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Abstract

Larval zebrafish hunting provides a tractable setting to study how ecological and
energetic constraints shape adaptive behavior in both biological brains and artificial
agents. Here we develop a minimal agent-based model, training recurrent policies
with deep reinforcement learning in a bout-based zebrafish simulator. Despite
its simplicity, the model reproduces hallmark hunting behaviors—including eye
vergence-linked pursuit, speed modulation, and stereotyped approach trajecto-
ries—that closely match real larval zebrafish. Quantitative trajectory analyses show
that pursuit bouts systematically reduce prey angle by roughly half before strike,
consistent with measurements. Virtual experiments and parameter sweeps vary
ecological and energetic constraints, bout kinematics (coupled vs. uncoupled turns
and forward motion), and environmental factors such as food density, food speed,
and vergence limits. These manipulations reveal how constraints and environ-
ments shape pursuit dynamics, strike success, and abort rates, yielding falsifiable
predictions for neuroscience experiments. These sweeps identify a compact set
of constraints—binocular sensing, the coupling of forward speed and turning in
bout kinematics, and modest energetic costs on locomotion and vergence—that are
sufficient for zebrafish-like hunting to emerge. Strikingly, these behaviors arise in
minimal agents without detailed biomechanics, fluid dynamics, circuit realism, or
imitation learning from real zebrafish data. Taken together, this work provides a
normative account of zebrafish hunting as the optimal balance between energetic
cost and sensory benefit, highlighting the trade-offs that structure vergence and
trajectory dynamics. We establish a virtual lab that narrows the experimental search
space and generates falsifiable predictions about behavior and neural coding.

1 Introduction

Adaptive behavior unfolds under ecological and energetic constraints that shape what strategies are
feasible or optimal [} [2]. Understanding how such constraints give rise to structured behavioral
sequences is a shared challenge for neuroscience, neuroAl, and artificial intelligence [3}, 14]].

Larval zebrafish hunting is a particularly clear example of structured behavior: animals pursue prey
through discrete bouts organized into exploration, orientation, pursuit, and either strike or abort
[5 16l 2. These behaviors exhibit consistent hallmarks, including a vergence-linked shift into a
“hunting mode” [} 6], systematic halving of prey angle across pursuit bouts [2f], and stereotyped
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approach trajectories [[6]. Despite this well-documented structure, it remains unclear why these
behavioral motifs emerge and persist, or under what constraints they represent optimal solutions [[1]].
In particular, we lack explanations for why vergence angles shift abruptly [6]], why prey angle is
consistently reduced by about 50% per pursuit bout [2], and why some hunts succeed while others
abort [[1]]. Prior computational accounts, including bounded integrator models [7] and probabilistic
inference frameworks [2]], capture aspects of zebrafish hunting but stop short of explaining why
stereotyped trajectories emerge as optimal strategies.

Models of behavior in neuroscience are often descriptive, specifying what actions animals perform
under given conditions [6l e.g.,], or mechanistic, capturing how neural circuits generate those
behaviors [8} e.g.,]. In contrast, our approach is normative: it explains why a behavioral strategy
emerges as optimal given specified constraints, in line with reinforcement-learning—based normative
models of perception and decision-making [7, 9, e.g.,].

Although larval zebrafish are unusually accessible for circuit-level and behavioral experiments thanks
to their transparency and genetic tools 10} 11]], careful ethological work still leaves key variables
hard to isolate and manipulate [6| [1]]. Virtual-reality assays can reliably evoke components, such as
convergent eye movements and orienting turns, but typically do not permit fine-grained, closed-loop
control over the entire hunting sequence [5]. In naturalistic arenas, ecological variables such as prey
density, prey kinematics, and energetic costs covary, making it difficult to vary them systematically
one at a time for causal inference. Moreover, internal state variables—such as motivational drive or
accumulated evidence—that likely govern the transition between pursuit, strike, and abort remain
difficult to access with current experimental methods [[7}12].

Task-optimized artificial neural networks provide a complementary approach, offering a way to test
how specific constraints give rise to structured behavior when direct experimentation falls short 9, 13].
Prior studies show that recurrent neural network (RNN) agents trained with deep reinforcement
learning (DRL) can capture biological strategies, such as electrosensory navigation in weakly electric
fish [[13}114]. The same methods have also been applied in Al and NeuroAl settings, where they give
rise to complex planning behaviors and structured internal representations [4} (15} 16, 17, [18] |19} 20].
Taken together, this body of work motivates applying task-optimized recurrent agents to zebrafish
hunting as a principled way to probe how ecological and energetic constraints shape structured
behavior.

Here, we introduce a biologically inspired hunting simulator where RNN-based DRL agents learn to
pursue prey through discrete bouts (with prey modeled as stochastic walkers mimicking paramecia
rather than adversarial agents [21]]). This framework enables systematic manipulations of ecological
variables, sensory constraints, and energetic costs, providing a virtual laboratory for uncovering how
constraints yield structured behavior. The same approach—task-optimized DRL agents analyzed via
structured sweeps—can extend beyond zebrafish hunting to other sensorimotor systems and inform
inductive biases in Al and robotics.

Our key contributions are:

(i) We introduce a biologically inspired framework in which virtual zebrafish agents perceive, move,
and hunt through discrete bouts, enabling systematic manipulation of ecological, sensory, and
energetic constraints.

(i) We train recurrent agents with deep reinforcement learning and show that they spontaneously
develop naturalistic hunting strategies without imitation learning from real zebrafish data.

(iii)) Through detailed behavioral analyses and parameter sweeps, we identify a compact set of
constraints—binocular sensing, bout kinematics, and energetic costs—minimal yet sufficient for
zebrafish-like hunting behavior to emerge.

(iv) We establish a virtual lab that provides falsifiable predictions for in vivo experiments, offers a
normative account of why hunting stereotypy emerges, and serves as a starting point for probing how
task-trained RNNs might encode behavioral state variables.

2 Methods

2.1 Simulation Environment and Agent Design

Following experimental studies of larval zebrafish in open circular arenas [7, 22], we simulate a
two-dimensional circular aquatic arena with rigid boundaries and diameter between 33 and 100 mm.
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Figure 1: (a) Closed-loop RL framework: an actor—critic RNN agent selects actions that update
the environment state, which in turn provides new observations and rewards. (b) Zebrafish agent
model. Each eye has a 163 degree perception field that can rotate, and is divided into 10 sectors
reporting the type and distance of the nearest object. (c) Eye configurations at maximum divergence
and convergence; the agent can adopt any intermediate vergence angle. (d) The agent’s action space,
with coupled forward and turn speeds. Independent multiplicative uniform noise is added to both. (e)
Prey capture: when prey are within strike distance, capture probability depends on angular alignment
to the food, modeled by a Laplace distribution.
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The arena contains a fixed number of stochastically moving prey agents, with both the prey and
the zebrafish agent initialized uniformly at random within the arena (Figure T, left). Prey motion
statistics are chosen to approximate Paramecium swimming behavior observed in feeding experiments
[6]. The agent (Fig|[Th, right) consists of two recurrent neural networks (RNN) of 256 units each
(8] and parallel two-layer Actor and Critic Multi-Layer Perceptrons (MLPs) [23]]. The agent acts in
closed-loop with the environment, generating actions that change the environment state, which in
turn provides sensory observations and rewards.

We model the agent with two eyes with a fixed forward offset and width, with each eye having a
monocular field of view of 163 degrees and a detection radius of 10 mm matched to empirical larval
zebrafish visual field experiments [3]]. Each eye’s field of view is divided into 10 angular sectors.
The sectors widen with radial distance, modeling reduced spatial resolution (Figure[Ib. Each sector
receives object type and distance information to the closest object (food, wall) in that sector. The
agent can rotate its eyes to change the vergence angle, which defines the size of the binocular region.
The maximum and minimum vergence values are set according to experimental data (Figure[Tk).

We model each action as a single bout, following a similar approach to [6], with each bout taking
125 ms. The forward speed and turn speed of each bout are coupled. Larger forward speeds permit
only smaller turns, creating a triangular action space (Figure [Td). Multiplicative noise is then added
independently to the forward and turn speeds. When the agent is within strike distance of food,
the probability of the strike being successful is related to the angle to the food Ocqing via a Laplace
distribution (Figure[Tp), with decay rate chosen to match the empirical distribution of prey angles
when larval zebrafish perform strike bouts [2].



2.2 Configurable Agent Features

We develop a framework where various agent features can be toggled and tuned to determine what
features result in the emergence of naturalistic zebrafish hunting behavior as an optimal strategy. This,
in turn, provides a normative explanation for why larval zebrafish exhibit a distinctly stereotyped
hunting mode. The key features are:

* Perception noise: We introduce multiplicative perception noise in the distance estimates of
the eye sensors. Each sensor has a fixed probability of producing false positives (detecting
an object when none exists) and false negatives (missing an existing object). This makes
the binocular region advantageous, since two independent observations are collected for
each object instead of one in the monocular region. In an extreme case, we restrict distance
information to the binocular region, with monocular sensing limited to detection only. We
also allow angular noise to be tuned in the monocular region; in the most extreme setting,
the firing sector of the eye is chosen uniformly at random.

* Speed cost: A ReLLU-like energy penalty for large forward speeds above a fixed thresh-
old, reflecting the fact that sustained high-speed swimming is energetically costly and
physiologically limited in larval zebrafish.

* Vergence cost: An energy penalty for eye vergence deviation from rest (divergence),
reflecting the fact that sustaining the convergence state requires flexing the eye muscle and
is costly for larval zebrafish.

* Eye fatigue: We model eye fatigue as feye = |Abrigni| + |Abjeyi| Where Afj. s, and
AB,.;gn: are the per-bout changes in left and right eye angles. A linear penalty is applied
once f.y. exceeds a threshold equal to one full sweep between divergence and convergence.

* Eye control: Agents can be configured with either independently controlled eyes or coupled
eyes with mirrored vergence angles.

For the below results, we only provide distance and angle information in the binocular region, use one
degree of freedom eyes, and do not use eye fatigue. All other constants used are given in Appendix
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2.3 Reward Structure and Training

The primary reward is for successful prey capture, with much smaller penalties for energetic costs
and fatigue as mentioned above. An even smaller distance-based shaping reward is also used during
training to encourage prey approach for initial convergence.

The per-timestep reward is given by:

Rt = Rcapture - Oéeye (Helefl - elefl, restH + ||9right - eright, rest”)
- Bspeed : max(vcurrent — Uthreshold 0) (D
— Tfatigue max(feye — fitweshold; 0) + Rshape

where aieye, Bspeed> Ad Yraiigue are constants chosen such that energy penalties are 1 order of magnitude
smaller than food reward and shaping rewards are 2 orders of magnitude smaller. For all parameter
values and chosen features, see Appendix [5.1]

We train an actor-critic recurrent neural network policy using Proximal Policy Gradient (PPO) [24]
in a single-agent setting. Training follows a curriculum in which prey density is gradually reduced,
prey motion becomes more variable, and the strike probability distribution is tightened, requiring
increasingly precise strikes.

3 Results

3.1 Hunting and Exploration Show Distinct Trajectories

A hunting sequence begins when a prey item is first detected and ends either with a capture (strike) or
when the prey exits the perception radius without capture (abort). All other periods are defined as
exploration.
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Figure 2: (a) Example trajectory that ends in a successful strike. (b) Example trajectory that ends
in an abort. (c—d) Forward speed and orientation over time for the trajectories in (a) and (b). (e)
Distribution of forward and turn speeds during hunting versus exploration. (f) Hunt duration, separated
by successes and failures. (g) Average distance and angle to prey preceding successful strikes.

Figure 2h and 2b show sample hunting trajectories that end in a successful strike and an abort,
respectively, with Figure 2k and [2ld showing the forward speed and turn speed before, during, and
after these sample hunts. We find that the hunt trajectories mirror those empirically found in larval
zebrafish with alternating periods of fast and slow motion, much like zebrafish bouts [6].

3.2 Movement Statistics Differentiate Successful and Failed Hunts

Figure 2k depicts the agent’s forward speed and turn speed distributions when hunting vs. not hunting,
evaluated across a set of 200 fixed arena sizes, food locations, and agent initializations. During
hunting, the agent more frequently exceeds the forward speed threshold, whereas it tends to remain
below threshold during exploration. This suggests that the agent accepts higher movement costs in
pursuit of food reward, consistent with empirical findings [6]. In addition, the agent executes smaller
and more precise turns while hunting than while exploring.

We see that successful strikes have a longer tracking duration on average than unsuccessful strikes
(Figure 2f). This suggests that the agent implicitly represents the likelihood of success and aborts
early when that probability is low, choosing instead to explore for other targets.

Finally, across all successful hunting sequences, the agent’s average distance to the prey and its
angular alignment error both decrease consistently (Figure 2lz).

3.3 Eye Convergence During Hunting Mirrors Empirical Zebrafish Data

Agents show higher eye vergence during successful hunts compared to non-hunting periods (Figure
[Bl). During hunting, vergence angle increases steadily and peaks just before the strike (Figure [3p),
closely matching empirical zebrafish data [3]]. This suggests that the agent accepts the energetic cost
of deviating from the resting eye position in exchange for improved sensory information.

Before and immediately after prey detection, vergence angles are similar in successful and failed
hunts. Midway through tracking, however, the trajectories diverge: successful hunts continue to
increase vergence, while failed hunts do not. This supports the view that the agent represents the
likelihood of success and invests in the costly vergence increase only when the hunt is likely to
succeed.



Figure 3k shows vergence trajectories for five successful hunts. Figure 3 summarizes the proportion
of time food is located in binocular versus monocular regions across all successful hunts.
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Figure 3: (a) Distribution of vergence angles during successful hunts versus non-hunting periods.
(b) Time course of vergence angle before prey detection, during tracking, and after strike or abort,
for both successful and failed hunts. (c) Example vergence trajectories for individual successful and
failed hunts. (d) Proportion of time food is located in binocular versus monocular regions across all
successful hunts.

3.4 RNN Hidden State encodes behavior-relevant variables
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Figure 4: (a) LDA projection of RNN hidden states, showing separation between hunting and non-
hunting periods. (b-c) RNN Hidden states projected onto the first two principal components (PCs)
during successful hunts, colored by (b) prey distance and (c) prey orientation.

An LDA projection of the RNN hidden states separates hunting from non-hunting periods, indicating
that the network encodes the hunting state (Figure[h). A logistic decoder trained on these projections
achieves a classification accuracy of 0.61. We also check for distance and orientation encoding

(Figures @b and k).

4 Discussion

We show that a recurrent neural network agent, trained with deep reinforcement learning in a
biologically grounded zebrafish hunting environment, spontaneously develops multiple hallmark
features of larval zebrafish hunting behavior. These include (i) a discrete shift into a high-vergence
“hunting mode” following prey detection, (ii) stereotyped approach trajectories with smooth decreases
in prey angle and distance, and (iii) speed modulation and precise turning during pursuit. Notably,
these behaviors emerge from optimizing a reward function with only sparse capture rewards and
modest energy penalties, without hard-coding the structure of the hunting sequence.

Our model offers a normative explanation for discrete vergence shifts. Despite their energy cost,
convergence is favored in high-confidence hunts because binocular sensing improves prey localization.
Coupled turn—move constraints, multiplicative action noise, and uncertainty in prey movement further
incentivize convergence. Our experiments suggest that the clear vergence switch in the hunting state
is driven not by the increased perceptual angle of the divergence state, but by the tradeoff between the



energetic cost of maintaining convergence and the perceptual benefits it provides. It is also possible
that unmodeled factors, such as drives to track conspecifics or avoid predators, contribute to the
behavioral differences between our in-silico agents and real zebrafish larvae. Similar trade-offs may
underlie the evolution and robustness of hunting stereotypy in larval zebrafish.

Higher forward speeds during hunting also reflect a cost—benefit balance between capture probability
and energy expenditure. The observation that low-probability hunts are aborted early suggests an
implicit value-based decision process, paralleling foraging strategies across species.

Hidden-state analyses reveal a clear separation between hunting and exploration, as well as continuous
representations of prey distance and orientation. This supports the existence of an internal “hunting
mode” variable. Further work is needed to disentangle these encodings from raw observations and to
test whether the network learns a predictive model of prey motion.

Our agent’s vergence trajectories, pursuit kinematics, and bout structure are strikingly consistent
with experimental reports [5 16 2]. This convergence, despite substantial differences in physical
embodiment and neural implementation,supports the idea that these strategies are optimal solutions
given the zebrafish’s sensory constraints and ecological demands. The agreement also reinforces the
utility of task-optimized neural networks as normative models for animal behavior [3l].

At the same time, our model omits important biological constraints, including multisensory integration,
detailed biomechanics, and anatomically grounded connectivity. Incorporating these features could
enable more precise circuit-level predictions.

More broadly, this work illustrates how deep RL with recurrent policies in ethologically inspired
simulations can bridge normative and mechanistic accounts of behavior. By tuning environmental
parameters and agent costs, we can ask “why” a behavior is structured as it is, and “how” it could be
implemented in a recurrent network with biological constraints. This approach also complements
experimental work by allowing controlled manipulations of variables that are difficult or impossible
to isolate in vivo, generating testable predictions for neural coding, internal state dynamics, and
behavioral strategies.
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5 Appendix

5.1 Numerical values used

Table 1: Simulation parameters.

(a) Fish constants used in the simulation. Some values are approximated to simplify empirical distributions.

Parameter Value Unit  Description / Notes

max_speed 5 mm/s Max speed of larval zebrafish when foraging (ap-
prox from [25]])

max_turn_speed 7 rad/s  Max turning speed of larval zebrafish when forag-
ing (approx from [26]])

max_eye_turn_speed 0.8 rad/s  Max eye turning speed (approx from [11]])

perception_field
max_left_vergence
max_right_vergence
min_left_vergence
min_right_vergence
bout_length
eye_separation
eye_forward_offset

detection_range
eating_distribution_decay

eating_angle
strike_radius

distance noise_std
detection_failure_rate
false_positive_rate
penalize_move_threshold
action_noise_std

163 - /180 rad
—43.3-7/180 rad
43.3 - /180 rad
—71.2-7/180 rad
71.2 - 7/180 rad

Monocular field of view [5]]

Left eye at maximum convergence [5]]
Right eye at maximum convergence [5]]
Left eye at maximum divergence [3]]
Right eye at maximum divergence [3]]

0.125 S Duration of a bout [2, 6]

2 mm Distance between eyes (approx from [5])

0.5 mm Forward offset of the eyes from the center of the
agent (approx from [5l])

10 mm Max food/wall detection range (at noisy, lowest
resolution) (approx from [1]])

10 - Laplace decay for strike probability vs. orientation
(fit to [6])

80 - 7/180 rad Cutoff half-angle for strike probability (fit to [6])

1 mm Strike distance [27]]

0.01 - Std. of uniform multiplicative noise per sensor

0.0 - False negative rate per sensor

0.0 - False positive rate per sensor

1.5 mm/s Threshold for ReL.U-like penalty on forward speed

0.0 - Uniform multiplicative noise on forward/turn

speeds

(b) Prey-related environment parameters.

Parameter Value Unit Description / Notes

food_speed 1 mm/s Speed of paramecia

food_turn_std 10-7/180 rad/s Std. of (uniform) turn per step of paramecia
food_density  0.003 count/mm?  Density of paramecia in arena

(c) Reward parameters.

Parameter Value
Rcapture 10

Oleye 0.005
ﬂ speed 0.01
“Vfatigue 0
Rihape ~ 0.01
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