
Under review as a conference paper at ICLR 2024

BUDGETED ONLINE CONTINUAL LEARNING BY
ADAPTIVE LAYER FREEZING AND FREQUENCY-BASED
SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The majority of online continual learning (CL) places restrictions on the size of re-
play memory and a single-epoch training to ensure a prompt update of the model.
However, the single-epoch training may imply a different amount of computations
per CL algorithm, and additional storage for storing logit or model in addition to
replay memory is largely ignored as a storage budget. Here, we used floating point
operations (FLOPs) and total memory size in Byte as a metric for computational
and memory budgets, respectively, to compare CL algorithms with the same to-
tal budget. Interestingly, we found that the new and advanced algorithms often
perform worse than simple baselines under the same budget, implying that their
value is less beneficial in real-world deployment. To improve the accuracy of on-
line continual learners in the same budget, we propose an adaptive layer freezing
and frequency-based memory retrieval for episodic memory usage for a storage-
and computationally efficient online CL algorithm. The proposed adaptive layer
freezing does not update the layers for less informative batches to reduce compu-
tational costs with a negligible loss of accuracy. The proposed memory retrieval
balances the training usage count of samples in episodic memory with a negli-
gible computational and memory cost. In extensive empirical validations using
CIFAR-10/100, CLEAR-10, and ImageNet-1K datasets, we demonstrate that the
proposed method outperforms the state-of-the-art in the same total budget.

1 INTRODUCTION

Most online continual learning (CL) research places restrictions such as the single training epoch
to quickly update the model and the size of the replay memory that limits the number of streamed
samples that can be stored (Koh et al., 2022; Wang et al., 2022a). While one-epoch training may give
a rough sense of the computational constraint for each method, as each method requires a different
amount of computations in an epoch, the actual computation budget to train the models differs per
method. Additionally, several rehearsal-based CL methods require additional storage to store the
past model and logit (i.e., the unnormalized model output vector) (Buzzega et al., 2020; Koh et al.,
2023; Zhou et al., 2023), which were not included in the replay memory size. Therefore, we attempt
to rigorously compare CL methods with precise computational and memory constraints.

For a fair comparison of the methods in the same computational budget, we first consider the wall
clock time of training as the metric. However, the wall clock time is highly dependent on hardware
architectures, data I/O time, and the optimality of algorithm implementation (Gruber et al., 2022;
Wintersperger et al., 2023; Prabhu et al., 2023). Thus, both the number of iterations and the training
wall time may not be appropriate metrics for the computational cost of CL algorithms. In contrast,
the Floating Point Operations (FLOPs) per sample is an exact computational budget regardless of
the implementation details (Korthikanti et al., 2023). Following (Zhao et al., 2023; Ghunaim et al.,
2023), we use training FLOPs as a metric for the computational budget.

For a fair comparison of the methods in the same memory budget, we need a total budget for various
forms of extra storage including replay memory, logits, and model parameters. Following (Zhou
et al., 2023), we convert all extra storage costs into Byte and sum them up to obtain the actual
memory cost.

1

Under review as a conference paper at ICLR 2024

EWC ER MIR BiC REMIND DER MEMO L-SAR

50

55

60

65
A A

U
C

EWC (PNAS 2017)
ER (NeurIPS 2019)

MIR (NeurIPS 2019)
BiC (CVPR 2019)

REMIND (ECCV 2020)
DER++ (NeurIPS 2020)

MEMO (ICLR 2023)
L-SAR (Ours)

EWC ER MIR BiC REMIND DER MEMO L-SAR

50

55

60

65

EWC ER MIR BiC REMIND DER MEMO L-SAR
Constraint with 1 epoch training

55
60
65
70
75
80

A L
AS

T

EWC ER MIR BiC REMIND DER MEMO L-SAR
Constraint with 13.5 GFLOPs

55
60
65
70
75
80

Figure 1: Comparison of CL methods with the same number of iterations and the same storage
budget including the size of episodic memory and storage for past models for all methods (left) and
our total-constrained CL considering training FLOPs per sample (right). (on CIFAR-10 Gaussian)

Taking into account the total memory and computational budget, we propose a computationally
efficient online CL learning framework with negligible additional storage (0.02% of replay memory
size in ImageNet), with a computation-aware layer freezing strategy. Specifically, we argue that,
since not all layers are necessary to update for each data minibatch, if we find the appropriate layers
to freeze for each mini-batch of data, we can reduce redundant training costs. We implement this
idea by proposing ‘adaptive layer freezing.’ Since freezing earlier layers can save computational
resources by reducing the computation of gradients in the backward pass (Hayes et al., 2020; Wu
et al., 2020; He et al., 2021; Yuan et al., 2022), the frozen layers cannot learn any new information.
Investigating the trade-off between computation and information due to freezing, we propose a novel
method to choose the best layers to freeze by maximizing the Fisher Information(FI) gained by the
model for each batch, given a fixed computation budget. Unlike previous freezing methods (Hayes
et al., 2020; Lee et al., 2019; Yuan et al., 2022) that empirically select which layer to freeze, causing
dependency on the dataset and the type of neural network, we consider the varying information of
each batch, allowing us to determine the optimal layers to freeze at every forward pass.

While MIR (Aljundi et al., 2019a) and ASER (Shim et al., 2021) exhibit a substantial gain in ac-
curacy, they demand high computational resources, as they require model inference on a large set
of candidates. To obtain as much knowledge as possible on a limited total budget, we propose re-
trieving samples that the model has not learned much about from episodic memory. We utilize the
frequency of recent use of each sample and the similarity of the gradient between classes, which are
naturally obtained during training without requiring additional inference.

In our empirical validations, we compare the state-of-the-art CL algorithms in the literature under the
same FLOPs of computations and the same Bytes of storage in Fig. 1. We observe that several high-
performance CL methods are not competitive under fixed FLOPs and memory budget, interestingly,
falling behind a simple Experience Replay (Rolnick et al., 2019). On the contrary, the proposed
method outperforms them by a noticeable margin under the same computational and storage budget.

Contributions. We summarize our contributions as follows:

• Proposing to rigorously measure computational and memory budgets of CL algorithms by using
training FLOPs and total memory size in Bytes, to fairly compare different algorithms.

• Proposing a computationally efficient adaptive layer freezing that maximizes Fisher Information
per computation.

• Proposing a memory retrieval strategy that promotes the retrieval of samples that the model has
not learned much.

• Empirical analysis on the computational and memory costs of various CL algorithms, showing
that many state-of-the-art CL methods are less beneficial under the same budget and showing that
the proposed method outperforms them by a noticeable margin across multiple benchmarks.

2 RELATED WORK

Online Continual Learning with Memory Budget. Replay-based online CL methods use
episodic memory and consider the memory budget. Since we also consider the situation of using

2

Under review as a conference paper at ICLR 2024

episodic memory, we review them in detail as follows. The replay-based methods (Aljundi et al.,
2019b; Prabhu et al., 2020; Bang et al., 2021; Koh et al., 2022; Wu et al., 2019) store part of the the
past data stream in episodic memory to replay them in future learning.

Although there are simple sampling strategies such as random sampling (Guo et al., 2020) and
reservoir sampling (Vitter, 1985), they are often insufficient to adapt to changing data distributions.
Rather than simple methods, researchers have developed advanced sampling strategies considering
factors such as uncertainty, diversity, and gradient (Lopez-Paz & Ranzato, 2017; Bang et al., 2021;
Koh et al., 2022; Tiwari et al., 2022). However, these advanced methods often entail a high com-
putational overhead, making them impractical for use in real-world applications. RM (Bang et al.,
2021) requires a significant amount of computational cost to calculate the uncertainty for diversified
sampling. Similarly, CLIB (Koh et al., 2022) involves an additional forward and backward stage to
calculate the decrease in memory sample loss for each batch iteration.

Not only the memory management schemes, but researchers have also investigated the memory
usage schemes, i.e., sample retrieval strategies from the rehearsal buffers. In addition to random
retrieval (Chaudhry et al., 2019), determining retrieval based on the degree of interference (Aljundi
et al., 2019a) and the adversarial Shapley value (Shim et al., 2021) has been investigated. However,
such methods require an inference of candidate samples, which leads to a nontrivial amount of
computation in computing loss (Aljundi et al., 2019a) or the Shapely value (Shim et al., 2021).

Computationally Efficient Learning using Layer Freezing. Freezing layers have been investi-
gated to reduce computational costs during training in joint training (i.e., ordinary training scenario
other than CL) (Brock et al., 2017; Goutam et al., 2020; Xiao et al., 2019). A common freezing
approach (Wang et al., 2023; Li et al., 2022) includes determining whether to freeze a layer based
on the reference model and representation similarity, such as CKA (Cortes et al., 2012) and SP
loss (Tung & Mori, 2019). Additionally, EGERIA (Wang et al., 2023) unfreezes layers based on
changes in the learning rate.

However, in CL, both online and offline, it is challenging to determine when to freeze a layer because
metrics such as Euclidean distance and CKA cannot be used to compare the degree of convergence
compared to the reference model (Mirzadeh et al., 2020). Additionally, continual learning involves
a non-i.i.d. setup, where the data distribution continues to change (Criado et al., 2022). Therefore,
in addition to changes in learning rate, it is important to consider the current data distribution when
determining whether to freeze or unfreeze a layer in continual learning. Hayes et al. (2020) have
explored freezing methods for continual learning. However, they use predefined freezing config-
urations such as the freezing backbone block 0 after task 1, while our freezing method adaptively
freezes the layers using information per batch.

3 APPROACH

Training a neural network requires two passes of network traversal; forward and backward. To make
learning efficient, we consider two strategies; (1) reducing the number of passes and (2) the com-
putational cost of each pass. We address both aspects by proposing two components; an adaptive
layer-freezing method and a new memory retrieval method. The layer freezing reduces the compu-
tational cost of each backward pass, which consumes twice the computations of the forward one.
The memory retrieval method retrieves training batches that are insufficiently learned, so the model
learns the same amount of knowledge in fewer iterations, reducing the number of training passes.
Comprising the two proposals into a single framework, we call our method Layer freezing and
Similarity-Aware Retrieval (L-SAR). We illustrate our method in Fig. 2 and provide a pseudocode
in Sec. A.2 in the appendix for the sake of space.

3.1 ADAPTIVE LAYER FREEZING FOR ONLINE CONTINUAL LEARNING

There have been several studies on the freezing of neural network layers in non-CL literature (Wang
et al., 2023; Liu et al., 2021; He et al., 2021; Hinton et al., 2006). They suggest that freezing
some layers can significantly reduce training computations with minimal impact on performance.
These methods often rely on the convergence of each layer to determine which layers to freeze,
since converged layers no longer require further training. However, in online CL, the model often

3

Under review as a conference paper at ICLR 2024

Backward

Forward

Retrieval

Probability

Max

Replay Memory

Recent use frequency

Class Similarity

batch
a c

b

Update

Freeze

Forward

Fisher

Information

Retrieval

Probability

Replay Memory

Class Similarity

batch
a c

b
Update Update

Similarity-Aware Retrieval Adaptive Layer Freezing

Figure 2: Overview of the proposed L-SAR. The colors in the ‘Similarity-Aware Retrieval’ box
denote different classes. The dotted arrows denote copying the values, while the solid arrows denote
the calculation of new values. ‘Retrieval Probability’ is calculated using class similarity S and
discounted use frequency ci, where ci tracks the number of times sample i has been used recently
for training. A batch is sampled from memory by the ‘Retrieval Probability’ and ci is updated
by retrieval results. After the forward pass of the model with the batch, we compute the freezing
criterion (Ibatch/C)n for each layer n of the model, using Fisher Information and ∥ ∂ℓ

∂xL
∥. In the

backward pass, layers 1 to nmax = argmaxn(Ibatch/C)n are frozen. Class similarity Sij and Fisher
Information are updated using the gradient ∂ℓ

∂θ from the backward pass.

does not converge due to the limited training budget and the ever-evolving training data distribution,
necessitating a new approach to decide when and which layers to freeze for incoming data.

Selectively Freezing Layers by Maximum Fisher Information (FI). For a computationally effi-
cient freezing criterion, we propose freezing layers that learn little information per computation by
measuring the amount of ‘information’ gained by each layer during training. Here, we define the
information by the degree of certainty of the parameters with unknown true values (see Equation 1).
With the information, we select the layers to freeze so that the model learns the maximum amount of
information per computation. Since freezing reduces the computations for each iteration, we train a
model with additional iterations in the same computational budget.

However, as a trade-off, freezing reduces the amount of information obtained per training iteration,
since frozen layers do not gain information. To this end, to maximize the information (I) in the
model while minimizing the computational cost (C), we propose to maximize the expected amount
of information gained per computation (I/C). We factorize this by the amount of information gained
per iteration (I/iter) and the number of iterations per computation (iter/C).

We first estimate (I/iter) when layers 1 to n are frozen, which we denote as (I/iter)n, for n ∈ [1, L]
where L is the total number of layers. The amount of information obtained by layer i is calculated by
tr(F (θi)), where F (θi) is the submatrix of Fisher Information Matrix F (θ) corresponding to layer
i and tr(·) is a trace operator. To efficiently calculate the information that each parameter acquires
from the data, we use the diagonal component of the F (θi) since the diagonal components only
require first-order derivatives rather than Hessian (Kirkpatrick et al., 2017; Soen & Sun, 2021) as:

(I/iter)n =

L∑
i=n+1

tr(F (θi)), where F (θ) = Epθ(z)

[(
∂ℓ

∂θ

)
·
(
∂ℓ

∂θ

)⊺]
, (1)

where θ is the parameter of the model pθ(·), z is the training data, and ℓ = log pθ(z) is the loss
function.

Now, we calculate (iter/C)n which refers to the number of iterations per computation when freezing
up to layer n ∈ [1, L]. For notation brevity, we define Unit Computation (UC) as the total FLOPs
required for a complete forward and backward pass of the model using a single batch. Formally,
UC =

∑L
i=1 (BF)i + (FF)i, where (FF)i and (BF)i denote the forward FLOPs and the backward

FLOPs of layer i, respectively. Without freezing, each iteration would cost 1 UC. In terms of UC,

4

Under review as a conference paper at ICLR 2024

we calculate (iter/C)n by the number of possible iterations given a computational budget of 1 UC,
as:

(iter/C)n =
UC

UC−
∑n

i=1 (BF)i
. (2)

As the number of freezing layers increases (i.e., n increases), the possible iteration within the same
computation increases.

Finally, combining Equation 1 and Equation 2, we can calculate expected amount of information
gain per computation I/C by a product of I/iter and iter/C:

(I/C)n = (I/iter)n · (iter/C)n =

L∑
i=n+1

tr(F (θi)) ·
UC

UC−
∑n

i=1 (BF)i
. (3)

Therefore, by freezing layer 1 to layer nmax, where nmax = argmaxn(I/C)n, we can maximize the
expected amount of information gained per computation during training.

Batch-wise Version of (I/C) for Online CL. In online data stream, data distribution continuously
shifts. Because of this, batches from past data distribution may contain less informative data, which
makes it advantageous to freeze more layers, while batches from new distribution may contain much
(i.e., new) information, which makes it advantageous to freeze fewer layers. Thus, instead of deter-
mining nmax for the entire dataset, we adaptively freeze layers for each input batch by calculating
(I/C)n per batch.

Since the FI is quadratically proportional to the magnitude of the gradient (see Equation 1), we
estimate the information of each batch to be proportional to the squared gradient magnitude of
the batch. To avoid full backpropagation, we only use the gradient of the last layer feature xL to
estimate the gradient magnitude, following (Koh et al., 2023). For a detailed explanation of the
gradient approximation using the last layer, please refer to Sec. A.1. Using these approximations,
we obtain (Ibatch/C)n, the batch-wise version of (I/C)n as:

(Ibatch/C)n(zt) =
|∇xL

ℓ(zt)|2

Ez [|∇xL
ℓ(z)|2]

·
L∑

i=n+1

tr(F (θi)) +

(∑n
i=1 (BF)i

UC

)
·max

m
(I/C)m, (4)

where xL represents the last layer features, and I/C is defined in Equation 3. Please refer
to Sec. A.1 for the detailed derivation of Equation 4. Here, we compute the average gradient
magnitude Ez

[
|∇xL

ℓ(z)|2
]

of the last layer and the trace of Fisher Information tr(F (θi)) =

Epθ(z)

[
tr
((

∂ℓ
∂θi

)
·
(

∂ℓ
∂θi

)⊺)]
= Ez

[∑
(∇θi l(z))

2
]

for all layers i ∈ [1, L]. Since calculating
the expected values (using all samples) in every learning iteration is computationally expensive, we
estimate them by exponential moving average (EMA) of the estimated expectations computed by
the mini-batch of the past iterations. However, the EMA estimate of tr(F (θi)) requires a gradient
calculation for all layers, so it cannot be used with freezing, which stops gradient computations.
Since the estimation of tr(F (θi)) and freezing cannot be performed at the same time, at each m
iteration, we train (i.e., unfreeze) all layers to update the estimate of tr(F (θi)) for all i. For the other
m − 1 iterations, we do not update tr(F (θi)) and freeze the model based on the values of Ibatch/C,
using the previously estimated value of tr(F (θi)).

In summary, we maximize the information learned given a fixed computational budget by freezing
layer 1 to n that maximizes (Ibatch/C)n(zt) for batch zt. We argue that it allows us to dynamically
adjust the degree of freezing based on the learning capacity of the layers and the batch informative-
ness.

3.2 SIMILARITY-AWARE RETRIEVAL BASED ON ‘USE-FREQUENCY’

In rehearsal-based CL methods, sample retrieval strategies such as MIR (Aljundi et al., 2019a) and
ASER (Shim et al., 2021) do not consider the computational cost. Despite the computational costs,
some strategies perform worse than random retrieval (Fig. 1). Here, we propose a computationally
efficient sample retrieval strategy.

In online CL, new data continuously streams in, and old data remains in memory, causing an imbal-
ance in ‘the number of times each sample is used for training’, which we call ‘use-frequency.’ We

5

Under review as a conference paper at ICLR 2024

argue that samples with high use-frequency have been sufficiently learned by the model, and addi-
tional training with them provides a marginal knowledge gain while incurring computational costs.
In contrast, samples with low use-frequency are likely to contain the knowledge that the model
learns insufficiently. Therefore, we give these samples a higher probability of being retrieved.

Additionally, if a sample was frequently used in the past but less frequently in recent iterations,
its knowledge may have been forgotten, despite a high use-frequency. Inspired by the exponential
decaying model of forgetting (Shin & Lee, 2020; Mahto et al., 2020; Chien et al., 2021), we pro-
pose a decay factor in the use frequency at each iteration, denoted as 0 < r < 1, resulting in the
’discounted-use-frequency.’

Effective Use Frequency (ĉi). However, the model can learn knowledge about the sample by
training other samples that are similar in the same class. This effectively increases the use-frequency
for that sample. On the contrary, the model may lose knowledge about the sample when training on
samples from other classes, effectively decreasing the use-frequency.

Inspired by Dhaliwal & Shintre (2018); Du et al. (2018), we assume that samples with similar gradi-
ents have similar information and effectively increase the use frequency, while those with opposite
gradients would effectively decrease the use-frequency. To account for this, we define ‘effective-use-
frequency’ by adding the other samples’ use-frequency multiplied by the cosine similarity between
gradients. However, since tracking the gradient similarities between all sample pairs requires ex-
cessive memory (∼ 1012 for ImageNet) and computation, we use class-wise similarities, which is
the expected gradient similarity between samples from two classes. Formally, we define the class
similarity Sy1,y2 for classes y1 and y2 as:

Sy1,y2
= Ez1∈Dy1

,z2∈Dy2
[cos(∇θl(z1),∇θl(z2))] (5)

where Dyi
is the training data for class yi. Using class-wise similarities, we calculate the effective-

use-frequency ĉi for the sample i as

ĉi = ci +
∑
y∈Y
Sy,yi · Cy, (6)

where ci is the discounted-use-frequency for sample i, Sy,yi is a class similarity between class y and
yi, and Cy is the sum of the discounted-use-frequencies for all samples of class y.

Calculating the expected value in Equation 5 from scratch requires a gradient calculation for all
samples in class y1 and y2, which is computationally expensive. As a computationally efficient
alternative, we use the EMA to update the previous estimate rather than to evaluate the expectation
from scratch. Note that we reuse the gradients obtained during training to calculate similarity and
update the EMA estimate of Syi,yj . Specifically, we calculate the cosine similarity of the gradients
between all pairs of samples in the training batch and update the EMA estimate of Syiyj using it,
where yi and yj are labels for each pair. We only use the layers that are not frozen for this calculation.

To further reduce the computational cost of calculating similarity, we use only 0.05% of the model
parameters for the calculation of similarity, since the gradient distribution of the subset of randomly
selected weights is similar to the gradient of the entire weight set (Li et al., 2022).

Finally, we obtain the retrieval probabilities pi for i-th sample by the softmax of −ĉi/T , where T is
a temperature hyper-parameter, as

pi =
e−ĉi/T∑|M|
j=1 e

−ĉj/T
. (7)

Samples with a low ĉi have a higher chance of being retrieved. This allows the model to prefer
learning relatively insufficiently trained samples to sufficiently trained ones, thus accelerating the
training. Note that this retrieval strategy uses information that is naturally obtained during training,
such as use-frequency and gradients, imposing negligible additional computations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

For empirical validation, we adopt the total budget for memory and computation. For the memory
budget, we use Bytes (Zhou et al., 2023), which considers memory costs not only for the samples

6

Under review as a conference paper at ICLR 2024

in episodic memory but also for additional model parameters used in regularization or distillation.
For the computational budget, we use FLOPs in the training phase. For dataset, we use CIFAR-10,
CIFAR-100, ImageNet, and CLEAR-10. We evaluate the methods in conventional disjoint CL task
setup and a newly proposed Gaussian task setup for boundary-free continuous data stream (Shanahan
et al., 2021; Wang et al., 2022b; Koh et al., 2023). For all experiments, we averaged 3 different
random seeds, except ImageNet due to computational cost (Bang et al., 2021; Koh et al., 2023).
We conducted a Welch’s t-test with a significance level of 0.05. If the highest performance in each
column is statistically significant, it is highlighted in bold. Otherwise, it is underlined.
Metrics. We report the last accuracy Alast and the area under the curve of accuracy AAUC (Koh
et al., 2022). The Alast measures the accuracy at the end of CL. The AAUC measures the average
accuracy throughout the training course. To calculate AAUC, we use evaluation period as 100 samples
for CIFAR-10, CIFAR-100 and CLEAR-10, 8000 samples for ImageNet. For each evaluation, we
use the entire test set for the class seen so far as the evaluation set. We argue that AAUC is a suitable
metric to measure prompt learning of new knowledge.
Baselines. We compare our method to Experience Replay (ER) (Rolnick et al., 2019), Dark Ex-
perience Replay (DER++) (Buzzega et al., 2020), Maximally Interfered Retrieval (MIR) (Aljundi
et al., 2019a), Memory-efficient Expandable Model (MEMO) (Zhou et al., 2023), REMIND (Hayes
et al., 2020), Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Bias Correction
(BiC) (Wu et al., 2019).

We describe the details of the implementation in Sec. A.4 in the Appendix for the sake of space.

4.2 RESULTS

We evaluate CL methods including L-SAR, with strictly restricted computation and memory budgets
as specified in Sec. 4.1. Note that, unlike other methods, which could be adjusted to have the same
FLOPs/sample by controlling the number of iterations/sample, L-SAR adaptively reduces FLOPs
through adaptive layer freezing. Therefore, we set the (iteration/sample) of L-SAR to 1, which is
the same as the (iteration/sample) of ER, which costs the least computation among the baselines.
Various Computational Budget under the Same Memory Budget. First, we compare CL meth-
ods under fixed memory budgets and various computational budgets in Fig. 3. We observe that
L-SAR significantly outperforms other methods in all datasets and both Gaussian and disjoint task
setups except ImageNet-Disjoint, especially under a low computational budget. It shows that our
layer freezing and similarity-aware retrieval generally effectively reduce the computational cost, es-
pecially when the computational budget is tight. In ImageNet-Disjoint setup, some other methods
show comparable performance with L-SAR. In that setup, since a large batch size of 256 is used, the
data distribution in each batch does not change much, and so does the amount of total information
in each batch, leading to less gain by our freezing method, which considers the information of each
batch. Note that the disjoint CL setup is argued as less realistic scenarios (Prabhu et al., 2020; Bang
et al., 2021; Koh et al., 2022), but we use it since many methods are proposed for that.

Additionally, we observe an increase in the FLOPs saved by L-SAR through freezing, particularly
pronounced at higher computational budgets. As the model is trained for more iterations, the amount
of information the model gains from the training data decreases. Thus, our adaptive layer freezing
adaptively adjusts the freezing criterion to freeze more layers, leading to lower FLOPs, thus the line
stops at the earlier GFLOPs value than the compared methods.
Various Memory Budget under the Same Computational Budget. We now fix the computa-
tional budget and test various memory budgets for CL methods, and summarize the results in Tab. 1
for CIFAR-100. L-SAR again outperforms other methods by a significant margin in all datasets,
implying that L-SAR is suitable for both large and small memory budgets. Since L-SAR uses mini-
mal additional memory in addition to episodic memory and utilizes episodic memory effectively by
similarity-aware retrieval, L-SAR consistently outperforms other methods in various memory sizes.
Please refer to Sec. A.8 for results with various memory budgetss in CIFAR-10.

We investigate CL methods in domain incremental setup with fixed computational and memory
budget using the CLEAR-10 dataset, in Tab. 2. Unlike the class incremental, where new classes
are introduced to the model, the domain incremental introduces new samples that are in different
domains, while the classes are maintained the same. As shown in the table, L-SAR also outperforms
the state-of-the-art in domain incremental setups.

7

Under review as a conference paper at ICLR 2024

2 4 8
GFLOPs/sample

50

60

70

A A
U

C

2 4 8
GFLOPs/sample

60

70

80

A l
as

t

2 4 8
GFLOPs/sample

70

80

A A
U

C

EWC ER MIR BiC REMIND DER++ MEMO L-SAR

2 4 8
GFLOPs/sample

60

70

80

A l
as

t

(a) CIFAR-10 Gaussian task setup (b) CIFAR-10 Disjoint task setup

4 8 16
GFLOPs/sample

20

30

40

A A
U

C

4 8 16
GFLOPs/sample

20

30

40

50
A l

as
t

4 8 16
GFLOPs/sample

30

40

50

A A
U

C

EWC ER MIR BiC REMIND DER++ MEMO L-SAR

4 8 16
GFLOPs/sample

20

30

40

50

A l
as

t

(c) CIFAR-100 Gaussian task setup (d) CIFAR-100 Disjoint task setup

128 256
GFLOPs/sample

10

20

30

A A
U

C

128 256
GFLOPs/sample

10

20

30

A l
as

t

128 256
GFLOPs/sample

20

30

40

A A
U

C

EWC ER MIR BiC REMIND DER++ MEMO L-SAR

128 256
GFLOPs/sample

20

30

A l
as

t

(e) ImageNet Gaussian task setup (f) ImageNet Disjoint task setup

Figure 3: Accuracy on Gaussian and Disjoint CL setup in CIFAR-10, CIFAR-100, and ImageNet
for a wide range of FLOPs per sample. L-SAR outperforms all CL methods compared.

Methods
Memory Size

7.6 MB 13.44 MB 25.12 MB

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
ER (Rolnick et al., 2019) 22.56±1.61 27.52±1.90 22.95±1.62 29.93±0.82 22.62±2.15 29.04±2.58
REMIND (Hayes et al., 2020) 22.86±1.32 24.91±1.40 23.60±1.47 26.60±1.76 23.62±1.11 27.28±0.61
DER++ (Buzzega et al., 2020) 21.56±0.87 21.07±0.41 21.66±1.07 21.46±1.32 21.48±1.03 21.40±1.65
ER-MIR (Aljundi et al., 2019a) 12.13±2.39 13.13±3.09 12.91±1.83 13.72±2.26 12.44±2.28 13.41±2.77
EWC (Kirkpatrick et al., 2017) 19.27±1.37 19.75±1.50 20.67±2.09 24.34±2.43 20.72±2.65 24.21±2.28
BiC (Wu et al., 2019) 21.57±0.64 27.93±0.58 29.79±1.76 28.23±2.92 16.11±1.24 23.09±0.52
MEMO (Zhou et al., 2023) 26.61±0.37 17.46±1.26 29.65±0.51 30.56±0.61 29.93±0.61 33.25±0.62

L-SAR (Ours) 30.57±0.62 34.00±0.51 31.72±0.51 38.46±0.92 32.05±0.59 41.85±0.59

Table 1: Accuracy for different memory sizes for Gaussian data Stream in CIFAR-100. The compu-
tational budget is fixed as 128.95 TFLOPs.

We believe this is because our retrieval method balances the use-frequency of samples in different
domains so that the model learns more on relatively less-learned domains, allowing fast adaptation
to new domains. It is more prominent in the results that L-SAR outperforms other methods by a
larger gain in AAUC than in Alast, where AAUC measures the accuracy of all time. Note that L-SAR
also saves a significant amount of FLOPs thanks to adaptive layer freezing.

4.3 ABLATION STUDY

We now ablate the model to investigate the benefit of each of the proposed components by using
CIFAR-10 and CIFAR-100 in the Gaussian task setup and summarize the results in Table 3. See

8

Under review as a conference paper at ICLR 2024

Metric EWC ER ER-MIR BiC REMIND DER++ MEMO L-SAR (Ours)

AAUC ↑ 63.40±0.17 64.61±0.15 59.02±0.31 51.20±0.46 63.86±0.37 61.55±0.51 58.24±0.65 68.47±0.17
Alast ↑ 73.85±1.29 75.58±0.70 70.40±0.69 66.57±1.61 75.05±0.23 73.70±0.46 67.64±1.92 76.57±0.58

TFLOPs ↓ 2,640.37 2,104.20

Table 2: Accuracy of various CL methods in domain-IL setup with CLEAR-10 dataset. Our L-SAR
outperforms other methods with a smaller computational budget and same storage budget.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 60.76±0.11 70.08±0.97 163.74 31.97±0.89 37.80±1.30 245.91
+ Freezing 60.38±0.54 69.04±0.83 142.23 31.77±0.60 38.03±0.35 217.40
+ Retrieval 64.60±0.83 72.43±0.38 171.94 37.60±0.40 42.69±0.18 257.97
+ Retrieval & Freezing (L-SAR) 64.38±0.32 72.57±0.79 146.80 37.20±0.73 42.55±0.79 221.49

Table 3: Benefits of the proposed components of our method in CIFAR-10 and CIFAR-100 for
Gaussian task setup. The memory budget is 7.6MB for CIFAR-10 and 13.44MB for CIFAR-100.
CIFAR-10 We train for 1 iter per sample for CIFAR-10 and 1.5 iter per sample for CIFAR-100.

Sec. A.7 in Appendix for ablation in the disjoint setup. For a comparison between adaptive layer
freezing and naive layer freezing methods, please refer to Appendix Sec. A.6.

‘Vanilla’ is a simple replay-based method that trains on randomly retrieved batches from a balanced
reservoir memory. As shown in the table, our similarity-aware retrieval based on use-frequency
increases the performance of the baseline in the same number of iterations. This shows that our
retrieval method increases the amount of knowledge learned per iteration, as we claim in Sec. 3.

While computational cost also increases, its increase is modest compared to other retrieval methods
such as MIR (Aljundi et al., 2019a) or ASER (Shim et al., 2021) which require 2 ∼ 3× more
computations. Also, we observe that the adaptive layer freezing method saves a significant amount
of FLOPs while preserving accuracy. This shows that our freezing method effectively reduces the
computational cost of each iteration as claimed in Sec. 3, with a negligible drop in performance.
Summing up the effect of the two components, our method outperforms the baseline while using
fewer FLOPs than the baseline, each by a noticeable margin. We show the effect of freezing on
accuracy and FLOPs as the training progresses, in Fig. 4.

0 10000 20000 30000 40000 50000
samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

w/o freezing
w/ freezing

0 10000 20000 30000 40000 50000
samples

0

5

10

15

20

C
um

ul
at

iv
e

TF
LO

Ps

Figure 4: Accuracy and computational cost of the adaptive layer freezing in L-SAR. Training for 1
iteration per sample in CIFAR-10 Gaussian task setup.

5 CONCLUSION

We address the challenge of achieving high performance on both old and new data with minimal
computational cost and a limited storage budget in online CL. While CL with fixed episodic memory
size has been extensively studied, we have investigated the total storage budget required for the
online CL as well as the computational budget for developing practically useful online CL methods.
To this end, we proposed L-SAR, a computation-efficient CL method comprising two components:
similarity-aware frequency-based retrieval and adaptive layer freezing. Our empirical validations
show that several high-performing CL methods are not competitive under a fixed computational
budget, falling behind a simple baseline of training on randomly retrieved batches from memory.

Limitations and Future Work. While our method only requires negligible additional memory
other than episodic memory, it does not actively optimize for the memory efficiency of CL algo-
rithms. It is interesting to explore a method to use the limited storage budget more efficiently, e.g.,
storing quantized versions of models and exemplars.

9

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

We propose a better learning scheme for online continual learning for realistic learning scenarios.
While the authors do not explicitly aim for this, the increasing adoption of deep learning models
in real-world contexts with streaming data could potentially raise concerns such as inadvertently
introducing biases or discrimination. We note that we are committed to implementing all feasible
precautions to avert such consequences, as they are unequivocally contrary to our intentions.

REPRODUCIBILITY STATEMENT

We take reproducibility in deep learning very seriously and highlight some of the contents of the
manuscript that might help to reproduce our work. We will definitely release our implementation of
the proposed method in Sec. 3, the data splits and the baselines used in our experiments in Sec. 4

REFERENCES

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. NeurIPS,
32:11849–11860, 2019a. 2, 3, 5, 7, 8, 9, 14, 18

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019b. 3

Soumya Banerjee, Vinay K Verma, Avideep Mukherjee, Deepak Gupta, Vinay P Namboodiri, and
Piyush Rai. Verse: Virtual-gradient aware streaming lifelong learning with anytime inference.
arXiv preprint arXiv:2309.08227, 2023. 19

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow mem-
ory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8218–8227, 2021. 3, 7, 16

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate training
by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017. 3

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020. 1, 7, 8, 15, 18

Lucas Caccia, Jing Xu, Myle Ott, Marcaurelio Ranzato, and Ludovic Denoyer. On anytime learning
at macroscale. In Conference on Lifelong Learning Agents, pp. 165–182. CoLLAs, 2022. 19

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019. 3

Hsiang-Yun Sherry Chien, Javier S Turek, Nicole Beckage, Vy A Vo, Christopher J Honey, and
Ted L Willke. Slower is better: revisiting the forgetting mechanism in lstm for slower information
decay. arXiv preprint arXiv:2105.05944, 2021. 6

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012. 3

Marcos F Criado, Fernando E Casado, Roberto Iglesias, Carlos V Regueiro, and Senén Barro. Non-
iid data and continual learning processes in federated learning: A long road ahead. Information
Fusion, 88:263–280, 2022. 3

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshops, pp. 702–703, 2020. 16

Jasjeet Dhaliwal and Saurabh Shintre. Gradient similarity: An explainable approach to detect ad-
versarial attacks against deep learning. arXiv preprint arXiv:1806.10707, 2018. 6

10

Under review as a conference paper at ICLR 2024

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020. 16, 18

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018. 6

Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud,
Ameya Prabhu, Philip HS Torr, and Bernard Ghanem. Real-time evaluation in online continual
learning: A new hope. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11888–11897, 2023. 1, 19

Kelam Goutam, S Balasubramanian, Darshan Gera, and R Raghunatha Sarma. Layerout: Freezing
layers in deep neural networks. SN Computer Science, 1(5):295, 2020. 3

Anthony Gruber, Max Gunzburger, Lili Ju, and Zhu Wang. A comparison of neural network archi-
tectures for data-driven reduced-order modeling. Computer Methods in Applied Mechanics and
Engineering, 393:114764, 2022. 1

Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Rosing. Improved schemes for episodic
memory-based lifelong learning. Advances in Neural Information Processing Systems, 33:1023–
1035, 2020. 3

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind
your neural network to prevent catastrophic forgetting. In European Conference on Computer
Vision, pp. 466–483, 2020. 2, 3, 7, 8, 18

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: automated
elastic pipelining for distributed training of large-scale models. In International Conference on
Machine Learning, pp. 4150–4159. PMLR, 2021. 2, 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016. 16

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006. 3

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. PNAS, 2017. 4, 7, 8, 15, 18

Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on class
incremental blurry task configuration with anytime inference. In International Conference on
Learning Representations, 2022. 1, 3, 7, 16, 19

Hyunseo Koh, Minhyuk Seo, Jihwan Bang, Hwanjun Song, Deokki Hong, Seulki Park, Jung-Woo
Ha, and Jonghyun Choi. Online boundary-free continual learning by scheduled data prior. In The
Eleventh International Conference on Learning Representations, 2023. 1, 5, 7, 14

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mo-
hammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems, 5, 2023. 1

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090, 2019. 2

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. Smartfrz: An
efficient training framework using attention-based layer freezing. In The Eleventh International
Conference on Learning Representations, 2022. 3, 6

11

Under review as a conference paper at ICLR 2024

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv preprint arXiv:2102.01386, 2021. 3

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NeurIPS, 2017. 3

Shivangi Mahto, Vy Ai Vo, Javier S Turek, and Alexander Huth. Multi-timescale representation
learning in lstm language models. In International Conference on Learning Representations,
2020. 6

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning. In International
Conference on Learning Representations, 2020. 3

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for
real-time continual learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 10203–10209. IEEE, 2020. 19

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In European Conference on Computer Vision, pp. 524–540,
2020. 3, 7, 16

Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam Lim,
Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does mat-
ter? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3698–3707, 2023. 1

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019. 2,
7, 8, 18

Michael Rotman and Lior Wolf. Shuffling recurrent neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 9428–9435, 2021. 18

Murray Shanahan, Christos Kaplanis, and Jovana Mitrović. Encoders and ensembles for task-free
continual learning. arXiv preprint arXiv:2105.13327, 2021. 7

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory
(lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020. 18

Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang. On-
line class-incremental continual learning with adversarial shapley value. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 9630–9638, 2021. 2, 3, 5, 9, 14

Hyo-Sang Shin and Hae-In Lee. A new exponential forgetting algorithm for recursive least-squares
parameter estimation. arXiv preprint arXiv:2004.03910, 2020. 6

Alexander Soen and Ke Sun. On the variance of the fisher information for deep learning. Advances
in Neural Information Processing Systems, 34:5708–5719, 2021. 4

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022. 3

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1365–1374, 2019. 3

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985. 3

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, HONG Lanqing, Shifeng
Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual
learning. In International Conference on Learning Representations, 2022a. 1

12

Under review as a conference paper at ICLR 2024

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Egeria: Efficient dnn
training with knowledge-guided layer freezing. In Proceedings of the Eighteenth European Con-
ference on Computer Systems, pp. 851–866, 2023. 3

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In CVPR,
2022b. 7

Karen Wintersperger, Florian Dommert, Thomas Ehmer, Andrey Hoursanov, Johannes Klepsch,
Wolfgang Mauerer, Georg Reuber, Thomas Strohm, Ming Yin, and Sebastian Luber. Neutral atom
quantum computing hardware: performance and end-user perspective. EPJ Quantum Technology,
10(1):32, 2023. 1

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hessian: Understand-
ing common structure of hessian in neural networks. arXiv preprint arXiv:2010.04261, 2020.
2

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 374–382, 2019. 3, 7, 8, 15, 18

Xueli Xiao, Thosini Bamunu Mudiyanselage, Chunyan Ji, Jie Hu, and Yi Pan. Fast deep learning
training through intelligently freezing layers. In 2019 International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1225–1232.
IEEE, 2019. 3

Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey Tulyakov, Xulong Tang, Yanzhi Wang,
and Jian Ren. Layer freezing & data sieving: Missing pieces of a generic framework for sparse
training. Advances in Neural Information Processing Systems, 35:19061–19074, 2022. 2

Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Does continual learning
equally forget all parameters? In ICML, 2023. 1

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: To-
wards memory-efficient class-incremental learning. In The Eleventh International Conference on
Learning Representations, 2023. 1, 6, 7, 8, 14, 18

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DERIVATION OF BATCH-WISE INFORMATION PER COMPUTATION

Computing the exact FI for each batch requires exact gradients for all layers in each batch, and it
requires a full backward pass, making efforts to save the backward cost of frozen layers futile.

To address this problem, we propose to estimate FI for each batch from the previously calculated FI
for the entire data distribution and the magnitude of the gradient of the batch, using the quadratic
scaling relationship between the FI and the magnitude of the gradient, as shown in Equation 1. To
obtain the magnitude of the gradient without full backpropagation, we calculate it solely using the
last layer’s feature representation, since the gradient magnitudes for the preceding layers would scale
with the last layer by the chain rule (Koh et al., 2023).

This allows the batch-wise version of (I/iter) by multiplying the ratio of the current batch (zt)’s
gradient magnitude (|∇xL

ℓ(zt)|2) and the average gradient magnitude (Ez

[
|∇xL

ℓ(z)|2
]
) for entire

training data z, to obtain (Ibatch/iter) as:

(Ibatch/iter)n(zt) =
|∇xL

ℓ(zt)|2

Ez [|∇xL
ℓ(z)|2]

· (I/iter)n =
|∇xL

ℓ(zt)|2

Ez [|∇xL
ℓ(z)|2]

·
L∑

i=n+1

tr(F (θi)), (8)

where xL is the last layer features. Using (Ibatch/iter), we define the batch-wise version of (I/C)
(Equation 3) to measure the usefulness of the current batch zt, (Ibatch/C) as:

(Ibatch/C)n(zt) = (Ibatch/iter)n (zt) · 1 +
(iter/C)n − 1

(iter/C)n
·max

m
(I/C)m (9)

=
|∇xL

ℓ(zt)|2

Ez [|∇xL
ℓ(z)|2]

·
L∑

i=n+1

tr(F (θi)) +

(∑n
i=1 (BF)i

UC

)
·max

m
(I/C)m, (10)

where xL represents the last layer features, and I/C is defined in Equation 3. The first term in
the equation represents the FI obtained from a single iteration with the current batch, which is
(Ibatch/iter). The second term is the expected FI gain by using the computation saved by freezing,
obtained as a product of the amount of saved computation and the maximum value of I/C.

A.2 DETAILED ALGORITHM OF L-SAR

Algorithm 1 provides a comprehensive pseudocode for the L-SAR method. L-SAR has two com-
ponents: similarity-aware retrieval and adaptive layer freezing. In the algorithm box, lines 3, 6-13,
and 25-26 describe the similarity-aware retrieval method, and lines 15-24 describe the adaptive layer
freezing method.

A.3 DETAILS ABOUT THE MEMORY BUDGET IN TOTAL-CONSTRAINED CL

The memory budget is allocated to episodic memory, model parameters, and additional memory
costs specific to each CL algorithm, such as classwise similarities and logits. In this section, B
denotes the additional memory budget, S(|B|) denotes the size of the additional memory budget (in
MB), � denotes episodic memory, and |�| represents the number of stored instances in �.

In our total-constrained setup, the memory budget is restricted to the cost of storing 7.6MB,
13.44MB and 25.12 MB in CIFAR-10/100. Since storing the ResNet-32 model parameters requires
memory cost equivalent to saving 603 instances of CIFAR-100 images (463,504 floats × 4 bytes/float
÷ (3 × 32 × 32) bytes/image ≈ 603 instances), for methods that store the model for distillation or
regularization, we subtract the memory cost of the model parameters from the episodic memory
size (Zhou et al., 2023). In ImageNet and CLEAR-10, we use the ResNet-18 model and apply
the same policy of subtracting model parameters and logits from the memory budget as mentioned
above.

ER does not require additional memory beyond episodic memory. Similarly, MIR (Aljundi et al.,
2019a) and ASER (Shim et al., 2021) do not require additional memory despite being computation-
ally heavy.

14

Under review as a conference paper at ICLR 2024

Algorithm 1 Layer freezing and Similarity-Aware Retrieval (L-SAR)

1: Input model fθ, Layer parameters θl, Training data stream D, Batch size B, Learning rate µ,
EMA ratio α, Frequency scale k, Retrieval temperature T , Number of layers L, Total FLOPs
(TF), Backward FLOPs per layer (BF)l

2: Initialize Episodic memory M ← {}, Sample frequency ci ← 0, Class frequency Cy ← 0,
Class Similarity Sy1y2 ← 0, Layer Fisher trace (trF)l ← 0, Expected gradient norm |ḡx′

L
| ← 0

3: θS = RandomSubset(θ, 0.0005)
▷ Random subset of θ containing 0.05% of the parameters, for updating class similarity S

4: for (xt, yt) ∈ D do ▷ samples from data stream
5: UpdateM← GreedyBalancingSampler (M∪ (xt, yt))

▷ Memory update with Greedy Balancing Sampler
6: ĉi = ci +

∑
y∈Y Syyi

Cy ∀ (xi, yi) ∈M
▷ Calculate effective-use-frequency by Eq. (6)

7: I = RandomChoice(|M|, B, softmax(e−ĉi/T)) ▷ Sample batch indices from memory
8: r = B

k|M| ▷ Calculate decay rate

9: Update ci ← (1− r)ci ∀ (xi, yi) ∈M ▷ Decay the sample frequencies
10: Update Cy ← (1− r)Cy ∀ y ∈ Y ▷ Decay the class frequencies
11: Update ci ← ci + 1 ∀ i ∈ I ▷ Increase sample frequency for selected samples
12: Update Cyi ← Cyi + 1 ∀ i ∈ I ▷ Increase class frequency for selected samples
13: zt = {(xi, yi) ∀ i ∈ I} ▷ Obtain training batch zt
14: L(zt) =

∑
(x,y)∈zt

CrossEntropy(fθ(x), y) ▷ Calculate loss
15: gx′

L
(zt) = ∇x′

L
L(zt) ▷ Obtain gradient for last feature x′

L

16: if t%4 = 0 then
17: Update (trF)l ← (1− α)(trF)l + α

∑
(∇θlL(zt))2 ∀ l ∈ 1, . . . L

▷ Update Fisher every 4 batches
18: n∗ = 0 ▷ No freezing When Fisher update
19: else
20: (I/C)n = (TF)

(TF)−
∑n

l=1 (BF)l

∑L
l=n+1(trF)l ∀n ∈ 1, . . . , L ▷ Compute (I/C) by Eq. (3)

21: (Ibatch/C)n(zt) =
|gx′

L
(zt)|2

|ḡx′
L
|2 ·

∑L
l=n+1(trF)l +

∑n
l=1 (BF)l

TF ·maxm (I/C)m

∀n ∈ 1, . . . , L ▷ Compute (Ibatch/C) by Eq. (4)
22: n∗ = argmaxn(Ibatch/C)n(zt) ▷ Determine optimal freezing
23: end if
24: Update |ḡx′

L
| ← (1− α) · |ḡx′

L
|+ α · |gx′

L
(zt)|▷ Update expected gradient norm for last feature

25: θS,n∗ = θS ∩ θ(n∗+1,...,L) ▷ Use only unfrozen parameters for updating similarity

26: Update Syiyj
← (1− α)Syiyj

+ α · CosineSimilarity
(
∇(i)

θS,n∗L(zt),∇
(j)
θS,n∗L(zt)

)
∀(xi, yi), (xj , yj) ∈ zt, i ̸= j ▷ Update class similarity using sample-wise gradients

27: Update θ(n∗+1,...,L) ← θ(n∗+1,...,L) − µ · ∇θ(n∗+1,...,L)
L(zt)
▷ Update the model except frozen layers

28: end for
29: Output fθ

On the contrary, EWC (Kirkpatrick et al., 2017) requires storing the previous model parameters and
the parameter-wise Fisher Information(FI) for all parameters. Therefore, we subtract the memory
cost of storing two models from the episodic memory size. Similarly, BiC Wu et al. (2019) also
stores the previous model for distillation, |�| was reduced as much as the size of the model. For
example, with a total memory budget of 7.6MB and a ResNet-32 model type in CIFAR-100, ER can
store up to 2000 instances in �, while EWC is limited to storing only 794(=2000 - 2×603) instances.
Similarly, BiC can store only 1397(=2000 - 603) instances in �.

Some methods incur additional memory costs other than episodic memory or model parameters.
We handle such costs in a similar way by reducing the episodic memory size by the number of
samples equivalent to the additional memory cost. For example, DER (Buzzega et al., 2020) uses
the previous logits of the samples for distillation, so we subtract the cost of storing the logits from

15

Under review as a conference paper at ICLR 2024

Methods B Type S(|B|) |�| S(|�|) Model Type Parameters Model Size

ER - - 2000 5.85MB Resnet32 0.46M 1.76MB
REMIND Feature replay 5.85MB - - Resnet32 0.46M 1.76MB

DER Logits 0.08MB 1974 5.77MB Resnet32 0.46M 1.76MB
ER-MIR - - 2000 5.85MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 3.52MB 794 2.33MB Resnet32 0.46M 1.76MB
BiC Previous Model 1.76MB 1397 4.09MB Resnet32 0.46M 1.76MB

MEMO Expanded Network 1.33MB 1542 4.51MB Resnet32 0.46M 1.76MB

L-SAR Class-wise similarity &
frequency of each sample 8.52KB 1997 5.84MB Resnet32 0.46M 1.76MB

Table 4: Implementation details of total memory budget=7.6MB in CIFAR-10
Methods B Type S(|B|) |�| S(|�|) Model Type Parameters Model Size

ER - - 2000 5.85MB Resnet32 0.46M 1.76MB
REMIND Feature replay 5.85MB - - Resnet32 0.46M 1.76MB

DER Logits 0.71MB 1770 5.14MB Resnet32 0.46M 1.76MB
ER-MIR - - 2000 5.85MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 3.52MB 794 2.33MB Resnet32 0.46M 1.76MB
BiC Previous Model 1.76MB 1397 4.09MB Resnet32 0.46M 1.76MB

MEMO Expanded Network 1.33MB 1542 4.51MB Resnet32 0.46M 1.76MB

L-SAR Class-wise similarity &
frequency of each sample 0.05MB 1987 5.83MB Resnet32 0.46M 1.76MB

Table 5: Implementation details of total memory budget=7.6MB in CIFAR-100

the episodic memory size. More specifically, DER needs additional storage which size is |�|×dl×
4 bytes/float, where dl denotes logit dimension, which is 100 in CIFAR-100 and 10 in CIFAR-10.

L-SAR stores similarities between classes, the training frequency of each sample, and the trace of
FIM for each layer. For instance, in CIFAR-10, L-SAR needs 400 bytes = 4 bytes/float ×102 for
saving class-wise similarities, 4 bytes/int×|�| for saving frequency of each sample, and 4 bytes/float
×nl for saving trace of FIM for each layer, where nl is total number of layers. However, such
additional memory cost is negligible compared to episodic memory or model parameters (only 0.1%
of memory budget). We summarize implementation details of the total memory budget for each
dataset in Tab.4, Tab.5, Tab.6, and Tab.7.

A.4 IMPLEMENTATION DETAILS.

We use ResNet-32 (He et al., 2016) for CIFAR-10 and CIFAR-100, and use ResNet-18 as the
network architecture for CLEAR-10 and ImageNet. We set the training hyperparameters as fol-
lows (Koh et al., 2022; Bang et al., 2021; Prabhu et al., 2020). For CIFAR-10, CIFAR-100, CLEAR-
10, and ImageNet, we use batch size of 16, 16, 16, and 256, respectively, and Adam optimizer with
LR of 0.0003 for all datasets and setup. For memory constraints, we used memory size of 7.6MB,
13.44MB, 25.12MB for CIFAR-10 and CIFAR-100, 617MB for CLEAR-10, 5.8GB for ImageNet.

For data augmentation, we apply RandAugment (Cubuk et al., 2020) to all CL methods. For hyper-
parameters, we set all the EMA ratios required for L-SAR to 0.01 for all datasets. For the values of
k and T used in memory retrieval, we use k = 4 and T = 0.125 for all experiments. It is found by a
hyperparameter search on CIFAR-10, and applied to other datasets without additional tuning since
dataset-specific hyperparameter search is inappropriate for CL where the whole dataset is not given
at once.

For L-SAR, we use memory-only training, where the training batch is retrieved from the episodic
memory at every iteration. And we use the Greedy Balanced Sampling strategy (Prabhu et al., 2020)
for memory sampling. We use m = 4 for all datasets and setups, where m refers to the batch cycles
where layer freezing is not applied..

A.5 APPLYING ADAPTIVE LAYER FREEZING TO ATTENTION BASED MODEL

We investigate the effect of the proposed adaptive layer freezing not only in ResNet but also in
attention-based models such as the Vision Transformer(ViT) (Dosovitskiy et al., 2020). We compare
the freezing effects on models pretrained on ImageNet-1K and trained from scratch in Tab. 8

16

Under review as a conference paper at ICLR 2024

Methods B Type S(|B|) |�| S(|�|) Model Type Parameters Model Size

ER - - 4,000 574MB Resnet18 11.17M 42.6MB
REMIND Feature replay 574MB - - Resnet18 11.17M 42.6MB

DER Logits 0.08MB 3,999 573.92MB Resnet18 11.17M 42.6MB
ER-MIR - - 4,000 574MB Resnet18 11.17M 42.6MB

EWC FI & Previous Model 85.2MB 3,406 488.8MB Resnet18 11.17M 42.6MB
BiC Previous Model 42.6MB 3,703 531.4MB Resnet18 11.17M 42.6MB

MEMO Expanded Network 31.95MB 3,777 542.1MB Resnet18 11.17M 42.6MB

L-SAR Class-wise similarity &
frequency of each sample 8.52KB 3,999 573.86MB Resnet18 11.17M 42.6MB

Table 6: Implementation details of total memory budget=616.6MB in CLEAR-10

Methods B Type S(|B|) |�| S(|�|) Model Type Parameters Model Size

ER - - 20,000 2,870MB Resnet18 11.17M 42.6MB
REMIND Feature replay 2,870MB - - Resnet18 11.17M 42.6MB

DER Logits 74.3MB 19,482 2,795.7MB Resnet18 11.17M 42.6MB
ER - - 20,000 2,870MB Resnet18 11.17M 42.6MB

EWC FI & Previous Model 85.2MB 19,406 2,784.8MB Resnet18 11.17M 42.6MB
BiC Previous Model 42.6MB 19,703 2,827.4MB Resnet18 11.17M 42.6MB

MEMO Expanded Network 31.95MB 19,787 2,838MB Resnet18 11.17M 42.6MB

L-SAR Class-wise similarity &
frequency of each sample 4MB 19,973 2,866MB Resnet18 11.17M 42.6MB

Table 7: Implementation details of total memory budget=2,912.6MB in ImageNet

Methods Pretrained From Scratch

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 57.85±1.16 61.43±0.68 4,044.25 33.13±3.15 28.58±4.64 4,044.25
+ Adaptive Freezing 58.70±1.58 60.73±1.52 3,466.42 33.04±3.44 30.44±6.22 3,926.65

Table 8: Effect of layer freezing in ViT. We used CIFAR-10 as the dataset, and the memory budget
is 7.6MB

When using a pretrained model, the adaptive layer freezing reduces the computational cost by nearly
15% with minimal impact on AAUC and Alast, compared to the Vanilla training without freezing.
Since pretrained models have already been sufficiently trained on a large dataset, the amount of
information that the model will learn from the training data may be relatively small compared to
training from scratch. Thus, it leads to the freezing of many layers by adaptive layer freezing. This
not only reduces computational costs but also ensures high performance, since the model is updated
only in truly informative batches, thus preserving the advantages of pretrained initialization.

In the case of training from scratch, the decrease in TFLOPs is significantly small compared to using
a pretrained model, which implies that the layers did not freeze much. This is due to the large model
capacity of ViT and the small number of training iterations in online CL, which leads to a severe
underfitting of the model when training from scratch. Tab. 8 shows that when training from scratch,
the accuracy only reaches around 30% even at the end of the training (Alast). Thus, since the model
is not sufficiently trained yet, the adaptive layer freezing scheme tends to freeze fewer layers so that
the model can learn more information. This shows that the proposed adaptive freezing method can
indeed provide a reasonable freezing strategy.

A.6 COMPARISON BETWEEN ADAPTIVE LAYER FREEZING AND NAIVE LAYER FREEZING

We compare the proposed adaptive layer freezing method with various naive freezing methods, in
both Gaussian and disjoint setup in CIFAR-10. The results are summarized in Tab.9. Each freezing
strategy chooses the number of frozen layers n ∈ [0, L] where L is the total number of layers, so that
when n ≥ 1, layer 1 to layer n are frozen. The compared freezing strategies are: random freezing (n
is randomly selected from [0, nmax] every iteration for a fixed nmax ∈ [0, L]), constant freezing (n
is fixed initially) and linear freezing (n increases linearly from 0 to nmax for a fixed nmax ∈ [0, L]).

All layer freezing strategies contribute to reducing computational costs. However, adaptive layer
freezing has the least performance decrease. Note that the goal of layer freezing is not to freeze as
much as possible but rather to save computational costs while preserving performance.

17

Under review as a conference paper at ICLR 2024

Methods Gaussian Disjoint

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No Freezing 64.60±0.83 72.43±0.38 171.94 79.10±0.44 71.77±0.57 171.94

Random Freezing (nmax = 16) 63.14±0.51 70.47±1.15 150.56 77.69±0.51 69.30±1.77 150.62
Random Freezing (nmax = 32) 61.79±0.54 69.84±0.54 122.99 77.31±0.17 68.89±0.64 120.92
Constant Freezing (n = 8) 60.91±0.80 67.70±0.83 147.12 74.99±0.24 65.89±0.50 147.12
Constant Freezing (n = 16) 53.59±0.60 57.31±0.90 109.48 67.64±0.61 55.59±0.29 109.48
Linear Freezing (nmax = 16) 63.11±0.90 70.00±1.04 150.64 77.53±0.47 68.30±1.52 150.64
Linear Freezing (nmax = 32) 62.06±0.90 66.95±2.31 120.83 75.69±0.77 64.49±1.22 120.83
Adaptive Freezing (Ours) 64.38±0.32 72.57±0.79 146.80 79.75±0.38 70.70±0.88 143.51

Table 9: Comparison between adaptive layer freezing and naive freezing in CIFAR-10. The memory
budget is 7.6MB.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 77.10±0.58 70.26± 0.91 163.73 43.59±0.86 38.64±0.35 245.85
+ Freezing 76.98±0.15 70.58±0.63 141.50 43.20±0.95 38.44±0.27 225.92
+ Similarity Aware Retrieval 79.10±0.44 71.77±0.57 171.94 45.61±1.06 39.68±0.66 257.91
+ Similarity Aware Retrieval & Freezing (L-SAR) 79.75±0.38 70.70±0.88 143.51 45.00±1.28 39.39±0.62 228.14

Table 10: Benefits of the proposed components of our method in CIFAR-10 and CIFAR-100 for
disjoint task setup. The memory budget is 7.6MB for CIFAR-10 and 13.44MB for CIFAR-100.
CIFAR-10 We train for 1 iter per sample for CIFAR-10 and 1.5 iter per sample for CIFAR-100.

A.7 ADDITIONAL ABLATION STUDY

In addition to Gaussian task setup, we ablate the model to investigate the benefit of each of the
proposed components by using CIFAR-10 and CIFAR-100 in the disjoint task setup, and summarize
the results in Table 10. Summing up the effect of each component, L-SAR outperforms the baseline
while using fewer FLOPs than the baseline, each by a noticeable margin.

A.8 RESULTS USING VARIOUS MEMORY BUDGETS IN CIFAR-10

Methods
Memory Size

7.6 MB 13.44 MB 25.12 MB

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
ER (Rolnick et al., 2019) 57.69±0.33 69.53±0.10 58.10±0.97 72.42±0.26 57.95±0.37 73.11±0.50
REMIND (Hayes et al., 2020) 56.06±0.45 58.91±0.99 55.74±0.24 60.97±1.14 56.14±0.68 61.61±0.93
DER++ (Buzzega et al., 2020) 53.01±0.15 68.35±0.40 55.37±0.44 68.57±2.33 55.72±0.51 68.84±1.90
ER-MIR (Aljundi et al., 2019a) 47.83±0.15 58.41±1.18 47.35±0.76 58.03±2.51 47.88±1.09 58.41±3.84
EWC (Kirkpatrick et al., 2017) 54.71±0.38 61.45±3.18 56.26±0.34 68.62±1.63 56.60±0.29 69.59±1.21
BiC (Wu et al., 2019) 48.59±1.25 60.67±0.99 47.80±0.75 62.00±1.90 45.30±1.35 58.21±1.86
MEMO (Zhou et al., 2023) 49.56±0.66 45.64±3.80 49.50±1.06 56.52±1.71 48.88±1.35 57.70±3.55

L-SAR (Ours) 63.46±0.29 71.64±0.20 63.56±0.40 74.66±0.41 63.07±0.23 77.36±0.40

Table 11: Comparison of accuracy for different memory sizes for Gaussian data Stream in CIFAR-
10. The computational budget is fixed as 128.95 FLOPs

The results obtained using various memory budgets in CIFAR-10 are shown in Tab. 11. As in
CIFAR-100, our method outperforms other methods in all tested memory budgets, further showing
that our method is robust across various memory constraints.

A.9 COMPATIBILITY OF L-SAR ACROSS DIVERSE NETWORK ARCHITECTURES

L-SAR can be applied to any feedforward neural network, as long as layers can be defined, including
CNNs and Vision Transformers (Dosovitskiy et al., 2020). Since our layer freezing methods require
evaluating the information gained and FLOPs used by individual layers, a network should be dis-
sected into layers. However, our proposed adaptive layer freezing cannot apply to recurrent neural
networks (Sherstinsky, 2020) since the gradient of a layer affects not only the preceding layers but
also the subsequent layers (Rotman & Wolf, 2021), while in the feedforward network, the gradient
of a layer influences only the preceding layers.

18

Under review as a conference paper at ICLR 2024

A.10 DETAILS ABOUT AAUC

Recent studies (Pellegrini et al., 2020; Caccia et al., 2022; Banerjee et al., 2023; Ghunaim et al.,
2023) suggest that having good inference performance at any intermediate time points during train-
ing is important for CL. To evaluate intermediate performance during training, Koh et al. (2022)
proposed AAUC, which measures the area under the curve of average accuracy. In contrast to Alast

or Aavg which measures performance only at the end of the task (i.e., after sufficient training),
AAUC consistently measures the performance over the course of training. If two methods reach the
same accuracy at the end of a task but one method converges faster than the other, their Alast and
Aavg would be equal, but the faster model would show higher AAUC . Thus, how fast the model
adapts to the new task is reflected in AAUC .

A.11 DETAILS ABOUT ESTIMATION OF FISHER INFORMATION TRACE

To check how accurate our Fisher Information trace estimate is, we ran an experiment comparing
the Fisher Information trace estimated with i) a batch size of 16 once every four steps and ii) a batch
size of 64 for every step (i.e., 16 times bigger sample size) on CIFAR-10 Gaussian task setup. We
use ResNet-32 as the backbone and show the trace of the Fisher Information of the last layers for
each block, i.e. layers 8, 16, 24, and 32. From the result in Fig. 5, we observe that the estimation
with i) a batch size of 16 once every four steps does not deviate much from the estimation with ii) a
batch size of 64 for every step, showing that our estimation is reasonably accurate.

0 10000 20000 30000 40000 50000
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

tr(
F)

layer 8
layer 8 (16× sample size)

layer 16
layer 16 (16× sample size)

layer 24
layer 24 (16× sample size)

layer 32
layer 32 (16× sample size)

Figure 5: The estimated trace of Fisher Information for layers 8, 16, 24, and 32 of ResNet-32 on
CIFAR-10 Gaussian Task setup, comparing the estimation used in L-SAR and the estimation with a
16 times bigger sample size.

19

