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a b s t r a c t

Convolutional neural networks (CNNs) usually come with numerous parameters and thus are not
convenient for some situations, such as when the storage space is limited. Low-rank decomposition
is one effective way for network compression or compaction. However, the current methods are far
from theoretical optimal compression performance because the low-rankness of the commonly trained
convolution filter sets is limited because of the versatility of convolution filters. We propose a novel
compact design for convolutional layers with spatial transformation for achieving a much lower-rank
form. The convolution filters in our design are generated using a predefined Tucker product form,
followed by learnable individual spatial transformations on each filter. The low-rank (Tucker) part
lowers the parameter capacity while the transformation part enhances the feature representation
capacity. We validate our proposed approach on an image classification task. Our approach focuses
on compressing parameters while also improving accuracy. We perform experiments on the MNIST,
CIFAR10, CIFAR100, and ImageNet datasets. On the ImageNet dataset, our approach outperforms low-
rank based state-of-the-arts by 2% to 6% in top-1 validation accuracy. Furthermore, our approach
outperforms a series of low-rank-based state-of-the-arts on various datasets. The experiments validate
the efficacy of our proposed method. Our code is available at https://github.com/liubc17/low_rank_
compact_transformed.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Convolutional neural networks (CNNs) have recently demon-
trated success in image classification [1–5], object detection
6–8] and remote sensing [9,10] tasks. The core operator, con-
olution, is partially inspired by the animal visual cortex, where
ifferent neurons respond to stimuli in a restricted and partially
verlapped region known as the receptive field [11,12]. The win-
ow size of convolution filters becomes smaller from 11 × 11 [1]
o 3 × 3 [13] along with the deeper CNNs. Stacks of convolutional
ayers with smaller window sizes have the same receptive field
s convolutional layers with larger window sizes. Deeper models
ith a smaller window size of convolution filters (such as 3 × 3)
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have fewer parameters and benefit from more non-linear recti-
fication layers. However, adding more layers to a suitable deep
model increases training error and reduces accuracy [14–16].
Some frameworks use special connections between layers, such
as shortcut connections [15] and dense connectivity [17], to solve
the degradation problem. However, these networks still have
millions of parameters and are not suitable for some situations
where storage space is limited.

Some neural network compression methods [18–22] are pro-
posed to address this issue and to obtain a light-weighted net-
work with significantly fewer parameters. Two types of
effective methods are low-rank decomposition based methods
and compact design methods. Convolution filters are represented
as matrices or tensors in low-rank decomposition methods [19,
23–28], and the low-rank decomposition of these matrices or
tensors can reduce the number of network parameters. However,
the decomposition operation brings high computing costs, and
the compressed network requires extensive model retraining to

achieve convergence. The compact design methods [20,29–31]
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Fig. 1. (a) The commonly trained convolution filters of a convolutional layer. (b) The low-rank convolution filters after spatial transformation. (c) Eigenvalue curve
of the commonly trained convolution filters and the low-rank convolution filters.
use transferred convolutional filters to compress CNN models,
but the transfer assumptions are usually too strong to guide the
algorithm and cause unstable results on some datasets [32].

Some studies have shown that the information of CNNs is
edundant among different feature channels and filters [33], and
here are some effective low-rank decomposition methods to
ddress this redundancy. We further investigate the low-rankness
f commonly trained convolution filters in Fig. 1. A series of com-
only trained convolution filters of a well-trained convolutional

ayer is shown in Fig. 1a. We discover that commonly trained con-
olution filters have little in common and are extremely versatile.
his allows CNN to extract more detailed features. However,
he lack of similarity means a lack of low-rankness, which lim-
ts the compression rate of low-rank decomposition approaches
or compressing CNNs. We discover that common trained con-
olution filters can have better low-rankness after appropriate
patial transformation. For example, in Fig. 1b, low-rank con-
olution filters are transformed via affine transformation from
ommonly trained convolution filters in Fig. 1a. These low-rank
onvolution filters have good similarity, which leads to better
ow-rankness. Therefore, the compression rate of low-rank de-
omposition methods to the low-rank convolution filters can
e much higher than commonly trained convolution filters. The
igenvalue curve quantitatively validates the difference in simi-
arity and low-rankness between commonly trained convolution
ilters and low-rank convolution filters, as shown in Fig. 1c. As a
esult, by applying an appropriate spatial transformation to com-
only trained convolution filters, we can improve low-rankness
nd low-rank representation performance. However, finding the
est spatial transformation for thousands of convolution filters is
difficult dynamic problem that is computationally expensive.
To address these concerns, we propose a compact CNN de-

ign (Fig. 2) to optimize this compression procedure. We define
nfolded convolution filters in Tucker factor form to generate
ow-rank convolution filters. We apply a group of spatial transfor-
ations to the low-rank convolution filters and obtain versatile
onvolution filters used for the convolutional layer of compact
esign to retain and even promote the representation capacity of
he low-rank convolution filters. Spatial transformations can be
earned and come in various forms, such as rotation and affine
ransformation. It can be used in different hierarchies, such as 2D
nd 3D convolution filters. The network is thus end-to-end and
an be trained from the ground up, avoiding the complex com-
utation of low-rank decomposition. On an image classification
ask, we validate our low-rank compact transform (LCT) CNNs.
he experiment results show that our LCT-designed CNNs can
ompress parameters while improving accuracy.
To summarize, the main contributions of this paper are as

ollows:
2

(1) We find that the redundancy of commonly trained con-
volution filters can be represented in a lower-rank tensor form
using appropriate spatial transformation. We verify that the low-
rankness of convolution filters can be improved significantly after
the spatial transformation.

(2) We propose a novel compact design of convolutional layers
with a spatial transformation that is simple to implement in
popular CNNs. Our end-to-end LCT CNN can be trained from the
ground up. Its number of parameters is greatly reduced, and its
performance is improved when compared to baseline CNN.

2. Related work

We review related works of convolutional neural networks
compression methods, including low-rank decomposition meth-
ods and compact design methods. In [24], Canonical Polyadic (CP)
decomposition is proposed to compress the number of param-
eters and speed up the network. In [19], Tucker decomposition
is proposed to compress convolutional layers for fast and low
power mobile applications. Tensor-Train (TT) decomposition [26]
is proposed and effective for solving dense connection problems
to avoid the curse of dimensionality. However, these low-rank de-
composition methods involve computationally expensive decom-
position operations and have performance degradation. Jaderberg
et al. [34] propose a linear combination of a smaller basis set of
2D separable filters to approximate the 2D filter set to speed up
the evaluation of convolutional neural networks. However, this
approach does not consider spatial transformation to convolution
filters. Its representation capacity degrades compared with com-
mon convolution filters. In addition to low-rank decomposition
approaches, knowledge distillation approaches [35,36], network
pruning approaches [37–39], and neural network architecture
searching approaches [40,41] are effective for compact structures.

Existing low-rank approaches mainly focus on compressing
parameters directly by low-rank decomposition and do not con-
sider the influence of spatial transformation on low-rankness.
These approaches apply low-rank decomposition directly to well-
trained weights and then fine-tune the compressed network for
some epochs to recovery accuracy. However, even after fine-
tuning, the classification accuracy of the network compressed by
these approaches is lower than that of the original network. Dif-
ferent from existing low-rank approaches, we design an LCT layer
to derive versatile convolution filters from unfolded convolution
filters in low-rank Tucker factors form. Our approach focuses
on compressing parameters while also improving network per-
formance. The unfolded convolution filters can be used to form
low-rank convolution filters, as shown in Fig. 1. In addition, we
design spatial transformation to enrich the versatility of the low-
rank convolution filters. The spatial transformation transforms
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Fig. 2. The architecture of our compact design CNN. Convolution filters of the compact design convolutional layer are generated in two steps. Firstly, low-rank
convolution filters are generated from unfolded convolution filters of a predefined Tucker factors form. Then, we apply appropriate spatial transformations to the
low-rank convolution filters to obtain versatile convolution filters.
low-rank convolution filters into versatile convolution filters. Our
LCT CNN is end-to-end and can be trained from the ground up.
Our LCT approach can approach commonly trained convolution
filters in terms of versatility and representation capacity.

[42] presents a spatial transformer formulation and the cor-
responding spatial transformer network (STN). The spatial trans-
former is applied to feature maps of the network and can learn
invariance to translation, scale, rotation, and more generic warp-
ing. It can be inserted into existing convolutional architectures
as an additional layer. In STN, for multi-channel inputs, the same
spatial transformation is applied to each channel. We focus on
the representation capacity of convolution filters, as opposed
to the spatial transformer in STNs, and apply learnable spatial
transformations to low-rank convolution filters. And the transfor-
mations differ depending on the convolution filter. As a result, we
achieve a better trade-off between representation capacity and
compression rate.

3. Low-rank compact transformed design for convolutional
layers

The primary goal of this work is to reconstruct convolutional
layers in a light-weighted manner. In this section, we introduce
the low-rank compact representation of convolution filters and
spatial transformation of different forms and hierarchies and
analyze the hyper-parameter setting of LCT convolutional layers.

3.1. Preliminary notations for low-rank tensor decomposition

A tensor is a multi-dimensional array. A d-order tensor rep-
esents a d dimensional multi-way array. Scalars, vectors and
3

matrices are 0-order, 1-order and 2-order tensors, respectively.
In this paper, we use lowercase letters (x, y, z, . . .), bold low-
ercase letters (x, y, z, . . .) and uppercase letters (X, Y , Z, . . .) to
denote scalar, vector and matrix, respectively. An N-order ten-
sor (N ≥ 3) is denoted as X ∈ RI1×I2×···×IN and each element
is denoted as xi1,i2,...,iN . The mode-n matrix form of a tensor
X ∈ RI1×I2×···×IN is the operation of reshaping the tensor into a
matrix X(n) ∈ RIn×(I1···In−1In+1···IN ). For a tensor X ∈ RI1×I2×···×IN , its
Tucker decomposition is defined as:

X =

S1∑
s1=1

×

SN∑
sN

gs1s2...sN (u
(1)
s1 ◦ u(2)

s2 ◦ · · · ◦ u(N)
sN )

= G×1U (1)
×2U (2)

· · · ×NU (N).

(1)

where G ∈ RS1×S2×···×SN denotes the core tensor and U (n)
= [u(n)

1 ,

u(n)
2 , . . . , u(n)

N ] ∈ RIn×Sn denotes a factor matrix.

3.2. Low-rank compact representation

The convolution filters of a convolutional layer can be re-
garded as a 4-order tensor X ∈ RW×H×C×N , where W and H
represent the filter width and height, C is the number of input
channels, and N is the number of output channels. To realize the
low-rank compact representation of convolution filters, we define
a 4-order core tensor and four corresponding factor matrices
to perform an inverse operation of Tucker decomposition and
generate the 4-order low-rank convolution filter. The generation
of the 4-order convolution filter X L is formulated as:

L (1) (2) (3) (4) (2)
X = G×1U ×2U ×3U ×4U ,
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here G ∈ Rw×h×c×n denotes the core tensor, and U (1)
∈ RW×w ,

U (2)
∈ RH×h, U (3)

∈ RC×c , U (4)
∈ RN×n denote four factor matrices,

respectively. w, h denote the compressed filter width and height
of the convolution filter, respectively. c, n denote the compressed
number of input and output channels, respectively.

The dimension of the core tensor is critical to the represen-
tation capacity of convolution filters. The 4-order low-rank con-
volution filter X L can be calculated from any mode-n(n ∈ [1, 4])
matrix form and then is reshaped to the tensor form X L

∈

RW×H×C×N . For example, the mode-4 matrix form X L
(4) is calcu-

lated as:

X L
(4) = U (4)

· G(4) ·
(
U (3)

⊗ U (2)
⊗ U (1))T , (3)

where X L
(4) ∈ RN×CWH , G(4) ∈ Rn×cwh and ⊗ is the Kronecker

product operator.
However, the computational complexity of Eq. (3) is very high.

A matrix A ∈ RM×N multiplied by another matrix B ∈ RN×P has
a computational complexity of O(MNP). A matrix A ∈ RM×N that
takes the Kronecker product with another matrix B ∈ RP×Q has a
computational complexity of O(MNPQ ). The computational com-
plexity of Eq. (3) is then O(WHwh (1 + Cc) + WHCn (N + whc)).

We optimize Eq. (3) to achieve the lowest computational
complexity. We transpose X L to RC×W×H×N . The calculation of
Eq. (3) can then be rewritten as:

X L
(43) =

(
U (4)

⊗ U (3))
· G(43) ·

(
U (2)

⊗ U (1))T , (4)

where X L
(43) ∈ RNH×CW , G(43) ∈ Rnh×cw , U (4)

∈ RN×n, U (3)
∈ RH×h,

U (2)
∈ RW×w and U (1)

∈ RC×c , respectively. In this way, the com-
putational complexity of Eq. (4) is O(NHnh (1 + CW ) + CWcw
(1 + nh)), which is much smaller than that of Eq. (3). After the
calculation, X L

(43) is reshaped into a tensor with dimensions
RC×W×H×N and then transposed to RW×H×C×N to get X L. Thus the
computational complexity of calculating X L is greatly reduced.

3.3. Spatial transformation

In the low-rank convolution filter X L
∈ RW×H×C×N gener-

ated from the inverse operation of Tucker decomposition, there
are a lot of similarity among the 2-dimensional filters F L

k ∈

RW×H (k ∈ [1, CN]), i.e., the redundant information. It seriously
affects the representation capacity of the convolution filter X L. To
obtain a versatile convolution filter X from X L, we want to ob-
tain appropriate spatial transformation to derive each Fk ∈ RW×H

(k ∈ [1, CN]) of the versatile convolution filter X from the cor-
responding F L

k ∈ RW×H (k ∈ [1, CN]) of the low-rank convolution
filter X L. The spatial transformation is formulated as: F L

k = T (Fk),
where T is the spatial transformation. We apply the method pro-
posed in [42] to obtain the spatial transformation T and Fk. The
spatial transformation T can take different forms. We choose ro-
tation transformation and affine transformation in this paper. To
obtain each element value of Fk

(
xi, yj

)
∈ RW×H (xi = 1, 2, . . . ,

W ; yj = 1, 2, . . . ,H
)
, we calculate

(
xTi , y

T
j

)
transformed from(

xi, yj
)
firstly. For rotation transformation TR,

(
xTi , y

T
j

)
is calculated

as:(
xTi
yTj

)
=

(
cos θ − sin θ

sin θ cos θ

)(
xi
yj

)
, (5)

where θ is the learnable rotation angle.
(
xTi , y

T
j

)
for affine trans-

formation TA is calculated as:(
xTi
yTj

)
=

(
θ11 θ12 θ13
θ21 θ22 θ23

)(xi
yj
1

)
, (6)

where θ , . . . , θ are the learnable affine parameters.
( 11 23)

4

We then use a bilinear sampling kernel [42] to get each ele-
ment value of Fk

(
xi, yj

)
∈ RW×H , which is calculated as:

Fk
(
xi, yj

)
=

H∑
n=1

W∑
m=1

F L
k (m, n)max

(
0, 1 −

⏐⏐xTi − m
⏐⏐)

max
(
0, 1 −

⏐⏐yTj − n
⏐⏐) . (7)

In this way, we can eliminate the redundant information
among the 2-dimensional filters F L

k ∈ RW×H and obtain each
Fk ∈ RW×H (k ∈ [1, CN]) of the versatile convolution filter X . Fur-
thermore, we propose slice spatial transformation for 2D convo-
lution filters and group spatial transformation for 3D convolution
filters for different transformation hierarchies.

Slice Spatial Transformation For each filter F L
k ∈ RW×H (k ∈

[1, CN]) of X L
∈ RW×H×C×N , we can obtain a transformation Tk

and corresponding Fk, as stated above. Each filter F L
k ∈ RW×H

(k ∈ [1, CN]) has different spatial transformation, which we refer
to as slice spatial transformation.

Group Spatial Transformation Slice spatial transformation
produces richer patterns for convolution filters while also in-
troducing more parameters. We can let related slices share the
same spatial transformation to reduce the number of spatial
transformations. We implement it by merging F L

k ∈ RW×H of the
convolution filter X L used for the same input or output channel
into a group. For each group of convolution filters corresponding
to input channels X L

i ∈ RW×H×C (i ∈ [1,N]) of X L
∈ RW×H×C×N ,

we can obtain a transformation Ti and corresponding Xi. Similarly,
for each group of convolution filters corresponding to output
channels X L

j ∈ RW×H×N (j ∈ [1, C]) of X L
∈ RW×H×C×N , we can

obtain a transformation Tj and corresponding Xj. The transforma-
tion shared by the slices of convolution filters in the same group is
known as group spatial transformation. Group spatial transforma-
tion significantly reduces the number of spatial transformations
and network parameters by sharing transformations. The exper-
iment in Section 5.1 demonstrates different spatial transforma-
tions performances.

3.4. Hyper-parameter analysis

In a convolutional layer, the number of parameters denoted as
PO of a convolution filter X ∈ RW×H×C×N is calculated by

PO = W × H × C × N. (8)

The number of parameters denoted as PC for generating X ∈

RW×H×C×N by our compact design method includes two parts,
the number of parameters of Tucker product factors and the
number of learnable parameters of spatial transformations. The
number of parameters of Tucker product factors PL is the sum of
the parameters of the core tensor G ∈ Rw×h×c×n and four factor
matrices U (1)

∈ RW×w , U (2)
∈ RH×h, U (3)

∈ RC×c , U (4)
∈ RN×n:

PL = w × h × c × n + W × w + H × h + C × c + N × n. (9)

The number of parameters of the spatial transformations PT de-
pends on their form and hierarchy. Let NT and pT denote the
number of transformations and the number of parameters of each
transformation, respectively. Then PT is calculated by

PT = NT × pT . (10)

For slice spatial transformation, NT = C × N , where C and N are
the number of input and output channels, respectively. Simi-
larly, NT = N or NT = C for group spatial transformation, depend-
ing on the group dimension of input or output channel. pT = 1
for rotation transformation and pT = 6 for affine transformation.
The number of parameters PC for a low-rank compact design
convolution layer is then determined by

P = P + P . (11)
C L T
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he compression rate of the convolutional layer denoted as r is
then calculated by:

r =
PC
PO

=
PL + PT

PO
. (12)

ere, we discuss the number of parameters and compression rate
n a common case where a convolution layer has the same num-
er of input and output channels and employs a 2-dimensional
quare filter, i.e., C = N and W = H . Furthermore, we set w = h
nd the same channel compression rate λ =

c
C for input and

output channels. In this case, PL, PT and r becomes:

L = w2λ2C2
+ 2Ww + 2λC2

≈ (w2λ2
+ 2λ)C2, (13)

PT =

⎧⎪⎨⎪⎩
6C2 slice − affine
6C group − affine
C2 slice − rotation
C group − rotation

. (14)

We can calculate the compression rate of different spatial
transformation forms by combining Eqs. (12)–(14) as:

r =
PL + PT

PO
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w2λ2+2λ+6
W2 slice − affine

(w2λ2+2λ)C+6
W2C

group − affine
w2λ2+2λ+1

W2 slice − rotation
(w2λ2+2λ)C+1

W2C
group − rotation

. (15)

We can see that the slice-affine form for spatial transformation
ntroduces many more parameters than the group-affine form,
nd the group-affine form for spatial transformation can signif-
cantly reduce the number of parameters when compared to the
lice-affine form. In practice, we recommend a group-affine form
or spatial transformation to achieve a better trade-off between
ccuracy and parameter count, as detailed in Section 5.1.

.5. Gradient back-propagation

We demonstrate the gradient back-propagation for each part
f the low-rank compact design convolution layer. Each element
f X L is calculated as:

L
ijkl =

w∑
p=1

h∑
q=1

c∑
r=1

n∑
s=1

gpqrsu
(1)
ip u(2)

jq u(3)
kr u

(4)
ls , (16)

nd each corresponding element of the versatile convolution filter
is calculated as:

ijkl =

H∑
n=1

W∑
m=1

X L
mnklmax

(
0, 1 −

⏐⏐xTi − m
⏐⏐)max

(
0, 1 −

⏐⏐yTj − n
⏐⏐) , (17)

Let L denote the loss of the convolutional layer. The gradient
f the core tensor G is then calculated as:

∂L
∂Gpqrs

=
∂L
∂X

·
∂X
∂X L ·

∂X L

∂Gpqrs
=

∂L
∂X

·

H∑
n=1

W∑
m=1

max
(
0, 1 −

⏐⏐xTi − m
⏐⏐)max

(
0, 1 −

⏐⏐yTj − n
⏐⏐)

·

W∑ H∑ C∑ N∑
u(1)
ip u(2)

jq u(3)
kr u

(4)
ls ,

(18)
i=1 j=1 k=1 l=1

5

and the gradient of the factor matrix U (1) (similarly for U (2), U (3)

and U (4)) is calculated as:

∂L

∂U (1)
ip

=
∂L
∂X

·
∂X
∂X L ·

∂X L

∂U (1)
ip

=

∂L
∂X

·

H∑
n=1

W∑
m=1

max
(
0, 1 −

⏐⏐xTi − m
⏐⏐)max

(
0, 1 −

⏐⏐yTj − n
⏐⏐)

·

H∑
j=1

C∑
k=1

N∑
l=1

⎛⎝ h∑
q=1

c∑
r=1

n∑
s=1

gpqrsu
(2)
jq u(3)

kr u
(4)
ls

⎞⎠.

(19)

he gradient for the transformation T is calculated as:
∂L
∂θ

=
∂L
∂X

·
∂X
∂θ

=

∂L
∂X

·

(
H∑

n=1

W∑
m=1

X L
nm max

(
0, 1 −

⏐⏐yTj − n
⏐⏐) ∂X

∂xTi

∂xTi
∂θ

+

H∑
n=1

W∑
m=1

X L
nm max

(
0, 1 −

⏐⏐xTi − n
⏐⏐) ∂X

∂yTj

∂yTj
∂θ

(20)

here

∂X

∂xTi
=

⎧⎪⎨⎪⎩
0 if

⏐⏐xTi − m
⏐⏐ ≥ 1

1 if m ≥ xTi
−1 if m < xTi

, (21)

∂X

∂yTj
=

⎧⎪⎨⎪⎩
0 if

⏐⏐yTj − n
⏐⏐ ≥ 1

1 if n ≥ yTj
−1 if n < yTj

, (22)

nd ∂xTi
∂θ

,
∂yTj
∂θ

can be derived from the spatial transformation T .

. Experiment

In this section, we replace the convolutional layer in CNN
ith our LCT convolutional layer, and our approach is denoted as

‘LCT’’ throughout the experiment. Our LCT convolutional layer is
mplemented by Pytorch. We use the group-affine form for spatial
ransformation to achieve a better trade-off between accuracy
nd parameter count (see Section 5.1 for the reason for such
hoice derived from the ablation study). Fig. 3 shows the 4-
Tucker product of convolution filters to better illustrate the
yper-parameter setting. On the right side, the size of the 4-d
ow-rank convolution filter is W × H × C × N , where W × H is
the 2-d convolution filter size, C is the number of input channels
and N is the number of output channels. The corresponding 4-
d unfolded convolution filter is shown on the left side, with
compressed sizes of corresponding dimensions w, h, c, and n,
respectively. In the experiment of this paper, we only compress
square convolution filters where W = H to the same com-
pressed size w = h. We use the same channel compression rate
λ =

c
C =

n
N for input and output channels. In the tables of experi-

ments, our approach is denoted by ‘‘LCT(λ-W-w)’’, where λ is the
channel compression rate and the filter size of the convolution
filter is compressed from W × W to w × w. The influence of
hyper-parameter setting is discussed in detail in Section 5.

We validate our approach on different datasets, including
MNIST [43], CIFAR10, CIFAR100 [44] and ImageNet [45]. To vali-
date the effectiveness of our approach, we compare it to several
recent low-rank approaches, including Tucker [19], SSS [46],
ADMM-TT [47], RSTR [48], LRER [49], Hinge [50], TR [51], TRP [52],
SVD [53] and LRE [34], and vision transformer [54]. All of the
following experiments are run on a single Nvidia GeForce RTX
3090 GPU.
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Fig. 3. 4-d Tucker product of convolution filters.

Table 1
Comparison of compression results on MNIST dataset. The parameter remaining
percentage of the original baseline LeNet5 is denoted by ‘‘Params’’. Parentheses
indicate the channel compression rate and convolution filter size compression
settings. ‘‘0.5-5-5’’ denotes that the channel compression rate λ = 0.5 and the
ilter size of the convolution filter is compressed from 5 × 5 to 5 × 5. The
ollowing tables follow the same notation.
Model Method Accuracy (%) Params (%)

LeNet5

Original 99.45 100
ADMM-TT [47] 99.51 12.1
LREL [49] 98.67 4.5
LCT(ours,0.5-5-5) 99.23 4.5
LCT(ours,0.75-3-3) 99.20 4.4

4.1. MNIST

MNIST is a well-known deep learning dataset that contains
0k training and 10k testing hand-written digits in 10 classes
0–9). This dataset is too simple, so we choose a simple CNN
eNet5 [43] as the backbone network. We replace the second
onvolutional layer in LeNet5 with our LCT layer. We train com-
ressed LeNet5 with an Adam optimizer for 50 epochs. It begins
ith a learning rate of 0.004 and is divided by 2 at 20 and 40
pochs. The batch size is set to 128. Table 1 compares our ap-
roach to [47,49], and the original LeNet5 result is also from [49].
ur approach achieves the highest compression rate among these
ompression approaches. Under the same compression rate, the
ccuracy of our LCT approach is 0.56% higher than the LREL
pproach. Though the accuracy of our LCT approach is 0.28%
ower than the ADMM-TT approach, our parameter compression
ate is much higher.

.2. CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 datasets consist of colored natural
mages with 32 × 32 pixels in 10 and 100 classes, respectively.
Each dataset contains 50k training images and 10k testing images.
All of the CIFAR10 and CIFAR100 experiments that follow use
the data augmentation provided in [55] for training: 4 pixels of
value 0 are padded on each side for the 32 × 32 image, and a
32 × 32 crop is randomly sampled from the padded image or its
horizontal flip. We only evaluate the original 32 × 32 images for
testing.

We choose popular CNNs as backbone networks, including
ResNet20, ResNet32, VGG16 and DenseNet40. We replace all of
the convolutional layers in these CNNs with our LCT convolutional
layers. The baseline networks and the compressed networks are
trained with an SGD optimizer for 300 epochs. The momentum is
0.9, and the weight decay factor is 10−4. It begins with a learning
rate of 0.05 and is divided by 10 at 100 and 200 epochs. The
batch size is set to 128. Furthermore, we select the CMT [54]
approach as the backbone network, which combines CNN and
vision transformer. CMT begins the network with a stem archi-
tecture that includes three convolutional layers to better extract
6

Table 2
Comparison of compression results on CIFAR10 dataset. We report top-1 accu-
racy of each approach together with its baseline counterpart (denoted as ‘‘BL’’).
‘‘Pro(%)’’ denotes the promotion compared with baseline counterpart, calculated
by top-1 accuracy minus baseline accuracy.
Model Method Top-1/BL (%) Pro (%) Params (%)

ResNet20

SSS [46] 90.85/92.53 −1.68 83.4
ADMM-TT [47] 91.03/91.25 −0.22 14.7
LREL [49] 90.81/91.82 −1.01 58.0
Hinge [50] 91.84/92.54 −0.70 44.6
RSTR [48] 88.30/90.40 −2.10 16.7
LCT(ours,0.5-5-3) 90.77/91.25 −0.48 38.1
LCT(ours,0.75-5-3) 91.19/91.25 −0.06 74.4

ResNet32

ADMM-TT [47] 91.96/92.49 −0.53 17.2
LREL [49] 91.95/92.92 −0.97 57.2
RSTR [48] 88.10/92.50 −4.40 6.67
Tucker [19] 87.70/92.50 −4.80 20.0
LCT(ours,0.75-3-3) 92.16/92.02 +0.14 74.4
LCT(ours,0.75-5-3) 92.28/92.02 +0.26 75.6

VGG16

SSS [46] 91.22/93.91 −2.69 32.8
LREL [49] 92.95/93.68 −0.73 27.9
Hinge [50] 93.59/94.02 −0.43 19.95
LCT(ours,0.5-5-3) 92.65/92.72 −0.07 38.7
LCT(ours,0.75-5-3) 92.83/92.72 +0.11 80.4

DenseNet40
Hinge [50] 94.67/94.74 −0.07 72.5
LCT(ours,0.25-3-3) 94.14/94.26 −0.12 55.1
LCT(ours,0.5-3-3) 94.26/94.26 +0.00 71.9

CMT
CMT-S [54] 91.43/91.43 +0.00 100
LCT(ours,0.5-3-3) 91.46/91.43 +0.03 42.7
LCT(ours,0.75-3-3) 91.54/91.43 +0.11 80.3

local information. We use our LCT convolutional layers to replace
the three convolutional layers. The baseline networks and the
compressed networks are trained with an AdamW optimizer with
a weight decay factor 10−5 for 150 epochs. The initial learning
rate is 6 × 10−5 and the learning rate scheduler follows a cosine
annealing schedule. The batch size is set to 64.

As shown in Table 2, we compare our approach with various
latest effective approaches on the CIFAR10 dataset. We report
top-1 accuracy, baseline accuracy, and promotion compared with
the baseline counterpart of each approach. Our approach can si-
multaneously improve accuracy and compress parameters, which
is highlighted in bold at ‘‘Pro(%)’’. The ordinary Tucker decompo-
sition approach [19] has 4.8% accuracy drop with 20% remaining
parameters, which validates the effectiveness of our spatial trans-
formation. Under similar remaining percentage of parameters in
the ResNet20 results comparison, our LCT has 0.48% accuracy
drop with 38.1% remaining parameters and Hinge [50] has 0.70%
accuracy drop with 44.6% remaining parameters, which validates
a better trade-off of our LCT between accuracy and compression
rate. For CMT comparison, the reported parameter remaining
percentage is of the stem architecture. As understood from the
results, although the compression rate of our LCT approach is
not the best, our approach can improve accuracy and compress
parameters simultaneously.

As shown in Table 3, our LCT approach outperforms all other
approaches in terms of top-1 accuracy on ResNet20, ResNet32,
and CMT, which is highlighted in bold. Under similar remaining
percentage of parameters in the ResNet20 results comparison, our
LCT has 0.29% accuracy drop with 39.5% remaining parameters,
while Hinge [50] has up to 2.49% accuracy drop with 33.6% re-
maining parameters. RSTR [48] has the least parameters of 12.5%,
but the accuracy drops significantly up to 4.1%. ADMM-TT [47]
achieves a good trade-off between accuracy and compression
rate. It has larger compression rate than our LCT. Our LCT achieves
1.69% and 1.34% better accuracy than ADMM-TT on ResNet20
and ResNet32, respectively. It is worth mentioning that we can
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Table 3
Comparison of compression results on CIFAR100 dataset. We report the top-
1 accuracy of each approach together with its baseline counterpart. ‘‘Pro(%)’’
denotes the promotion compared with the baseline counterpart, calculated by
top-1 accuracy minus baseline accuracy.
Model Method Top-1/BL (%) Pro (%) Params (%)

ResNet20

SSS [46] 65.58/69.09 −3.51 54.4
ADMM-TT [47] 64.92/65.40 −0.48 17.9
Hinge [50] 66.34/68.83 −2.49 33.6
RSTR [48] 61.30/65.40 −4.10 12.5
LCT(ours,0.5-5-3) 66.17/66.46 −0.29 39.5
LCT(ours,0.75-5-3) 66.61/66.46 +0.15 75.0

ResNet32

ADMM-TT [47] 67.17/68.10 −0.93 19.2
RSTR [48] 64.50/68.10 −3.60 8.33
LCT(ours,0.5-5-3) 67.76/68.23 −0.47 38.5
LCT(ours,0.75-3-3) 68.51/68.23 +0.28 74.7

CMT
CMT-S [54] 70.11/70.11 +0.00 100
LCT(ours,0.5-3-3) 71.88/70.11 +1.77 42.7
LCT(ours,0.75-3-3) 72.06/70.11 +1.95 80.3

achieve 1.95% accuracy improvement on CMT-S by only replac-
ing convolutional layers in the stem architecture with our LCT
convolutional layers.

4.3. ImageNet

ImageNet contains 1.28 million training images and 50 thou-
and validation images from 1000 different classes. The data
ugmentation for training includes a random resized cropping
nd a random horizontal flip. The image is center cropped to
atch the input size for validation.
We choose ResNet18 and ResNet50 as backbone networks. We

eplace all the convolutional layers in ResNet18 with our LCT con-
olutional layers. The bottleneck structure in ResNet50 consists
× 1 and 3 × 3 convolutional layers. As spatial transformation

does not apply to 1 × 1 convolutional filters, we only replace
3 × 3 convolutional layers with our LCT convolutional layers.
In Pytorch, we define an LCT convolutional layer with a (3, 3)
filter size pair to take advantage of pre-trained weights from
model-zoo. By applying Tucker decomposition to the pre-trained
weights of the corresponding layer, we initialize the core tensor
and factor matrices of the LCT convolutional layer. The filter
width and height rank are set to 3. The rank of input and output
channels can be easily calculated given a channel compression
rate. An identity affine transformation is used to initialize the
spatial transformation.

We fine-tune the compressed networks with an SGD optimizer
for 30 epochs. The momentum is 0.9, and the weight decay factor
is 10−4. The initial learning rate is 10−5 and divided by 10 at 20
poch. The used batch size is 128 for the compressed ResNet18,
nd the used batch size is 64 for the compressed ResNet50.
As shown in Table 4, our LCT approach outperforms all other

pproaches in terms of accuracy. Aside from improved accuracy,
ur LCT has a higher compression rate than Hinge [50], SSS [46],
VD [53] and LRE [34]. Under a similar remaining percentage
f parameters in ResNet18 results comparison, Our LCT (38.9%
arameter percentage) achieves 2.36% higher top-1 accuracy and
.36% higher top-5 accuracy compared with TRP (38.4% parameter
ercentage) [52]. TR [51] and ADMM-TT [47] achieve higher com-
ression rates than our LCT because of the properties of Tensor
rain and Tensor Ring decomposition. Our LCT achieves 2.55% and
.37% higher top-5 accuracy than TR and ADMM-TT.

. Ablation study

There is a trade-off between accuracy and compression rate.

n Sections 5.1, 5.2, and 5.3, we give the ablation study for

7

Table 4
Comparison of compression results on ImageNet dataset. We report the top-1
and top-5 accuracy of each approach.
Model Method Top-1 (%) Top-5 (%) Params (%)

ResNet18

TR [51] – 86.29 23.4
ADMM-TT [47] – 87.47 21.7
TRP [52] 65.51 86.74 38.5
SVD [53] 63.10 84.44 70.9
LRE [34] 62.80 83.72 50.0
LCT(ours,0.5-3-3) 67.87 88.10 38.9
LCT(ours,0.75-3-3) 69.33 88.84 73.7

ResNet50

Hinge [50] 74.7 – 48.6
SSS [46] 72.98 91.08 83.1
TRP [52] 72.69 91.41 43.5
SVD [53] 71.80 90.20 66.7
LCT(ours,0.25-3-3) 75.06 91.59 48.4
LCT(ours,0.5-3-3) 76.12 92.95 60.5
LCT(ours,0.75-3-3) 76.71 93.19 87.1

the hyper-parameter setting of our LCT convolution layer, in-
cluding different spatial transformations, convolution filter size
compression, and channel compression rates.

All the ablation study experiments are conducted on the
CIFAR-10 dataset. We use a common CNN architecture as the
baseline to demonstrate the performance of our LCT convolu-
tion layer. The Conv-BN-ReLU module is simply referred to as
a conv-module because the convolutional layer is followed by
a Batch Normalization layer (BN) [56] and rectified linear units
(ReLU) [57]. The CNN utilizes 4 stacks of conv-module, an average
pooling layer after the first 2 stacks, and ends with a global
average pooling [58], flatten, and a 10-way fully-connected layer.

For convolution filters, we use a Xavier initializer [59] and
an l2 regularizer with a weight decay of 0.0001. These models
are trained on a single Nvidia Titan XP GPU using a minibatch
size of 128. We train the networks for 100 epochs with an Adam
optimizer, starting with a learning rate of 0.001 and dividing by
10 at 35 and 70 epochs.

5.1. Different spatial transformations

Following the experimental setup described above, we show
how different spatial transformations affect network
performance. As shown in Table 5, all the convolutional layers
of the baseline 7 × 7-CNN utilize 7 × 7 convolution filters and
have 64 output channels (the same setting for baseline CNNs in
Sections 5.2 and 5.3). The following 5 networks are implemented
by replacing all the convolutional layers with our LCT convolution
layers. The filter size of the convolution filter is compressed from
7 × 7 to 5 × 5. The channel compression rate is set as 0.5 for
input and output channels. In the first LCT convolutional layer, the
number of input channels is 3, which is too small to compress. As
a result, in all experiments, we do not compress first-layer input
channels. L-CNN is a network with a low-rank compact represen-
tation for a 4-order convolution filter that does not undergo any
spatial transformation. GR-CNN, SR-CNN, GA-CNN, and SA-CNN
are networks with group-rotation, slice-rotation, group-affine,
and slice-affine spatial transformations, respectively.

L-CNN has the highest top-1 validation error when compared
to GR-CNN, SR-CNN, GA-CNN, and SA-CNN. It shows that spatial
transformations are important for improving the representation
capacity of low-rank convolution filters and achieving better per-
formance. SA-CNN and GA-CNN outperform GR-CNN and SR-
CNN in terms of performance. It shows that affine form spatial
transformations improve the representation capacity of low-rank
convolution filters more than rotation form spatial transforma-
tions. The test accuracy of SA-CNN is 0.5% higher than that of
GA-CNN, but the number of parameters of SA-CNN is 1.7 times
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Table 5
Test accuracy of our low-rank compact CNNs without spatial transformation and
with different spatial transformations on CIFAR-10. 7 × 7-CNN is the baseline
etwork.
Model Accuracy (%) Num of params (k) Params (%)

7 × 7-CNN 85.35 615.6 100
L-CNN 81.69 97.9 15.9
GR-CNN 83.60 98.1 15.9
SR-CNN 85.15 110.4 17.9
GA-CNN 86.71 99.1 16.0
SA-CNN 87.21 172.8 28.1

Table 6
Test accuracy of our LCT CNNs with different convolution filter size compression
on CIFAR-10. 3 × 3-CNN, 5 × 5-CNN and 7 × 7-CNN are baseline networks.
Model Accuracy (%) Num of params (k) Params (%)

7 × 7-CNN 85.35 615.6 100
5 × 5-CNN 84.62 316.1 51.3
3 × 3-CNN 82.67 116.4 18.9
LCT(0.5-3-3) 83.65 48.2 7.8
LCT(0.5-5-3) 85.06 48.2 7.8
LCT(0.5-7-3) 85.01 48.3 7.8
LCT(0.5-7-5) 86.71 99.1 16.0
LCT(0.5-9-5) 85.98 99.2 16.1

that of GA-CNN. GA-CNN has a parameter remaining percent-
age of 16.0% while 1.36% accuracy improvement compared with
baseline 7 × 7-CNN. This demonstrates that group-affine spatial
ransformations achieve a better trade-off between parameter
umber and performance.

.2. Different convolution filter size compression

In this section, we discuss how different convolution filter
izes affect network performance. For both input and output
hannels, the channel compression rate is set to 0.5. We apply
roup-affine spatial transformations to the low-rank convolution
ilter. In Table 6, we compare our LCT CNNs with three baseline
NNs, utilizing convolution filters of size 3 × 3, 5 × 5 and 7 × 7,

denoted as 3 × 3-CNN, 5 × 5-CNN and 7 × 7-CNN, respectively.
For our LCT CNNs, the filter size of convolution filter is com-
pressed from (3 × 3 to 3 × 3), (5 × 5 to 3 × 3), (7 × 7 to 3 × 3),
(7 × 7 to 5 × 5) and (9 × 9 to 5 × 5).

As shown in Table 6, compared with baseline CNNs, our LCT
CNNs achieve a high compression rate and better performance.
Comparing LCT(0.5-3-3), LCT(0.5-5-3), and LCT(0.5-7-3), we find
that when the filter size of unfolded convolution filters is fixed,
the filter size of versatile convolution filters has little effect on
the number of parameters. LCT(0.5-5-3) achieves the best ac-
curacy among the three models. LCT(0.5-7-5) and LCT(0.5-9-5)
have similar number of parameters and LCT(0.5-7-5) achieves
better accuracy. As a result, choosing an appropriate filter size
for unfolded convolution filters and versatile convolution filters
is critical. LCT(0.5-7-5) has the best performance of all cases.

5.3. Different channel compression rates

In this section, we discuss how different channel compression
rates influence network performance. The baseline networks are
3 × 3-CNN, 5 × 5-CNN, and 7 × 7-CNN in Table 6. The filter
ize of the convolution filter is compressed from 7 × 7 to 5 × 5.
We apply group-affine spatial transformations to the low-rank
convolution filter. Let λ denote the compression rate of input and
output channels, selected from ( 12 ,

1
4 ,

1
8 ). Fig. 4 shows the relation

etween test error and the number of parameters of three base-
ine CNNs and our LCT(λ-7-5) with different channel compression
ates λ. The curve of our LCT(λ-7-5) is at the lower left corner
8

Fig. 4. The trade-off between the number of parameters and test error for our
LCT(λ-7-5) with different channel compression rates λ, compared with baseline
CNNs.

of the curve of baseline CNNs. It demonstrates that our LCT(λ-7-
5) achieves a better trade-off between the number of parameters
and test error. Within the same number of parameters, our LCT(λ-
7-5) achieves a rather smaller error than the baseline CNN. Within
the same error, our LCT(λ-7-5) achieves a high compression rate
ompared with the baseline CNN. The performance degrades
eriously while using a very small λ =

1
8 , as the number of com-

pressed channels is too small to retain the necessary information
of convolutional filters. LCT(λ-7-5) with λ =

1
2 achieves the best

rade-off between the number of parameters and test error.

. Discussion on experiment

From Table 5, our LCT CNNs can achieve 15.9% to 28.1% re-
aining percentage of parameters while 1.36% to 1.86% accuracy

mprovement compared with baseline 7 × 7-CNN. While com-
pressing CNNs of filter size 3 × 3 such as ResNet32 and VGG16,
our approach can achieve only about 38% remaining percentage of
parameters and close accuracy compared with the baseline net-
work. We summarize the reasons as follows. 7 × 7 convolution
filters have much more versatility than common 3 × 3 convolu-
tion filters. Therefore, applying spatial transformations to low-
rank 7 × 7 convolution filters can enhance their representation
capacity more significantly than applying spatial transformations
to low-rank 3 × 3 convolution filters. In addition, the filter size
of 3 × 3 convolution filters is too small to compress. We will
investigate a new way to compress CNNs with 3 × 3 convolution
filters in our future work.

7. Conclusion

In this paper, we propose a novel compact design for con-
volutional layers with spatial transformation. The convolution
filters of convolutional layers in our design are generated using a
predefined Tucker factor form, which is then followed by learn-
able individual spatial transformations on each filter. Compact
Tucker factor convolution filters have far fewer parameters than
standard convolution filters. Furthermore, spatial transformations
significantly improve the representation capacity of convolution
filters. We discuss various hyper-parameter settings for our LCT
convolution layer, such as different spatial transformations, filter
size pairs of versatile and unfolded convolution filters, and chan-
nel compression rates. The results of the experiments validate our
proposed LCT design for convolutional layers.
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