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Abstract—Machine learning (ML) models have been used in
functional neuroimaging for wide-ranging tasks, ranging from
disease diagnosis to disease prognosis. There have been successive
functional connectivity-based ML studies focused on improving
model performances for disease detection. An increasing number
of such studies use their trained models to detect and evaluate
salient features that could be potential biomarkers of these neuro-
logical conditions. The evaluation of these salient features is often
qualitative and limited to cross-referencing existing literature for
similar findings. In this study, we present objective quantitative
metrics to evaluate the robustness of these salient features. Build-
ing upon existing generic evaluation metrics, we propose metrics
that capture topological properties known to be characteristic of
brain functional connectomes. Using existing and newly proposed
measures on a set of baselines and state-of-the-art graph neural
networks (GNN) models, we found that when GNNExplainer is
used with models that incorporate attention, the scores produced
are relatively more robust than other combinations. On datasets
of patients with Autism Spectrum Disorder (ASD) or Attention-
deficit Hyperactivity Disorder (ADHD), our proposed metrics
highlighted that salient features identified in both disorders are
highly involved in functional specialization, while salient ASD
features expressed stronger functional integration than ADHD.
We package these existing and novel metrics together in the RE-
CONFIRM framework that holds promise to set the foundations
for the quantitative evaluation of salient features detected by
future studies.

Index Terms—Biomarker Discovery, Graph Neural Networks,
Functional Connectivity, Model Explainability

I. INTRODUCTION

Since its inception almost three decades ago, functional
magnetic resonance imaging (fMRI) has been widely used to
further our understanding of varied brain states, including mul-
tiple neurological conditions. Neurological conditions often
have poorly understood etiologies, but the presence of mod-
ulations in functional connectivity (FC) are well documented
[1]. Functional MRI produces 4-dimensional information and
often comes along with rich metadata (e.g. clinical test scores)
making manual analysis infeasible. This motivates the use of
Machine Learning (ML) approaches to model fMRI datasets,
which has since evolved into the use of deep learning architec-
tures such as GNN [2] and transformers [3]. In these studies,
the predominant approach is to train models for classifying
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between healthy subjects and patients. These models have been
criticized for their poor generalization abilities and their black-
box nature [4]. Thus, the utility of such classifiers in clinical
settings remains very limited. To ameliorate these issues,
researchers have used model interpretability techniques to give
clinicians insights on the model’s decisions and biomarker
discovery [5], [6].

Given a GNN model with acceptable classification perfor-
mance, interpretability methods called ‘explainers’, ranging
from post-hoc techniques such as Integrated Gradients [7] and
GNNExplainer [8] to intrinsically interpretable models such as
the attention mechanism in Graph Attention Networks (GAT)
[9] and pooling layers in BrainGNN [10] can be applied on the
model. Thereafter, the potential biomarkers uncovered by the
explainer are evaluated for their correctness. These evaluations
are currently mostly limited to arbitrarily chosen features (e.g.
top-K features with the highest importance scores) with cross-
references being made to existing literature. Such evaluations
do not account for the possibility that the features highlighted
by both studies could be erroneous. Therefore, better metrics
are needed to quantify the robustness of these salient features.

A recent survey paper by Nauta et al. [11] has consolidated
12 key properties of explainers which they name ‘Co-12’
(e.g. correctness, consistency, contrastivity, etc.). However,
not all existing metrics are applicable in the context of
disease biomarker discovery. For instance, ground truth disease
biomarkers are often not available, making it challenging
to determine the coherence of the explanation with existing
knowledge. Further work is needed to determine which metrics
are relevant for biomarker discovery. Graph-based evaluation
metrics have also been proposed [12], [13], including metrics
such as graph explanation stability, which checks for con-
sistency of explanations when the input graph is perturbed.
However, they do not make use of known properties of
connectomes such as modularity of FC and the presence of
functional hubs. Finally, while meta-analyses can be done to
consolidate reported biomarkers and identify robust biomark-
ers, our proposed approach provides quantitative measures that
can improve future meta-analyses on disease biomarkers.

In this study, we identify evaluation metrics relevant to
FC and also propose novel evaluation metrics to objectively
measure the robustness of saliency scores produced by exist-
ing explainers in the context of discovering FC biomarkers.
Modularity is a well-established concept in FC studies and
is understood to be affected by diseases [14]. We propose



modular ratio, a metric that measures the extent of similarity
between the saliency scores of nodes in the same module,
relative to other nodes in the functional brain network. Further-
more, several neurological disorders such as ASD and ADHD
are known to affect hubs [15], Thus, we propose a measure
of assortativity that accounts for hubs, quantifying the extent
to which hubs are captured by the saliency scores.

Putting these novel metrics together with our selection of
existing metrics that are most relevant to FC studies, we pro-
pose Robust Evaluation of CONnectome Features Identified
by Relevance Measures (RE-CONFIRM), a framework that
could be used by future disease classification studies to further
evaluate their salient features in a more robust and objective
manner. While existing frameworks like Quantus [16] and
OpenXAI [17] offer implementations of evaluation metrics
and benchmarks for assessing explanation methods on tabular
and image datasets, they do not address the evaluation of
explainability in the context of brain connectomes using fMRI
data, nor do they interpret scores in terms of biomarkers.

Applying RE-CONFIRM to the ABIDE and ADHD-200
datasets, we found that models incorporating attention tend to
be more robust than models that do not, especially when these
models are used with GNNExplainer. Additionally, salient fea-
tures of ASD and ADHD have low modular ratios, suggesting
that they exhibit strong modular relationships. Hub assortativ-
ity scores further reveal stronger functional integration in ASD
than in ADHD. The key contributions of this study are:

• A framework to evaluate the robustness of salient FC fea-
tures detected by different explainers. Future studies can
use RE-CONFIRM to evaluate the potential biomarkers
they discovered in a more robust manner.

• Focusing on the brain’s functional connectome, we pro-
posed novel evaluation metrics for model explainers that
measure the extent that functional specialization and
integration are captured by the potential biomarkers.

• We demonstrated that models trained on the salient
features identified by the best predictor-explainer com-
bination - as determined by RE-CONFIRM - outper-
formed other combinations in terms of generalisation
performance to out-of-sample datasets, showing that the
discovered biomarkers are indeed more robust.

II. METHODS

GNNs can be applied to FC datasets via two approaches:
brain graphs and population graphs. In this study, we focus on
evaluation metrics for explainers applied to neural network ar-
chitecture that incorporate GNN via the brain graph approach.
We note that many of the explainers used apply to general deep
learning architectures too. Given the functional connectome as
G = (Ω,W ) where Ω denotes the set of functionally relevant
regions of interests (ROI) or nodes of the network and W
denotes the FC matrix derived from the fMRI scan, we further
define f as a trained GNN model and e as the explainer that
produces a set of saliency scores for G.

Our proposed RE-CONFIRM framework uses the input
graph, GNN, model predictions, and saliency scores to produce

Fig. 1. Our proposed framework, RE-CONFIRM, computes 8 metrics
to evaluate the robustness of the saliency scores produced by explainers.
Rectangles marked with an asterisk(*) represent metrics proposed in this study
that are specific to connectomes.

a range of metrics that evaluates the correctness, consistency,
completeness, continuity, contrastivity as well as connectome-
specific properties of the saliency scores. Figure 1 illustrates
the role RE-CONFIRM plays in typical biomarker discovery
pipelines. It also provides an overview of existing and novel
evaluation methods used in this study.

A. Distance measures

Many metrics used in the RE-CONFIRM framework involve
a comparison of differences between two sets of values (e.g.
making comparisons between healthy controls and patients or
studying the differences before and after a change is made to
the data or model). In such scenarios, we measured the changes
in explanations quantitatively using Hellinger distance. In the
case where P and Q are two discrete probability distributions,
Hellinger distance can be computed by the following equation:

H(P,Q) =
1√
2

√∑
i

(√
P (i)−

√
Q(i)

)2

where i represents a data point sampled from the distri-
bution. The probability distributions were obtained from the
saliency scores.

B. Evaluation metrics

Building on top of the Co-12 explanation quality properties
proposed by Nauta et al. [11], we propose the following set
of evaluation metrics for FC biomarker discovery.



1) Model Parameter Randomization Check (MPRC):
Model weights are perturbed by introducing randomized
changes or reinitializing weights (by calling an initialization
function) in anticipation of changes in the model’s explanation.
If the explanations remain unchanged despite these pertur-
bations, it suggests that the explanations do not align with
the underlying reasoning of the model. This “sanity check”
assesses the faithfulness and sensitivity of the explanation to
the predictive model. Higher MPRC is desired (close to 1.0,
Range [0,1]).

2) Data Randomization Check (DRC): This model-agnostic
approach evaluates whether explanations reflect the learned
input-output mapping. The data labels for the training samples
are altered randomly and a new model is trained on this
randomized dataset. When a model is trained on a dataset
with randomized labels, it memorizes these labels rather than
learning meaningful patterns. Consequently, its performance
on new, unseen data is no better than random guessing. Hence,
explanations from a model trained on randomized data should
differ significantly from those derived from a model trained
on the original dataset. Higher DRC is desired (close to 1.0,
Range [0,1]).

3) Fidelity: This metric quantifies the faithfulness of expla-
nations to the model’s predictions. It measures the difference
in predicted probabilities by comparing the original predictions
with new predictions after removing the top k features (most
important, Fidelity+) or the bottom k features (least important,
Fidelity-). A higher Fidelity+ (close to 1.0, Range [0,1]) and
a lower Fidelity- (close to 0.0, Range [0,1]) is desirable.

F+ =
1

N

∑
i

(f(Gi)− f(G+
i )),

F− =
1

N

∑
i

(f(Gi)− f(G−
i )),

where f(·) is the model under study, Gi represents the FC
matrix of subject i from a dataset of N subjects whereas G+

i

represents the subgraph for subject i with the highest saliency
node features removed and G−

i represents the subgraph with
the lowest saliency node features removed.

4) Stability: It measures a model’s ability to generate the
same explanations before and after perturbations (e.g. adding
Gaussian noise) to the model input. Before evaluating the
similarity of explanations, it must be ensured that the output
of the model stays the same for a slightly perturbed input. We
then measure the similarity of the model explanations for the
perturbed data to those from unperturbed data. Higher Stability
is desired (close to 1.0, Range [0,1]).

5) Target Sensitivity (Sens): This metric is based on the in-
tuition that class-specific features from an explanation should
vary between classes. Here, we analyze the difference in
explanations between disease subjects and typical controls.
Lower Sens is desired (close to 0.0, Range [0,1]).

6) Implementation Invariance (II): This approach empha-
sizes the consistency of model explanations by asserting
that two models providing identical outputs for all inputs,

regardless of their underlying implementations, should also
produce identical explanations. To assess whether the expla-
nation method is invariant to specific implementations of the
model, we compare explanations from random initializations
of the predictive model using two different seeds. Lower II is
desired (close to 0.0, Range [0,1]).

7) Modular Ratio (MR): Many diseases are known to affect
the modularity of functional brain networks [18], [19]. Study-
ing the distribution of saliency scores of nodes within the same
modules could reveal disease-driven changes in functional
specialization in the brain. Given G, a modularization finds
a set S = {Si : vk ∈ Si}i=L

i=1,k∈Ω where each element Si

corresponds to a functional module containing sets of nodes
and L denotes the number of modules. Assuming that the
explainer generates a saliency mask X ∈ R|Ω|×C where C is
the size of the input vector for each node, MR is computed
for node i (belonging to module m) by:

MR(i) =

1
|Sm|

∑
j∈Sm

d(Xi, Xj)

1
|Ω|

∑
v∈Ω d(Xi, Xv)

(1)

where d(·, ·) represents a function denoting the Manhattan
distance between the input vectors. When averaged across
nodes, a mean MR value below 1.0 indicates that node i tends
to have saliency scores that are more similar to nodes in the
same module (relative to all nodes in G). Lower MR is desired
(close to 0.0, Range [0,1]). We further define MR-k for the
setting where C is constrained to the top-k features.

8) Hub Assortativity Coefficient (HAC): Many disorders
such as ASD are well-known to affect regions of the brain that
serve as hubs (i.e. nodes with much higher degrees than others)
[20], [21]. Thus, salient features highlighted by explainers
would be expected to contain a sizable portion of these hubs.
To better quantify this extent, we propose HAC, a metric based
on the assortativity coefficient (AC) proposed in Bazinet et
al. [22]. AC is defined as the Pearson correlation between
cortical thickness annotations of connected nodes. The hub
assortativity coefficient is computed with respect to the edge
weights Wij between nodes i and j in the FC matrix W .

HAC =
1

2m

∑
ij

WijXiYj

where 2m represents the sum of edge weights. Xi and Yj

represent the saliency score and hub score (z-score within a
univariate normal distribution, focusing on nodes with signif-
icantly high intra-modular connections [15]) of nodes i and
j, respectively. A higher HAC (close to 1.0, Range [0,1])
suggests that the saliency scores effectively capture properties
related to brain hubs, indicating that the model accurately
identifies and relies on central, highly connected regions within
the brain network for disease classification. Like MR, HAC-k
is defined as a version of HAC constrained to top-k features.

C. Selecting the best predictor-explainer combinations

Out of the 8 metrics above, several of them (e.g. MPRC,
DRC, Stability, Sens, II) are generic while metrics such as Fi-
delity+, MR-k and HAC-k are specific to top-k features (thus,



well-suited for biomarker discovery applications). Thus, to
choose the best combinations, we propose a 2-step approach.

1) Eliminating poor combinations via sanity checks: com-
binations with anomalously poor performance on any
of these generic metrics (with statistically significant
differences from others) should be removed.

2) Choosing the optimal combination via metrics based on
top-k features: The choice of metric depends on the re-
search question and the pre-existing knowledge on hand.
For instance, if little understanding is available about the
disorder, Fidelity+ is used to rank the combinations. On
the other hand, if modularity is known to be associated
with the disorder, MR-k is used for ranking.

Subsequently, robustness of the selected combination can
be confirmed by showing that using the top-k features (from
the best combination) to train a separate model leads to better
generalization to unseen datasets, as compared to using another
set of top-k features by other poorly performing combinations.

III. RESULTS

A. Dataset

The ABIDE I dataset contains 387 resting-state fMRI scans
from individuals diagnosed with ASD and 436 typical controls,
collected from 20 sites. Data from the ADHD-200 dataset
was used to further validate our findings. It contains rs-fMRI
scans from 279 subjects diagnosed with ADHD and 488 age-
matched typical controls. These were collected from 4 sites
(NI, NYU, OHSU, and PKU). Preprocessed rs-fMRI data were
downloaded from the Preprocessed Connectome Project. Data
from the C-PAC pipeline and Athena pipeline were selected for
ABIDE and ADHD-200, respectively. Craddock atlas [23] was
used to identify 200 ROIs. We computed the mean time series
of all voxels within a sphere of radius 2.5 mm around each
ROI. Functional connectivity (FC) matrices were computed
by determining the Pearson correlation between the mean
activation time series for each ROI pair.

B. Experiment Setup

To assess the effectiveness of our framework, we imple-
mented various disease-specific models for both static and dy-
namic FC. Static FC represents average functional organization
of the brain measured over neuroimaging recordings lasting
several minutes. In contrast, dynamic FC captures brain’s
ability to transition through different functional connectivity
configurations on much shorter timescales, typically on the
order of seconds. These models include BrainGNN [10],
STGCN [24], STAGIN [25], as well as GCN [26] and GAT
[27], with the latter two implemented using the BrainGB
framework [28]. We incorporated two classes of explainability
methods representing post-hoc explainability (GNNExplainer
[29]) and intrinsically interpretable methods (Attention and
Node Pooling scores). Gradient descent was done using the
Adam optimizer with a learning rate of 0.001. Both datasets
were split into train-validation-test in the ratio 6:2:2. We used
5-fold cross-validation across all models for both ABIDE and
ADHD-200 data. For STGCN and STAGIN, we set the sliding

window size to 60s and stride to 1s. Default model parameters
were used to train all the models. In our experiments, we
utilized a batch size of 4, which required approximately
2900 MiB of GPU memory. Experiments were carried out
across 5 seeds. GCN and GAT had the highest classification
accuracy for ABIDE and ADHD respectively. Detailed model
performances are presented in Table V.

In our implementation of the metrics, scores were computed
for each fold. Mean and standard deviation across all folds are
then reported. Hellinger distance was used to compute MPRC,
DRC, Stability, Sens, and II. For Fidelity, we focused on the
top 20 features. To evaluate stability, we introduced a small
amount of Gaussian noise (two standard deviations) to the
input node features and perturbed graph data by rewiring the
edges between second-degree nodes [13]. We then measured
the similarity between explanations using cosine similarity. For
MR, the Craddock atlas, known for its probabilistic mapping
of brain regions, lacks well-defined labels for ROIs. To address
this, we generated new labels by leveraging spatial proximity
to established references. Specifically, we calculated the center
of mass for each ROI in the Craddock atlas and used these
coordinates to identify the nearest corresponding ROIs within
the Power atlas [30]. Modules from these new labels were
used to calculate MR for all ROIs, as well as only the top 20
significant ROIs (MR-20). For HAC and HAC-20, hub scores
were computed via the sum of ambivert degree and participa-
tion coefficient [15]. For dynamic FC models, saliency scores
were computed for each sliding window segment. These scores
were then averaged before the evaluation metrics were applied.

C. Comparison of Metrics

Saliency scores can be influenced by a multitude of factors:
(i) the base model; (ii) the explainer; and (iii) the dataset. To
disentangle these factors, we study the variation of the eight
RE-CONFIRM metrics across each factor.

1) Performance across models: Table I and II summarises
the metrics across models for both ABIDE and ADHD-200 (in
the whole dataset setting) for GNNExplainer. We found that
among dynamic FC models, STAGIN is better than STGCN
in all the metrics (including classification accuracy). This
suggests that the STAGIN is a more robust predictive model
compared to STGCN. Notably, STAGIN also outperforms the
three static FC models. Across the three static FC models,
no definitive trend emerges, although GCN and GAT exhibit
marginally better performance than BrainGNN on certain
metrics in both the ABIDE and ADHD-200. They demonstrate
greater stability, reduced Fidelity-, lower target sensitivity,
and lower II values. However, they suffer from decreased
DRC and Fidelity+ scores. Models that incorporated attention
mechanisms in their architecture (e.g., STAGIN and GAT)
were found to generally perform better than models without
attention: they exhibit higher MPRC and HAC scores, along
with lower Fidelity- and II values.

2) Performance across explainers: Table III and IV sum-
marise the metrics across explainers for both ABIDE and



TABLE I
EVALUATION METRICS FOR GNNEXPLAINER ON ABIDE.

* INDICATES THAT VALUE IN BOLD FOR THE ROW IS SIGNIFICANTLY
GREATER THAN GIVEN VALUE (STUDENT’S T-TEST, P-VALUE ¡ 0.05).

Metrics BrainGNN GCN GAT STGCN STAGIN

MPRC (↑) 0.47±0.01* 0.51±0.01* 0.58±0.01 0.40±0.02* 0.60±0.03
DRC (↑) 0.46±0.01 0.20±0.01* 0.27±0.03* 0.17±0.01* 0.47±0.03
Fidelity+ (↑) 0.60±0.02 0.36±0.02* 0.53±0.02* 0.48±0.01* 0.49±0.01*
Stability (↑) 0.99±0.02 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
HAC (↑) 0.18±0.01* 0.20±0.00* 0.33±0.02 0.28±0.02* 0.34±0.02
Fidelity- (↓) 0.32±0.02* 0.29±0.01* 0.22±0.01 0.37±0.01* 0.30±0.01*
Sens (↓) 0.38±0.01* 0.31±0.00 0.38±0.01* 0.50±0.06* 0.34±0.03
II (↓) 0.19±0.02* 0.11±0.02 0.13±0.01* 0.18±0.02* 0.18±0.02*
MR (↓) 0.49±0.02 0.52±0.02* 0.50±0.01 0.52±0.03* 0.52±0.01*
MR-20 (↓) 0.49±0.01* 0.47±0.02* 0.48±0.01* 0.49±0.01* 0.43±0.01

TABLE II
EVALUATION METRICS FOR GNNEXPLAINER ON ADHD-200.

* INDICATES THAT VALUE IN BOLD FOR THE ROW IS SIGNIFICANTLY
GREATER THAN GIVEN VALUE (STUDENT’S T-TEST, P-VALUE ¡ 0.05).

Metrics BrainGNN GCN GAT STGCN STAGIN

MPRC (↑) 0.49±0.01* 0.25±0.01* 0.42±0.01* 0.25±0.04* 0.55±0.03
DRC (↑) 0.51±0.02 0.43±0.03* 0.44±0.01* 0.37±0.00* 0.44±0.02*
Fidelity+ (↑) 0.70±0.01 0.32±0.01* 0.49±0.02* 0.32±0.03* 0.62±0.02*
Stability (↑) 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
HAC (↑) 0.19±0.01* 0.26±0.03* 0.23±0.01* 0.17±0.03* 0.33±0.02
Fidelity- (↓) 0.38±0.01* 0.29±0.01* 0.10±0.01 0.22±0.02* 0.18±0.01*
Sens (↓) 0.40±0.01* 0.27±0.02 0.35±0.01* 0.51±0.04* 0.26±0.03
II (↓) 0.12±0.03* 0.26±0.01* 0.07±0.01 0.12±0.04* 0.10±0.01*
MR (↓) 0.50±0.01 0.49±0.02 0.50±0.01 0.52±0.01* 0.50±0.01
MR-20 (↓) 0.50±0.01* 0.47±0.01 0.46±0.00 0.49±0.01* 0.45±0.02

ADHD-200. GNNExplainer generally excels across most met-
rics in both ABIDE and ADHD-200. Compared to Attention,
GNNExplainer generates explanations that are generally more
robust, consistent across different seed initializations (model
weights), and better at discriminating class-specific features.
Conversely, explanations generated by Attention tend to be
more faithful and less sensitive to parameterization changes
in the predictive model, particularly with ADHD-200.

For BrainGNN, we compared evaluation metrics between
the model’s learned node pooling weights and the explanations
produced by GNNExplainer on both the ABIDE and ADHD-
200 (Table VII). The explanations generated by GNNExplainer
outperformed those derived from the model’s intrinsic node
pooling weights across most metrics except DRC, Sens and II.
However, differences between the three metrics were small.

3) Performance across datasets: Based on Table III and IV,
there is a lack of consistent trends across all metrics and mod-
els when comparing ABIDE and ADHD-200 datasets. Both
datasets exhibit stability under minor perturbations. However,
ADHD-200 generally shows lower II compared to ABIDE.
In ABIDE, hubs appear more prominently among the top-
ranked features (based on saliency scores) than in ADHD-
200. Explanations derived from ADHD-200 seem to reflect
the dataset’s intrinsic properties rather than being influenced
by varying model architecture implementations or artifacts.
From Table I and II, ADHD-200 appears to have slightly lower
MR compared to ABIDE. MR scores decreased further for
ABIDE than ADHD-200 when focusing exclusively on the top
20 significant ROIs, compared to considering all ROIs. This
trend suggests that nodes with low MR scores exhibit saliency

TABLE III
EVALUATION METRICS ACROSS EXPLAINERS ON ABIDE.

* INDICATES THAT THE VALUE IN BOLD FOR ROW IS SIGNIFICANTLY
GREATER THAN GIVEN VALUE (STUDENT’S T-TEST, P-VALUE ¡ 0.05).

GNNExplainer Attention

Metrics GAT STAGIN GAT STAGIN

MPRC (↑) 0.58±0.01* 0.60±0.03* 0.43±0.02* 0.67±0.01
DRC (↑) 0.27±0.03* 0.47±0.03 0.23±0.02* 0.43±0.03
Fidelity+ (↑) 0.53±0.02* 0.49±0.01* 0.50±0.01* 0.62±0.02
Stability (↑) 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
HAC (↑) 0.33±0.02 0.34±0.02 0.24±0.02* 0.27±0.01*
Fidelity- (↓) 0.22±0.01 0.30±0.01* 0.19±0.06 0.33±0.02*
Sens (↓) 0.38±0.01* 0.34±0.03 0.36±0.02* 0.37±0.03*
II (↓) 0.13±0.01 0.18±0.02* 0.16±0.02* 0.20±0.01*
MR (↓) 0.50±0.01 0.52±0.01* 0.51±0.01 0.54±0.02*
MR-20 (↓) 0.48±0.01* 0.43±0.01* 0.41±0.03 0.46±0.01*

TABLE IV
EVALUATION METRICS ACROSS EXPLAINERS ON ADHD-200.

* INDICATES THAT VALUE IN BOLD FOR THE ROW IS SIGNIFICANTLY
GREATER THAN GIVEN VALUE (STUDENT’S T-TEST, P-VALUE ¡ 0.05).

GNNExplainer Attention

Metrics GAT STAGIN GAT STAGIN

MPRC (↑) 0.42±0.01* 0.55±0.03* 0.55±0.03* 0.64±0.03
DRC (↑) 0.44±0.01* 0.44±0.02* 0.47±0.02 0.43±0.03*
Fidelity+ (↑) 0.49±0.02* 0.62±0.02 0.51±0.01* 0.47±0.01*
Stability (↑) 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
HAC (↑) 0.23±0.01* 0.33±0.02 0.31±0.00* 0.29±0.03*
Fidelity- (↓) 0.10±0.01 0.18±0.01* 0.29±0.02* 0.19±0.02*
Sens (↓) 0.35±0.01* 0.26±0.03 0.27±0.01 0.29±0.02
II (↓) 0.07±0.01 0.10±0.01* 0.10±0.01* 0.09±0.01*
MR (↓) 0.50±0.01* 0.50±0.01* 0.47±0.02 0.49±0.01*
MR-20 (↓) 0.46±0.00* 0.45±0.02 0.43±0.02 0.45±0.03

scores similar to their neighboring nodes. Therefore, the salient
features in the ABIDE dataset exhibit a more pronounced
modular relationship compared to those in ADHD-200 (i.e.
nodes in the same module tend to have similarly high scores).

D. Biomarker analysis

We focus the discussion of potential biomarkers on models
with the best disorder classification performance, i.e. STAGIN
(ABIDE, dynamic), GCN (ABIDE, static), STAGIN (ADHD,
dynamic), GCN / GAT (ADHD, static). 25 of the most
salient connections (representing the top 0.1% of features) are
presented in each chord diagram in Figure 2 (ABIDE) and
Figure 3 (ADHD).

For ASD, biomarker analysis on STAGIN via GNNEx-
plainer (Figure 2(a)) revealed salient connections between the
somatomotor network (SM) and default mode network (DMN)
as well as between SM and the visual network. Intra-modular
connections within the visual network were also found to be
salient. Similar salient connections were found when attention
was used as the explainer (Figure 2(b)), but the specific ROIs
largely differ (i.e. different ROIs from the same modules were
involved). Each explainer also has several unique inter-module
connections that are mostly isolated (i.e. only one salient
connection between those modules).



Fig. 2. Chord diagrams representing salient FC connections of ABIDE. In
each chord diagram, only the top 25 connections were visualized to reduce
cluttering. (a) STAGIN, GNNExplainer, (b) STAGIN, Attention, (c) GCN, (d)
GAT, Attention.

For static FC, the chord diagram of GCN (Figure 2(c))
was dominated by intra-modular connections within the visual
network and DMN. There was an apparent paucity of intra-
modular salient connections. Notably, this was also observed
when GNNExplainer was applied to GAT, while the use of
attention (Figure 2(d)) resulted in a chord diagram with more
inter-modular connections. Prominent inter-modular connec-
tions include SM-DMN (also in STAGIN) as well as unique
connections such as SM - ventral attention network (VAN)
and SM - limbic network. However, considering the low
performance of GAT and the absence of these connections in
other models, these unique inter-modular connections could
represent spurious biomarkers.

For ADHD, biomarker analysis on STAGIN via GNNEx-
plainer (Figure 3(a)) revealed salient connections that are
concentrated in 3 areas: between SM and dorsal attention
network (DAN), between SM and limbic network as well
as intra-modular connections within SM. On the other hand,
the use of the attention explainer on STAGIN (Figure 3(b))
resulted in widespread inter-modular connections that are
salient, differing greatly from GNNExplainer even though the
same base model was used (STAGIN).

For static FC (Figure 3(c)), the 3 salient connections found
in STAGIN (GNNExplainer) were still present, but another
prominent set of connections between SM and frontoparietal
control network (FPCN) was found. Attention scores in GAT
(Figure 3(d)) shared similar findings (model performance of
GAT was very similar to GCN in the case of ADHD, unlike
in ABIDE), but with a different weighting: inter-modular con-
nections between SM and Limbic network were emphasized,
instead of SM-DAN and SM-FPCN as seen in GCN.

Finally, when comparing salient static FC and dynamic
FC features, it was observed that the top connections in
ADHD subjects are relatively similar to ABIDE. SM-DAN and
SM-Limbic networks were present in both cases for ADHD,
while the salient features for ABIDE are markedly different

Fig. 3. Chord diagrams representing salient FC connections of ADHD. In
each chord diagram, only the top 25 connections were visualized to reduce
cluttering. (a) STAGIN, GNNExplainer, (b) STAGIN, Attention, (c) GCN, (d)
GAT, Attention.

with static FC dominated by intra-modular connections while
dynamic FC highlighted numerous inter-modular connections.

E. Evaluating the robustness of discovered biomarkers

TABLE V
CLASSIFICATION PERFORMANCE BY THE SVM MODEL ACROSS ABIDE II

SITES (BNI, N=58 ; EMC, N=54 ; GU, N=106 ; IP, N=56). * INDICATES
THAT VALUE IN BOLD FOR THE ROW IS SIGNIFICANTLY GREATER THAN

GIVEN VALUE (STUDENT’S T-TEST, P-VALUE ¡ 0.05) .

Sites Attn GNNExp

BNI 0.66±0.01 0.63±0.01*
EMC 0.65±0.02 0.64±0.01
GU 0.63±0.02 0.58±0.02*
IP 0.64±0.01 0.62±0.02

To demonstrate robustness, we used unseen portions of
the ABIDE dataset (i.e. ABIDE-II). We chose Table III for
further analysis as it contains variations of both predictors and
explainers. First, application of sanity checks based on generic
metrics led to the elimination of GAT-related combinations due
to anomalously low DRC. Then, we note that STAGIN + Attn
has highest Fidelity+ (0.62) while STAGIN + GNNExplainer
has the lowest Fidelity+ (0.49). Subsequently, we trained a
support vector machine (SVM) with a sigmoid kernel on the
ABIDE-I dataset using the top 20 features selected from both
combinations and evaluated them on 4 sites from ABIDE-II.
The SVMs were tuned on ABIDE-I via 5-fold cross validation
with the following ranges: c = {0.1,0.01, 0.001}, coef0 = {0.1,
0.01, 0.001}, gamma = {10−1, 10−3, 10−5}.

It is clear from Table V that the features from STAGIN
+ Attn consistently leads to higher out-of-sample accura-
cies across multiple ABIDE-II sites. This shows that RE-
CONFIRM can choose the best predictor-explainer combina-
tion that leads to robust biomarkers.



IV. DISCUSSION

Intuitively, achieving a good model performance is a key
prerequisite for discovering robust biomarkers. However, our
results revealed that biomarkers produced by the most perfor-
mant ML techniques still vary widely across explainers. This
warrants a more careful interpretation of the ‘top-k features’
with the highest saliency scores that existing work often report.

In view of this, the current practice of referring to existing
literature (i.e. highlighting previous studies that found the
same salient features) is insufficient to justify the relevance
of these potential biomarkers. For example, SM-DAN was
found to be impaired in ADHD subjects in a previous study
[31] and this was highlighted by GNNExplainer for STAGIN.
However, we note that such cross-referencing could also be
easily and superficially performed to justify findings such
as SM-DMN being implicated in ADHD [32] (identified by
attention explainer, for STAGIN) which was not reproduced
by GNNExplainer as one of the most salient features. As
such, we would advocate for objective and quantitative metrics
that could supplement such qualitative justifications of poten-
tial biomarkers. The metrics proposed in the RE-CONFIRM
framework could serve as a first step towards this direction.

The eight metrics in RE-CONFIRM revealed that models
incorporating attention tend to have higher MPRC, HAC,
lower Fidelity- and lower II. The use of GNNExplainer, instead
of attention explainer or pooling, could further improve the
robustness of these salient features. These metrics provide
additional insights, on top of classification accuracy, to deter-
mine which combinations of predictors and explainers should
be used. Also, in the event that different explainers (applied
to the same model) produce contradictory salient features,
RE-CONFIRM also makes it possible to suggest which set of
potential biomarkers is more robust. For instance, the higher
Fidelity+ score achieved by GNNExplainer (0.62 vs 0.47)
suggests that the explanations produced by GNNExplainer are
more reliable than attention.

One potential source of variations in results could be the
choice of k (e.g. Fidelity). Thus, we conducted additional
experiments by evaluating the Fidelity metric across different
k salient features using STAGIN with GNNExplainer on the
ABIDE dataset. From Table VIII, we observed that higher
k values lead to greater Fidelity+ and lower Fidelity-. This
highlights how the number of salient features affects the
evaluation of the explanation. Additionally, we have also
explored limiting MR to the top 20 features, revealing how
these features have lower MR scores (than the scenario where
all features were used). MR values could also depend on the
choice of modules. Thus, we conducted additional experiments
and from Table IX , we also noticed that varying levels of mod-
ularization impact the MR. We applied the ICSC algorithm
[33], which provides a finer granularity in module generation
for brain functional networks. Using modules produced by the
ICSC algorithm leads to lower MR scores (than using modules
assigned in the Power atlas) in both static and dynamic FC
settings, indicating that nodes within finer group-level modules

exhibit more consistent saliency scores compared to those from
higher-level modules.

Future research could explore ways to improve the metrics
used in RE-CONFIRM. For example, recent studies have
highlighted concerns regarding the underlying assumptions in
the metric MPRC, particularly regarding the order of layer
randomization and the choice of pairwise similarity measures
[34]. Solutions to these issues include a smoothed form of
MPRC [35], which could be used in place of the original
MPRC. Future studies could also propose new metrics. In this
study, our assessment of the robustness of model explanations
centered on metrics derived from static FC. However, met-
rics could be specifically tailored for dynamic FC. Instead
of merely averaging saliency scores across sliding window
segments, these metrics should aim to capture the nuanced
temporal dynamics inherent in dynamic FC, thereby providing
deeper insights into brain network activity.

In conclusion, our study revealed that salient features iden-
tified by ML models are not necessarily robust. Future disease
classification studies that generate potential biomarkers could
use RE-CONFIRM to reaffirm the robustness of the salient
features identified by their models.
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APPENDIX

TABLE VI
COMPARISON OF MODEL ACCURACIES (%) ON ABIDE AND ADHD

DATASETS (SFC=STATIC FC, DFC=DYNAMIC FC).

Models ABIDE ADHD Selective Model Parameters Model size

BrainGNN (sFC) 60.8 ± 5.63 57.7 ± 5.41 Epochs=100, GNN Layers=2 93k
GCN (sFC) 73.3 ± 3.79 68.7 ± 4.62 Hidden Dim.=360, GCN Layers=2 593k
GAT (sFC) 66.3 ± 3.29 68.8 ± 3.72 Hidden Dim.=8, GAT Layers=2 655k
STGCN (dFC) 58.8 ± 6.01 58.2 ± 6.23 Window Size=60, Dropout=0.5 208k
STAGIN (dFC) 72.4 ± 3.37 66.8 ± 2.80 Hidden Dim.=128, GIN Layers=4,2 1,004k

TABLE VII
EVALUATION METRICS FOR BRAINGNN USING ITS POOLING WEIGHTS

AND GNNEXPLAINER ON ABIDE DATASET

ABIDE ADHD-200

Metrics GNNExplainer Pooling
Weights

GNNExplainer Pooling
Weights

MPRC (↑) 0.47±0.01 0.44±0.04 0.49±0.01 0.48±0.03
DRC (↑) 0.46±0.01 0.47±0.03 0.51±0.02 0.53±0.02
Fidelity+ (↑) 0.60±0.02 0.53±0.01 0.70±0.01 0.62±0.01
Stability (↑) 0.99±0.02 0.93±0.03 0.99±0.00 0.94±0.02
HAC (↑) 0.18±0.01 0.15±0.00 0.19±0.01 0.17±0.04
Fidelity- (↓) 0.32±0.02 0.34±0.02 0.38±0.01 0.37±0.02
Sens (↓) 0.38±0.01 0.36±0.01 0.40±0.01 0.41±0.03
II (↓) 0.19±0.02 0.16±0.01 0.12±0.03 0.10±0.01
MR (↓) 0.49±0.02 0.51±0.02 0.50±0.01 0.51±0.03
MR-20 (↓) 0.49±0.01 0.50±0.02 0.50±0.01 0.50±0.01

TABLE VIII
EVALUATION OF FIDELITY FOR DIFFERENT k FEATURES WITH STAGIN

AND GNNEXPLAINER ON ABIDE DATASET.

Metrics k=20 k=80 k=140 k=200

Fidelity+ (↑) 0.49±0.01 0.54±0.01 0.58±0.02 0.61±0.01
Fidelity- (↓) 0.30±0.01 0.28±0.01 0.25±0.01 0.24±0.02

TABLE IX
EVALUATION OF MODULAR RATIO ACROSS DIFFERENT MODULARIZATION

ON BOTH DATASETS (ATTENTION)

GAT (static FC) STAGIN (dynamic FC)

Metrics Power ICSC Power ICSC

ADHD-200

MR (↓) 0.47±0.02 0.44±0.03 0.49±0.01 0.46±0.02
MR-20 (↓) 0.43±0.02 0.43±0.01 0.45±0.03 0.42±0.02

ABIDE

MR (↓) 0.51±0.01 0.46±0.02 0.54±0.02 0.47±0.03
MR-20 (↓) 0.41±0.03 0.39±0.01 0.46±0.01 0.38±0.02


