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Abstract
This paper demonstrates how a graph-based001
semantic parser can be applied to the task of002
structured sentiment analysis, directly predict-003
ing sentiment graphs from text. We advance004
the state of the art on 4 out of 5 standard bench-005
mark sets. We release the source code, models006
and predictions with the camera-ready version.007

1 Introduction008

The task of structured sentiment analysis (SSA) is009

aimed at locating all opinion tuples within a sen-010

tence, where a single opinion contains a) a polar011

expression, b) an optional holder, c) an optional012

sentiment target, and d) a positive, negative or neu-013

tral polarity. An example is provided in Figure 1.014

While there have been sentiment corpora annotated015

with this type of information for decades (Wiebe016

et al., 2005; Toprak et al., 2010), there have so far017

been few attempts at modeling the full represen-018

tation, rather focusing on various subcomponents,019

such as the polar expressions and targets without ex-020

plicitly expressing the relations (Peng et al., 2019;021

Xu et al., 2020) or the polarity (Yang and Cardie,022

2013; Katiyar and Cardie, 2016).023

Dependency parsing approaches have recently024

shown promising results for SSA (Barnes et al.,025

2021; Peng et al., 2021). Here we present a026

novel sentiment parser which, unlike previous at-027

tempts, predicts sentiment graphs directly from028

text without reliance on heuristic lossy conversions029

to intermediate dependency representations. The030

model takes inspiration from successful work in031

meaning representation parsing, and in particular032

the permutation-invariant graph-based parser of033

Samuel and Straka (2020) called PERIN.034

Experimenting with several different graph en-035

codings, we evaluate our approach on five datasets036

from four different languages, and find that it037

compares favorably to dependency-based baselines038

across all datasets; most significantly on the more039

structurally complex ones – NoReC and MPQA.040
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Figure 1: A sentiment graph for the phrase “I actually
enjoyed the bad acting”, which contains an example of
nesting of two opposing opinions.

2 Related work 041

Proposing a dependency parsing approach to the 042

full task of SSA, Barnes et al. (2021) show that it 043

leads to strong improvements over state-of-the-art 044

baselines. Peng et al. (2021) propose a sparse fuzzy 045

attention mechanism to deal with the sparseness of 046

dependency arcs in the models from Barnes et al. 047

(2021) and show further improvements. However, 048

in order to apply the parsing algorithm of Dozat 049

and Manning (2018), both of these approaches have 050

to rely on a lossy conversion to bi-lexical depen- 051

dencies with ad-hoc internal head choices for the 052

nodes of the abstract sentiment graph. This lossy 053

behaviour is caused by nested text spans in the sen- 054

timent graphs, as illustrated by Figure 1, which are 055

ambiguous in their bi-lexical dependency encoding 056

(see Section A in the Appendix). 057

More generally, decoding structured graph infor- 058

mation from text has sparked a lot of interest in 059

recent years, especially for parsing meaning repre- 060

sentation graphs (Oepen et al., 2020). There has 061

been tremendous progress in developing complex 062

transition-based and graph-based parsers (Hersh- 063

covich et al., 2017; McDonald and Pereira, 2006; 064

Dozat and Manning, 2018). In this paper, we adopt 065

PERIN (Samuel and Straka, 2020), a state-of-the- 066

art graph-based parser capable of modeling a su- 067

perset of graph features needed for our task. 068
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3 PERIN model069

PERIN is a general permutation-invariant text-to-070

graph parser. We briefly describe our modified SSA071

version, please consult the original work for more072

details (Samuel and Straka, 2020).073

3.1 Architecture074

PERIN processes the input text in four steps, illus-075

trated in Figure 2: 1) To encode the input, PERIN076

uses contextualized embeddings from XLM-R077

(base size; Conneau et al., 2020) and combines078

them with learned character-level embeddings;079

2) each token is mapped onto latent queries by080

a linear transformation; 3) a stack of Transformer081

layers (Vaswani et al., 2017) optionally models082

the inter-query dependencies; and 4) classification083

heads select and label queries onto nodes, establish084

anchoring from nodes to tokens, and predict the085

node-to-node edges.086

3.2 Permutation-invariant query-to-node087

matching088

Traditional graph-based parsers are trained as au-089

toregressive sequence-to-sequence models. PERIN090

does not assume any prior ordering of the graph091

nodes. Instead, it processes all queries in parallel092

and then dynamically maps them to gold nodes.093

Based on the predicted probabilities of labels094

and anchors, we create a weighted bipartite graph095

between all queries and nodes. Our goal is to find096

the most probable matching, which can be done097

efficiently in polynomial time by using the Hungar-098

ian algorithm. Finally, every node is assigned to a099

query and we can backpropagate through standard100

cross-entropy losses to update the model weights.101

3.3 Graph encodings102

PERIN defines an overall framework for general103

graph parsing, it can cater to specific graph encod-104

ings by changing the subset of its classification105

heads. In parsing the abstract sentiment structures,106

there are several possible lossless graph encodings107

depending on the positioning of the polarity infor-108

mation and the sentiment node type (see Figure 3):109

1. Node-centric encoding, with labeled nodes110

and directed unlabeled arcs. Each node cor-111

responds to a target, holder or sentiment ex-112

pression; edges form their relationships. The113

parser uses a multi-class node head, an anchor114

head and a binary edge classification head.115
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Figure 2: Diagram of the PERIN architecture; 1) each
token gets a contextualized embedding and 2) gener-
ates queries, 3) queries are further processed and 4)
they are put through node, anchor and edge classifica-
tion heads.

2. Labeled-edge encoding, with deduplicated 116

unlabeled nodes and labeled arcs. Each node 117

corresponds to a unique text span from some 118

sentiment graph, while edge labels denote 119

their relationships and functions. The model 120

has a binary node classifier, an anchor classi- 121

fier and a binary and multi-class edge head. 122

3. Opinion-tuple encoding, which represents 123

the structured sentiment information as a se- 124

quence of opinion four-tuples. This encoding 125

is the most restrictive, having the lowest de- 126

grees of freedom. The parser utilizes a multi- 127

class node head and three anchor classifiers, it 128

does not need an edge classifier. 129

4 Experiments 130

Following Barnes et al. (2021) we perform experi- 131

ments on five structured sentiment datasets in four 132

languages, the statistics of which are shown in Ta- 133

ble 1. The largest dataset is the NoReCfine dataset 134

(Øvrelid et al., 2020), a multi-domain dataset of 135

professional reviews in Norwegian. EU and CA 136

(Barnes et al., 2018) contain hotel reviews in 137

Basque and Catalan, respectively. MPQA (Wiebe 138

et al., 2005) annotates news wire text in English. 139

Finally, DSU (Toprak et al., 2010) annotates En- 140

glish reviews of online universities. We use the 141

SemEval 2022 releases of MPQA and DSU.1 142

1Available from https://competitions.
codalab.org/competitions/33556.
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Figure 3: Three representations of the structured sentiment graph for sentence “I actually enjoyed the bad acting.”

sentences holders targets exps. + neu −

NoReC
train 8634 898 6778 8448 5684 2756
dev 1531 120 1152 1432 988 443
test 1272 110 993 1235 875 358

CA
train 1174 169 1695 1981 1272 708
dev 168 15 211 258 151 107
test 336 52 430 518 313 204

EU
train 1064 205 1285 1684 1406 278
dev 152 33 153 204 168 36
test 305 58 337 440 375 65

MPQA
train 5873 1431 1487 1715 671 337 698
dev 2063 414 503 581 223 126 216
test 2112 434 462 518 159 82 223

DSU
train 2253 65 836 836 349 104 383
dev 232 9 104 104 31 16 57
test 318 12 142 142 59 12 71

Table 1: Statistics of the datasets, including number of
sentences per split, as well as number of holder, target,
and polar expression annotations. Additionally, we in-
clude the distribution of polarity – restricted to positive,
neutral, and negative – in each dataset.

4.1 Evaluation143

Following Barnes et al. (2021), we evaluate our144

models using both token-level F1 for extraction of145

Holders, Targets, and polar Expressions, as well146

as the graph-level metrics Non-polar Sentiment147

Graph F1 (NSF1) and Sentiment Graph F1 (SF1),148

weighing the overlap in predicted and gold spans149

for each entity, averaged across all three spans.150

SF1, which also includes polarity, is considered151

the primary metric for the full SSA task.152

4.2 Models153

We compare our models to the head-final depen-154

dency graph parsers from Barnes et al. (2021) as155

well as the second-order Sparse Fuzzy Attention156

parser of Peng et al. (2021). For all models, we157

perform 5 runs with 5 different random seeds and158

report the mean and standard deviation. Results159

on development splits are provided in Appendix D,160

training details are in Appendix E.161

4.3 Results 162

Table 2 shows the main results. Our models out- 163

perform both dependency graph models on SF1, 164

although the results are mixed for span extraction. 165

The opinion-tuple encoding gives the best perfor- 166

mance on SF1 (an average of 6.2 percentage points 167

(pp.) better than Peng et al. (2021)), followed by 168

the labeled edge encoding (3.0) and finally the 169

node-centric encoding (2.1). 170

For extracting spans, the opinion tuple encoding 171

also achieves the the best results on NoReC, either 172

labeled-edge or node centric on CA and MPQA, 173

while Peng et al. (2021) is best on EU and DSU. 174

This suggests that the main benefit of PERIN is at 175

the structural level, rather than local extraction. 176

5 Analysis 177

There are a number of architectural differences 178

between the dependency parsing approaches com- 179

pared above. In this section, we aim to isolate 180

the effect of predicting intermediate dependency 181

graphs vs. directly predicting sentiment graphs 182

by creating more comparable dependency2 and 183

PERIN models. We adapt the dependency model 184

from Barnes et al. (2021) by removing the to- 185

ken, lemma, and POS embeddings and replacing 186

mBERT (Devlin et al., 2019) with XLM-R (Con- 187

neau et al., 2020). The ‘XLM-R dependency’ 188

model thus has character LSTM embeddings and 189

token-level XLM-R features. Since these are 190

not updated during training, for the opinion-tuple 191

‘Frozen PERIN’ model, we fix the XLM-R weights 192

to make it comparable. 193

As shown in Table 3, predicting the sentiment 194

graph directly leads to an average gain of 3.7 pp. on 195

the Sentiment Graph F1 metric. For extracting the 196

spans of holder, target, and polar expressions, the 197

2We do not use the model from Peng et al. (2021) as the
code is not available.
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Dataset Model Span F1 Sent. graph
Holder Target Exp. NSF1 ↑ SF1 ↑

NoReC

Barnes et al. (2021) 60.4 54.8 55.5 39.2 31.2
Peng et al. (2021) 63.6 55.3 56.1 40.4 31.9
PERIN – node-centric 60.3±1.8 51.8±2.5 54.2±0.9 42.7±0.6 39.3±0.7

PERIN – labeled edge 64.0±1.5 52.3±4.2 56.1±2.7 43.7±2.2 40.4±2.1

PERIN – opinion-tuple 65.1±2.5 *58.3±1.5 *60.7±1.1 47.8±1.2 41.6±0.7

EU

Barnes et al. (2021) 60.5 64.0 72.1 58.0 54.7
Peng et al. (2021) 65.8 71.0 76.7 66.1 62.7
PERIN – node-centric 58.9±1.1 63.5±1.5 73.9±0.6 59.8±0.7 58.6±0.7

PERIN – labeled edge 57.6±2.5 64.9±0.8 72.5±1.9 60.0±1.4 58.8±1.3

PERIN – opinion-tuple 64.2±2.5 67.4±0.8 73.2±1.2 62.5±1.2 61.3±1.0

CA

Barnes et al. (2021) 37.1 71.2 67.1 59.7 53.7
Peng et al. (2021) 46.2 74.2 71.0 64.5 59.3
PERIN – node-centric 56.1±3.0 69.8±0.4 70.5±0.5 63.5±0.6 61.7±0.6

PERIN – labeled edge 60.8±5.1 70.8±1.9 72.5±0.8 64.5±1.4 62.1±1.3

PERIN – opinion-tuple 48.0±3.9 72.5±0.7 68.9±0.2 65.7±0.7 63.3±0.6

MPQA

Barnes et al. (2021) 46.3 49.5 46.0 26.1 18.8
Peng et al. (2021) 47.9 50.7 47.8 38.6 19.1
PERIN – node-centric 58.4±2.3 60.3±2.0 55.8±1.5 38.7±1.6 28.3±0.9

PERIN – labeled edge 53.6±1.2 53.4±1.9 53.4±1.1 33.8±1.5 27.0±0.9

PERIN – opinion-tuple 55.7±1.7 *64.0±0.6 53.5±1.2 *45.1±1.1 *34.1±1.1

DSU

Barnes et al. (2021) 37.4 42.1 45.5 34.3 26.5
Peng et al. (2021) 50.0 44.8 43.7 35.0 27.4
PERIN – node-centric 31.4±5.6 35.0±1.6 35.1±2.2 24.8±0.7 22.9±1.5

PERIN – labeled edge 32.5±6.8 38.0±3.7 36.2±2.5 28.8±2.0 27.3±1.5

PERIN – opinion-tuple 42.2±4.6 40.6±2.7 39.3±2.5 33.2±2.4 31.2±2.4

Table 2: Experiments comparing the PERIN model with previous results. We show the average values and their
standard deviations from 5 runs. Bold numbers indicate the best result for the main SF1 metric in each dataset.
* marks significant difference between our two best approaches, determined by bootstrap testing (see Appendix C).

Dataset Model Span F1 Sent. graph
H. T. E. NSF1 SF1 ↑

NoReC XLM-R dependency 58.5 49.9 58.5 37.4 31.9
Frozen PERIN 48.3 51.9 57.9 *41.8 *35.7±0.6

EU XLM-R dependency 50.0 60.3 70.0 55.1 51.0
Frozen PERIN 55.5 58.5 68.8 53.1 51.3±1.2

CA XLM-R dependency 24.9 67.7 67.3 54.8 50.5
Frozen PERIN *39.8 69.2 66.3 *60.2 *57.6±1.2

MPQA XLM-R dependency 49.3 *56.9 47.6 30.5 18.9
Frozen PERIN 44.0 49.0 46.6 30.7 23.1±1.0

DSU XLM-R dependency 26.8 33.6 36.4 22.9 18.0
Frozen PERIN 13.8 37.3 33.2 24.5 21.3±2.9

Table 3: Results from comparable experiments, where
the dependency graph model (XLM-R dependency)
and frozen PERIN models use the same input and simi-
lar number of trainable parameters. * marks significant
difference, determined by bootstrap (see Appendix C).

benefit is less clear. Here, the PERIN model only198

outperforms the XLM-R dependency model 5 of 15199

times, which seems to confirm that its benefit is at200

the graph level. This is further supported by the fact201

that the highest gains are found on the datasets with202

the most nested sentiment expressions and depen-203

dency arcs lost due to overlap, which are difficult204

to encode in bi-lexical graphs (see Appendix A). 205

6 Conclusion 206

Previous work cast the task of structured sentiment 207

analysis (SSA) as dependency parsing, converting 208

the sentiment graphs into lossy dependency graphs. 209

We present a novel sentiment parser which, un- 210

like previous attempts, predicts sentiment graphs 211

directly from text without reliance on lossy de- 212

pendency representations. We adapted a state-of- 213

the-art meaning representation parser to SSA and 214

experimentally evaluated three candidate graph 215

encodings of the sentiment structures. The re- 216

sults suggest that our approach to SSA has clear 217

performance benefits, advancing the state of the 218

art on four out of five commonly used bench- 219

marks. Specifically, the most direct opinion-tuple 220

encoding provides the highest performance gains. 221

More detailed analysis of the results shows that 222

the benefits stem from better extraction of global 223

structures, rather than local span prediction. We 224

will release the source code, models and predic- 225

tions in the camera-ready version of this paper at 226

https://github.com/censored/for-review. 227
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A Problems with dependency encoding373

As briefly mentioned in the main text, previous374

dependency parsing approaches have relied on a375

lossy bi-lexical conversion. We use this appendix376

to describe this problem in more detail. There is an377

inherent ambiguity in the encoding of two nested378

text spans with the same head (defined as either the379

first or the last token in (Barnes et al., 2021)). To380

be concrete, we can use the running example “I381

actually enjoyed the bad acting”, which has two382

opinions with nested targets “the bad acting” and383

“acting”. As shown in Figure 4, both expression-384

target edges correctly lead to the word “acting” but385

it is impossible to disambiguate the prefix of both386

targets in the bi-lexical encoding. For that, we need387

a more abstract graph encoding, such as the ones388

suggested in the main text.389

Table 4 shows that the amount of nesting in the390

SSA datasets is not negligible. This is especially391

true for NoReC and MPQA, two datasets expe-392

riencing significant performance gains from our393

“ I actually
holder

target

enjoyed the

targetholder

bad

target
target

acting . ”

exp:pos

exp:neg

Figure 4: Ambiguous targets when encoding the sen-
tence “I actually enjoyed the bad acting” as a head-
final bi-lexical dependency graph (Barnes et al., 2021).

Dataset Holders Targets Exps.
# % # % # %

NoReC 95 1.5 1187 14.1 1075 9.3
EU 30 2.2 79 4.5 16 0.7
CA 43 2.9 28 1.2 23 0.9
MPQA 48 2.2 250 9.3 145 5.6
DSU 0 0.0 10 1.1 7 0.5

Table 4: Count and percentage of nesting for each
dataset.

NoReC 8.8%
EU 4.5%
CA 6.7%
MPQA 4.2%
DSU 0.5%

Table 5: Percentages of dependency arcs lost due to
overlap.

NoReC 93.6
EU 95.2
CA 97.6
MPQA 96.6
DSU 99.8

Table 6: Sentiment Graph F1 after converting test sets
to head-final and then reconverting to json format.

proposed graph encoding. Table 5 further shows 394

the amount of dependency edges lost because of 395

overlap. Finally, Table 6 shows the SF1 score when 396

converting the gold sentiment graphs to bi-lexical 397

dependency graphs and back – an inherent upper 398

bound for any dependency parser. 399

B Changes to datasets 400

We found out that the official data pub- 401

lished at https://competitions.codalab.org/ 402

competitions/33556 was slightly changed from 403

the data used in previous related work. Specifically 404

the MPQA and DSU datasets had removed a num- 405

ber of errors resulting from the annotation and from 406

the conversion scripts used to create the sentiment 407

graph representations. We re-run the experiments 408
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Dataset Model
Span F1 Sent. graph

Runtime # Params
Holder Target Exp. NSF1 ↑ SF1 ↑

NoReC

PERIN – node-centric 54.9±4.3 52.7±2.0 57.4±1.5 44.8±1.8 p: 46.4
r: 36.4 40.8±1.5 9:52 h 108.9 M

PERIN – labeled edge 59.4±2.8 52.0±2.3 57.5±2.7 44.4±1.7 p: 45.7
r: 37.7 41.1±1.5 9:58 h 109.5 M

PERIN – opinion-tuple 59.2±1.3 59.6±1.3 61.5±1.0 49.4±1.0 p: 42.5
r: 45.5 43.9±0.9 9:25 h 108.1 M

Frozen PERIN – opinion-tuple 50.1±2.5 53.8±1.6 59.4±1.0 44.0±0.6 p: 33.6
r: 42.2 37.4±0.9 0:25 h 23.1 M

EU

PERIN – node-centric 57.1±3.1 68.7±1.5 69.9±1.0 61.1±1.1 p: 62.8
r: 56.8 59.7±1.3 1:02 h 87.6 M

PERIN – labeled edge 51.2±4.7 66.1±2.1 66.0±1.0 59.4±1.2 p: 60.1
r: 55.1 57.4±1.2 0:57 h 88.2 M

PERIN – opinion-tuple 57.3±3.0 65.1±2.3 68.6±0.3 59.9±1.0 p: 64.5
r: 54.7 59.2±0.6 1:04 h 86.9 M

Frozen PERIN – opinion-tuple 57.0±10.4 61.1±3.2 65.1±3.9 55.5±2.9 p: 56.3
r: 48.8 52.2±3.2 0:06 h 0.7 M

CA

PERIN – node-centric 57.1±2.0 73.8±2.5 74.2±1.6 68.4±2.6 p: 69.9
r: 62.9 66.2±2.1 1:17 h 87.6 M

PERIN – labeled edge 48.9±4.3 72.1±0.9 72.6±1.1 67.1±1.6 p: 69.5
r: 61.8 65.4±1.6 1:13 h 88.2 M

PERIN – opinion-tuple 46.1±3.0 74.4±1.0 72.9±0.5 68.4±1.5 p: 73.6
r: 61.6 67.0±1.2 1:20 h 86.9 M

Frozen PERIN – opinion-tuple 48.1±6.4 65.5±1.8 69.2±5.5 62.2±2.7 p: 64.7
r: 56.0 59.9±2.5 0:07 h 0.7 M

MPQA

PERIN – node-centric 58.2±1.3 60.8±0.9 56.8±1.1 35.3±1.3 p: 34.5
r: 28.7 31.4±1.4 6:46 h 107.7 M

PERIN – labeled edge 57.1±2.0 54.8±1.6 55.2±1.1 33.1±0.4 p: 35.7
r: 26.4 30.3±0.5 7:16 h 109.6 M

PERIN – opinion-tuple 56.0±0.6 64.2±1.7 51.7±2.8 42.1±0.8 p: 44.3
r: 30.1 35.8±0.6 6:43 h 108.1 M

Frozen PERIN – opinion-tuple 42.0±3.8 48.1±1.7 46.6±2.6 28.1±2.2 p: 24.3
r: 20.8 22.2±1.5 0:37 h 23.1 M

DSU

PERIN – node-centric 0.0±0.0 41.5±4.3 40.3±2.6 27.2±2.0 p: 33.4
r: 16.9 22.4±1.3 2:31 h 107.7 M

PERIN – labeled edge 0.0±0.0 46.5±1.8 41.9±3.4 28.4±2.7 p: 33.2
r: 17.8 23.1±2.0 2:37 h 109.6 M

PERIN – opinion-tuple 12.0±11.0 50.9±4.7 42.6±3.9 34.9±4.1 p: 39.5
r: 22.6 28.6±3.5 2:30 h 108.1 M

Frozen PERIN – opinion-tuple 0.0±0.0 42.7±4.8 35.9±3.3 26.0±3.3 p: 29.1
r: 16.3 20.3±2.0 0:22 h 23.1 M

Table 7: Development scores of all our models from the main section of this paper. SF1 scores are extended by
the average precision and recall values. We also show the runtime of a single model and the number of trainable
parameters.

Dataset Span F1 Sent. graph
H. T. E. NSF1 SF1

MPQA original 44.7 51.3 45.7 25.4 15.0
new data 49.3 56.9 47.6 30.5 18.9
∆ +4.6 +5.6 +1.9 +5.1 +4.9

DSU original 21.0 22.6 35.2 24.0 21.0
new data 26.8 33.6 36.4 22.9 18.0
∆ +5.8 +11.0 +1.3 −1.1 −3.0

Table 8: Results comparing the XLM-R dependency
model on the original MPQA and DSU data, and the
new data.

for the comparable baseline model and show the409

performance differences in Table 8.410

C Bootstrap Significance Testing411

In order to see whether the performance differences412

for the experiments are significant, we do boot-413

strap significance testing Berg-Kirkpatrick et al.414

(2012), combining two variations. First, we resam-415

ple the test sets with replacement from all 5 runs416

together, b = 1 000 000 times, setting the threshold417

at p = 0.05. Additionally, we test each pair out418

of the 5× 5 combinations for all runs, resampling 419

the test set with replacement b = 100 000 times, 420

setting the threshold again at p = 0.5. When one 421

system is significantly better in 15 out of the 25 422

comparisons, and additionally significantly better 423

in the first joint test, we finally mark it as signifi- 424

cantly better. 425

D Results on development data 426

To make any future comparison of our approach 427

easier, we show the development scores of all re- 428

ported models in Table 7. 429

E Training details 430

Generally, we follow the training regime described 431

in the original PERIN paper (Samuel and Straka, 432

2020). The trainable parameters are updated with 433

the AdamW optimizer (Loshchilov and Hutter, 434

2019), and their learning rate is linearly warmed-up 435

for the first 10% of the training to improve stabil- 436

ity, and then decayed with a cosine schedule. The 437

XLM-R parameters are updated with a lower learn- 438

ing rate and higher weight decay to improve gener- 439
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alization; its lower also use an increasingly lower440

learning rate (Howard and Ruder, 2018). Similarly441

to PERIN, we freeze the embedding parameters for442

increased efficiency and regularization. Following443

the finding by Zhang et al. (2021), we use small444

learning rates and fine-tune for a rather long time445

to increase the training stability. Unlike the authors446

of PERIN, we did not find any benefits from a dy-447

namic scaling of loss weights (Chen et al., 2018),448

so we simply set all loss weights to constant 1.0.449

We trained our models on a single Nvidia P100450

with 16GB RAM, the runtimes are given in Ta-451

ble 7. We made five runs from different seeds for452

each reported value to better estimate the expected453

error. The hyperparameter configurations for all454

runs follow, please consult the released code for455

more details and context: https://github.com/456

censored/for-review.457

General hyperparameters458

batch_size = 16
beta_2 = 0.98
char_embedding = True
char_embedding_size = 128
decoder_learning_rate = 6.0e-4
decoder_weight_decay = 1.2e-6
dropout_anchor = 0.4
dropout_edge_label = 0.5
dropout_edge_presence = 0.5
dropout_label = 0.85
dropout_transformer = 0.25
dropout_transformer_attention = 0.1
dropout_word = 0.1
encoder = "xlm-roberta-base"
encoder_freeze_embedding = True
encoder_learning_rate = 6.0e-6
encoder_weight_decay = 0.1
epochs = 200
focal = True
freeze_bert = False
hidden_size_ff = 4 * 768
hidden_size_anchor = 256
hidden_size_edge_label = 256
hidden_size_edge_presence = 256
layerwise_lr_decay = 0.9
n_attention_heads = 8
n_layers = 3
query_length = 1
pre_norm = True

NoReC node-centric hyperparameters459

graph_mode = "node-centric"
query_length = 2

NoReC labeled-edge hyperparameters460

graph_mode = "labeled-edge"
query_length = 2

NoReC opinion-tuple hyperparameters 461

graph_mode = "opinion-tuple"

NoReC frozen opinion-tuple hyperparameters 462

graph_mode = "opinion-tuple"
freeze_bert = True
batch_size = 8
decoder_learning_rate = 1.0e-4
dropout_transformer = 0.5
epochs = 50

EU node-centric hyperparameters 463

graph_mode = "node-centric"
query_length = 2
n_layers = 0

EU labeled-edge hyperparameters 464

graph_mode = "labeled-edge"
query_length = 2
n_layers = 0

EU opinion-tuple hyperparameters 465

graph_mode = "opinion-tuple"
n_layers = 0

EU frozen opinion-tuple hyperparameters 466

graph_mode = "opinion-tuple"
freeze_bert = True
n_layers = 0
epochs = 50

CA node-centric hyperparameters 467

graph_mode = "node-centric"
query_length = 2
n_layers = 0

CA labeled-edge hyperparameters 468

graph_mode = "labeled-edge"
query_length = 2
n_layers = 0

CA opinion-tuple hyperparameters 469

graph_mode = "opinion-tuple"
n_layers = 0

CA frozen opinion-tuple hyperparameters 470

graph_mode = "opinion-tuple"
freeze_bert = True
n_layers = 0
epochs = 50
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MPQA node-centric hyperparameters471

graph_mode = "node-centric"
decoder_learning_rate = 1.0e-4
query_length = 2

MPQA labeled-edge hyperparameters472

graph_mode = "labeled-edge"
decoder_learning_rate = 1.0e-4
query_length = 2

MPQA opinion-tuple hyperparameters473

graph_mode = "opinion-tuple"

MPQA frozen opinion-tuple hyperparameters474

graph_mode = "opinion-tuple"
freeze_bert = True
batch_size = 8
decoder_learning_rate = 1.0e-4
dropout_transformer = 0.5
epochs = 50

DSU node-centric hyperparameters475

graph_mode = "node-centric"
decoder_learning_rate = 1.0e-4
query_length = 2

DSU labeled-edge hyperparameters476

graph_mode = "labeled-edge"
decoder_learning_rate = 1.0e-4
query_length = 2

DSU opinion-tuple hyperparameters477

graph_mode = "opinion-tuple"

DSU frozen opinion-tuple hyperparameters478

graph_mode = "opinion-tuple"
freeze_bert = True
batch_size = 8
decoder_learning_rate = 1.0e-4
dropout_transformer = 0.5
epochs = 50
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