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Ensemble clustering for histopathological images
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Abstract

Unsupervised deep learning using autoencoders has shown excellent results in image anal-
ysis and computer vision. However, only few studies have been presented in the field of
digital pathology, where proper labelling of the objects of interest is a particularly costly
and difficult task. Thus, having a first fully unsupervised segmentation could greatly help
in the analysis process of such images. In this paper, many architectures of convolutional
autoencoders have been compared to study the influence of three main hyperparameters:
(1) number of convolutional layers, (2) number of convolutions in each layer and (3) size
of the latent space. Different clustering algorithms are also compared and we propose a
new way to obtain more precise results by applying ensemble clustering techniques which
consists in combining multiple clustering results.
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1. Introduction

Pathology is essential for the diagnosis evaluation and understanding of many underlying
biological and physiological mechanisms. It is usually a visual evaluation by pathologists
of a tissue sample using a microscope to identify its structural properties. Currently, the
visual evaluation of microscopic specimens is largely an unassisted process, and the patholo-
gist’s accuracy is established through extensive training, comparative analysis, peer quality
control and personal experience. However, this field has undergone several technological
revolutions in recent years with the advent of virtual microscopy (conversion of glass slides
into high-resolution images called Whole Slide Images - WSI), often referred to as ”digital
pathology”. Thus, major efforts have been made to design image analysis tools, for example
to identify basic biological structures (stroma, immune cells, tumour, etc.), in order to make
it easier for doctors to (semi-)automate the interpretation of slides.

Meanwhile, automatic image analysis algorithms have recently made extraordinary pro-
gress, particularly with the advent of the deep learning methods introduced by Lecun et al.
LeCun et al. (2015). Indeed, the performances of these methods have exploded in recent
years, allowing the detection, classification and segmentation of objects of interest in images
with very high precision. But most of these approaches operate in supervised mode, i.e.
they require many examples in order to provide an effective model. However, obtaining
quality annotations on histopathological images remains very costly. For example, in the
field of colorectal cancer WSI segmentation, Qaiser et al. Qaiser et al. (2016) proposed
a method based on persistent homology to classify tumour and non-tumour patches from
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Hematoxylin & Eosin stained histology images. To train their system, more than 18000
annotated patches were needed.

At the same time, unsupervised approaches have shown their interest in many appli-
cations for image analysis, such as remote sensing Liang et al. (2018); Mei et al. (2019).
Recently, they have also been applied to histopathological WSI analysis. In particular,
in Yamamoto et al. (2019), the authors describe an unsupervised approach for extracting
interesting information from WSI that obtains better accuracy than human for prognostic
prediction of prostate cancer recurrence.

In this paper, we are interested in automatic segmentation in order to quickly extract
regions of interest (tumours for example) to make a more precise analysis of these areas
only. However, only few approaches on fully unsupervised segmentation of WSI have been
proposed. The first attempt to segment regions of interest from WSI without any prior
information or examples has been performed in Khan et al. (2013). The authors highlight
tissue morphology in breast cancer histology images by calculating a set of Gabor filters
to discriminate different regions. In Fouad et al. (2017), Fouad et al. use mathematical
morphology to extract ‘virtual-cells’ (e.g. superpixels), for which morphological and colour
features are calculated to then apply a consensus clustering algorithm to identify the differ-
ent tissues in the image. More recently, a similar approach has been presented by Landini
et al. Landini et al. (2019), adding a semi-supervised self-training classifier to the previous
techniques that enhances the results at the cost of partial supervision.

All these approaches propose to cluster the image based on predefined features. However,
deep learning approaches, particularly via autoencoding architectures, make it possible to
avoid manual definition of features by calculating a condensed representation of the image
in a latent space by applying convolutional filters. Unfortunately, as stated in Raza and
Singh (2018), most applications of autoencoders in digital pathology were developed to
perform cell segmentation or nuclei detection Xu et al. (2015); Hou et al. (2019), or stain
normalisation Janowczyk et al. (2017). Therefore, we propose here to study the potential of
these approaches for WSI tissue segmentation. The aim is to try to automatically identify
clusters corresponding to each type of tissue in the WSI that could then be labelled by
pathologists.

In this paper, we present a study on how convolutional autoencoders perform on WSI
segmentation by comparing different approaches. First, different autoencoders architec-
tures are compared to quantify the importance of hyperparameters of interest (number of
convolutional layers, number of convolutions by layer and size of the latent space). Then,
a multi-resolution approach using an ensemble clustering framework is evaluated, to see if
such ensemble techniques could provide more accurate results.

2. Methods

2.1 Convolutional autoencoders for WSI clustering

In this section, we explore of the use of convolutional autoencoders to cluster WSI histopatho-
logical images. For this, we present several experiments to evaluate the importance of each
hyperparameter.

As shown in Figure 1, a Convolutional AutoEncoder (CAE) is a deep convolutional
neural network composed of two parts: an encoder and a decoder. The main purpose of
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the CAE is to minimise a loss function L, evaluating the difference between the input and
the output of the CAE (usually Mean Squared Error). Once this function is minimised, we
can assume that the encoder part builds up a suitable summary of the input data, in the
latent space, as the decoder part is capable of reconstructing an accurate copy of it from
this encoded representation.

Figure 1: Architecture of a CAE with N = 2, C = 10 and Z = 50

The encoder is first constituted of the input layer (having the size of the input image)
which is connected to N convolutional layers of diminishing size, up to an information
bottleneck of size Z, called the latent space. The bottleneck is connected to a series of N
convolutional layers of increasing size, until reaching the size of the input. This second part
is called the decoder. Each convolution layer is composed of C convolutions and is followed
by three other layers: a batch normalisation, an activation function (ReLU) and a max
pooling of size (2,2).

To perform the clustering, a trained CAE is used to encode each patch of the whole
image. Then, this encoded representation of the patch (in the latent space) is given as the
input of a clustering algorithm and a cluster is assigned to the patch.

We decided to evaluate the influence of the three hyperparameters N , Z and C. For each
one, different values were tested while fixing the two others (N = 2, Z = 250, C = 10). To
evaluate the quality of the results, the Adjusted Rand Index (ARI) is calculated to compare
the obtained clustering to the annotations of the expert. The Rand Index computes a
similarity measure between two clusterings by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted and true clusterings.
The score is then normalised into the ARI score by:

ARI = (RI − Expected RI)/(max(RI) − Expected RI) (1)

Values of the ARI are close to 0 for random labelling independently of the number of clusters
and samples, and exactly 1 when the clusterings are identical (up to a permutation).

Each CAE was trained over a set of 10,000 different patches randomly selected. As
the result of both the clustering and the training of the CAE are non-deterministic, due
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to a high sensitivity to the initial conditions, 10 autoencoders were trained and the results
averaged for each hyperparameter value.

We also investigated the performance of several clustering algorithms, i.e Kmeans, Ag-
glomerative clustering (AggCl), Gaussian mixture (GM) and also the not too deep clustering
method (N2D) exposed in McConville et al. (2020). A clustering performed directly with
the Kmeans algorithm on the raw data (without any data reduction by the CAE) has been
calculated as a baseline to evaluate the benefit of encoding the data with the CAE.

2.2 Ensemble clustering

As exposed in Yamamoto et al. (2019), both micro-structures and macro-structures give dif-
ferent information. Pathologists also agree that identifying a single cell is way more difficult
without its surrounding context and they always look at the WSI at lower magnification (to
better capture the context) before zooming in at high magnification. Furthermore, in Alsub-
aie et al. (2018) an example of multi-resolution lung cancer adenocarcinoma classification
using deep learning shows improvements in the overall accuracy.

Thus, we explored a way to improve the results by using an ensemble of clustering
methods, each focusing on a different resolution. The objective is to merge low level in-
formation (context) with high level information (shape of the cells, etc.). For this, the
consensus method proposed in Wemmert and Gançarski (2002) was used. This method is
based on a the evaluation of the similarity between different clusterings and the definition
of corresponding clusters. Then, a multi-view voting approach is computed to produce a
single result representing all clusterings.

An example of the architecture of the approach is depicted in Figure 2.

We explored different configurations, but we only present the two most representative
which highlight how the quality of the results can be improved by using ensemble cluster-
ing. The first configuration, Emultires is composed of three clustering algorithms (Kmeans)
working on the latent space representation of the image obtained by different CAE trained
at different resolutions: 10× with 8 clusters, 5× with 6 clusters and 5× with 8 clusters. As
the reconstructed image from the autoencoder seems to focus more on colour intensity than
real structures, a second ensemble configuration has been tested. To add diversity and to
force the final result to focus its attention more on the structure of the objects, a clustering
working on a binary image (by thresholding the intensity of the initial image) has been com-
puted. Thus, the second configuration (Estruct) is composed of three clustering algorithms
(Kmeans) with the following parameters: 5× on the binary image with 6 clusters, 5× on
the binary image with 8 clusters and 10× on the initial RGB image with 6 clusters.

3. Results

3.1 Data

Our study was performed on 8 WSI of Haematoxylin Eosin Saffron (HES) stained tissue
extracted from a cohort of patients built within the scope of the AiCOLO project (IN-
SERM/Plan Cancer) studying colon cancer. The images have been provided by Georges
François Leclerc Centre (Dijon, France) and acquired from two different centres. An exam-
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Figure 2: Architecture of the first ensemble configuration Emultires: two CAE trained at dif-
ferent resolutions (10× and 5×) produce different latent representations that are clustered.
The three resulting clusterings are then merged through the multi-view voting algorithm
proposed in Wemmert and Gançarski (2002).

ple is given in Figure 3a. HES stain distinguishes cell nuclei in purple, from extracellular
matrix and cytoplasm in pink.

All images have been acquired at 20× magnification (corresponding to 0.5 µm/pixel)
but stored at several resolutions in a pyramidal format. The size of each image is around
90, 000 × 50, 000 pixels.

To train autoencoders, 10, 000 patches of size 128× 128 pixels were randomly extracted
at 10× resolution from all images (and 5× for the ensemble approach), as this seems to
be the minimal amount of information required by human expert to classify the tissue.
Meanwhile, sparse manual annotations of the five classes of tissue, tumour, stroma, outer
layer mucosa (crypts of Lieberkuhn and connective tissue), immune cells, and necrosis,
and two classes for background and artefacts (ink marks, etc.) have been performed by
pathologists on the images (using CytomineMarée et al. (2016)), to be able to evaluate the
relevance of the clustering.

3.2 Evaluation of all hyperparameters of the CAE

First, results obtained without using the latent space representation (see Table 1) are worse
than all those obtained when clustering the encoded data. This confirms the interest of
using a CAE for WSI clustering. As shown in Figure 4a, it appears that the number of
convolutions in each layer of convolutions (hyperparameter C) does not greatly affects the
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(a) Example of a WSI of colon tissue stained with
HES (magnification: ×20, size: 97,920× 55,040 pix-
els)

(b) Example of clustering with 8 clusters (orange, red
and blue clusters corresponding to tumour)

Figure 3: Example of a raw WSI (a) and a clustering result (b).

quality of the autoencoder as only a apart from a slight narrowing of the variability of the
results. It’s quite easy to figure out why: passed a certain number, additional convolution
brings to few complementary information. Figure 4b shows the evaluation of the ARI with
different number of convolution layers in the architecture. We can notice an increase of the
quality index up to 4 layers and then a brutal drop at 5. This indicates clearly that too
many convolutions (and poolings that downsample the information) reduce the information
that can further not be properly processed.

Nonetheless, as seen in Figure 5, the latent space size Z, seems to greatly influence the
pertinence of the CAE. Indeed, the ARI clearly grows as there is more space to encode
the latent representation, as a more precise information can be stored. Also, the more
information is present in the latent representation, the more classes can easily be differen-
tiated. However, it is also clear that a too large latent space will not be able to summarise
efficiently the information, and thus, will not help the clustering algorithm to discriminate
the different tissues. Moreover, the larger the latent space, the more memory and time are
needed to train the network.

3.3 Comparison of the CAE with the ensemble approach

As seen in the previous experiment, the ARI tends to give low scores because we only
have very few annotations on each class of interest. So we decided to compute a second
evaluation criterion based on the ability of the clustering to detect tumours areas in the
image, as it is the main class of interest in our project. To associate the tumour class to
a cluster, we calculated its tumour density (number of labelled tumour pixels / number
of total labelled pixels in the cluster). All clusters having a density over 50% are kept as
’tumour’, the others are labelled as ’not tumour’. Thus, two evaluation criteria have been
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calculated on the results and are presented in Table 1 and Table 2: the ARI as in the
previous experiment (see Eq.1) and the Fscore on the two-classes problem (tumour vs. not
tumour) Van Rijsbergen (1979).

Raw data Encoded data

Kmeans Kmeans AggCl GM N2D Emultires Estruct

Image 1 0.39 0.48 0.38 0.27 0.43 0.47 0.42

Image 2 0.27 0.33 0.29 0.19 0.29 0.31 0.46

Image 3 0.25 0.39 0.35 0.22 0.31 0.37 0.45

Image 4 0.08 0.08 0.13 0.05 0.12 0.08 0.08

Image 5 0.11 0.11 0.10 0.10 0.11 0.12 0.17

Image 6 0.37 0.52 0.51 0.49 0.43 0.51 0.57

Image 7 0.28 0.35 0.33 0.14 0.37 0.41 0.36

Image 8 0.33 0.44 0.42 0.07 0.37 0.44 0.45

Table 1: Evaluation of the ARI of all clustering results obtained with the different methods.

Raw data Encoded data

Kmeans Kmeans AggCl GM N2D Emultires Estruct

Image 1 0.89 0.96 0.94 0.73 0.97 0.96 0.88

Image 2 0.68 0.63 0.62 0.43 0.68 0.66 0.62

Image 3 0.76 0.87 0.85 0.76 0.88 0.87 0.91

Image 4 0.48 0.50 0.61 0.51 0.55 0.54 0.48

Image 5 0.65 0.64 0.60 0.62 0.65 0.65 0.72

Image 6 0.68 0.75 0.72 0.67 0.76 0.77 0.75

Image 7 0.68 0.73 0.75 0.61 0.74 0.76 0.84

Image 8 0.63 0.71 0.70 0.44 0.69 0.75 0.75

Table 2: Evaluation of the Fscore of all clustering results obtained with the different
methods.

4. Discussion

Classical methods applied on the latent space representation of the CAE tend to show
acceptable results. However, both ensemble clustering configurations seem to be more
efficient in finding coherent clusters corresponding to the classes of interest defined by the
pathologists.
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Among all the exposed methods, Estruct seems to give the best results. It tends to confirm
the importance of the shape of the objects on histopathological images. Furthermore, it
shows that even if convolutional autoencoders aim at automatically finding the best features
to encode images, they can also take advantage of pre-computed features for some specific
tasks.

5. Conclusion

In this paper, we compared different configurations of convolutional autoencoders in the
field of unsupervised learning for WSI histopathological image segmentation. For this,
different CAE architectures have been compared to try to find the best configuration and
to study the influence of each hyperparameter. Then, we proposed a new approach that
uses ensemble clustering technique to take advantage of multiresolution information and
structural features in the image. This confirms the importance of having diversity in an
ensemble learning framework and that working at different resolutions at the same time can
really improve the quality of the results.
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(a) Number of convolutions C in each layer of convolutions (N = 2, Z = 250)
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Figure 4: Evaluation of the ARI for the two main hyperparameters of the convolutions of
the CAE comparing Kmeans clustering on 7, 8, 9 and 10 clusters.
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Figure 5: Evaluation of the ARI with different latent space sizes, comparing Kmeans clus-
tering on 7, 8, 9 and 10 clusters.
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