of
false positive cases is still being kept moderately low.

However, ImageNet and CIFAR-10 have significant overlap in the classes; for example, airliner
corresponds to airplane. In this case, it seems that our transformation helps map the CIFAR-10
feature vectors to a form more recognisable as ImageNet images. To challenge our approach more
we next tried to transfer learn from ImageNet to MNIST. This is a much more challenging scenario,
as no categories in ImageNet are relevant to identifying handwritten digits. Despite this, we find
our approach still improves performance on average by by 73% (EfficientNetB3), 114% (Resnet50),
and 91% (InceptionV3), respectively (see Tables 2 and 4 for more details).

Finally, we try transfer learning from ImageNet to the ISIC 2019 skin cancer dataset. Similarly to
the MNIST case, this is also a challenging task. This is reflected when we inspect how ImageNet
interprets our dataset: each image is simply classified as a tick (Figure 3). Despite this, our approach
is still able to make an average additional improvement of 70.4% (Tables 3 and 4). For the latter 2
datasets, the trend is the same as in CIFAR-10 and CIFAR-100. That is, our method significantly
improves the sensitivity of the classication task, while keeping the precision at an acceptable level.

1Weights downloaded from https://keras.io/api/applications/
2ISIC’19 is available under a CC-BY-NC licencse and ImageNet is available under an Apache 2 license,

and the rest of the models/pretrained networks are available under an MIT license.
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Table 1: Accuracy (F-score values) of EfficientNetB3, ResNet50, and InceptionV3 trained on Ima-
geNet when used to classify the given category in CIFAR-10, before and after applying our linear
homeomorphism module.

F-score Air Auto Bird Cat Deer Dog Frog Horse Ship Truck

EfficientNetB3 Before 0.290 0.350 0.172 0.257 0.296 0.187 0.322 0.353 0.318 0.661
After 0.733 0.785 0.737 0.717 0.476 0.764 0.752 0.747 0.698 0.750

ResNet50 Before 0.240 0.457 0.141 0.102 0.115 0.260 0.175 0.142 0.194 0.628
After 0.726 0.662 0.681 0.502 0.700 0.712 0.668 0.726 0.759 0.726

InceptionV3 Before 0.406 0.496 0.145 0.120 0.179 0.337 0.164 0.451 0.367 0.758
After 0.745 0.758 0.630 0.668 0.712 0.662 0.745 0.706 0.737 0.757

Table 2: Accuracy (F-score values) of EfficientNetB3, ResNet50, and InceptionV3 trained on Im-
ageNet when used to classify the given category in MNIST, before and after applying our linear
homeomorphism module.

F-score 0 1 2 3 4 5 6 7 8 9

EfficientNetB3 Before 0.656 0.588 0.727 0.658 0.487 0.299 0.418 0.470 0.234 0.419
After 0.808 0.490 0.806 0.770 0.806 0.754 0.730 0.779 0.844 0.791

ResNet50 Before 0.572 0.492 0.320 0.184 0.261 0.789 0.248 0.551 0.247 0.718
After 0.740 0.891 0.782 0.651 0.730 0.804 0.723 0.771 0.787 0.745

InceptionV3 Before 0.644 0.434 0.347 0.395 0.326 0.272 0.252 0.517 0.197 0.822
After 0.736 0.773 0.671 0.763 0.538 0.765 0.659 0.427 0.699 0.748

Figure 2: Sensitivity results on CIFAR-100 dataset, trained with the Resnet50 model. It shows the
sensitivity of the network before and after using our linear transformation module.

Running time. We also compared the running time of our vanilla transfer learning method with that
of a full retraining process. In particular, the time needed for the calculations of our linear transfor-
mation requires 68 seconds on average, whereas a complete retraining requires 1296 seconds.

Application to multiclass classification. While we only discuss the binary classification case in this
paper, it is not difficult to extend our framework to the L-class classification tasks (where L > 2).
This can be easily done by running our vanilla transfer learning pipeline depicted in Figure 1 (and
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(a) Melanoma (ISIC’19) (b) Nevus (ISIC’19) (c) Tick (ImageNet)

Figure 3: We find that our approach works worst on the ISIC’19 skin cancer dataset. Under further
examination, most classes in CIFAR-10 and CIFAR-100 coincide with ImageNet classes, whereas
in ISIC’19 we find that skin cancer images are mostly associated with ticks which, although visually
similar, will not lead to features representative of the presence of skin cancer. This demonstrates
that our algorithm allows vanilla transfer learning to best utilise the information that is present in the
initial dataset, but it cannot learn new information.

Table 3: Accuracy of EfficientNetB3,
ResNet50, and InceptionV3 trained on Im-
ageNet when attempting to classify the given
category in the ISIC 2019 skin cancer dataset,
before and after applying our learnt linear
homeomorphism.

F-score Melanoma Nevus

EfficientNetB3 Before 0.491 0.648
After 0.589 0.768

ResNet50 Before 0.287 0.454
After 0.704 0.685

InceptionV3 Before 0.247 0.490
After 0.622 0.662

sep

Table 4: Percentage increase/decrease in F-
score when performing vanilla transfer learning
from ImageNet to the specified dataset with the
specified model when adding in our linear ho-
momeorphism.

Change (%) CIFAR-10/100 MNIST ISIC’19

EfficientNetB3 +117.6 +73.9 +19.2
ResNet50 +269.4 +114.1 +98.3
InceptionV3 +182.6 +91.2 +93.6

described in more detail in Appendix B) k − 1 times, then use the class l̂ = arg maxl P̂l(y = l|x)

where P̂l is the output probability distribution of the pipeline designed for label l.

Potential application domains of our approach. As discussed above, our method can significantly
improve the sensitivity while keeping precision at an acceptable level in vanilla transfer learning.
Furthermore, it can do this with a significantly less computational cost, compared to a full retraining
process (20-fold faster on average). Therefore, it can be useful in computationally constrained and
changing environments, where there is no time for retraining, and the goal is to correctly detect as
many positive labels as possible. Possible applications of this type of system include (but is not lim-
ited to): mobile device based early disease/infection detection (e.g., TBC, or other viral infections),
UAV based survivor detection in disaster response scenarios, and first line of outlier/malfunctioning
detection in operation critical systems (e.g., smart traffic control, and other smart IoT systems).

6 CONCLUSIONS AND FUTURE WORK

In this paper we investigate the information the topological distance between two domains provides
about the statistical discrepancy between them. More precisely, we hypothesised that topological
similarity forms a necessary condition for good vanilla transfer learning performance. Based on this
intuition, we then proposed a computationally cheap linear homeomorphism which significantly
improved the performance across a wide range of transfer learning tasks in our empirical experi-
ments. Note that, in this work, only linear homeomorphisms were considered. One direction for
future work is to find heuristics for other kinds of homeomorphism which may be able to capture
richer geometric relationships. Similarly, the explicit connection between the topological distance
and statistical divergence of distributions is not well understood. We believe that more empirical
experimentation is required in order to develop a theory which fully explains the relationship be-
tween these two quantities. In addition, our investigations indicates that topological summaries may
be useful in developing techniques for model selection and source domain selection, however more
work is needed in this area.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof. Consider the following special case of MINMAXSUM-K: Let K = 1 and for each i, we
have ||ui||2 = 1 where || · ||2 is the L2 norm. In this case, the problem becomes

min
Ad+1

max
i

∑
i∈S

Ad+1ui (4)

s.t. ||ui||2 = 1

||Ad+1||2 = 1

which is equivalent to the spherical discrepancy problem, which is known to be APX-hard (Jones &
McPartlon, 2020).

Now, for any K > 1, we reduce the problem of spherical discrepancy to MINMAXSUM-K as
follows. For an arbitrary problem instance of the latter with m vectors, we generate another (K−1)
copy of each vector. These, together with the original ones, we have Km vectors. Consider the
MINMAXSUm-K problem instance on these Km vectors. It is easy to prove that a solution of this
MINMAXSUm-K instance is optimal if and only if it is also the optimal solution of the original
spherical discrepancy instance. This concludes the proof.

Remark. Consider matrix U which has its ith column as ui. It is easy to show that MINMAXSUM
can be rewritten as follows:

min
x

max
y

xTUy (5)

s.t. ||x||2 = 1

||y||∞ = 1

where || · ||∞ is the max-norm, and x and y are (d + 1)-dimensional and m-dimensional vectors,
respectively. The spherical discrepancy problem (i.e., MINMAXSUM-1), on the other hand, is a
modified version of this where we replace the second constraint with ||y||1 = 1. That is, we take the
L1 norm of y instead of the max-norm. We conjecture that if we take the general form of ||y||p = 1
constraint with p going from 1 to∞, the problem becomes more difficult in terms of computational
complexity. Thus if with the L1 norm constraint the problem is already APX-hard, we conjecture
that MINMAXSUM is also APX-hard. In addition, based on the argument of Ko & Lin (1995),
we further conjecture that MINMAXSUM is ΠP

2 -hard, where ΠP
2 denotes the second level of the

polynomial-time hierarchy.

A.2 PROOF OF THEOREM 2

Proof. First assume that one of the candidate vectors is within angle θ of the optimal directionA∗d+1.
We denote this candidate vector by n. Note that, for any u ∈ Rd we have:

n>u−A∗d+1u = (n−A∗d+1)>u ≤ ‖n−A∗d+1‖‖u‖

and note that:

(n−A∗d+1)>(n−A∗d+1) = ‖n‖2 − 2n>A∗d+1 + ‖u‖2 = 2− 2 cos(θ) = 2 sin2(θ/2)

Putting both observations together we have:

n>u− n>A∗d+1 ≤
√

2‖u‖ sin(θ/2)

It then follows that:

Sk∗ ≤
∑

i : n>k ui > 0

n>ui ≤
∑

i : A∗d+1ui > 0

A∗d+1ui +
√

2m sin(θ/2)

Thus to prove the proposed result, we need only show that such a candidate n will be sampled with
probability δ. This result was proved by Gimadi & Rykov (2016), as a result we defer the interested
reader to the proof of Theorem 4 in Gimadi & Rykov (2016).
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A.3 NECCESSARY AND SUFFICIENT CONDITION ON OPERATOR A

It is well known that a necessary and sufficient condition on matrix A to be a homeomorphism is
that A is invertible. For the sake of completeness we provides the statement and its proof below:
Theorem 3. Let E be complete metric and finite dimensional linear space. A square matrix A can
be seen as a linear map A : E → E. Then A is a homeomorphism if and only if detA 6= 0.

Proof. If A is a homeomorphism, then A is bijective and hence invertible (detA 6= 0). Conversely,
if detA 6= 0, then A is bijective. Since E is finite dimensional, A is continuous. Then A−1 is
continuous via Banach’s isomorphism theorem. Therefore, A is a homeomorphism.

Working on Rn a square matrix only has to be invertible to be a homeomorphism. However, in prac-
tice, even a random matrix is invertible. In probability’s language, since X = detA is a continuous
random variable, the probability that X = 0 is 0 which means that we should not worry about the
invertible condition for the matrix A. Also, ones should note that invertible matrix is full rank.

B ADDITIONAL EXPERIMENTAL DETAILS

Detailed description of experiments. All the pretrained models used in our experiment were
sourced from Keras. For each dataset, we constructed binary classification tasks in the following
manner. First, we select one of the many classes in the dataset. We call this class, the target class.
Every training example belonging to the target class is given a positive labelling, whilst all remain-
ing training examples are given a negative label. In order to have a balanced dataset, we select
(uniformly at random) 1000 examples belonging to the target class, and 1000 examples belonging
to other classes. Our methodology only differs for the ISIC’19 skin cancer dataset, as there not 2000
available images. We then pass each selected example through the pretrained network in question
to compute the precision of the network on this new binary classification task. More specifically,
we take the precision of the pretrained network to be the precision of the the most correct ImageNet
class, that is, the class with the highest proportion of positive labellings.

For each input xi from our selected task, let the output of the last layer (the feature vectors)
be vi. Now we generate two data sets Sy=1

1 = {(v1, 1), (v2, 1), . . . , (v1000, 1)}, and Sy=1
2 =

{(v1, t1), (v2, t2), . . . , (v1000, t1000)}, in which ti is the predicted value (1 for a prediction of the
selected class, or 0 for any other prediction).

Next we estimate the PDF function p1 for Sy=1
1 using Gaussian KDE. We estimate the PDF function

p2 for the subset S′2 of Sy=1
2 consisting of only (vi, 1). However, the vi feature vector has very large

dimension (around 1500). As a result, the density is so small so that it appears to be zero and
therefore is not meaningful. To mitigate this issue, we reduce the dimensionality of the feature
vector to 32 using principal component analysis, and perform min-max normalisation.

The TV norm of (p1 − p2) is calculated by

‖p1 − p2‖TV =
∑
vi∈J

[p1,nor(vi, 1)− p2,nor(vi, ti)]

where pi,nor is a normalised version of pi (i.e., to discretize a continuous pdf into a probability
distribution over finite samples), and J = {vi : p1,nor(vi, 1)− p2,nor(vi, ti) > 0}.
RMSS transformation. Suppose the feature vector vi is d-dimensional. Consider the (d + 1)
dimensional point ui = (vi, p1,i − p2,i) where p1,i = p1,nor(vi, 1) and p2,i = p2,nor(vi, ti) for all
feature vectors vi. The process to compute the transformation is as follows.

1. Randomly and uniformly generate K unit vectors n1, n2, . . . , nK in Rd+1.
2. For each unit vector nk calculate nk · ui for all ui points, where · is the inner product.

Now, let’s choose the points ui for which nk · ui > 0, and sum up the inner product
nk · ui over them. Let’s S+

k be equal to this sum. That is S+
k =

∑
i nk · ui such that

nk · ui > 0. Similarly we define S−k to be the sum of nk · ui for nk · ui < 0. We denote
by Sk = max{S+

k ,−S
−
k }. It is easy to prove that Sk is the TV distance between p1 and p2

after the transformation determined by nk.
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3. Among all the Sk, choose the smallest one: k∗ = argmaxkSk. Let denote nk∗ the corre-
sponding unit vector.

4. Use the Gram-Schmidt orthogonalization algorithm over vectors n∗k and e1, . . . , ed+1

(where ei is the i-th unit vector). After the orthogonalisation we obtain d + 1 vectors,
then ignore the vector having the smallest norm. Let the remainder be q1, q2, . . . , qd+1.
Then our transformation matrix will be

R = [qT2 , q
T
3 , ...q

T
d+1, n

∗T
k ].

We output a square matrix R with dimension (d + 1)x(d + 1). In our experiments we
reduced to d = 32 with PCA, so for us R ∈ R33.

5. We now obtain the PDF’s after applying the matrix transformation. Let P1 = (vi, p1,i) and
P2 = (vi, p2,i) where p1,i = p1,nor(vi, 1) and p2,i = p2,nor(vi, ti).
We take the last entry pR1 (vi, 1) in each output vector R · P1. The entry pR1 (vi, 1) is the
image of p1,nor(vi, 1) under the action of R. We then normalize pR1 (vi, 1) for all zi =

(vi, 1) ∈ Sy=1
1 . Similarly, we obtain pR2,nor(zi) for all zi ∈ Sy=1

2 . The value pR2,nor(zi)
serves as the joint probability P (xi, ti = 1) after the action of the matrix R.

We also compute the total variation norm of p1 − p2 after transformation by the matrix R by

‖p1 − p2‖TV =
∑
vi∈J

[pR1,nor(vi, 1)− pR2,nor(vi, ti)]

where J = {vi : pR1,nor(vi, 1)− pR2,nor(vi, ti) > 0}.
Next we analyse the feature vectors for the negative labels. For each input xi which is classified as
negative, let the output of the last layer (the feature vectors) be ai. Now as before we generate a data
set Sy=0

2 = {(a1, b1), (a2, b2), . . . , (a1000, b1000)}.
Finally, we repeat the same procedure to generate P (vi, ti = 0). Having both P (vi, ti = 0) anf
P (vi, ti = 1) calculated, we can use them to implement our classifier. In particular, if for a vector v
we have P (v, t = 1) > P (v, t = 0), then

P (t = 1|v) =
P (v, t = 0)

P (v)
> P (t = 0|v) =

P (v, t = 0)

P (v)
,

and therefore we assign v to class 1, and vice versa.

Hardware details. We ran experiments on an internal machine which has the following specifica-
tion: Core i7-10700K @ 3.8GHz 16 core CPU and NVIDIA GeForce RTX 3090 graphics card.

C ADDITIONAL NUMERICAL RESULTS

As well as computing the accuracy for each task, we also computed the change in total variation dis-
tance before/after applying our transformation. Tables 5-6 display the total variation (TV) distance.
Note that the TV distance decreases after RMMS is applied, as expected. Interestingly, although the
TV distance decrease is huge in the skin cancer dataset, this does not correspond to a similarly large
increase in precision.

We also present the change in the precision and F-score values before and after applying our lin-
ear transformation in transfer learning from ImageNet to CIFAR-100, using the ResNet50 network
(Figures 4 and 5). We also include the F-score of the experiments run on EfficientNetB3 and In-
ceptionV3 network architectures in Figures 6 and 7 (before and after applying our transformation
method).

D FURTHER DEFINITIONS IN TOPOLOGICAL DATA ANALYSIS

In this section, we give some more detailed descriptions of the elements of topological data analysis.
As mentioned earlier, for a more detailed introduction to topological data analysis, we refer the
reader to Edelsbrunner & Harer (2010).
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Table 5: Total variation norm, computed as described in Appendix B, of EfficientNetB3, ResNet50,
and InceptionV3 trained on ImageNet when attempting to classify the given category in CIFAR-10,
before and after applying our learnt linear homeomorphism.

TV norm Airp’ne Autom’le Bird Cat Deer Dog Frog Horse Ship Truck

EfficientNetB3 Before 0.588 0.639 0.742 0.822 0.502 0.861 0.724 0.193 0.616 0.271
After 0.032 0.105 0.119 0.194 0.020 0.164 0.003 0.037 0.056 0.005

ResNet50 Before 0.660 0.488 0.844 0.908 0.696 0.862 0.833 0.508 0.657 0.358
After 0.066 0.053 0.205 0.016 0.043 0.076 0.114 0.103 0.045

InceptionV3 Before 0.484 0.569 0.857 0.945 0.670 0.787 0.851 0.219 0.642 0.235
After 0.036 0.039 0.0234 0.156 0.028 0.013 0.187 0.028 0.024 0.015

Table 6: Total variation norm, computed as described in Appendix B, of EfficientNetB3, ResNet50,
and InceptionV3 trained on ImageNet when attempting to classify the given category in ISIC’19,
before and after applying our learnt linear homeomorphism.

TV norm Melanoma Nevus

EfficientNetB3 Before 0.741 0.205
After 0.038 0.015

ResNet50 Before 0.769 0.480
After 0.010 0.129

InceptionV3 Before 0.723 0.418
After 0.144 0.081

Figure 4: Precision results on CIFAR-100 dataset, trained with the Resnet50 model. It shows the
precision of the network before and after using our linear transformation module.

Given a topological space X, and an integer k, we denote the kth singular homology group of X
by Hk(X), and the kth Betti number by βk(X) = dim(Hk). Any continuous function f : X → Y
induces linear maps fk : Hk(X)→ Hk(Y) between the homology groups. The results which follow
apply to the class of tame functions. Before we proceed with a definition of tame functions, we must
first define the concept of a homological critical value.

Definition D.1. Let X be a topological space and f a real function on X. A homological critical
value of f is a real number a for which there exists an integer k, such that for all sufficiently small
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Figure 5: F-score values on CIFAR-100 dataset, trained with the Resnet50 model. It shows the
precision of the network before and after using our linear transformation module.

Figure 6: F-score values on CIFAR-100 dataset, trained with the EfficientNetB3 model. It shows
the precision of the network before and after using our linear transformation module.

ε > 0, the map Hk(f−1(−∞, a − ε]) → Hk(f−1(−∞, a + ε]) induced by inclusion is not an
isomorphism.

More generally speaking, homological critical values are levels at which the homology of the sub-
level sets change. For Morse functions, homological critical values correspond with the standard
definition of critical values. In other words, homological critical values of f correspond to the
values of f at its critical points. We now proceed with the definition of tame functions.

Definition D.2. A function f : X→ R is tame if it has a finite number of homological critical values
and the homology groups Hk(f−1(−∞, a]) are finite dimensional for all k ∈ Z and a ∈ R.

Note that all Morse functions defined on compact manifolds are tame. Moreover, we write Fx =
Hk(f−1(−∞, x]), and for x < y, we write fxy : Fx → Fy to denote the map induced by the sublevel
of set of x in that of y. Furthermore, let F yx = im fyx denote the image of Fx in Fy . We refer to the
groups F yx as the persistence homology groups. The persistence homology groups inform us about
the topological relationships between sublevel sets.
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Figure 7: F-score values on CIFAR-100 dataset, trained with the InceptionV3 model. It shows the
precision of the network before and after using our linear transformation module.

The persistent homology groups of a tame function can be succinctly represented by a planar draw-
ing known as a persistence diagram. Let f : X→ R be a tame function, (ai)i=1,...,n its homological
critical values, and (bi)i=1,...,n an interleaved sequence, that is, bi−1 < ai < bi for all i. We set
b−1 = a0 = ∞ and bn+1 = an+1 = +∞. For two integers 0 ≤ i ≤ j ≤ n + 1 we define the
multiplicity of a pair (ai, aj) by: µji = β

bj
bi−1
− βbjbi + β

bj−1

bi
− βbj−1

bi−1
where βyx = dimF yx denote the

persistent Betti numbers for∞ ≤ x ≤ y ≤ ∞. The multiplicity of each pair (ai, aj) is in fact the
same for all possible interleavings, and thus is well-defined. We are now ready to formally define
persistence diagrams.
Definition D.3. The persistence diagram D(f) ⊂ R̄2 of f is the set of points (ai, aj) counted with
multiplicity µji for 0 ≤ i < j ≤ n + 1, union all points on the diagonal, counted with infinite
multiplicity.
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