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ABSTRACT

Transfer learning in reinforcement learning (RL) has shown strong empirical suc-
cess. In this work, we take a more principled perspective by studying when and
how transferring knowledge between MDPs can be provably beneficial. Specifi-
cally, we consider the case where there exists an undo map between two MDPs (a
source and a target), such that applying this map to the target’s state space recovers
the source exactly. We propose an algorithm that learns this map via regression
on state feature statistics gathered from both MDPs, and then uses it to obtain the
target policy in a zero-shot manner from the source policy. We theoretically justify
the algorithm by analyzing the setting when the undo map is linear and the source
is linearly-Q⋆ realizable, where our approach has strictly better sample complex-
ity than learning from scratch. Empirically, we demonstrate that these benefits
extend beyond this regime: on challenging continuous control tasks, our method
achieves significantly better sample efficiency. Overall, our results highlight how
shared structure between tasks can be leveraged to make learning more efficient.

1 INTRODUCTION
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Figure 1: Sample complexity (in mil-
lion) to reach 95% of optimal perfor-
mance. Numbers on blue bars quantify
how much worse learning from scratch is.

Reinforcement learning (RL) has seen rapid progress
in recent years and has achieved strong performance in
complex tasks, such as video games, locomotion, ma-
nipulation, and navigation (Mnih et al., 2015; Lee et al.,
2019; Zhu et al., 2019). Despite this, learning high-
quality policies from scratch typically requires millions
of environment interactions, which limits the applicabil-
ity of RL in real-world domains where data collection is
costly or time-consuming (Dulac-Arnold et al., 2019).

Transfer learning aims to overcome this challenge by
leveraging knowledge learned from source tasks to ac-
celerate learning on related target tasks (Taylor & Stone,
2009). It has the potential to drastically improve sample
efficiency by effectively reusing prior experience. While
transfer learning has seen strong empirical success in RL
(Zhu et al., 2020), we study the problem from a more
principled lens, where we explicitly model the struc-
tured similarity between tasks and exploit it for transfer.

An interesting and practically relevant setting is that of state space transformations: the source and
target tasks differ due to transformations in the state space. For instance, real-world transformations
such as color transformation from RGB to grayscale, change in frame of reference, and sensor fusion
– all are state space transformations (see Fig. 2). Such transformations provide a rich and practical
setting to design principled transfer learning methods that explicitly model them.

In this work, we propose a novel approach to address this setting by learning an undo map that
transforms the state space in the target back to the source. Instead of learning a policy from scratch,
our method recovers a function that undoes the transformation applied to the target states. This
allows us to reuse the source policies with minimal additional samples from the target task.

1
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Figure 2: State space transformations are grounded in real-world applications.

We propose an algorithm that exploits the invariance of the action space to learn this undo map via
regression on state feature statistics gathered from both MDPs. It subsequently uses the learned undo
map to obtain the target policy in a zero-shot manner by composing the source policy with the undo
map. Our algorithmic design is grounded in the setting where the undo map is linear and the source
is linearly-Q⋆ realizable. In this case, we theoretically show that our approach has strictly better
sample complexity than learning from scratch. Building on these insights, we extend our approach
to handle non-linear state transformations without requiring additional assumptions on the MDPs.

To evaluate our method, we use challenging continuous control tasks, and construct target tasks by
applying transformations such as changing the frame of reference, changing the coordinate system,
settings inspired by sensor fusion, as well as moving from sensor observations in the source to pixel
observations in the target. Our results show that learning the undo map consistently outperforms
learning the target policy from scratch in terms of sample efficiency, where it often achieves near-
optimal performance with an order of magnitude fewer samples (see Fig. 1). These results highlight
the practical utility of our approach for transfer learning in RL under state-space transformations.

To summarize, our work makes the following key contributions:

I. We propose a novel transfer learning method, LUMOS (Learning to Undo by Matching
Observation Statistics), that performs regression on state feature statistics to undo state-space
transformations in the target MDP (Sections 3 and 4).

II. We ground our algorithmic design in the setting where the undo map is linear and the source
MDP is linearly-Q⋆ realizable. Theoretically, we prove that our approach, LUMOS-LIN,
achieves strictly better sample complexity than learning from scratch (Section 3).

III. Building on these insights, we propose an extension, LUMOS, that works for non-linear state-
space transformations without additional assumptions on the MDPs (Section 4).

IV. We demonstrate the strong empirical performance of our method by conducting experiments
on challenging continuous control tasks involving state-space transformations (Section 5).

2 PROBLEM SETUP

Tasks. We model each task as a finite-horizon episodic Markov Decision Process (MDP), defined
by the 7-tuple (S,A,P, r,H, d0, ϕ), where S is the state space, A is the action space, P : S ×A →
P(S) defines the transition dynamics, r : S ×A → R is the reward function, H is the fixed horizon
length, d0 ∈ P(S) is the initial state distribution, and ϕ : S → Rd is a fixed feature map. We assume
that d ≤ H . The agent interacts with the task using a non-stationary policy πh : Rd → P(A), and
for 0 ≤ h < H , chooses an action ah ∼ πh(· | ϕ(sh)). The value of the policy π is defined as the
expected return V π ≜ Es0∼d0,π,P

[∑H−1
h=0 r(sh, ah)

]
, and the agent’s goal is to learn a policy π⋆

that maximizes this quantity, i.e., V ∗ = maxπ V
π . The state-action value functionQπ(s, a) denotes

the expected return when taking action a in state s, and following policy π thereafter.

Transfer Learning. The transfer learning setting follows the protocol in which the agent first inter-
acts with a source task MS = (SS ,AS ,PS , rS , H, dS0 , ϕS) to learn a policy πS , and then leverages
the learned policy to speed up learning in the target task MT = (ST ,AT ,PT , rT , H, dT0 , ϕT ). We
assume that the agent has complete access to the source MDP MS , either by knowing its dynamics
and reward function exactly or by being allowed to interact with it arbitrarily without incurring any
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sample complexity cost. In contrast, interactions with the target MDP MT are limited and costly.
MS and MT have some shared structure, which we describe below.

Shared Structure and Undo Map. We assume that both tasks are exactly the same except that
the agent observes states through task-specific feature maps: ϕS : S → RdS in the source and
ϕT : S → RdT in the target. These feature maps are related by an unknown transformation (the undo
map) U⋆ : RdT → RdS , such that for all s ∈ S , ϕS(s) = U⋆

(
ϕT (s)

)
. This relationship induces

a correspondence between policies: for any policy πS : Rd → P(A) defined in the source feature
space, we define the corresponding policy in the target task as πT

(
ϕT (s)

)
= πS

(
U⋆

(
ϕT (s)

))
.

This allows policies to generalize across tasks despite differing state representations.

Objective. Given complete access to the source MDP MS , our objective is to learn a near-optimal
policy for the target MDP MT using as few samples from the target as possible.

3 LUMOS-LIN: LEARNING THE UNDO MAP IN LINEAR SETTINGS

:

:

Figure 3: Overview of LUMOS-LIN. We recover
the map to undo the state space transformation by
linear regression on state feature statistics.

In this section, we focus on linear state-space
transformations, and show how the undo map
can be estimated from samples by leveraging
the invariance of the action space in the source
and target MDPs (Section 3.1). The result-
ing learning algorithm, LUMOS-LIN, computes
state feature statistics in the source and target
that are related via the undo map. This algo-
rithm, illustrated in Fig. 3, enjoys strictly better
sample complexity than learning from scratch
(Section 3.2) and enables zero-shot transfer of
the target policy by composing the source pol-
icy with the learned undo map.

3.1 LEARNING TO UNDO VIA REGRESSION

To estimate the undo map in linear settings,
we compare statistics of state features under an
open-loop sequence of actions in the source and
target MDPs. While the observations differ, the
underlying dynamics remain consistent.

Definition 1 (Expected State Feature Sum).
Given an action sequence a0:h−1, define ψh(a0:h−1) as the h-step truncated sum of state features
computed from a sample trajectory:

ψh(a0:h−1) ≜
h−1∑
t=0

ϕ(st), (1)

where (s0, s1, . . . , sh−1) is the state sequence obtained by executing actions a0, . . . , ah−1. The
expected state feature sum for h steps, denoted by ψ̄h(a0:h−1), is defined as:

ψ̄h(a0:h−1) ≜ E
[
ψh(a0:h−1)

]
, (2)

where the expectation is over the dynamics of the MDP.

Note that the expected state feature sum is defined with respect to an open-loop sequence of actions.
Consequently, since the source and target MDPs differ only through a linear transformation of the
state space, the expected state feature sums in the source and the target (denoted by ψ̄S

h (a0:h−1) and
ψ̄T
h (a0:h−1), respectively) are related via the undo map U⋆ as follows:

ψ̄S
h (a0:h−1) = U⋆ψ̄

T
h (a0:h−1), ∀h ∈ [H]. (3)

3
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Algorithm 1 Learning to Undo with LUMOS-LIN

Require: Source MDP MS , target MDP MT , action sequence a0:H−1, number of trajectories n
1: Exactly compute the expected feature sum ψ̄S

h (a0:h−1) in MS , ∀h ∈ [H].
2: Roll out n trajectories in MT using action sequence a0:H−1.
3: for h ∈ [H] do
4: For each trajectory i, compute feature sum ψ

T,(i)
h (a0:h−1).

5: Compute empirical expectation: ψ̂T
h (a0:h−1) =

1
n

∑n
i=1 ψ

T,(i)
h (a0:h−1).

6: end for
7: Solve for Û ∈ RdS×dT (which estimates U⋆) via least squares:

Û = arg min
U∈RdS×dT

H∑
h=1

∥∥∥ψ̄S
h (a0:h−1)− Uψ̂T

h (a0:h−1)
∥∥∥2
2
.

8: return Û

As samples from the source MDP MS are free, we can compute ψ̄S
h (a0:h−1) exactly, while

ψ̄T
h (a0:h−1) can be empirically estimated using samples from the target MDP MT .

Learning Algorithm. The relations between expected state feature sums in the source and the
target are equivalent to a system of linear equations (one for each time horizon h ∈ [H]), which
we use to estimate U⋆ via least squares. Since U⋆ ∈ RdS×dT , estimating it amounts to solving dS
separate linear regression problems, each with dT unknowns. Therefore, we need at least dT linearly
independent equations to ensure identifiability. Since dT < H (by assumption), we use the expected
feature sum relation for each h ∈ [H] to construct H such equations. Specifically, let ψ̂T

h (a0:h−1)
denote the empirical estimate of the expected target feature sum obtained from n trajectories. Then
the undo map is estimated by solving:

Û = arg min
U∈RdS×dT

H∑
h=1

∥∥∥ψ̄S
h (a0:h−1)− Uψ̂T

h (a0:h−1)
∥∥∥2
2
. (4)

Lifting Source Policy to Target. The estimate Û allows us to lift the optimal policy for the source
task π⋆

S to an optimal policy for the target task: π⋆
T (·) = π⋆

S

(
Û (·)

)
.

The pseudocode for the proposed algorithm, LUMOS-LIN, is given in Algorithm 1.

3.2 THEORETICAL ANALYSIS

We first list the assumptions used in our analysis. The source and target MDPs have feature maps
ϕS : SS×A → RdS and ϕT : ST ×A → RdT that represent state–action pairs as dS and dT -
dimensional vectors. Let ΦS ∈ R|SS×A|×dS and ΦT ∈ R|ST×A|×dT denote the corresponding
feature matrices, with rows ϕS(s, a) and ϕT (s, a). We assume that the feature vectors in both
MDPs satisfy ∥ϕ(s, a)∥2 ≤ 1, and that rewards are bounded within the range [−1, 1]. We further
assume that the source is linearly-Q⋆ realizable.
Assumption 1 (Linear-Q⋆ realizability in MS (Weisz et al., 2021)). There exists a vector θ⋆S ∈ RdS

such that for every state–action pair (s, a) ∈ SS ×A in the source MDP MS ,

Q⋆
S(s, a) = ⟨ϕS(s, a), θ⋆S⟩.

In this setup, given an action sequence a0:h−1, we define ψh(a0:h−1) to be the average of the state-
action features over the first h steps of a sample trajectory:

ψh(a0:h−1) ≜
1

h

h−1∑
t=0

ϕ(st, at). (5)

The source and the target MDPs are exactly the same except for the state-action features, which are
related via a linear undo map U⋆: ΦS = ΦTU

T
⋆ . We assume that the ℓ2 norm of each row of U⋆ is

4
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upper bounded by a constant. The learner has access to the parameter vector θ⋆S for the state-action
values of the optimal source policy, and an oracle O for the state-action feature sum in the source.
Assumption 2 (Oracle for state-action feature sum in MS). We denote by O an oracle that when
queried with an action sequence a0:h−1 and time h ∈ [H], outputs ψ̄S

h (a0:h−1) ≜ E
[
ψS
h (a0:h−1)

]
.

Learning Algorithm. Our learning algorithm first queries O to obtain ψ̄S
h (a0:h−1) in MS , for all

h ∈ [H]. Next, it rolls out n trajectories in the target using the open-loop action sequence a0:H−1.
It then views the truncated sum of state-action features ψT,(i)

h (a0:h−1) (computed on the i-th sample
trajectory) as noisy features for ψ̄S

h (a0:h−1). Subsequently, it estimates U⋆ with Û via least squares.

Policy Transfer. From Eq. 3, the relationQ⋆
T = ΦTU

T
⋆ θ

⋆
S holds. Thus, a natural way to evaluate the

output Û of LUMOS-LIN, is to bound the performance difference with respect to the optimal policy
in the target, if we act greedily with respect to ΦT Û

T θ⋆S . Let π̂ denote this policy. We show that our
algorithm has the following performance difference guarantee; the proof is provided in Appendix B.
Theorem 1 (Performance Difference Bound for LUMOS-LIN). Define the covariance matrix

Σ ≜
1

H

H∑
h=1

ψT
h (a0:h−1)ψ

T
h (a0:h−1)

T ,

and let λmin denote λmin(Σ).

For all n ≥ 6
Hλmin

(log 3dT dS

δ ), with probability at least 1− δ, the performance difference satisfies

∥V ⋆
T − V π̂

T ∥∞ ≤ 2

√
H

nλmin

√√√√dT + 2 log

(
3dS
δ

)
+ 2

√
dT log

(
3dS
δ

)
+ o

(√
H

nλmin

)
.

The theorem shows that if the open-loop action sequence a0:H−1 is good, i.e., λmin(Σ) is sufficiently
large (on the order of 1/dT ), then LUMOS-LIN achieves a sample complexity upper bound that
scales as Õ(dT

√
H). This improves upon the lower bound for linearly-Q⋆ realizable MDPs, which

scales exponentially with the feature dimension dT or the horizon H (Weisz et al., 2021).

Remark on Linear MDPs. A special case of MDPs with linear-Q⋆ realizability is linear MDPs
(Jin et al., 2020). In this setting, the minimax lower bound scales as Õ(dTH

3/2) (He et al., 2023),
whereas our transfer learning method enjoys a Õ(dT

√
H) dependence.

4 LUMOS: LEARNING THE UNDO MAP IN GENERAL SETTINGS

:

:

Figure 4: Overview of LUMOS. We match state feature
statistics between source and undone target trajectories.

In this section, we relax the assumption
that the undo map is linear and present a
general algorithm for non-linear trans-
formations of the state-space.

Algorithm 1 does not directly apply in
this setting, because the key relation
in Eq. 3 no longer holds once U⋆ is
non-linear. However, we can reinter-
pret what the algorithm was essentially
doing: matching the expected state fea-
ture sums in the source MDP MS with
those computed from the undone trajec-
tories in the target MDP MT .

With this lens, we introduce the notion
of an expected undone feature sum, de-
fined with respect to an undo map U ,
that looks at undone trajectories.

5
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Algorithm 2 Learning to Undo with LUMOS

Require: Source MDP MS , target MDP MT , number of trajectories n, number of iterations N ,
truncated horizon H†

1: Initialize ϕ.
2: for i ∈ [N ] do
3: Sample an action sequence a0:H†−1 uniformly at random.
4: Exactly compute the expected feature sum ψ̄S

h (a0:h−1) in MS , ∀h ∈ [H†].
5: Roll out n trajectories in MT using action sequence a0:H†−1.
6: for h ∈ [H†] do
7: For each trajectory j, compute undone feature sum ψ

T,(j)
h,Uϕ

(a0:h−1).

8: Compute empirical expectation: ψ̂T
h,Uϕ

(a0:h−1) =
1
n

∑n
j=1 ψ

T,(i)
h,Uϕ

(a0:h−1).
9: end for

10: Update ϕ to minimize
∑H†

h=1 ∥ψ̄S
h (a0:h−1)− ψ̂T

h,Uϕ
(a0:h−1)∥22.

11: end for
12: return ϕ

Definition 2 (Expected Undone State Feature Sum). Given an action sequence a0:h−1 and an ar-
bitrary undo map U , define ψh,U (a0:h−1) as the h-step truncated sum of undone state features
computed from a sample trajectory:

ψh,U (a0:h−1) ≜
h−1∑
t=0

U
(
ϕ (st)

)
, (6)

where (s0, s1, . . . , sh−1) is the state sequence obtained by executing actions a0, . . . , ah−1. The
expected undone state feature sum for h steps, denoted by ψ̄h,U (a0:h−1), is defined as:

ψ̄h,U (a0:h−1) ≜ E
[
ψh,U (a0:h−1)

]
, (7)

where the expectation is over the dynamics of the MDP.

By the definition of U⋆, we have

ψ̄S
h (a0:h−1) = ψ̄T

h,U⋆
(a0:h−1), ∀h ∈ [H]. (8)

Similar to the previous setting, we can compute ψ̄S
h (a0:h−1) exactly, while ψ̄T

h,U (a0:h−1) can be
empirically estimated using samples from the target MDP MT for any undo map U .

Learning Algorithm. In the general setting, we parameterize the undo map as Uϕ and optimize its
parameters ϕ to match the expected state feature sums of the source and the undone target trajecto-
ries. More concretely, we minimize the objective

J (ϕ) = Ea
0:H†−1

[
H†−1∑
h=0

∥∥ψ̄S
h (a0:h−1)− ψ̄T

h,Uϕ
(a0:h−1)

∥∥2
2

]
(9)

with respect to ϕ, where the expectation is over action sequences sampled uniformly at random.

Since the undo map is no longer linear, the dS · dT equations from a single action sequence are in-
sufficient to estimate U⋆. Therefore, our algorithm samples multiple action sequences and optimizes
the empirical expectation over these sequences. Moreover, we use a truncated horizon H† < H to
allow more action sequences to be sampled for training under a given budget of samples; we justify
this choice in Section 5.

The pseudocode for our algorithm, LUMOS, is given in Algorithm 2. In summary, we iteratively
sample an action sequence, compute the expected feature sums in the source, estimate the undone
feature sums in the target via n trajectories, and updates ϕ to minimize the empirical squared error.

Zero-shot transfer works as usual; compose the source policy with the learned undo map.

6
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Figure 5: Comparison of avg. reward with varying budget of target samples. Transfer learning via
LUMOS-LIN consistently achieves significantly better sample efficiency than learning from scratch.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate our transfer learning method to address the following re-
search questions: (i) Does learning the undo map U⋆ outperform learning the target policy from
scratch? (ii) How should the open-loop action sequence a0:H−1 be chosen?

We begin by explaining the rationale for task selection, describing both the source and target tasks.
Next, we provide an overview of the training process for the undo map, followed by the results.

5.1 ENVIRONMENTS

We evaluate our method on a suite of continuous control environments that are challenging to learn
from scratch. As source tasks, we use standard MuJoCo environments: SWIMMER, HALFCHEE-
TAH, WALKER2D, ANT, and CARTPOLE. We then construct corresponding target tasks by applying
structured transformations in the state space. Detailed descriptions are provided in Appendix C.

Changed frame of reference. In setting, we create rotated variants of source tasks, where the global
coordinate frame is rotated by 45◦. This results in ROTATEDSWIMMER, ROTATEDHALFCHEETAH,
ROTATEDWALKER2D, and ROTATEDANT environments.

Sensor fusion. In this setting, multiple sensor modalities are present. Instead of observing a dS-
dimensional observation vector, the agent receives a 10× dS-dimensional observation. Concretely,
for each source observation coordinate i, the target provides 10 measurements corresponding to
different sensors, which can be linearly combined to recover the original value. This results in FU-
SIONSWIMMER, FUSIONHALFCHEETAH, FUSIONWALKER2D, and FUSIONANT environments.

Changed coordinate system. In this setting, we construct polar-coordinate variants of HALFCHEE-
TAH and ANT, where sensor readings are expressed in polar rather than Cartesian coordinates. This
results in POLARHALFCHEETAH, and POLARANT environments.

Pixel observations. In this setting, we consider CARTPOLE with pixel observations as the target
task, while the source task is sensor-based. This results in the PIXELCARTPOLE environment.

5.2 TRAINING PROCEDURE

We use the rl-baselines3-zoo framework (Raffin, 2020) to train both the source policies and
the target policies used in the learning-from-scratch baseline, with PPO (Schulman et al., 2017) as
the learning algorithm. For each environment, we adopt the tuned hyperparameters provided in the
framework, and train the policies for 1 million steps each. To estimate the expected state feature
statistics, we use a large number of samples for the source MDP to obtain accurate estimates, while

7
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Figure 6: Comparison of avg. reward with varying budget of target samples. Transfer learning via
LUMOS consistently achieves significantly better sample efficiency than learning from scratch.

using fewer samples for the target MDP. For LUMOS-LIN, the action sequence a0:H−1 is derived
from the source policy πS : we roll out πS in the source MDP MS , record the sequence of actions
taken, and reuse this sequence in both MDPs. For LUMOS, by contrast, we employ multiple short
action sequences sampled uniformly at random. In this setting, the undo map is parameterized by a
neural network. Additional implementation details are provided in Appendix D.

5.3 RESULTS
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Figure 7: Sensitivity to action sequence. The
choice of open-loop action sequence critically af-
fects the performance of our method.

In this section, we first compare our methods,
LUMOS-LIN and LUMOS, against learning the
target policy from scratch (listed as SCRATCH).
Next, we evaluate the criticality of the choice of
the action sequence.

Results with LUMOS-LIN. While LUMOS-
LIN comes with guarantees under linear undo
maps and linearly-Q⋆ realizable MDPs, we
evaluate it in settings where this assumption no
longer holds. The ROTATED and FUSION en-
vironments fit this regime. Fig. 5 reports the
average reward, averaged over three seeds, un-
der varying target sample budgets. We observe
consistent and substantial gains over training from scratch. Notably, in ROTATEDSWIMMER,
LUMOS-LIN is 143× more sample-efficient. The FUSION tasks are particularly difficult for learning
from scratch, likely due to the increased dimensionality of the state space and the fact that informa-
tion is only meaningful when aggregated linearly across sensors. In contrast, LUMOS-LIN exploits
this structure, and achieves near-optimal performance with very few target samples.

Results with LUMOS. We now consider the general non-linear transformation setting, without
any realizability assumptions on the target MDP. Fig. 6 reports results on POLARHALFCHEETAH,
POLARANT, and PIXELCARTPOLE. These environments are challenging: in practice, when angles
appear in the observation space, they are often represented as (sin,cos) pairs to aid learning,
whereas here we provide only raw polar coordinates. Despite this, LUMOS effectively recovers
the ground-truth undo map, and leads to substantial sample efficiency improvements. Similarly, in
PIXELCARTPOLE, LUMOS achieves higher average reward within a fraction of the target sample
budget compared to learning from scratch.

Overall, these results demonstrate that LUMOS leverages the shared structure between source and
target tasks, and consequently, leads to drastic improvements in sample efficiency across both linear
and non-linear transformations.

Choice of Action Sequence. LUMOS-LIN requires a single good action sequence to estimate the
undo map. We compare a source-anchored sequence and a randomly sampled sequence on RO-
TATEDANT in Fig. 7 (left), and find that the source-anchored sequence leads to better performance.
For LUMOS, the algorithm samples multiple truncated action sequences uniformly at random. Fig. 7
(right) shows that when these sequences are instead source-anchored, performance decreases com-
pared to using randomly sampled sequences, which supports our choice. These results emphasize
the critical role of selecting a good action sequence.
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6 RELATED WORK

Transfer Learning. Empirical methods for transfer learning in RL often lack provable guarantees
or rely on application-specific assumptions that do not generalize. For instance, Sun et al. (2022)
assume shared latent dynamics across observation spaces and that target observations can be trans-
formed into the source domain, they do not learn this mapping explicitly and offer no theoretical
guarantees on transfer performance. Similarly, Watahiki et al. (2024) assume a shared latent MDP
structure between tasks but their method is not theoretically grounded. Other works, such as Agar-
wal et al. (2022), study transfer through reusing prior policies across design iterations, which is
orthogonal to our setting. Methods like Chen et al. (2024); Yi et al. (2023) rely on very specific vi-
sual or object-level assumptions, which limits their general applicability. The notion of an undo map
to reverse state space transformations in reinforcement learning was first introduced in Gupta et al.
(2022), where the problem is approached through a distributional lens by aligning trajectories across
the source and target tasks. However, the method does not scale beyond toy tabular environments.

Representational Transfer in Low-Rank MDPs. Several works have studied representational
transfer under low-rank or linear MDP assumptions. For instance, Agarwal et al. (2023); Cheng
et al. (2022) use reward-free exploration in the source task to learn a good representation for the
target. Sam et al. (2024) extend this to a more general low-rank setting. Lu et al. (2021) learn a
linear representation using least squares for multitask linear MDPs, and Ishfaq et al. (2024) consider
the offline multitask case.

In contrast, our work approaches transfer RL through a more principled lens by making concrete
assumptions about the structural relationship between the source and target tasks. We propose an
algorithm that explicitly learns a mapping between their observation spaces by framing the problem
as supervised learning, and therefore eliminates the need for RL in the target task. Under certain
assumptions, this leads to provable improvements in sample complexity over learning from scratch.
Moreover, our method is practical and demonstrates strong empirical performance. Essentially, our
work takes a step toward more principled and broadly applicable approaches to transfer in RL.

7 CONCLUDING DISCUSSION

In this paper, we introduced a principled approach to transfer learning in reinforcement learning,
where the source and target tasks are related by transformations of the state space. By explic-
itly learning an undo map, our method achieves significant gains in sample efficiency compared to
learning target policies from scratch, as demonstrated across multiple challenging continuous control
environments. Theoretically, we showed that when the undo map is linear and the source is linearly-
Q⋆ realizable, our approach achieves strictly better sample complexity than learning from scratch.
A current limitation of our analysis is the reliance on a good action sequence – one that satisfies
specific coverage properties required to estimate the undo map accurately. A promising direction
for future work is to design principled algorithms that can discover such sequences. Extending the
theoretical results beyond the linear realizability assumption is another interesting direction.
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A TABLE OF CONTENTS

In this section, we provide an outline of the contents provided in the paper’s appendices.

• Appendix B contains the proof for Theorem 1.

• Appendix C describes the environments used in the experimental evaluation.

• Appendix D provides additional implementation details for experimental evaluation.

B PROOFS

In this section, we provide the proof of Theorem 1.

We first relate the performance difference between the optimal policy in the target MDP and the
policy that acts greedily with respect to ΦT Û

T θ⋆S to the estimation error in Û , where Û is the output
of Algorithm 1:

Lemma 1 (Performance Difference). ∥V ⋆
T − V π̂

T ∥∞ ≤ 2H∥Û − U⋆∥max.

Here, ∥ · ∥max denotes the max norm. To bound the estimation error ∥Û − U⋆∥max, we use the
following per-row guarantee:

Lemma 2 (Estimation Error Bound). Let M [i] denote the i-th row of a matrix M . Fix i ∈ [dS ].
Then, for all n ≥ 6

Hλmin
(log 3dT

δ ), with probability at least 1 − δ, the output Û of Algorithm 1
satisfies:

∥∥∥Û [i]− U⋆[i]
∥∥∥
Σ
≤
√

1

nH

√√√√dT + 2 log

(
3

δ

)
+ 2

√
dT log

(
3

δ

)
+ o

(√
1

nH

)
.

Since Σ is positive semidefinite (PSD), we can relate the Σ-norm to the ℓ∞ norm via:

∥x∥∞ ≤
∥x∥Σ√
λmin

. (10)

Applying a union bound over all i ∈ [dS ], with per-row failure probability set to δ/dS , gives a
high-probability bound on ∥U − U⋆∥max. Substituting this into Lemma 1 concludes the proof.

Proof of Lemma 1. For any s ∈ ST ,

V ⋆
T (s)− V π̂

T (s) = Q⋆
T (s, π

⋆(s))−Q⋆
T (s, π̂(s)) +Q⋆

T (s, π̂(s))−Qπ̂
T (s, π̂(s))

≤ Q⋆
T (s, π

⋆(s))− f(s, π⋆(s)) + f(s, π̂(s))−Q⋆
T (s, π̂(s))

+ Es′∼PT (s,π̂(s))

[
V ⋆
T (s

′)− V π̂
T (s′)

]
≤ 2∥f −Q⋆

T ∥∞ + Es′∼PT (s,π̂(s))

[
V ⋆
T (s

′)− V π̂
T (s′)

]
.

Unrolling this recursion for H steps,

∥V ⋆
T − V π̂

T ∥∞ ≤ 2H∥f −Q⋆
T ∥∞.

Setting f = ΦT Û
⊤θ⋆S and Q⋆

T = ΦTU
⊤
⋆ θ

⋆
S completes the proof.

Proof of Lemma 2. Note that the noise in Algorithm 1 is 1-subgaussian. Therefore, the result
follows from Theorem 1 and Remark 9 in (Hsu et al., 2014), where Condition 1 is satisfied with
ρ0 ≤ 1√

λmindT
, Condition 2 is satisfied with σ = 1, and Condition 3 is satisfied with b0 = 0.
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C ENVIRONMENTS

ROTATEDSWIMMER. This task requires the agent to swim forward through a viscous fluid. We
apply a 45◦ rotation to the (x, y) plane to modify the frame in which the agent’s motion is observed.
This affects both the heading of the swimmer and its linear velocity vector. The observation is
updated accordingly by adjusting the front tip’s angle and rotating the (x, y) velocity components.

ROTATEDHALFCHEETAH. This task requires the agent to run forward in a planar environment.
The original environment operates in a 2D plane. We perform a 45◦ rotation on the (x, z) com-
ponents of the agent’s torso position and velocity. The joint states and angular velocities remain
unchanged.

ROTATEDWALKER2D. This task requires the agent to walk forward while maintaining balance.
Similar to HalfCheetah, we rotate the observation of the agent’s torso height and linear velocity
in the (x, z) plane by 45◦. This alters how progress and vertical motion are perceived, while the
actuator and sensor states are kept intact.

ROTATEDANT. In this task, the agent is a quadraped and must navigate a 2D surface using four
legs. We rotate the global (x, y) velocity of the torso by 45◦. When present, external contact forces
are also rotated in the same plane. The result is a consistent shift in perceived motion direction
across the ant’s high-dimensional observation space.

Sensor Fusion. In the fusion environments, instead of observing a dS-dimensional observation
vector, the agent receives a 10 × dS-dimensional observation. More concretely, for each source
observation element i, the target task provides 10 measurements of the form: x(j)i = wj · xi + cj ,
for j ∈ [10], where the weights wj sum to 1 and the offsets cj sum to 0. This simulates a sensor
fusion scenario in which the undo map u⋆ sums the 10 measurements corresponding to each original
dimension to recover the source observation.

POLARHALFCHEETAH. In this task, we change the coordinate system of selected observation
dimensions from Cartesian to polar coordinates. In particular, pairs of state variables such as the
angular velocities of the back thigh and shin are transformed so that their joint (x, y) representation
becomes (r, θ), where r =

√
x2 + y2 and θ = arctan 2(y, x). This alters how the agent perceives

limb velocities.

POLARANT. In this task, the angular velocity components of the torso along the x and y axes are
represented in polar form. This affects how rotational motion is encoded.

PIXELCARTPOLE. In this task, the agent receives pixel observations instead of low-dimensional
sensor states. We extract a cropped 40×60 image centered around the cart, and the observation is the
difference between two consecutive frames to capture dynamics. Since the cart’s absolute position
and velocity cannot be inferred from pixels alone, we mask those variables from the source task to
ensure comparability. This setting, inspired by Sun et al. (2022), evaluates whether our method can
transfer across a modality shift from sensor states to pixels.

D IMPLEMENTATION DETAILS

Rotation and Fusion Tasks. To estimate the expected state feature sums in the target MDP MT ,
we truncate rollouts to dT steps instead of executing full episodes. This produces a sufficient number
of equations to identify the undo map. We collect approximately 5,000 rollouts of length dT , where
dT is the dimensionality of the target observation space. A comparable number of samples is used
to estimate the source statistics. The action sequence a0:H−1 is obtained from the source policy πS :
we execute a rollout of πS in the source MDP MS, record the actions taken, and reuse this sequence
as a0:H−1.

Polar Tasks. For these tasks, we generate 500 randomly sampled action sequences of length dT .
The target statistics ψ̄T

h,·(·) are estimated using 10 samples, while the source statistics ψ̄S
h (·) are

estimated using 10 samples for POLARHALFCHEETAH and 3 samples for POLARANT.

12
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Sensor-to-Pixel Task. Here, we use 500 source-anchored action sequences of length 5. The target
statistics ψ̄T

h,·(·) are estimated with 500 samples, while the source statistics ψ̄S
h (·) are estimated with

20 samples.

For LUMOS-LIN, the undo map is computed using the closed-form least-squares solution. For LU-
MOS, we parameterize the undo map with a single hidden-layer neural network, trained for 10,000
epochs with learning rate 0.001 and weight decay 0.0001. The hidden layer size is set to 128 for
POLARHALFCHEETAH, 256 for POLARANT, and 16 for PIXELCARTPOLE.
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