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ABSTRACT

Molecular relational learning (MRL) seeks to understand the interaction behaviors
between molecules, a pivotal task in domains such as drug discovery and materials
science. Recently, extracting core substructures and modeling their interactions
have emerged as mainstream approaches within machine learning-assisted methods.
However, these methods still exhibit some limitations, such as insufficient consid-
eration of molecular interactions or capturing substructures that include excessive
noise, which hampers precise core substructure extraction. To address these chal-
lenges, we present an integrated dynamic framework called Iterative Substructure
Extraction (ISE). ISE employs the Expectation-Maximization (EM) algorithm for
MRL tasks, where the core substructures of interacting molecules are treated as
latent variables and model parameters, respectively. Through iterative refinement,
ISE gradually narrows the interactions from the entire molecular structures to just
the core substructures. Moreover, to ensure the extracted substructures are concise
and compact, we propose the Interactive Graph Information Bottleneck (IGIB)
theory, which focuses on capturing the most influential yet minimal interactive
substructures. In summary, our approach, guided by the IGIB theory, achieves
precise substructure extraction within the ISE framework and is encapsulated in the
IGIB-ISE. Extensive experiments validate the superiority of our model over state-
of-the-art baselines across various tasks in terms of accuracy, generalizability, and
interpretability. Our code can be found at https://github.com/congcijueqi/IGIB-ISE.

1 INTRODUCTION

Molecular relational learning (MRL) Rozemberczki et al. (2021) Fang et al. (2024) Du et al. (2024)
aims to represent interaction properties between molecules, such as potential drug-drug interactions
(DDI) Xiong et al. (2022), chromophores Ye et al. (2021) in different solvents etc., which has
gained significant attention. The core substructure of molecules embodies the essence of their
physicochemical properties in molecular interactions Chi et al. (2010); Bender & Glen (2004). As
shown in Figure 1 (a), styrene oxide exhibits primarily blue fluorescence in hexane due to its epoxide
moiety, while in acetonitrile, the fluorescence shifts to a yellowish hue due to the influence of its
vinyl group. For capturing interaction behavior between molecules, current models often rely on
the chemical prior that core substructures encapsulate key characteristics of molecular, i.e. the
linchpin Book (2014); Jerry (1992).
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Figure 1: (a) shows the differences in fluorescence emission of styrene oxide in various solvents,
while (b), (c), and (d) compare different paradigms for MRL. Best viewed in color.

In order to accurately mine these vital substructures, prevailing methodologies can be broadly
categorized into two categories. Category I (Figure 1 (b)) exemplified by models such as SSI-DDI
Nyamabo et al. (2021)and STNN-DDI Yu et al. (2022a), which individually obtain substructures from
each molecule before subsequent interaction. However, such methods present notable limitations.
Primarily, the isolated extraction of substructures from each molecular neglects the potential interplay
between different molecular substructures. This overlooks the fact that the selection of substructures
for one molecule can be significantly influenced by another, depending on the specific task Lang
et al. (2021). This leads to a somewhat superficial understanding of MRL, failing to fully grasp the
dynamic and interconnected nature of molecular interactions in the biochemical context Silverman &
Holladay (2014); Böhm et al. (2004); Schneider et al. (2018).

In sight of this, Category II (Figure 1 (c)) Li et al. (2023) have pivoted towards a more holistic
approach to address these limitations. These methods simultaneously consider a second molecule
as a conditional factor during the generation of a molecular substructure Lee et al. (2023a). This
paradigm shift ensures that the substructure generation is not an isolated event but an interactive
process. However, such methods also present their challenges. Considering that core substructures
often play a crucial role in molecular interactions Jia et al. (2009); Nyamabo et al. (2021), integrating
the complete profile of an interacting molecule into the substructure generation can be overwhelming.
It carries the risk of compromising generalizability and the inclusion of redundant information Lee
et al. (2023b); Tang et al. (2023), particularly for molecules that share similar structures yet exhibit
significant functional divergence in specific combinations, e.g., Activity Cliffs Tamura et al. (2023);
Van Tilborg et al. (2022); Schneider et al. (2018).

Considering these factors, we aim to harness the interaction effects of core substructures to fa-
cilitate the process of interactive substructure extraction. In this paper, we propose the Iterative
Substructure Extraction (ISE) framework. As shown in Figure 1 (d), ISE employs the Expectation-
Maximization Dempster et al. (1977) (EM) algorithm to iteratively uncover core interactive substruc-
tures between molecular pairs, where two molecular core substructures are regarded as latent variables
and model parameters, respectively. Under the premise of molecular interactions and inherent symme-
try, ISE facilitates iterative interaction and substructure selection between the two graphs, ultimately
identifying the optimal core substructure combination. This ensures that the extracted substructures
depend solely on the core substructures of another molecule, thereby minimizing the influence of
extraneous structures and enhancing alignment with the essence of molecular interactions.

Furthermore, to ensure that the ISE framework obtains concise and compact interactive substructures,
we draw inspiration from the Graph Information Bottleneck (GIB) theory Wu et al. (2020a), a
method used to extract core substructure-based compressed variable information from a single input
graph. We introduce the Interactive Graph Information Bottleneck (IGIB) to ensure comprehensive
consideration of substructure information from another graph during the process of substructure
compression, achieved through the introduction of conditional mutual information. IGIB lays down
a theoretical foundation and establishes a precise optimization goal for the analysis of biochemical
molecule interactions and the mining of interactive substructures.

Our contributions can be summarized as follows:
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• We identify and articulate the limitations of existing Molecular Relational Learning methods in
addressing the problem of core substructure extraction. For the first time, we redefine this problem
in the context of the Expectation-Maximization (EM) algorithm and propose the ISE framework,
which employs iterative coupling of substructures to optimize the extraction process.

• We introduce IGIB as a theoretical foundation for Molecular Relational Learning, more consistent
with chemical principles. IGIB-ISE is highly compatible with our ISE framework, representing
a paradigm shift that emphasizes the importance of inter-substructure dynamics in capturing the
essence of molecular interactions more effectively.

• The superiority of our approach is empirically validated through extensive experiments on multiple
Molecular Relational Learning datasets. Our method outperforms existing approaches in terms of
accuracy, generalizability, and interpretability in MRL. Notably, our ISE framework revitalizes the
interpretable research of core substructures, shedding light on the selection process of essential
interactive substructures.

2 PRELIMINARIES

In this section, we first formally describe the problem formulation (Section 2.1). Then, we introduce
the Graph Information Bottleneck (GIB) theory Wu et al. (2020b) (Section 2.2). Finally, we introduce
the key variables and the execution process in the EM algorithm (Section 2.3).

2.1 PROBLEM PREDEFINITION

A molecule can be naturally represented as a graph, G = (V, E), where V represents the set of nodes
and E denotes the set of bonds. In the context of MRL, for each data point in the dataset, we receive
a pair of molecular graphs, G1 and G2 as input, along with their associated label Y. The label Y is a
scalar value, i.e., Y ∈ (−∞,∞), for molecular interaction prediction tasks, while it is a binary class
label, i.e., Y ∈ {0, 1}, for the binary classification task. Gs1 and Gs2 represent the subgraph of G1

and G2, respectively, with subgraphs corresponding to the molecular substructures.

2.2 GRAPH INFORMATION BOTTLENECK

In graph-related tasks, discerning which substructures within a graph are significant and which are
not is essential. The GIB method addresses this challenge by learning a bottleneck graph GIB for
a given graph G. This approach compresses the source graph to retain the structures pertinent to
predicting the target random variable while discarding those irrelevant to the target Yu et al. (2020;
2022b); Miao et al. (2022).

Definition 2.2 (GIB): Given an input graph G and label Y, GIB aims to extract a compact subgraph
GIB , while keeping the information relevant for predicting Y by optimizing the following objective:

argmin
GIB

− I(Y;GIB) + βI(G;GIB) (1)

where I(·, ·) denotes the mutual information Tishby et al. (2000) between random variables. β is a
Lagrangian multiplier for balancing the two mutual information terms.

2.3 EXPECTATION-MAXIMIZATION ALGORITHM

The ISE framework utilizes the EM algorithm Dempster et al. (1977). The EM algorithm is designed
to handle situations involving observed variables, latent variables, model parameters, and their
distributions. It iteratively estimates parameters in probabilistic models, with a particular focus on
latent variables. This iterative process consists of two steps: the E-step, which computes the posterior
probabilities of latent variables, and the M-step, where model parameters are updated by maximizing
the likelihood using expected values obtained from the E-step.

3 METHODOLOGY

In this section, we introduce our proposed method. First, we define the Interactive Graph Information
Bottleneck (IGIB) (Section 3.1). Then, we detail the application of the EM algorithm within the ISE
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Figure 2: The overall framework of our proposed IGIB-ISE. Best viewed in color.

(Section 3.2). Next, we present the architecture of interactive substructure extraction (Section 3.3).
Finally, we describe the entire model optimization process based on IGIB (Section 3.4).

3.1 THE THEORY OF INTERACTIVE GRAPH INFORMATION BOTTLENECK

We introduce the IGIB theory to guide interactive substructure extraction in MRL tasks. Specifically,
for two input graphs G1 and G2 and their interaction label Y, IGIB posits that the generation process
of the interactive substructures Gs1 and Gs2 should not only maximize the mutual information between
the substructures and the target output Y, but also minimize the mutual information between Gs1

and the original graph G1 when conditioned on G2 (and vice versa for Gs2). Notably, the condition
here is based on the substructure rather than the entire original graph as in CGIB Lee et al. (2023a),
thereby mitigating the influence of redundant and irrelevant information. We formalize this theory as
Definition 3.1 and refer to it as IGIB.

Definition 3.3 (IGIB): Given a pair of graphs G1 and G2 and their label information Y, IGIB aims to
extract a pair of compact yet maximally informative substructures Gs1 and Gs2, which are related to
each other by optimizing the following objective:

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2) + β1I (G1;Gs1 | Gs2) + β2I (G2;Gs2 | Gs1) , (2)

where β1 and β2 are trade-off parameters. Note that the two parameters β1 and β2 incorporated by the
above equation are designed to adapt to the unique scenarios in MRL where the interaction between
two molecules is not entirely symmetrical.

By focusing on the essential information within the substructures and minimizing extraneous features,
IGIB provides a more efficient and task-specific way of handling the complexities inherent in
molecular interaction modeling.

3.2 EM ALGORITHM FOR ITERATIVE SUBSTRUCTURE EXTRACTION

The assignment of variables: From the perspective of the EM algorithm, we re-examine the
relationship between input molecular graphs G1, G2, substructures Gs1, Gs2, and label Y. Firstly,
G1, G2, and Y can be directly provided by the dataset. Therefore, YG is regarded as the observed
variables, including G1, G2, and Y. Secondly, because most interactions between molecules arise
from the interactions between core substructures, the contribution of G1 and G2 to Y is through Gs1

and Gs2 (substructures). We designate Gs2 as the latent variables. For Gs1, considering that the
core interacting substructures between molecules influence each other, the latent variables Gs2 are
influenced by the substructure Gs1. Thus, Gs1 is regarded as the model parameters (vice versa).

Iterative process: E-step: Estimate the latent variables Gs2 while freezing the model parameters
Gs1, then utilize it to calculate the Evidence Lower Bound (ELBO). M-step: Refine the optimal
model parameters Gs1 which maximizes the ELBO obtained in the E-step. The procedure marked by
green lines in the EM framework of Figure 2 represents the E-step, while the process indicated by
blue lines corresponds to the M-step. Their optimization targets are defined as follows, where (t) is
denoted by the iteration step.
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• Initialization: Given two molecular graphs G1 and G2, set G(0)
s1 = G1.

• E-step: Estimate the substructure G(t)
s2 according to G(t)

s1 , and then calculate the ELBO:

ELBO → EG(t)
s2 |YG ,G(t)

s1
[log

P (G(t)
s2 ,YG | G(t)

s1 )

P (G(t)
s2 | YG ,G(t)

s1 )
]; (3)

• M-step: Find the corresponding substructure G(t+1)
s1 that maximizes the above ELBO:

G(t+1)
s1 := argmax

Gs1

EG(t)
s2 |YG ,G(t)

s1
[log

P (G(t)
s2 ,YG | G(t)

s1 )

P (G(t)
s2 | YG ,G(t)

s1 )
]; (4)

• Output: Iteratively execute E-step and M-step, then output the interactive substructures Gs1 and
Gs2.

For the detailed derivation of E-step and M-step, please refer to Appendix B.2 and B.3. Convergence
proof of ISE framework is provided in Appendix B.4.

3.3 ARCHITECTURE OF INTERACTIVE SUBSTRUCTURE EXTRACTION

The architecture of interactive substructure extraction consists of the molecular graph encoder and
iterative substructure extractor.

Molecular Graph Encoder. For the molecular graphs G1 = (V1, E1) and G2 = (V2, E2), we employ
GNN for their encoding:

F
(1)
1 = GNN(V1, E1), F

(1)
2 = GNN(V2, E2), (5)

where F
(1)
1 ∈ RN1×d and F

(1)
2 ∈ RN1×d are the node embedding matrices for G1 and G2, respec-

tively. Next, we focus on expanding node features. This expansion is based on the interaction architec-
ture of CIGIN Pathak et al. (2020). To facilitate the interaction between two graphs, the graph-graph
interaction map I ∈ RN1×N2

is computed by using the following equations: Iij = sim(F
(1)
1i , F

(1)
2j ),

where sim(·, ·) denotes the cosine similarity. Here, N1 and N2 represent the number of nodes in G1

and G2, respectively. Next, we compute the embedding matrices F (2)
1 ∈ RN1×d and F

(2)
2 ∈ RN2×d,

each embedding matrix incorporating information from its paired graph. These matrices are derived
based on the interaction map as follows: F (2)

1 = I · F (1)
2 , F

(2)
2 = I⊤ · F (1)

1 , where (·) denotes
matrix multiplication. Based on these, the aggregation operation of node features can be completed
as follows: H1 = F

(1)
1 ||F (2)

1 , H2 = F
(1)
2 ||F (2)

2 , where H1 and H2 are the final node embedding
features of G1 and G2, and || denotes the concatenation operation.

Iterative Substructure Extractor. Initially, we initialize G(0)
s1 = G1 and H

(0)
s1 = H1, where Hs1

represents the node embedding features of Gs1.

E-step: The interaction operation employed in molecular graph encoder along with a two-layer
Multi-Layer Perceptron (MLP) is utilized to assess the importance of each node in G2, as expressed
by:

I
(t)
ij = sim(H

(t−1)
s1i , H2j), P (t) = Sigmoid

(
MLP

(
(I(t)

⊤
·H1

))
, (6)

Inspired by the theorys of information bottlenecks Tishby et al. (2000) and focusing on node
significance, we introduce random noise into nodes to facilitate substructure extraction, as suggested
by Yu et al. (2022b). This process involves the following operations:

h
(t)
i = λ

(t)
i hi + (1− λ

(t)
i )ϵ, (7)

λ
(t)
i = Sigmoid

(
1

τ
log

(
p
(t)
i

1− p
(t)
i

)
+ log

(
u

1− u

))
, (8)

where i represents the node number in G2, hi represents the embedding feature of node i, λ(t)
i is

drawn from a Bernoulli distribution with probability p
(t)
i . To ensure differentiability in the sampling
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process, we adopt the Gumbel sigmoid Maddison et al. (2016); Jang et al. (2016) for the discrete
random variable λ

(t)
i . The transmission probability p

(t)
i regulates information flow from hi to h

(t)
i .

The parameter τ adjusts sensitivity to noise randomness, and u is drawn from a uniform distribution,
u ∼ Uniform(0, 1). Thus, the interactive substructure G(t)

s2 from G2 is successfully extracted because
nodes excluded in this process have been injected with noise, diluting their inherent information.

M-step: The interactive substructure G(t+1)
s1 is obtained based on G(t)

s2 to achieve maximum likelihood.
Due to the symmetric nature of molecular interactions in MRL, we employ the same network
architecture as in the E-step to determine G(t+1)

s1 . Finally, upon completion of the iterations, the
set2set network Vinyals et al. (2015) is utilized to pool the substructures Gs1 and Gs2, resulting in the
substructure representation vectors zGs1 and zGs2 . These vectors serve as compact representations
that encode the essential information of the substructures for further prediction.

3.4 MODEL OPTIMIZATION BASED ON IGIB

We provide the upper bound of the intended Definition 3.1, which should be minimized during
training.

Minimizing −I (Y;Gs1,Gs2): We consider Pθ (Y | Gs1,Gs2) as the variational estimation of
P (Y | Gs1,Gs2). Thus, we derive:

I (Y;Gs1,Gs2) ≥ E(Y,Gs1,Gs2) log

[
Pθ (Y | Gs1,Gs2)

P (Y)

]
= E(Y,Gs1,Gs2) log [Pθ (Y | Gs1,Gs2)] +H(Y) := Lpre,

(9)

where H(Y) is constant across all data, it will be omitted in the model optimization process.

Minimizing I (G1;Gs1 | Gs2): Based on the chain rule of mutual information, we decompose it into:

I (G1;Gs1 | Gs2) = I (Gs1;G1,Gs2)− I (Gs1;Gs2) . (10)

For I(Gs1;G1,Gs2), zGs1 represents the encoding of Gs1. Minimizing I(Gs1;G1,Gs2) is equivalent to
minimizing I(zGs1

;G1,Gs2). We approximate I (zGs1
;G1,Gs2) using a variational inference approach

q(zGs1
) as an estimate for p(zGs1

).

I (zGs1 ;G1,Gs2) = E(zGs1
,G1,Gs2) log

[
pΦ (zGs1 | G1,Gs2)

p (zGs1
)

]
= E(G1,Gs2) log

[
pΦ (zGs1

| G1,Gs2)

q (zGs1
)

]
− E(zGs1

,G1,Gs2)KL (p (zGs1
) ∥q (zGs1

)) .

(11)

Here, the function pΦ refers to the objective of the process described in Section 3.3, which is based
on the EM algorithm and aims to generate Gs1. Given the non-negativity of the Kullback-Leibler
divergence, it follows that:

I (zGs1 ;G1,Gs2) ≤ E(G1,Gs2)KL (pΦ (zGs1
| G1,Gs2) ∥q (zGs1

)) := Lcom1. (12)

For the term I (Gs1;Gs2), it is necessary to augment the mutual information between Gs1 and Gs2. To
achieve this, we employ a contrastive loss function Tian et al. (2020); Hjelm et al. (2018), which has
been demonstrated to effectively increase mutual information. The contrastive loss is defined as:

Lcon1 = − 1

K

K∑
i=1

log
exp(sim(ziGs1

, ziGs2
)/τ)∑K

j=1,j ̸=i exp(sim(ziGs1
, zjGs2

)/τ)
, (13)

where sim(·, ·) denotes a similarity function, the superscript denotes different pairs of molecules, and
τ is a temperature parameter employed to adjust sensitivity to the similarity between samples.

Minimizing I (G2;Gs2 | Gs1): The upper bound of the objective function is obtained similarly to
minimizing I (G1;Gs1 | Gs2), leading to the derivation of additional loss functions Lcom2 and Lcon2:

Lcom2 := E(G2,Gs1)KL (pΦ (zGs2 | G2,Gs1) ∥q (zGs2)) , (14)
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Lcon2 = − 1

K

K∑
i=1

log
exp(sim(ziGs2

, ziGs1
)/τ)∑K

j=1,j ̸=i exp(sim(ziGs2
, zjGs1

)/τ)
. (15)

In summary, our overall loss function equation 16, serving as an upper bound for equation 2, is
constructed by combining these components to optimize our IGIB-ISE:

Lsum = Lpre + β1(Lcom1 + Lcon1) + β2(Lcom2 + Lcon2) + Lsup, (16)

where β1 and β2 is the trade-off parameters. Lsup is the prediction loss between label Y and the pair
of input graphs (G1,G2). Here, Lpre can be modeled as the cross entropy loss for classification and
the mean square loss for regression. Lcom1 and Lcom2 represent KL divergence between extracted
interactive substructures and the noise graph, encouraging substructure compression. Lcon1 and
Lcon2 denote contrastive loss between two substructures to reinforce their relationship. The detailed
proofs for Lpre and Lcom1 will be provided in Appendix B.5 and B.6.

4 EXPERIMENT

In this section, we conduct extensive experiments to answer the following questions:

• RQ1: Can our model enhance the performance of molecular relational learning tasks?

• RQ2: Does the interactive extraction of substructures improve the performance of IGIB-ISE?

• RQ3: How effective is the ISE module in terms of interpretability?

4.1 EXPERIMENTAL SETTINGS

In this section, we briefly introduce the datasets, baselines, and evaluation metrics. More details on
experimental settings, dataset descriptions, baseline introductions, hyper-parameter selection, and the
performance of the models on additional evaluation metrics are provided in Appendix D.3 and 7.

Datasets. To evaluate the performance of our model, we conduct experiments based on nine datasets.
For the molecular interaction prediction task, we utilize the Chromophore dataset Joung et al. (2020),
including absorption, emission, and excited state lifetime. Additionally, MNSol Marenich et al.
(2020), FreeSolv Mobley & Guthrie (2014), CompSol Moine et al. (2017), Abraham Grubbs et al.
(2010), and CombiSolv Vermeire & Green (2021a) are also considered, which describe the solvation
free energy for a solute-solvent pair. For the drug-drug interaction prediction task, we incorporate
three DDI datasets, including ZhangDDI Zhang et al. (2017), ChChMiner Zitnik et al. (2018) and
DeepDDI Zitnik et al. (2018), which record the adverse reactions between drug-drug pairs.

Baselines. For both tasks, we compare our method with the diverse SOTA models that could be
regarded as three categories, as shown in Figure 1. CGIB Lee et al. (2023a), CMRL Lee et al. (2023b),
and CIGIN Pathak et al. (2020) have widely proven their superiority on MRL. For the drug-drug
interaction prediction tasks, we chose routine SSI-DDI Nyamabo et al. (2021), GoGNN Wang et al.
(2020), DSN-DDI Li et al. (2023) and MHCADDI Deac et al. (2019). For the molecular interaction
prediction tasks, we chose additional models D-MPNN Vermeire & Green (2021a), Explainable
GNN Low et al. (2022), and UNI-MOL Zhou et al. (2023), due to the single-task nature of these
baseline models.

Evaluation metrics. The performance of the molecular interaction prediction task is evaluated by
RMSE Pathak et al. (2020), while the DDI prediction task is evaluated in terms of classification
accuracy Wang et al. (2021).

4.2 PREDICTION PERFORMANCE (RQ1)

The empirical performance of our model is summarized in Table 1 and Table 2, respectively. Our
observations are as follows:

Obs.1: IGIB-ISE outperforms other baselines in both molecular interaction prediction and
drug-drug interaction prediction tasks. The experimental results in Table 1 and Table 2 (a) illustrate
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Table 1: Performance on molecular interaction prediction task (regression) in terms of RMSE.

Model Chromophore MNSol FreeSolv CompSol Abraham CombiSolv
Absorption Emission Lifetime

Category I
Explainable GNN 22.74 (1.06) 28.09 (1.43) 0.834 (0.017) 0.673 (0.024) 1.258 (0.044) 0.353 (0.012) 0.751 (0.034) 0.417 (0.049)

UNI-MOL −− −− −− 0.657 (0.019) 1.210 (0.041) 0.339 (0.014) 0.672 (0.028) 0.629 (0.011)

CIGIN 19.47 (0.34) 25.17 (0.29) 0.815 (0.011) 0.644 (0.022) 1.013 (0.013) 0.301 (0.016) 0.435 (0.010) 0.498 (0.009)

D-MPNN 24.08 (1.47) 29.34 (0.93) 0.829 (0.022) 0.667 (0.017) 1.107 (0.031) 0.353 (0.013) 0.608 (0.033) 0.559 (0.006)

Category II
CGIB 18.05 (0.34) 24.62 (0.29) 0.783 (0.009) 0.613 (0.023) 0.918 (0.029) 0.279 (0.016) 0.386 (0.010) 0.440 (0.009)

CMRL 18.24 (0.31) 25.69 (0.27) 0.791 (0.008) 0.623 (0.019) 0.927 (0.024) 0.274 (0.014) 0.375 (0.008) 0.423 (0.006)

Category III
ISE 17.81 (0.37) 24.66 (0.42) 0.773 (0.026) 0.607 (0.028) 0.825(0.039) 0.268 (0.013) 0.369 (0.014) 0.400 (0.010)

IGIB-ISE 16.90 (0.32) 23.83 (0.26) 0.747 (0.015) 0.572 (0.024) 0.713(0.034) 0.266 (0.010) 0.343 (0.009) 0.394 (0.008)

Table 2: Performance on drug-drug interaction prediction task (classification) in terms of ACC.

Model
(a) Transductive (b) Inductive Setting 1 (c) Inductive Setting 2

ZhangDDI ChChMiner DeepDDI ZhangDDI ChChMiner DeepDDI ZhangDDI ChChMiner DeepDDI
Category I
GoGNN 84.14 (0.46) 91.17 (0.46) 93.54 (0.35) 61.51 (1.87) 67.48 (1.56) 67.53 (1.52) 57.37 (3.27) 64.27 (4.31) 63.96 (3.64)

CIGIN 85.98 (0.30) 92.71 (0.32) 93.29 (0.47) 65.27 (1.24) 76.35 (0.92) 71.84 (0.89) 57.11 (1.75) 64.25 (2.33) 65.54 (2.93)

SSI-DDI 86.97 (0.27) 93.26 (0.24) 94.27 (0.25) 62.38 (1.53) 76.94 (1.32) 69.77 (0.86) 57.24 (2.38) 65.61 (2.51) 66.53 (3.53)

MHCADDI 77.86 (0.59) 84.26 (0.64) 87.01 (0.77) 61.81 (1.27) 65.77 (0.76) 63.94 (0.98) 57.84 (2.28) 59.24 (5.39) 61.17 (3.67)

Category II
CMRL 87.78 (0.37) 94.43 (0.25) 95.99 (0.34) 68.38 (1.12) 80.54 (0.66) 74.12 (0.55) 59.53 (1.37) 67.09 (1.54) 68.29 (1.78)

CGIB 87.69 (0.73) 94.68 (0.35) 95.76 (0.72) 68.34 (0.66) 80.67 (0.77) 74.29 (0.53) 58.39 (2.04) 68.78 (1.84) 68.26 (1.39)

DSN-DDI 87.65 (0.13) 94.23 (0.26) 93.37 (0.34) 67.68 (0.87) 79.94 (0.72) 74.35 (0.62) 59.11 (1.42) 68.36 (1.54) 69.17 (1.28)

Category III
ISE 88.45 (0.42) 94.82 (0.67) 96.13 (0.057) 67.63 (1.02) 80.42 (0.98) 74.56 (0.83) 58.87 (1.49) 69.27 (1.93) 69.42 (1.54)

IGIB-ISE 88.84 (0.32) 95.56 (0.28) 96.65 (0.37) 68.75 (0.83) 81.15 (0.79) 75.28 (0.69) 59.96 (1.23) 70.34 (1.53) 70.54 (1.27)

significant improvements. We argue that our model architecture, which iteratively extracts interactive
substructures, can extract more accurate substructures. This ensures that more precise information
can be provided in subsequent prediction tasks, thereby enhancing the performance of the model.

Obs.2: Our model also demonstrates excellent generalization performance in various inductive
settings. We conducted additional experiments in two inductive settings: Setting 1 ensures that
at least one drug is unseen in the test dataset while Setting 2 ensures that both test molecules are
unlearned (as shown in Table 2 (b) and (c)). IGIB-ISE achieves higher prediction accuracy across
three datasets, showcasing its superior generalization capabilities. This heightened performance can
be attributed to the extensive interaction among captured core substructures, underscoring IGIB-ISE’s
practical utility, especially in handling emerging drug molecules.

Obs.3: The performance exhibits a clear ascending order for Category I, Category II, and our
model. Compared to models lacking intermolecular interactions (Category I), models considering
molecular interactions exhibit clear superiority. Furthermore, the performance of IGIB-ISE surpasses
all evaluation metrics for models of Category II across all datasets. This suggests that considering
substructure interactions between molecules significantly enhances model performance. The introduc-
tion of the EM algorithm enables the substructure to evolve dynamically through interactive iterations.
The substructure can be accurately represented during the iterative process, and a detailed analysis of
its dynamic iteration process is provided in Appendix E.6.

Obs.4: The IGIB theory effectively improves model performance. Specifically, results from the
IGIB-ISE framework demonstrate superior performance compared to using ISE alone. Guided by the
IGIB theory, the ISE framework’s ability to extract generalized and accurate interactive substructures
is significantly improved. This enhancement is attributed to IGIB’s proactive nature, which promotes
the compression of substructures to their fullest extent. This compression process yields more concise
structures, substantially enhancing the model’s capabilities. Detailed results and analyses are provided
in Appendix E.2.
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(a) (b) (c)

Figure 3: Hyperparameter experimental results. (a) Test results under different values of β1 and β2.
(b) Test results under different iteration numbers (IN); (c) the optimal-IN on various datasets.

4.3 ABLATION AND SENSITIVITY EXPERIMENT (RQ2)

In this section, we analyze the core hyperparameters, including β1, β2, and iteration numbers (IN) of
the EM algorithm, as illustrated in Figure 3.

Obs.5: There exists the optimal point of β1 = 0.0001 and β2 = 0.0001 in terms of the model
performance. β1 and β2 govern the delicate balance between prediction accuracy and information
compression within the two molecular graphs. As shown in Figure 3 (a), setting β1 = 0.001 and β2 =
0.001 results in suboptimal model performance. This can be attributed to the aggressive compression
encouraged by these values, resulting in the model inadequately capturing the molecular information
crucial for the target task. Conversely, the reduction of β1 and β2 implies preservation of more
original graph information. However, it does not consistently guarantee improved performance. This
is because, in such scenarios, the model may struggle to identify the precise interactive substructure
necessary for accurate predictions, thereby compromising its generalization capabilities.

Obs.6: The performance of the model is closely related to the IN. In Figure 3 (b), we observe
that as IN increases, the model’s performance gradually improves on all datasets. This improvement
can be attributed to our iterative extraction method, which enhances the accuracy of the extracted
substructures. However, as IN becomes larger, the performance on the test set begins to decline.
This is because excessive iterations lead to the extraction of ’locally optimal’ substructures, thereby
diminishing generalization performance.

Obs.7: The optimal IN value for the model increases with the size of the dataset. As illustrated
in Figure 3(c), the optimal IN value of the model increases with the size of the dataset. We attribute
this phenomenon to the distributional error during the dataset partitioning process. When the dataset
is smaller, the distributional error is larger, whereas it would decrease as the dataset size increases.
Therefore, by dynamically adjusting the iteration times of the ISE framework, we can enable the
model to achieve different levels of fitting and generalization capabilities, demonstrating the robust
adaptability of our model to diverse datasets.

4.4 INTERPRETABILITY ANALYSIS (RQ3)

In this section, we visually analyze the DDI prediction process based on IGIB-ISE. We conducted a
random selection of four drug pairs, all of which could generate a DDI reaction. The dynamic nature
of substructure identification renders the ISE module distinctly remarkable.

Obs.8: IGIB-ISE exhibits distinct core substructure recognition in molecule pairs interaction.
Illustrated in Figure 4 (a) and 4 (b), each graph demonstrates the substructure selection results for
Theophylline and Hydroxyurea molecules when interacting with different molecules to produce
DDI. Taking the example of the molecular pairs formed by Theophylline with Domperidone and
Atazanavir, significant differences in the selection of O and N are observed. This reflects that the
model can extract core substructures for different molecular combinations.

Obs.9: Dynamic iterative substructure extraction enhances core substructure learning. For
different numbers of iterations, as the iterative updates continue along with the iterative selection of
substructures, the learning process of ISE towards core substructures is enhanced. As depicted in
Figure 4 (c), the acyl group is gradually phased out, while other groups progressively manifest their
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Fluoxetine Trazodone

Isoflurane

Domperidone

Atazanavir

Theophylline

Theophylline Fluoxetine

Iterate 1 Iterate 10 Iterate 20 Iterate 30

Aprepitant

Hydroxyurea Eszopiclone

Iterate 1 Iterate 15 Iterate 30 Iterate 40Hydroxyurea

(b) (c)

Domperidone

Atazanavir

Theophylline

Theophylline

(a)

Figure 4: Interpretability analysis on interactive substructure. The visual representation of the
interaction between (a) Theophylline molecules and different molecules. And (b) Hydroxyurea
molecules. (c) Substructure visualization results under different iteration numbers. The darker the
color means, the greater the weight.

importance. This is evident in the gradual clarification and stabilization of substructures, accompanied
by the gradual removal of redundant nodes.

5 LIMITATION AND FUTURE OUTLOOK

ISE implements the dynamic substructure extraction process of molecular pairs based on the EM
algorithm and has achieved significant improvement in the MRL experiment. However, considering
the diversity and complexity of the real chemical molecular space, we expect to improve the current
framework in three aspects in the future: 1) Expect to obtain more molecular interaction processes and
analyses between molecules, which is limited by the limitations of current research, we only verified
it during the interaction process of two molecules. However, the interaction system of multiple
molecules is still a research hotspot that cannot be ignored. 2) It is expected to obtain a more efficient
iterative pruning strategy. For larger data sets, ISE requires more IN times, which will undoubtedly
increase the consumption of resources and time; 3) Anticipated to be effective in verifying large
molecular data sets, our focus extends beyond the tested molecular interaction tasks. Interactions
between macromolecules such as protein-protein, protein-peptide, and drug-protein also represent
significant molecular interaction tasks. Acknowledging the differences in macromolecule modeling
methods, we aim to delve into the exploration of macromolecular interactions in our future work.

6 CONCLUSION

This paper presents significant advancements in the field of molecular relational learning through
the introduction of the ISE framework and IGIB theory. These methodologies address the crucial
limitations of existing methods, particularly those pertaining to core substructure extraction. These
advancements provide a much-needed paradigm shift in the understanding and analysis of molecular
interactions, emphasizing the importance of the dynamic interactions between substructures. The
ISE framework, firmly supported by experimental validation, has shown superiority in accuracy,
generalizability, and interpretability. The framework’s generalizability suggests its potential appli-
cation in numerous areas, expanding the boundaries of the field. Moreover, the introduction of the
IGIB theory has revitalized the interpretative study of core substructures. This theory, guided by the
philosophy of effective information utilization, provides valuable insights into the selection process
of essential interactive substructures. These insights facilitate a more nuanced understanding of
molecular dynamics. These insights facilitate a more nuanced understanding of molecular dynamics,
which has the potential to reshape our approach to molecular relational learning, stimulating more
in-depth and insightful research in the future.
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A RELATED WORK

A.1 MOLECULAR RELATIONAL LEARNING

Molecular research Liu et al. (2025); Zhang et al. (2025) is a critical task in the field of natural
sciences, and molecular relationship learning (MRL) is a crucial branch of this area. However, it still
faces a variety of challenges, including drug-drug interaction (DDI) prediction and solvation-free
energy prediction for solute-solvent pairs. The rapid emergence of graph neural networks Kipf &
Welling (2016); Huang et al. (2024) (GNNs) has ignited considerable interest in employing graph-
based methodologies for MRL. For instance, Zhong et al.Zhong et al. (2019) harnessed Graph
Convolutional Neural Networks (GCNNs) for message aggregation and utilized an attention-based
pooling method to forecast DDIs. Jones et al.Zhang et al. (2022) employed a GNN to accurately
predict water solvation Gibbs free energies for over 100,000 organic compounds, achieving an
impressive error rate of 0.4 kcal/mol. The intricate relationship between two molecules is inevitably
influenced by their specific substructures and functionalities Harrold & Zavod (2014); Fu et al. (2020).

As a consequence, research has shifted towards substructure extraction and the interplay between
these substructures. Yu et al. Yu et al. (2022a) integrated functional group information of drug
molecules as substructures, further exploring the interactions among them. Nyamabo et al. (2021)
introduced the Substructure-Substructure Interaction for Drug-Drug Interaction (SSI-DDI) method
Nyamabo et al. (2021), employing Graph Attention Network (GAT) layers for substructure extraction
and co-attention layers for modeling interactions among substructures.

However, prevailing methodologies typically encode two molecules separately or extract substructures
independently, thereby overlooking their interaction for specific tasks. To capture the interaction be-
tween molecules during substructure extraction, Lee et al.Lee et al. (2023a) introduced the Conditional
Graph Information Bottleneck (CGIB) model. This model, inspired by Information Bottleneck theory,
identifies core substructures between pairs of graphs and predicts interaction behavior. Aligned with
the Structural Causal Model (SCM), Lee et al.Lee et al. (2023b) introduced a conditional intervention
framework where interventions are conditioned on paired molecules. This framework enables the
model to effectively glean insights from causal substructures and mitigate the confounding effects of
spuriously correlated shortcut substructures in chemical reactions. Despite its demonstrated superior-
ity over prior methods, the interaction mechanism remains rudimentary. Direct interaction between
entire graphs introduces excessive redundant information, hindering the extraction of interacting
substructures. This is because molecules often operate through one or several core substructures. In
contrast, our method focuses on leveraging the interaction of key substructures, particularly under
task-specific conditions, during the exploration process.

A.2 GRAPH INFORMATION BOTTLENECK

The GIB theory offers a precise method for obtaining subgraphs and has been widely applied in
the field of extracting subgraphs from a single graph. PGIB Yu et al. (2020) proposes a Graph
Information Bottleneck (GIB) framework for recognizing informative yet compact subgraphs from
the original graph, addressing key graph learning problems like graph denoising and compression. To
optimize the challenging GIB objective, it introduces a mutual information estimator for irregular
graph data, a bi-level optimization scheme, and a connectivity loss to stabilize the process. VGIB Yu
et al. (2022b) further stabilizes the subgraph recognition process by injecting Gaussian noise into
node representations, modulating the information flow from the original graph to the perturbed graph.

Additionally, Lee et al. Lee et al. (2023a) expanded the graph information bottleneck to the field of
molecular relational learning, proposing the Conditional Graph Information Bottleneck (CGIB) theory,
which aims to retain as much relevant information as possible with paired graphs while obtaining
compressed subgraphs. The CGIB theory addresses the issue of extracting independent subgraphs
in GIB for MRL tasks, but considering all information from another graph during interaction can
introduce excessive noise. To address this limitation, this paper proposes the IGIB theory, which
fully considers the detailed molecular interactions in molecular relational learning to ensure precise
extraction of interaction subgraphs.
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B PROOFS

In this section, we provide detailed derivations for the theoretical aspects and equations presented
in this paper. First, we explore the impact of redundant substructures on the extraction of core
substructures in Section B.1. Additionally, we describe two Derivation Proofs of the E-step and
M-step for ISE in Section B.2 and B.3. In Section B.4, we analyze the convergence of ISE. Section
B.5 and B.6 focus on providing detailed proofs for the Lpre and Lcom1 loss formulas of the IGIB
theory.

B.1 IMPACT OF REDUNDANT SUBSTRUCTURES ON CORE SUBSTRUCTURE EXTRACTION

Let Gs1 denote a general substructure of G1, GIB1 the core substructure of G1, GIB2 the core
substructure of G2, and Gn2 the redundant substructure of G2.

1. Objective Function in Existing Methods: The extraction of the core substructure GIB1 often
involves minimizing mutual information. Specifically, this can be formulated as the following
optimization problem:

argmin
Gs1

I (Gs1;G1 | G2) , (17)

where I (·) represents the mutual information between variables.

2. Decomposition of G2: The structure G2 can be decomposed into two components:

• The core substructure GIB2, which contains essential and valid information.
• The redundant substructure Gn2, which primarily introduces noise or irrelevant information.

Thus, G2 can be expressed as:
G2 = GIB2 + Gn2. (18)

Substituting this decomposition into the objective function, we obtain:

argmin
Gs1

I (Gs1;G1 | GIB2 + Gn2) . (19)

3. Conditional Independence Analysis: Assume that Gn2 is conditionally independent of GIB1,
as the redundant substructure does not directly influence the core substructure’s information. Using
the chain rule of mutual information, we can expand the objective function as:

I (Gs1;G1 | GIB2 + Gn2) = I (Gs1;G1 | GIB2) + I (Gs1;G1 | Gn2) . (20)

4. Impact of Redundancy: The term I (Gs1;G1 | Gn2) captures the influence of the redundant
structure Gn2 on the extraction process. However, as Gn2 mainly introduces noise or irrelevant
information, this term interferes with the actual optimization target, leading to suboptimal results.
Ideally, the objective function should exclude the redundant substructure, focusing solely on the core
substructure GIB2:

argmin
Gs1

I (Gs1;G1 | GIB2) . (21)

5. Conclusion: Incorporating the redundant substructure Gn2 into the optimization process intro-
duces an additional mutual information term, I (Gs1;G1 | Gn2), which interferes with the extraction
of core substructures. To achieve more accurate and efficient extraction, the optimization should rely
exclusively on the core substructure GIB2, thereby eliminating the influence of redundant information.

B.2 DERIVATION PROOF 1 OF THE E-STEP AND M-STEP FOR ISE

Proof. Objective: Given two graphs G1 and G2 and label Y , we aim to identify the substructures Gs1

and Gs2 most relevant to label Y . YG is the observed variables. Additionally, YG is determined by
the model parameters θ as follows:

YG = argmax
YG

logP (YG | θ) . (22)
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Latent Variables: In molecular interactions, core substructures frequently exert significant influence.
Consequently, G2 primarily influences through latent variables Gs2, where:

P (YG | θ) =
∫
Gs2

P (YG ,Gs2 | θ) dGs2. (23)

Bayes’ Theorem Application: Applying Bayes’ theorem, we derive:

P (YG | θ) = P (YG ,Gs2 | θ)
P (Gs2 | YG , θ)

. (24)

Logarithmic Transformation: Taking the logarithm on both sides and introducing the probability
distribution of Gs2 as q(Gs2), while ensuring

∫
Gs2

q (Gs2) dGs2 = 1, we arrive at:

logP (YG | θ) =

log
P (YG ,Gs2 | θ)

q (Gs2)
− log

P (Gs2 | YG , θ)

q (Gs2)
.

(25)

Expectation Calculation: By taking the expectation with respect to Gs2 on both sides and converting
it into integral form, we obtain: ∫

Gs2

q (Gs2)P (YG | θ) dGs2 =∫
Gs2

q (Gs2) log
P (YG ,Gs2 | θ)

q (Gs2)
dGs2

−
∫
Gs2

q (Gs2) log
P (Gs2 | YG , θ)

q (Gs2)
dGs2.

(26)

ELBO Derivation: Simplifying leads to:

logP (YG | θ) =∫
Gs2

q (Gs2) log
P (YG ,Gs2 | θ)

q (Gs2)

+KL (q (Gs2) ∥P (Gs2 | YG , θ)) .

(27)

ELBO Inequality: Due to the non-negativity of the Kullback-Leibler divergence, we establish:

logP (YG | θ) ≥
∫
Gs2

q (Gs2) log
P (YG ,Gs2 | θ)

q (Gs2)
. (28)

ELBO Optimization: By setting the KL divergence term to zero, we aim to maximize the expectation,
leading to: ∫

Gs2

q (Gs2) log
P (Gs2,YG | θ)

q (Gs2)

=

∫
Gs2

P (Gs2 | YG , θ) log
P (Gs2,YG | θ)
P (Gs2 | θ,YG)

dGs2

= EGs2|YG ,θ

[
log

P (Gs2,YG | θ)
P (Gs2 | θ,YG)

]
= EGs2|θ,YG [logP (Gs2,YG | θ)]−
EGs2|θ,YG [logP (Gs2 | θ,YG)] .

(29)

We proceed by meticulously examining the model parameters θ, with a particular focus on its
components within the MRL task. The parameter set θ consists of only two constituents, θ1 and θ2.
In this context, θ1 governs the selection of Gs1 from the set G1, while θ2 regulates intermolecular
interactions to determine Gs2 based on Gs1. Notably, the supervision of molecular interaction,
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indicated by the label Y , is independent of the EM iteration process, rendering it negligible for our
analysis. Consequently, our focus narrows down to θ1, which exclusively influences Gs1. However,
concerning Gs2, Gs1 emerges as the determinant parameter. Thus, we redefine θ as Gs1. Consequently,
at the current time step (t), the E-step can be succinctly expressed as follows:

EG(t)
s2 |YG ,G(t)

s1

log P
(
G(t)
s2 ,YG | G(t)

s1

)
P
(
G(t)
s2 | YG ,G(t)

s1

)
 . (30)

Subsequently, we aim to maximize this expectation, leading to:

G(t+1)
s1 = argmax

Gs1

EG(t)
s2 |YG ,G(t)

s1

log P
(
G(t)
s2 ,YG | G(t)

s1

)
P
(
G(t)
s2 | YG ,G(t)

s1

)
 . (31)

B.3 DERIVATION PROOF 2 OF THE E-STEP AND M-STEP FOR ISE

Proof. Introduction of Latent Variables: We introduce latent variables using the Law of Total
Probability:

logP (YG | Gs1) = log

∫
Gs2

P (YG ,Gs2 | Gs1)dGs2 (32)

Incorporating Probability Distribution: Assuming the probability distribution of Gs2 as q(Gs2),
we rewrite the equation as:

logP (YG | Gs1) = log

∫
Gs2

P (YG ,Gs2 | Gs1)

q(Gs2)
q(Gs2)dGs2 (33)

Expectation Calculation: The integral inside the log is the expectation of P (YG ,Gs2|Gs1)
q(Gs2)

with respect
to Gs2:

logP (YG | Gs1) = logEGs2

[
P (YG ,Gs2 | Gs1)

q(Gs2)

]
(34)

Jensen’s Inequality Application: Since the logarithm function is strictly concave, according to
Jensen’s inequality:

logEGs2

[
P (YG ,Gs2 | Gs1)

q(Gs2)

]
≥ EGs2

[
log

P (YG ,Gs2 | Gs1)

q(Gs2)

]
(35)

ELBO Derivation: This implies:

logP (YG | Gs1) ≥ EGs2

[
log

P (YG ,Gs2 | Gs1)

q(Gs2)

]
=

∫
Gs2

q(Gs2) log
P (YG ,Gs2 | Gs1)

q(Gs2)
dGs2 (36)

Equality Condition of Jensen’s Inequality: The equality holds when P (YG ,Gs2|Gs1)
q(Gs2)

= C:

q(Gs2) =
1

C
P (YG ,Gs2 | Gs1) (37)

Normalization: Integrating both sides with respect to Gs2:∫
Gs2

q(Gs2)dGs2 = 1 =⇒ 1

C
P (YG | Gs1) = 1 (38)

Final Inference: Hence, P (YG | Gs1) = C. Replacing C:

q(Gs2) =
P (YG ,Gs2 | Gs1)

P (YG | Gs1)
(39)
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ELBO Formulation: Clearly, this expression is the Evidence Lower Bound (ELBO) we mentioned
earlier.

∫
Gs2

P (Gs2 | YG ,Gs1) log
P (YG ,Gs2 | Gs1)

P (Gs2 | YG ,Gs1)
dGs2 = EGs2|YG ,Gs1

[
log

P (YG ,Gs2 | Gs1)

P (Gs2 | YG ,Gs1)

]
(40)

Iterative Procedure: Since the ISE framework is iterative, in each iteration, we first estimate the
posterior P

(
G(t)
s2 | YG ,G(t)

s1

)
based on the previous iteration’s G(t)

s1 and the samples YG , and then
compute the expectation in the E-step:

EG(t)
s2 |YG ,G(t)

s1

log P
(
G(t)
s2 ,YG | G(t)

s1

)
P
(
G(t)
s2 | YG ,G(t)

s1

)
 . (41)

Maximization Objective: Subsequently, we aim to maximize this expectation, leading to:

G(t+1)
s1 = argmax

Gs1

EG(t)
s2 |YG ,G(t)

s1

log P
(
G(t)
s2 ,YG | G(t)

s1

)
P
(
G(t)
s2 | YG ,G(t)

s1

)
 . (42)

B.4 PROOF OF CONVERGENCE OF THE EM ALGORITHM

Proof. The objective of the EM algorithm is to find suitable model parameters Gs1 such that P (YG |
Gs1) is maximized. Since EM is an iterative algorithm, to prove its convergence, it suffices to show
that P

(
YG | G(t+1)

s1

)
≥ P

(
YG | G(t)

s1

)
holds.

As we know:

logP (YG | Gs1) = logP (YG ,Gs2 | Gs1)− logP (Gs2 | YG ,Gs1) (43)

Taking the expectation with respect to (Gs2 | YG ,G(t)
s1 ) on both sides, we have:

EGs2|YG ,G(t)
s1
[logP (YG | Gs1)]

= EGs2|YG ,G(t)
s1
[logP (YG ,Gs2 | Gs1)]− EG(t)

s2 |YG ,G(t)
s1
[logP (Gs2 | YG ,Gs1)]

(44)

For the left-hand side of the equation, since logP (YG | Gs1) is independent of Gs2, we have:

EGs2|YG ,G(t)
s1
[logP (YG | Gs1)]

=

∫
Gs2

P
(
Gs2 | YG ,G(t)

s1

)
logP (YG | Gs1)dGs2 = logP (YG | Gs1)

(45)

For the right-hand side, let’s first consider the first term. It is actually the Q
(
Gs1,G(t)

s1

)
from our

E-step, as:
G(t+1)
s1 = argmax

Gs1

Q
(
Gs1,G(t)

s1

)
(46)

Therefore, it follows that:
Q
(
G(t+1)
s1 ,G(t)

s1

)
≥ Q

(
Gs1,G(t)

s1

)
(47)

Since Gs1 is a variable, we can set Gs1 = G(t)
s1 , thus:

Q
(
G(t+1)
s1 ,G(t)

s1

)
≥ Q

(
G(t)
s1 ,G

(t)
s1

)
(48)
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Next, let’s consider the second term. Since we aim to prove logP
(
YG | G(t+1)

s1

)
≥

logP
(
YG | G(t)

s1

)
, and we have already demonstrated Q

(
G(t+1)
s1 ,G(t)

s1

)
≥ Q

(
G(t)
s1 ,G

(t)
s1

)
, we only

need to ensure that the second term satisfies

EG(t)
s2 |YG ,G(t)

s1

[
logP

(
G(t)
s2 | YG ,G(t+1)

s1

)]

≤ EG(t)
s2 |YG ,G(t)

s1

[
logP

(
G(t)
s2 | YG ,G(t)

s1

)]
≤ 0

(49)

Thus, it is proven
logP

(
YG | G(t+1)

s1

)
≥ logP

(
YG | G(t)

s1

)
(50)

B.5 PROOF OF Lpre

Proof. Regarding I (Y;Gs1,Gs2), we consider Pθ (Y | Gs1,Gs2) as the variational estimation of
P (Y | Gs1,Gs2). Therefore, we can proceed with the following derivation:

I (Y;Gs1,Gs2) = E(Y,Gs1,Gs2) log

[
P (Y | Gs1,Gs2)

P (Y)

]
= E(Y,Gs1,Gs2) log

[
Pθ (Y | Gs1,Gs2)

P (Y)

]
+

E(Gs1,Gs2) log [KL (P (Y | Gs1,Gs2) ∥Pθ (Y | Gs1,Gs2))] .

(51)

Considering the non-negativity property of the Kullback-Leibler divergence, we can conclude that:

I (Y;Gs1,Gs2) ≥ E(Y,Gs1,Gs2) log

[
Pθ (Y | Gs1,Gs2)

P (Y)

]
= E(Y,Gs1,Gs2) log [Pθ (Y | Gs1,Gs2)] +H(Y).

(52)

As H(Y) remains constant across all data, it can be omitted, resulting in the final formulation of this
term:

Lpre := E(Y,Gs1,Gs2) log [Pθ (Y | Gs1,Gs2)] . (53)

B.6 PROOF OF Lcom1

Proof. For I (Gs1;G1,Gs2), zGs1
is employed to denote the encoding of Gs1, and we approximate

I (zGs1 ;G1,Gs2) using a variational inference approach q(zGs1) as an estimate for p(zGs1):

I (zGs1
;G1,Gs2) = E(zGs1

,G1,Gs2) log

[
pΦ (zGs1 | G1,Gs2)

p (zGs1
)

]
= E(G1,Gs2) log

[
pΦ (zGs1

| G1,Gs2)

q (zGs1)

]
−

E(zGs1
,G1,Gs2)KL (p (zGs1) ∥q (zGs1)) .

(54)

With the non-negativity property of the Kullback-Leibler divergence, we can conclude that:

I (zGs1
;G1,Gs2) ≤

E(G1,Gs2)KL (pΦ (zGs1
| G1,Gs2) ∥q (zGs1

)) := Lcom1.
(55)

Adopting the VIB framework, we postulate that the latent representation q(zGs1
) is derived by

aggregating node representations within a fully perturbed graph. The perturbation is introduced
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through noise ϵ, which follows a Gaussian distribution N (µH1
, σ2

H1
). The parameters µH1

and σ2
H1

represent the mean and variance of H1, encapsulating information from both G1 and G2. By selecting
sum pooling as the aggregation mechanism, and considering the additive property of Gaussian
distributions, we formulate the following relationship:

q(zGs1) = N (N1µH1 , N
1σ2

H1
), (56)

where N1 denote the number of nodes in G1. Then for pΦ (zGs1
| G1,Gs2), we have the following

equation:

pΦ (zGs1 | G1,Gs2) = N (N1µH1 +

N1∑
j=1

λjH1j −
N1∑
j=1

λjµH1 ,

N1∑
j=1

(1− λj)
2σ2

H1
). (57)

Finally, we have following inequality by plugging Equation equation 56 and Equation equation 57
into Equation equation 55:

I (zGs1 ;G1,Gs2) ≤ EG1,Gs2

[
−1

2
logA+

1

2N1
A+

B2

2N1

]
+ C (58)

where A =
∑N1

j=1(1− λj)
2,B =

∑N1

j=1 λj(H1j−µH1
)

σH1
and C is a constant term that is ignored during

optimization.

C FEATURES OF MOLECULAR MODELING

As illustrated in Table 3, our study leverages a carefully curated set of atomic and bond features.

Table 3: Atomic and bond features used in our study.

Atomic Features Bond Features
Atomic number Bond type
Degree (number of bonds) Conjugated status
Formal charge Ring status
Chiral tag Stereo-chemistry
Number of bonded H atoms –
Hybridization type –
Aromatic status –
Mass (scaled by 0.01) –

D EXPERIMENTAL SETTINGS

In this section, we provide a detailed explanation of our experimental setup. Section D.1 offers
information on all the datasets used in the experiments. Section D.2 presents a basic introduction
to the baselines involved in our paper. Section D.3 describes the various hyperparameters used in
the model’s network architecture and illustrates the hyperparameter search space and the optimal
hyperparameters.

D.1 DATASETS

molecular interaction prediction task: For the molecular interaction prediction task, the datasets
concerning solvation free energies include MNSol, FreeSolv, CompSol, Abraham, and CombiSolv.
In addition, we also selected the chromophore dataset:

• MNSol Marenich et al. (2020) features 3,037 experimental free energies of solvation or transfer
energies across 790 unique solutes and 92 solvents. We analyze 2,275 combinations following
previous work Lee et al. (2023a).
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• FreeSolv Mobley & Guthrie (2014) offers 560 experimental and calculated hydration free energies
of small molecules in water.

• CompSol Moine et al. (2017) explores how solvation energies are influenced by hydrogen-
bonding association effects. It comprises 3,548 combinations encompassing 442 unique solutes
and 259 solvents.

• Abraham Grubbs et al. (2010) presents 6,091 combinations featuring 1,038 unique solutes and
122 solvents.

• CombiSolv Vermeire & Green (2021a) amalgamates data from FreeSolv, CompSol, and Abraham,
totaling 8,780 combinations.

• Chromophore Joung et al. (2020) encompasses 20,236 combinations of 7,016 chromophores
and 365 solvents in SMILES string format. We predict key optical properties like maximum
absorption wavelength (Absorption), maximum emission wavelength (Emission), and excited
state lifetime (Lifetime), taking care to filter out NaN values. Due to its skewed distribution, we
opt for log-normalized target values for Lifetime following previous work Lee et al. (2023a).

drug-drug interaction prediction task: For the drug-drug interaction prediction task, we selected
the drug-drug interaction dataset. We employ positive drug pairs from MIRACLE Wang et al. (2021)
and generate negative counterparts through complementary pair sampling. Detailed descriptions of
each dataset are as follows:

• ZhangDDI Zhang et al. (2017) contains 113,972 pairwise interaction data points with 544 unique
drugs.

• ChChMiner Zitnik et al. (2018) includes 33,669 pairwise interaction data points with 997 unique
drugs.

• DeepDDI Ryu et al. (2018) encompasses 316,595 pairwise interaction data points with 1,704
unique drugs.

D.2 BASELINES

We present a concise overview of the foundational models discussed in the experimental section,
categorizing them based on the nature of the molecular interactions they consider. Category I includes
models where substructure extraction is completed before any interactions occur. Some of these
models capture atomic-level interactions, treating individual atoms as distinct substructures. This
category emphasizes atomic interactions and ensures that the encoding of substructures remains
invariant to molecular interactions. Category II comprises models where substructure extraction
is influenced by the holistic graph representation of another molecule, highlighting the broader
molecular context in which interactions occur. Category III encompasses models that consider the
influence exerted by the substructure of another molecule on substructure extraction. This nuanced
approach accounts for specific structural features within molecular interactions. For the task of
drug-drug interaction prediction, we adopt the following baseline models:

GoGNN. Wang et al. (2020) GoGNN extracts features from structured entity graphs and entity
interaction graphs in a hierarchical manner. It propose a dual attention mechanism that enables the
model to preserve the importance of neighbors at both levels of the graph.

MHCADDI. Deac et al. (2019) A gated information transfer neural network is used to control the
extraction of substructures and then interact based on an attention mechanism.

SSI-DDI. Nyamabo et al. (2021) It uses a 4-layer GAT network to extract substructures at different
levels, and finally completes the final prediction based on the co-attention mechanism.

CGIB. Lee et al. (2023a) Based on the graph conditional information bottleneck theory, conditional
substructures are extracted to complete the interaction between molecules.

CMRL. Lee et al. (2023b) CMRL detects the core substructure that is causally related to chemical
reactions. It introduce a novel conditional intervention framework whose intervention is conditioned
on the paired molecule.
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DSN-DDI. Li et al. (2023) It employs local and global representation learning modules iteratively
and learns drug substructures from the single drug (‘intra-view’) and the drug pair (‘inter-view’)
simultaneously.

CIGIN. Pathak et al. (2020) is a method based on graph neural networks. The proposed model adopts
an end-to-end framework consisting of three essential phases: message passing, interaction, and
prediction. In the final phase, these stages are leveraged to predict solvation free energies.

For the molecular interaction prediction task, we additionally employ the following baselines:

D-MPNN Vermeire & Green (2021a) employs a transfer learning approach to predict solvation free
energies, integrating quantum calculation fundamentals with the heightened accuracy of experimental
measurements through two new databases, CombiSolv-QM and CombiSolv-Exp.

Explainable GNN Low et al. (2022) introduces a graph neural network (GNN) for predicting ∆Gsolv .
It incorporates atom and bond-level features, semi-empirical partial atomic charges, and solvent
dielectric constant into the featurization process. Solute-solvent interactions are visualized through an
interaction map layer, enabling the examination of solubility-enhancing or -decreasing interactions.

Uni-Mol Zhou et al. (2023) incorporates two pre-trained models featuring the SE(3) Transformer
architecture: a molecular model pre-trained on 209 million molecular conformations and a pocket
model pre-trained on 3 million candidate protein pocket data. Additionally, Uni-Mol integrates
various fine-tuning strategies to effectively apply these pre-trained models across diverse downstream
tasks.

D.3 PARAMETER SETTING

Model Architecture. For the molecular interaction prediction task, in the molecular coding layer, we
configured the GIN network Xu et al. (2018) with 3 layers. Since the two molecules are asymmetric,
each molecule has its own graph encoder and readout network. However, for DDI tasks, where the
two molecules are symmetric, they share the same graph encoder and readout network.

Model Training. We employed the Adam optimizer for model optimization in both molecular
interaction prediction and drug-drug interaction prediction task. For drug-drug interaction tasks, the
learning rate was decreased by a factor of 10−1 after 10 epochs of reaching a plateau, and training was
terminated when the optimal accuracy on the validation set remained unchanged for 20 consecutive
epochs. Similarly, for the molecular interaction prediction task, we adopted a comparable strategy:
the learning rate was reduced by a factor of 10−1 after 10 epochs of reaching a plateau, and training
concluded when the optimal accuracy on the validation set did not change for 50 consecutive epochs.
For the DDI task, we divided the dataset into training, validation, and test sets in a 6:2:2 ratio. For the
molecular interaction prediction task, we employed 10-fold cross-validation to partition the dataset.
Our model and all baselines used the same random seed and were evaluated across five random
experiments.

Hyperparameter Tuning. To ensure fair comparisons, we adhered to the embedding di-
mensions and batch sizes of the state-of-the-art baseline for each task. Detailed hyper-
parameter specifications are provided in Table 4. For our model, hyperparameters were
fine-tuned within specified ranges: learning rate η in [5e−3, 1e−3, 5e−4, 1e−4, 5e−5], β1 in
[1e−1, 1e−2, 1e−3, 1e−4, 1e−6, 1e−8, 1e−10], β2 in [1e−1, 1e−2, 1e−3, 1e−4, 1e−6, 1e−8, 1e−10], τ
in [1.0, 0.5, 0.2], and IN in [3, 5, 10, 20, 30, 40, 50, 60].

The model implementation was conducted in PyTorch, and the execution was performed on hardware
consisting of an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and Nvidia Tesla A100 40GB. This
robust hardware configuration ensures efficient processing and execution of the model.

E ADDITIONAL EXPERIMENTS

In this section, we carry out additional experiments to demonstrate the effectiveness and interpretabil-
ity of our method. In Section 7, we validate the superiority of our model using two additional
classification metrics. In Section E.2, we conduct supplementary ablation experiments to gain a
more comprehensive and clear understanding of the loss function derived based on the IGIB theory.

23



Published as a conference paper at ICLR 2025

Table 4: Hyperparameter specifications (∗: Inductive Setting 1 and ∗∗: Inductive Setting 2).

Embedding Batch Epochs lr β1 IN β2 τDim (d) Size (K)
Absorption 52 256 500 5e-3 1e-2 20 1e-2 1.0
Emission 52 256 500 5e-3 1e-3 20 1e-3 1.0
Lifetime 52 256 500 5e-3 1e-7 20 1e-7 1.0
MNSol 52 32 200 1e-3 1e-7 10 1e-7 1.0

FreeSolv 52 32 200 1e-3 1e-9 3 1e-9 1.0
CompSol 52 256 500 1e-3 1e-7 10 1e-7 1.0
Abraham 52 256 500 1e-3 1e-11 5 1e-11 1.0

CombiSolv 52 256 500 1e-3 1e-7 10 1e-7 0.5
ZhangDDI 300 512 500 1e-4 1e-4 40 1e-4 0.5
ChChMiner 300 512 500 1e-4 1e-4 30 1e-4 0.2
DeepDDI 300 512 500 1e-5 1e-8 50 1e-8 1.0

ZhangDDI∗ 300 512 500 5e-5 1e-4 30 1e-4 1.0
ChChMiner∗ 300 512 500 5e-4 1e-4 20 1e-4 1.0
DeepDDI∗ 300 512 500 5e-5 1e-8 40 1e-8 1.0

ZhangDDI∗∗ 300 512 500 5e-5 1e-4 20 1e-4 1.0
ChChMiner∗∗ 300 512 500 5e-4 1e-4 20 1e-4 1.0
DeepDDI∗∗ 300 512 500 5e-5 1e-8 20 1e-8 1.0

In Section E.6, we provide a more detailed illustration of the dynamic process of selecting core
substructures.

E.1 THE PERFORMANCE OF OUR MODEL ON ADDITIONAL METRICS FOR THE DDI TASK.

We conducted additional experiments comparing our model with the baselines using the AUROC
and F1 Score metrics. As demonstrated in Table 5 and Table 6, IGIB-ISE achieved superior results
compared to the other baselines.

AUROC (Area Under the Receiver Operating Characteristic Curve): AUROC measures a binary
classifier’s ability to distinguish between classes across all threshold values, with higher values
indicating better performance.

F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a single metric that
balances both false positives and false negatives.

Table 5: Performance of different methods in transductive setting (Bold numbers are the best results).

Method DeepDDI ZhangDDI ChchMiner
AUROC F1 AUROC F1 AUROC F1

Category I
GoGNN 92.71(0.27) 89.83(0.41) 92.35(0.48) 81.54(0.42) 96.64(0.40) 82.35(0.34)

CIGIN 95.35(0.41) 91.32(0.32) 91.47(0.55) 82.68(0.37) 97.29(0.33) 89.37(0.26)

SSI-DDI 97.42(0.31) 95.41(0.19) 93.76(0.34) 82.99(0.30) 97.81(0.22) 93.11(0.19)

MHCADDI 88.64(0.83) 88.54(0.55) 86.94(0.68) 73.67(0.48) 89.33(0.72) 83.21(0.53)

Category II
CGIB 98.66(0.61) 97.24(0.47) 95.03(0.54) 84.98(0.42) 98.45(0.31) 95.44(0.24)

CMRL 98.73(0.31) 96.82(0.29) 94.78(0.23) 84.78(0.25) 98.67(0.12) 95.62(0.17)

DSN-DDI 97.87(0.14) 96.29(0.13) 94.37(0.16) 84.30(0.08) 97.31(0.10) 94.34(0.08)

Category III
ISE 98.75(0.46) 97.38(0.31) 94.97(0.39) 85.34(0.53) 98.74(0.27) 95.85(0.32)

IGIB-ISE 98.97(0.37) 97.79(0.26) 95.47(0.21) 85.93(0.17) 99.13(0.19) 96.34(0.12)

E.2 SUPPLEMENTARY ABLATION EXPERIMENTS

We conducted additional ablation experiments on three DDI datasets (ZhangDDI, ChChMiner and
DeepDDI) and three solvent-solute datasets (FreeSolv, Abraham, and CombiSolv). These experiments
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Table 6: Performance of different methods in inductive settings (Bold numbers are the best results).

Interaction Method DeepDDI ZhangDDI ChchMiner
Category AUROC F1 AUROC F1 AUROC F1

Inductive Setting 1

Category I

GoGNN 71.34(1.24) 67.16(1.13) 63.17(1.42) 45.53(1.28) 69.52(1.84) 69.22(1.33)
CIGIN 72.64(1.77) 69.55(1.45) 68.39(1.07) 44.39(1.42) 77.49(1.27) 75.92(1.48)

SSI-DDI 75.93(1.14) 72.23(0.77) 69.56(1.21) 47.59(1.17) 79.64(1.53) 77.61(1.24)
MHCADDI 68.18(0.87) 67.37(1.24) 62.52(0.97) 44.51(1.38) 70.92(1.08) 75.15(0.97)

Category II
CGIB 80.80(0.53) 78.47(0.57) 72.80(0.43) 57.29(0.58) 86.41(0.93) 85.13(0.43)
CMRL 84.96(0.87) 77.81(0.74) 74.59(1.05) 56.41(0.97) 87.64(0.54) 86.55(0.57)

DSN-DDI 83.11(0.76) 78.68(0.70) 73.49(1.02) 56.64(0.77) 86.93(0.65) 85.81(0.83)

Category III
ISE 83.86(0.97) 79.55(1.01) 75.16(0.86) 58.27(0.83) 87.52(0.83) 86.63(0.74)

IGIB-ISE 85.01(0.41) 80.08(0.56) 75.32(0.32) 58.96(0.47) 87.88(0.62) 87.37(0.54)
Inductive Setting 2

Category I

GoGNN 64.91(3.61) 68.53(3.34) 54.37(2.47) 34.92(3.26) 67.73(3.63) 72.19(4.29)
CIGIN 68.67(3.54) 69.34(4.53) 57.67(2.03) 33.68(4.35) 65.36(2.93) 71.73(3.54)

SSI-DDI 69.37(4.16) 67.18(3.94) 59.33(3.26) 37.16(3.89) 68.39(1.94) 74.95(2.17)
MHCADDI 63.89(3.42) 63.57(5.17) 56.47(2.77) 33.53(3.18) 63.57(4.67) 64.51(4.35)

Category II
CGIB 68.78(1.67) 75.72(1.93) 57.24(1.97) 28.83(4.53) 69.82(1.52) 78.46(2.03)
CMRL 73.38(1.96) 73.91(2.14) 60.02(2.03) 40.73(3.04) 69.62(1.67) 75.76(1.28)

DSN-DDI 72.71(1.37) 77.96(1.64) 61.88(1.12) 40.49(2.32) 69.34(1.34) 79.52(1.21)

Category III
ISE 73.92(1.64) 78.57(2.14) 62.42(1.35) 41.38(2.56) 69.67(1.52) 78.73(1.26)

IGIB-ISE 74.51(1.54) 79.64(1.67) 63.24(1.72) 42.03(2.34) 70.09(1.46) 80.12(1.48)

were designed to demonstrate the contribution of each model component across various data scales
and task types. We ensured that all experiments followed the same setup (except for the ablated
components) and repeated them five times to provide robust results. The results are reported as Mean
(Variance).

Table 7: Results on DDI datasets (Evaluation Metric: ACC (%))

Dataset β1 = 0 β2 = 0 w/o KL Loss w/o Contrastive Loss Baseline

ZhangDDI 88.34 (0.41) 88.39 (0.27) 88.37 (0.39) 88.59 (0.24) 88.84 (0.32)
DeepDDI 96.27 (0.34) 96.33 (0.31) 96.12 (0.28) 96.41 (0.19) 96.65 (0.37)
ChChMiner 94.86 (0.37) 94.82 (0.11) 94.93 (0.17) 95.33 (0.26) 95.56 (0.28)

Table 8: Results on Solvent-Solute datasets (Evaluation Metric: RMSE)

Dataset β1 = 0 β2 = 0 w/o KL Loss w/o Contrastive Loss Baseline

FreeSolv 0.921 (0.058) 0.886 (0.029) 0.986 (0.030) 0.921 (0.033) 0.713 (0.034)
Abraham 0.353 (0.002) 0.419 (0.009) 0.414 (0.001) 0.366 (0.001) 0.343 (0.009)
CombiSolv 0.411 (0.004) 0.397 (0.004) 0.413 (0.001) 0.411 (0.001) 0.394 (0.008)

As shown in the Table 7 and Table 8, with all components active, our model achieved the best
performance across all datasets. When the KL divergence loss (Lcom1 and Lcom2), which facilitates
the compression of interactive substructures, was removed, the performance declined on all datasets,
with FreeSolv and Abraham experiencing the most significant drops. This highlights the critical role
of KL divergence loss in guiding the model towards more precise substructure selection, particularly
in regression tasks.

On the other hand, removing the contrastive loss (Lcon1 and Lcon2) resulted in a marginal performance
reduction for most datasets, except for FreeSolv. This phenomenon could be attributed to the robust
interaction modeling of our iterative interaction module, which reduces the reliance on contrastive
loss. However, for the FreeSolv dataset, where fewer IN were used, the contrastive loss played a
more pivotal role, demonstrating the dataset-dependent utility of this component.
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Then, we evaluated the impact of setting β1 and β2 to zero. For DDI datasets, the results indicate that
β1 and β2 have similar contributions, as evidenced by the small margin of performance differences.
Nevertheless, for solvent-solute datasets, β1 and β2 exhibited distinct impacts. This divergence may
stem from the inherent asymmetry in solvent-solute interactions, suggesting that the choice of β1 and
β2 requires careful consideration when dealing with asymmetric molecular interactions.

Finally,We explain the objective function under each ablation experiment. The original objective
function is:

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2) + β1I (G1;Gs1 | Gs2) + β2I (G2;Gs2 | Gs1)

• When β1 = 0: The objective becomes

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2) + β2I (G2;Gs2 | Gs1)

• When β2 = 0: The objective becomes

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2) + β1I (G1;Gs1 | Gs2)

• Without KL loss: The objective becomes

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2)− β1I (Gs1;Gs2)− β2I (Gs2;Gs1)

• Without Contrastive loss: The objective becomes

argmin
Gs1,Gs2

− I (Y;Gs1,Gs2) + β1I (Gs1;G1,Gs2) + β2I (Gs2;G2,Gs1)

E.3 PERFORMANCE ON LARGER DATASET

To validate the scalability and effectiveness of our method, we performed experiments on larger
datasets. For solvent-solute dataset, we used the CombiSolv-QM Vermeire & Green (2021b) dataset,
containing 1 million solvent–solute combinations from 284 solvents and 11,029 solutes. The solute
molar masses range from 2.02 g/mol to 1776.89 g/mol. For the DDI task, we extended our evaluation
using the Twosides Tatonetti et al. (2012) dataset and combined it with ZhangDDI, ChChDDI, and
DeepDDI datasets to create a benchmark of 843,964 unique drug-drug pairs.

Table 9: Performance on Solvent-Solute
Dataset

Model RMSE

CGIB 0.0976
CRML 0.0983

IGIB-ISE 0.0912

Table 10: Performance on DDI Dataset

Model ACC F1 AUROC

CRML 84.33% 74.86% 92.76%
CGIB 84.14% 74.69% 92.41%

IGIB-ISE 84.92% 75.14% 93.89%

As shown in Table 9, IGIB-ISE achieves the lowest RMSE of 0.0912, outperforming CGIB and CRML,
and highlighting its ability to effectively capture complex solvent-solute interactions. Similarly,
Table 10 demonstrates that IGIB-ISE consistently surpasses CGIB and CRML in accuracy (84.92%),
F1-score (75.14%), and AUROC (93.89%), underscoring its robustness in identifying intricate drug-
drug interactions while maintaining high predictive accuracy. These results underscore IGIB-ISE’s
superior performance on large datasets, with the lowest RMSE for the solvent-solute task and leading
metrics for the DDI task, showcasing its robustness and scalability for real-world applications.

E.4 OPTIMAL IN FOR DIFFERENT MOLECULAR SCALES

This section investigates the relationship between IN and molecular scale. We combined multiple
datasets, including ZhangDDI, ChChDDI, DeepDDI, and Twosides Tatonetti et al. (2012), into a
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Table 11: Model performance (ACC) for various IN and AM values.

IN AM = 340 AM = 549 AM = 638 AM = 722 AM = 1934
5 78.85% 72.52% 69.57% 69.00% 84.08%

10 79.38% 74.93% 70.98% 69.45% 84.77%
20 78.98% 75.47% 73.47% 70.65% 85.02%
30 78.25% 75.14% 72.13% 68.90% 85.24%
40 78.03% 74.83% 72.34% 69.13% 85.11%

larger, consolidated dataset. The dataset was categorized into five groups based on the molar mass of
the molecules, with each group containing 50,000 drug-drug pairs. We then determined the optimal
IN for each group by assessing model performance using ACC. The results are summarized in the
Table 11, where AM represents the average molar mass for each group.

The results demonstrate a clear trend: larger average molar masses (AM) require higher iteration
numbers (IN) to achieve optimal performance. For small molecules (AM ≈ 340), an IN value of
10 strikes a balance between computational cost and accuracy. Medium-sized molecules (AM =
549 to 638) benefit most from an IN value of 20, which effectively improves performance without
incurring significant computational overhead. For larger molecules (AM ≈ 722), an IN of 20 remains
optimal, as increasing IN to higher values (e.g., 30) can degrade performance. Meanwhile, for very
large molecules (AM ≈ 1934), an IN value of 30 fully leverages the model’s capability to handle the
increased complexity. This flexible approach enables the tailored selection of IN based on molecular
scale, ensuring an optimal balance of performance and computational efficiency.

E.5 SCALABILITY OF IGIB-ISE ACROSS MOLECULAR SIZES

To further assess the scalability of IGIB-ISE, we utilized the dataset from E.4 for performance
evaluation. The results are presented in the Table 12.

Table 12: Performance comparison of IGIB-ISE, CGIB, and CMRL across AM.

Model AM = 340 AM = 549 AM = 638 AM = 722 AM = 1934

IGIB-ISE 79.38% 75.47% 73.47% 70.65% 85.24%
CGIB 78.14% 74.31% 72.59% 68.91% 84.62%
CMRL 78.42% 74.19% 72.68% 69.72% 84.43%

The results reveal that IGIB-ISE consistently outperforms both CGIB and CMRL across various
molecular scales, demonstrating its robustness and scalability. For small molecules (AM ≈ 340), IGIB
achieves an accuracy of 79.38%, surpassing CGIB and CMRL by 1.24% and 0.96%, respectively. In
the medium molecule categories (AM = 549 to 638), IGIB attains accuracies of 75.47% and 73.47%,
with improvements of approximately 1.2% and 0.8% over the baselines. For large molecules (AM ≈
722), IGIB achieves 70.65%, outperforming CGIB (68.91%) and CMRL (69.72%). Notably, for very
large molecules (AM ≈ 1934), IGIB reaches a remarkable accuracy of 85.24%, exceeding CGIB
(84.62%) and CMRL (84.43%). These findings underscore IGIB’s effectiveness as a reliable method
for analyzing diverse molecular sizes, making it a robust tool for molecular-scale applications.

E.6 DYNAMIC ITERATION PROCESS OF THE INTERACTIVE SUBSTRUCTURE EXTRACTION

As illustrated in Figure 5, we present schematic diagrams depicting the substructure interaction pro-
cesses of Pentazocine and Aminocaproic acid drugs over 40 iterations. Notably, for the Aminocaproic
acid drug, it is evident that the amino group is more significant in the early iterations. This observation
raises the possibility that, in algorithms selecting substructures based on original molecular graphs,
the amino group might be chosen as a core substructure, thereby impacting the final prediction.
In contrast, our ISE framework, through iterative steps, selectively identifies the core interaction
substructures of Pentazocine. This process determines the insignificance of the amino group, leading
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Figure 5: Schematic diagram of the substructure interaction process of Pentazocine (upper) and
Aminocaproic acid (lower) drugs.

to its removal in later iterations, and gradually stabilizing the results. Additionally, we also observe
that after the EM algorithm finds the optimal substructure, it continues to exhibit slight fluctuations
around the converged result.

Table 13: Comparison of time and memory usage during the training phase.

Model Metric ZhangDDI ChChMiner DeepDDI MNSol FreeSolv CompSol Abraham CombiSolv

CGIB Memory (GB) 5.12 3.93 7.41 2.13 2.11 2.14 2.42 2.31
Time (hours) 1.52 0.63 3.75 0.042 0.0034 0.081 0.164 0.153

CMRL Memory (GB) 4.03 3.45 6.12 2.12 2.12 2.13 2.45 2.33
Time (hours) 1.34 0.53 3.24 0.041 0.0032 0.072 0.142 0.121

IGIB-ISE Memory (GB) 36.2 27.3 39.4 2.12 1.83 2.25 2.64 2.42
Time (hours) 8.73 2.91 22.8 0.083 0.0037 0.153 0.225 0.257

Table 14: Comparison of time and memory usage during the inference phase.

Model Metric ZhangDDI ChChMiner DeepDDI MNSol FreeSolv CompSol Abraham CombiSolv

CGIB Memory (MB) 277.5 303.2 296.7 85.34 38.41 84.97 103.4 103.8
Time (s) 24.8 6.81 94.7 1.69 0.94 2.62 3.64 4.76

CMRL Memory (MB) 236.2 254.2 252.3 72.37 34.21 71.43 93.87 92.34
Time (s) 23.5 5.89 77.3 1.49 0.88 2.31 3.43 4.37

IGIB-ISE Memory (MB) 274.8 301.3 294.2 81.28 37.33 75.31 100.8 98.45
Time (s) 22.6 5.97 74.9 1.62 0.92 2.22 3.53 4.55

F TIME AND SPACE COMPLEXITY

F.1 TRAINING PHASE

In this work, we evaluated IGIB-ISE in terms of time and space complexity, dividing the analysis
into the training and inference phases across multiple datasets and comparing it with several existing
methods. For training phase, as shown in Table 13, while our method effectively reduces redundant
information, it incurs higher time and memory overhead compared to baseline models. This is
attributed to the extensive use of interaction networks in our iterative substructure selection process,
which is integrated with end-to-end optimization to achieve superior performance. This design leads
to redundant storage and prolonged gradient computations, contributing to the observed overhead.

• Time Complexity: The primary contributor to extended training time is the repeated
gradient computations within the interaction network during substructure iterations.

• Space Complexity: The redundant storage of interaction network parameters across itera-
tions is the main factor for increased memory usage.

F.2 INFERENCE PHASE

In real-world applications, inference efficiency is critical. Once trained, the core substructure extractor
is directly applied for molecular interaction predictions. For inference phase, as shown in Table 14,
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IGIB-ISE demonstrates competitive efficiency. For instance, on large datasets like ZhangDDI, it
completes inference in just 22.6 seconds, outperforming CGIB and CMRL. Its memory usage during
inference is low and comparable to the baseline methods (e.g., 274.8 MB for ZhangDDI compared
to 277.5 MB for CGIB). These results highlight IGIB-ISE’s practicality for real-world applications
without incurring significant resource overhead.

F.3 ENGINEERING OPTIMIZATIONS FOR TRAINING EFFICIENCY

In this section, we outline three potential engineering optimizations to improve the efficiency of the
training phase:

• Optimization of Computation Graph Storage: Interaction network parameters, unchanged
during iterations, can be globally stored and reused for gradient computation. This reduces
redundant storage while maintaining functionality.

• Core Substructure Initialization: Reducing iterations by initializing substructures based
on prior chemical knowledge (e.g., functional groups) can accelerate convergence and reduce
training overhead.

• Efficient Parameter Fine-Tuning (e.g., LoRA Hu et al. (2021)): Using low-rank matrices
for fine-tuning allows freezing the interaction network and adapting it with minimal compu-
tational cost, significantly reducing both memory and time requirements. The pre-trained
parameters of the interaction network can be obtained from baseline models such as CGIB.
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