
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMUTE GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable success in learning from
graph-structured data. However, their application to directed graphs (digraphs)
presents unique challenges, primarily due to the inherent asymmetry in node
relationships. Traditional GNNs are adept at capturing unidirectional relations
but fall short in encoding the mutual path dependencies between nodes, such
as asymmetrical shortest paths typically found in digraphs. Recognizing this
gap, we introduce Commute Graph Neural Networks (CGNN), an approach that
seamlessly integrates node-wise commute time into the message passing scheme.
The cornerstone of CGNN is an efficient method for computing commute time
using a newly formulated digraph Laplacian. Commute time is then integrated
into the neighborhood aggregation process, with neighbor contributions weighted
according to their respective commute time to the central node in each layer. It
enables CGNN to directly capture the mutual, asymmetric relationships in digraphs.
Extensive experiments confirm the superior performance of CGNN. Source code
of CGNN is anonymously available here.

1 INTRODUCTION

Directed graphs (digraphs) are widely employed to model relational structures in diverse domains,
such as social networks (Cross et al., 2001) and recommendation systems (Qiu et al., 2020). Recently,
the advances of graph neural networks (GNNs) have inspired various attempts to adopt GNNs for
analyzing digraphs (Tong et al., 2020a;b; 2021; Zhang et al., 2021; Rossi et al., 2023; Geisler et al.,
2023). The essence of GNN-based digraph analysis lies in utilizing GNNs to learn expressive node
representations that encode edge direction information.

To achieve this, modern digraph neural networks are designed to integrate edge direction information
into the message passing process by distinguishing between incoming and outgoing edges. This dis-
tinction enables the central node to learn directionally discriminative information from its neighbors.
As illustrated in the digraph of Fig. 1, given a central node vi, a 1-layer digraph neural network can
aggregate messages from vi’s incoming neighbor vm and outgoing neighbor vj , and simultaneously
capture edge directions by applying direction-specific aggregation functions (Rossi et al., 2023), or
by predefining edge-specific weights (Zhang et al., 2021; Tong et al., 2020b).

Despite the advancements, current digraph neural networks primarily capture unidirectional1 rela-
tionships between nodes, neglecting the complexity arising from path asymmetry. For instance, a
k-layer GNN aggregates the neighbors within the shortest path k for the central node. If the graph is
undirected, the shortest path between any two nodes is symmetric, as shown in the undirected graph
of Fig. 1. This symmetry simplifies the representation of node relationships, implying that if the
shortest path distances (SPDs) from one node to two other nodes are identical, then the SPDs from
these two nodes back to the source node must also be the same. Conversely, such symmetry is absent
in digraphs. Considering the digraph in Fig. 1, the shortest paths between vi and vj are asymmetric.
Therefore, although vj and vk are both immediate outgoing neighbors of vi, the strength of their
relationships with the central node differs significantly. Existing methods (Rossi et al., 2023; Tong
et al., 2020b; Zhang et al., 2021), by focusing solely on unidirectional shortest paths (blue and red
arrows), fail to capture the asymmetry phenomenon, which conveys valuable information of node
relationships. Take social networks as an example: an ordinary user can directly follow a celebrity,

1‘unidirectional’ refers to relationships in digraphs where edges have a specific direction from one node to
another.
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Digraph Undirected
graph

asymmetric relationships symmetric relationships

Figure 1: A digraph and its undirected counterpart. Blue arrows indicate unidirectional paths, together
with longer paths in the gray area, forming commute closed loops between the central node vi and its
outgoing neighbors vj and vk. In the undirected graph, shortest path distances (SPD) between nodes
are symmetric. However, in the digraph, the fact that unidirectional SPDs are equal does not imply
that mutual SPDs will also be equal. For instance, while the SPDs from vi to vj and vk are identical,
the reverse SPD from vj and vk back to vi do not necessarily match these distances.

yielding a short path to the celebrity, yet the reverse path from the celebrity to the follower might be
much longer. Considering only the short path from the follower to celebrity could falsely suggest
a level of closeness that does not exist. In contrast, accounting for the mutual paths between users
yields a more precise and robust measure of their relationship, with stronger mutual interactions
implying stronger connections.

To capture the mutual path interactions in GNNs, we adapt the concept of commute time, the expected
number of steps to traverse from a source node to a target and back, from the Markov chain theory
to the domain of graph learning. To this end, we first generalize the graph Laplacian to the digraph
by defining the divergence of the gradient on the digraph. Utilizing this digraph-specific Laplacian,
we develop an efficient method to compute commute time, ensuring sparsity and computational
feasibility. Then we incorporate the commute-time-based proximity measure into the message passing
process by assigning aggregation weights to neighbors. The intuition behind is that the immediate
and unidirectional neighboring relationships do not necessarily imply strong similarity, but the mutual
proximity is a more reliable indicator of relationship closeness. Our experimental results demonstrate
the effectiveness of CGNN.

Our main contributions are as follows:

i. We identify and address mutual path dependencies in directed graphs, which is crucial for
representing real-world relationships between entities, a factor ignored in prior work. Further, we
propose to use commute times to quantify the strength of node-wise mutual path dependencies.

ii. We extend the traditional graph Laplacian to directed graphs by introducing DiLap, a novel
Laplacian based on signal processing principles tailored for digraphs. Leveraging DiLap, we
develop an efficient and theoretically sound method for computing commute times that enhances
computational feasibility.

iii. We propose the Commute Graph Neural Networks (CGNN), which incorporate commute-time-
weighted message passing into their architecture. Through comprehensive experiments across
various digraph datasets, we demonstrate the effectiveness of CGNN.

2 PRELIMINARY

Notations Consider G = (V,E,X) as an unweighted digraph comprising N nodes, where V =
{vi}Ni=1 is the node set, E ⊆ (V × V ) is the edge set with size M , X ∈ RN×d is the node feature
matrix. Y = {y1, · · · , yN} is the set of labels for V . Let A ∈ RN×N be the adjacency matrix and
D = diag(d1, · · · , dN ) ∈ RN×N be the degree matrix of A, where di =

∑
vj∈V Aij is the out-

degree of vi. Let Ã = A+ I and D̃ = D+ I denote the adjacency and degree matrix with self-loops,
respectively. The transition probability matrix of the Markov chain associated with random walks on

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

G is defined as P = D−1A, where Pij = Aij/deg(vi) is the probability of a 1-step random walk
starting from vi to vj . Given that D−1 is a diagonal matrix and considering that real-world graphs
are typically sparse (M ≪ N2), A and consequently P can generally be considered sparse. Graph
Laplacian formalized as L = D−A is defined on the undirected graph whose adjacency matrix is
symmetric. The symmetrically normalized Laplacian with self-loops (Wu et al., 2019) is defined as
L̂ = D̃− 1

2 L̃D̃− 1
2 , where L̃ = D̃− Ã.

Digraph Neural Networks DirGNN (Rossi et al., 2023) is a general framework that generalizes
the message passing paradigm to digraphs by adapting to the directionality of edges. It involves
separate aggregation processes for incoming and outgoing neighbors of each node as follows:

m
(ℓ)
i,in = Agg

(ℓ)
in

({
h
(ℓ−1)
j : vj ∈ N in

i

})
m

(ℓ)
i,out = Agg(ℓ)out

({
h
(ℓ−1)
j : vj ∈ N out

i

})
h
(l)
i = Comb(ℓ)

(
h
(ℓ−1)
i ,m

(ℓ)
i,in,m

(ℓ)
i,out

)
,

(1)

where N in
i and N out

i are respectively incoming and outgoing neighbors of vi. Agg
(ℓ)
in (·) and Agg

(ℓ)
out(·)

are specialized aggregation functions of N in
i and N out

i at layer ℓ, used to encode the directional
characteristics of the edges connected to vi.

3 RANDOM WALK DISTANCE AND GNNS

Based on the established notations, we then show that message passing based GNNs naturally capture
the concept of hitting time during information propagation across the graph, due to the unidirectional
nature of the neighborhood aggregation. Subsequently, we argue for the significance of commute
time, highlighting it as a more compact measure of mutual node-wise interactions in random walks.

3.1 CAN GNNS CAPTURE RANDOM WALK DISTANCE?

In the context of random walks on a digraph, hitting time and commute time, collectively referred
to as random walk distances, serve as key metrics for assessing node connectivity and interaction
strength. Hitting time h(vi, vj) is the expected number of steps a random walk takes to reach a
specific target node vj for the first time, starting from a given source node vi. Commute time c(vi, vj)
is the expected number of steps required for a random walk to start at vi, reach vj , and come back. A
high hitting (commute) time indicates difficulty in achieving unidirectional (mutual) visits to each
other in a random walk. As illustrated in the digraph of Fig. 1, commute time c(vi, vj) > c(vi, vk),
while the hitting time h(vm, vi) = h(vi, vj) = h(vi, vk).

Motivation Given these definitions, two questions arise: How crucial is it to retain these measures
in graph learning? Also, are message-passing GNNs capable of preserving these characteristics?
Firstly, both hitting time and commute time are critical in understanding the structural dynamics of
graphs. Hitting time, analogous to the shortest path, measures the cost of reaching one node from
another, reflecting the directed influence or connectivity. Commute time, encompassing the round-trip
journey, offers insights into the mutual relationships between nodes, which is especially evident in
social networks, as illustrated by celebrity-follower relationships. Secondly, message-passing GNNs
are somewhat effective in capturing hitting time, as they propagate information across the graph in a
manner similar to a random walk, where quickly reached nodes are preferentially aggregated, and the
influence of nodes exponentially diminishes with increasing distance (Topping et al., 2022). However,
GNNs face challenges in preserving commute time due to their requirement for comprehending
mutual path relations, which are inherently asymmetric and often involve longer-range interactions
especially in digraphs, which are not naturally captured in the basic message-passing framework.

Taking the digraph in Fig. 1 as an example, a 1-layer DirGNN defined in Eq. (1) can encode vm,
vj and vk into the representation of vi, while also capturing the directionality of edges from these
neighbors by using distinct aggregation functions for incoming and outgoing neighbors. It shows
that DirGNN can capture the hitting time, as neighbors with lower hitting times, h(vi, vk), h(vi, vk)
and h(vm, vi), are aggregated preferentially. However, DirGNN inherently focuses on unidirectional

3
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interactions and overlooks mutual path dependencies. Notably, a 1-layer DirGNN is insufficient
for capturing the asymmetric interactions indicated by the paths from vj and vk returning to the
central node vi (gray areas). One potential approach to address this limitation is to stack additional
message passing layers to encompass the entire commute path between nodes, thereby capturing
mutual path interactions. Nevertheless, this strategy is non-trivial because the commute paths vary
considerably across different node pairs, complicating the determination of an appropriate number of
layers. Additionally, stacking multiple layers to cover these paths can introduce irrelevant non-local
information and lead to oversmoothing.

Goal We expect to directly encode node-wise commute time into the node representations to
accurately reflect the true interaction strength between adjacent nodes during neighbor aggregation,
accounting for both forward and backward paths. For instance, even though h(vi, vj) = h(vi, vk), a
shorter commute time c(vi, vk) < c(vi, vj) suggests a stronger interaction from vk to vi compared to
vj to vi. Consequently, the contribution of neighbor vk to the representation of vi should be greater
than that of vj .

3.2 COMMUTE TIME COMPUTATION

Based on the standard Markov chain theory, a useful tool to study random walk distances is the
fundamental matrix (Aldous & Fill, 2002). We first establish the following assumptions required to
support the theorem.

Assumption 3.1. The digraph G is irreducible and aperiodic.

These two properties pertain to the Markov chain’s stationary probability distribution π (i.e., Perron
vector) corresponding to the given graph. Irreducibility ensures that it is possible to reach any node
(state) from any other node, preventing π from converging to 0. Aperiodicity ensures that the Markov
chain does not get trapped in cycles of a fixed length, thus guaranteeing the existence of a unique π.
Existence and uniqueness of π facilitate deterministic analysis and computation. For a more intuitive
understanding of the assumptions, we give the sufficient conditions of digraph under the irreducibility
and aperiodicity assumptions.

Proposition 1. A strongly connected digraph, in which a directed path exists between every pair of
vertices, is irreducible. A digraph with self-loops in each node is aperiodic.

Given the above assumption, the fundamental matrix Z is defined as the sum of an infinite matrix
series:

Z =

∞∑
t=0

(
Pt − JΠ

)
=

∞∑
t=0

(
Pt − eπ⊤) , (2)

where e is the all-one column vector, then we have J = e · e⊤ is the all-one matrix, and Π = diag(π)
is the diagonal matrix of π.

Theorem 3.2. (Li & Zhang, 2012) Given Assumption 3.1, the fundamental matrix Z defined in
Eq. (2) converges to:

Z = (I−P+ JΠ)−1 − JΠ, (3)

where I is an identity matrix.

The hitting time and commute time on G can then be expressed as Z (Aldous & Fill, 2002) as follows:

h(vi, vj) =
Zjj − Zij

πj
, c(vi, vj) = h(vi, vj) + h(vj , vi). (4)

However, directly calculating the complete fundamental matrix Z and the commute times for all
node pairs is computationally expensive and yields a dense matrix. Moreover, integrating the random
walk distances computation, defined in Eq. (3) and Eq. (4), into the message passing framework is
non-trivial, which concerns the scalability of the model.

4
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4 COMMUTE GRAPH NEURAL NETWORKS

In this section, we present Commute Graph Neural Networks (CGNN) to encode the commute time
information into message passing. We first establish the relationship between random walk distances
and the digraph Laplacian.

4.1 DIGRAPH LAPLACIAN (DILAP)

Contrary to the traditional graph Laplacian, typically defined as a symmetric positive semi-definite
matrix derived from the symmetric adjacency matrix, our proposed DiLap is built upon the transition
matrix to preserve the directed structure. Specifically, the classical graph Laplacian L = D−A is
interpreted as the divergence of the gradient of a signal on an undirected graph (Shuman et al., 2013;
Hamilton, 2020): given a graph signal s ∈ RN , (Ls)i =

∑
j∈Ni

Aij(si − sj). Intuitively, graph
Laplacian corresponds to the difference operator on the signal s, and acts as a node-wise measure
of local smoothness. In line with this conceptual foundation, we generalize the graph Laplacian to
digraphs by defining the divergence of the gradient on digraphs with DiLap T:

Ts = GDs =⇒ T = Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤ (5)

where G is the gradient operator on graph signals, and D is the divergence operator. B ∈ RN×M

is an incidence matrix, where the dimensions represent nodes and edges, respectively. For edge
indices {e1, · · · , eM} ∈ E, if ek = (vi, vj) ∈ E, then the k-th column of B corresponding to ek

has +1 in row i and −1 in row j. diag
(
{Pij}M(vi,vj)∈E

)
is a diagonal matrix whose entries are

the transition probabilities corresponding to the edges in the graph. The detailed derivation of T
is included in Appendix A.1, which illustrates how T functions as a measure of smoothness in
directed graphs, taking into account their directional properties. Although the structure of DiLap
depends on the indices of edges and nodes, such as the ordering of edge transition probabilities in
diag

(
{Pij}M(vi,vj)∈E

)
, the following property holds (for proof, see Appendix A.2).

Proposition 2. DiLap T is permutation equivariant with respect to node indices and permutation
invariant with respect to edge indices.

Given the Laplacian operator’s role in assessing signal smoothness throughout the graph, it is essential
to allocate greater weights to nodes of higher structural importance. This prioritization ensures that
the smoothness at nodes central to the graph’s structure more significantly influences the overall
smoothness measurement. Thus, we further define the Weighted DiLap T :

(T s)i = (ΠGDs)i = πi

 ∑
vj∈N in

i

(Gs)(vj ,vi) −
∑

vj∈N out
i

(Gs)(vi,vj)

 =⇒ T = ΠT (6)

Here we utilize the i-th element of the Perron vector π to quantify the structural importance of
vi, reflecting its eigenvector centrality. This is based on the principle that a node’s reachability is
directly proportional to its corresponding value in the Perron vector (Xu et al., 2018). Therefore, π
effectively indicates the centrality and influence over the long term in the graph. Perron-Frobenius
Theorem (Horn & Johnson, 2012) establishes that π satisfies

∑
i πi = 1, is strictly positive, and

converges to the left eigenvector of the dominant eigenvalue of P.

4.2 SIMILARITY-BASED GRAPH REWIRING

Both the fundamental matrix defined in Eq. (3) and Weighted DiLap requires Assumption 3.1 to
ensure the existence and uniqueness of the Perron vector π, conditions that are not universally met
in general graphs. To fulfill the irreducibility and aperiodicity assumptions, Tong et al. (2020a)
introduce a teleporting probability uniformly distributed across all nodes. This method, inspired
by PageRank (Page et al., 1999), amends the transition matrix to Ppr = γP+ (1− γ) ee

⊤

N , where
γ ∈ (0, 1). Ppr allows for the possibility that a random walker may choose a non-neighbor node for

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Add edges to

Figure 2: The sorted node indices in Ω are connected one by one with undirected edges to construct
G′, then adding all edges from G′ to G to generate G̃.

the next step with a probability of 1−γ
N . This adjustment ensures that Ppr is irreducible and aperiodic,

so it has a unique π. However, this approach leads to a complete graph represented by a dense matrix
Ppr, posing significant challenges for subsequent computational processes.

Rather than employing Ppr as the transition matrix, we introduce a graph rewiring method based on
feature similarity to make a given graph irreducible, while maintaining the sparsity. As outlined in
Proposition 1, to transform the digraph into a strongly connected structure, it is essential that each
node possesses a directed path to every other node. To this end, we initially construct a simple and
irreducible graph G′ with all N nodes, then add all edges from G′ the original digraph G, thereby
ensuring G’s irreducibility. The construction of G′ begins with the calculation of the mean of node
features as the anchor vector a. Then we determine the similarity between each node and the anchor,
sort the similarity values, and return the sorted node indices, denoted as Ω ∈ RN :

a =

∑
i Xi

N
, ωi = cos(a,Xi), S = arg sort({ωi}Ni=1) (7)

where cos(a,Xi) is the cosine similarity between node features of vi and a, and argsort(·) yields
the indices of nodes that sort similarity values {ωi}Ni=1. We then connect the nodes one by one with
undirected (bidirectional) edges following the order in S to construct G′, as shown in Fig. 2. Given
that G′ is strongly connected, adding all its edges into G results in a strongly connected digraph G̃,
which is irreducible. To achieve aperiodicity, self-loops are further added to G̃.

This rewiring approach satisfies Assumption 3.1 and maintains graph sparsity. Additionally, adding
edges between nodes with similar features only minimally alters the overall semantics of the original
graph. Based on G̃ and its corresponding P̃, B̃, and Π̃, we have the deterministic Weighted DiLap
T̃ .

4.3 FROM DILAP TO COMMUTE TIME

Given the Weighted DiLap T̃ , we can unify the commute time information into the message passing
by building the connection between T̃ and the fundamental matrix Z:

Lemma 4.1. Given a rewired graph G̃, the Weighted DiLap is defined as T̃ =

Π̃B̃diag

({
P̃ij

}M

(vi,vj)∈E

)
B̃⊤. Then the fundamental matrix Z of G̃ can be solved by:

Z = T̃ †Π̃ = T̃†, (8)
where the superscript † means Moore–Penrose pseudoinverse of the matrix.

The proof is given in Appendix A.3. Leveraging Lemma 4.1 and using Eq. (4), we can further
compute the hitting times and commute times in terms of T̃ with the following theorem.

Theorem 4.2. Given G̃, the hitting time and commute time from vi to vj on G̃ can be computed as
follows:

h(vi, vj) =
T̃†

jj

πj
−

T̃†
ij√

πiπj
,

c(vi, vj) = h(vi, vj) + h(vj , vi) =
T̃†

jj

πj
+

T̃†
ii

πi
−

T̃†
ij√

πiπj
−

T̃†
ji√

πiπj
.

(9)
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Then we can derive the matrix forms of the hitting time H and commute time C as per Eq. (9):

H = (e⊗ π−1)(T̃† ⊙ I)− T̃† ⊙ (π− 1
2 ⊗ π− 1

2 ), C = H+H⊤ (10)

where ⊙ denotes Hadamard product, and ⊗ is outer product. Hij and Cij correspond to the hitting and
commute time from vi to vj respectively. The computation of commute times via DiLap, in contrast
to the method delineated in Theorem 3.2, is primarily motivated by efficiency concerns. Specifically,
Eq. (3) necessitates the inversion of a dense matrix with complexity O(N3), whereas our DiLap-
based method hinges on computing the pseudoinverse of a sparse matrix T̃. The pseudoinverse of
T̃ can be efficiently determined using SVD. Given the sparse nature of T̃, we can employ well-
established techniques such as the randomized truncated SVD algorithm (Halko et al., 2011; Cai
et al., 2023), which takes advantage of sparsity, to reduce the time complexity to O(q|E|), where |E|
denotes the number of edges reflecting the sparsity (See Appendix A.4). Next, we present Commute
Graph Neural Networks (CGNN) based on C.

4.4 CGNN

C ∈ RN×N quantifies the strength of mutual relations between node pairs in the random walk
context. Notably, smaller values in C correspond to stronger mutual reachability, indicating stronger
relations between node pairs. Thus, C is a positive symmetric matrix, and the commute-time-based
node proximity matrix can be expressed as C̃ = exp(−C). Since the directed adjacency matrix A
represents the outgoing edges of each node, A⊤ therefore accounts for all incoming edges. Then
we have C̃out = A ⊙ C̃ and C̃ in = A⊤ ⊙ C̃ represent the proximity between adjacent nodes under
outgoing and incoming edges, respectively. We further perform row-wise max-normalization on C̃out

and C̃ in to rescale the maximum value in each row to 1. Given the original graph G as input, we
define the ℓ-th layer of CGNN as:

m
(ℓ)
i,in = Agg

(ℓ)
in

({
C̃ in
ij · h

(ℓ−1)
j : vj ∈ N in

i

})
m

(ℓ)
i,out = Agg

(ℓ)
out

({
C̃out
ij · h(ℓ−1)

j : vj ∈ N out
i

})
h
(l)
i = Comb(ℓ)

(
h
(ℓ−1)
i ,m

(ℓ)
i,in,m

(ℓ)
i,out

)
,

(11)

where Agg
(ℓ)
in (·) and Agg

(ℓ)
out(·) are mean aggregation functions with different feature transformation

weights, and Comb(ℓ)(·) is a mean operator. Within each layer, the influence of vj on the central
node vi is modulated by the commute-time-based proximity C̃ based on the edge directionality. We
present the pseudocode of CGNN in Algorithm 1.

Complexity Analysis The randomized truncated SVD to compute T̃† is O(q|E|) where q is the
required rank, and the message passing iteration has the same time complexity as DirGNN with
O(L|E|d2). Therefore, the overall time complexity of CGNN is O((Ld2 + q)|E|). In practice, q
is typically set to 5, rendering the time complexity effectively linear with respect to the number of
edges |E|. In GNN domain, models with a complexity less than O(N2) are generally considered
feasible by researchers (Wu et al., 2020). Given that real-world networks are often extremely sparse,
i.e., |E| ≪ N2, CGNN demonstrates its feasibility as a model within the GNN family.

5 EXPERIMENTS

We conduct node classification experiments on eight digraph datasets. Experimental details and data
statistics are provided in Appendix C.1 and Appendix C.2. We provide a performance comparison
with 12 baselines including 1) General GNNs: GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), and GraphSAGE (Hamilton et al., 2017); 2) Non-local GNNs: APPNP (Klicpera et al., 2019),
MixHop (Abu-El-Haija et al., 2019), GPRGNN (Chien et al., 2021), and GCNII (Ming Chen et al.,
2020); 3) Digraph NNs: DGCN (Tong et al., 2020b), DiGCN (Tong et al., 2020a), MagNet (Zhang
et al., 2021), DiGCL (Tong et al., 2021), DUPLEX (Ke et al., 2024), and DirGNN (Rossi et al., 2023).
For all baselines, we apply both the symmetrized and asymmetric adjacency matrix for experiments.
The results reported are the better of the two results.
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Table 1: Node classification results. Accuracy (%) with standard deviation for 10 runs. We high-
light/underline the best/second-best method. For general GNN and non-local GNN baselines, we
conduct experiments on both symmetrized versions and their directed counterparts, reporting better
results from these two settings. OOM indicates out-of-memory. In Table 7 and Table 8 of Ap-
pendix D.1, we present detailed experimental results for both directed and undirected settings of all
available baselines.

Method Squirrel Chameleon Citeseer CoraML AM-Photo Snap-Patents Roman-Empire Arxiv-Year

GCN 52.43±2.01 67.96±1.82 66.03±1.88 70.92±0.39 88.52±0.47 51.02±0.06 73.69±0.74 46.02±0.26

GAT 40.72±1.55 60.69±1.95 65.58±1.39 72.22±0.57 88.36±1.25 OOM 49.18±1.35 45.30±0.23

GraphSAGE 41.61±0.74 62.01±1.06 66.81±1.38 74.16±1.55 89.71±0.57 67.45±0.53 86.37±0.80 55.43±0.75

APPNP 51.91±0.56 45.37±1.62 66.90±1.82 70.31±0.67 87.43±0.98 51.23±0.54 72.96±0.38 50.31±0.42

MixHop 43.80±1.48 60.50±2.53 56.09±2.08 65.89±1.50 87.17±1.34 41.22±0.19 50.76±0.14 45.30±0.26

GPRGNN 50.56±1.51 66.31±2.05 61.74±1.87 73.31±1.37 90.23±0.34 40.19±0.03 64.85±0.27 45.07±0.21

GCNII 38.47±1.58 63.86±3.04 58.32±1.93 64.84±0.71 83.40±0.79 48.09±0.09 74.27±0.13 57.36±0.17

DGCN 37.16±1.72 50.77±3.31 66.37±1.93 75.02±0.50 87.74±1.02 OOM 51.92±0.43 OOM
DiGCN 33.44±2.07 50.37±4.31 64.99±1.72 77.03±0.70 88.66±0.51 OOM 52.71±0.32 48.37±0.19

MagNet 39.01±1.93 58.22±2.87 65.04±0.47 76.32±0.10 86.80±0.65 OOM 88.07±0.27 60.29±0.27

DUPLEX 57.60±0.98 61.25±0.94 67.60±0.72 72.26±0.71 87.80±0.82 66.54±0.11 79.02±0.08 64.37±0.27

DiGCL 35.82±1.73 56.45±2.77 67.42±0.14 77.53±0.14 89.41±0.11 70.65±0.07 87.94±0.10 63.10±0.06

DirGNN 75.19±1.26 79.11±2.28 66.57±0.74 75.33±0.32 88.09±0.46 73.95±0.05 91.23±0.32 64.08±0.26

CGNN 77.83±1.52 79.62±2.33 71.59±0.16 77.08±0.54 90.42±0.10 72.89±0.24 92.87±0.45 66.16±0.32

5.1 OVERALL RESULTS AND ANALYSIS

Table 1 reports the node classification results across eight digraph datasets. Our method CGNN
achieves new state-of-the-art results on 6 out of 8 datasets, and comparable results on the remaining
ones, validating the superiority of CGNN. We provide more observations as follows. Firstly, while
non-local GNNs have the potential to cover the commute paths between adjacent nodes by stacking
multiple layers, they do not consistently outperform general, shallow GNN models. It suggests that
coarsely aggregating all nodes in commute paths is ineffective. The reason is that deeper models
may aggregate excessive irrelevant information for the central node. Our goal is to encode mutual
relationships between adjacent nodes by considering their commute times. Aggregating all nodes
along the entire path introduces excessive information about other nodes unrelated to the direct
relationship between the target nodes. Secondly, GNNs tailored for digraphs do not seem to bring
substantial gains. Our results show that with careful hyper-parameter tuning, general GNNs can
achieve results comparable to, or even better than, some of GNNs tailored for digraphs (DiGCN,
MagNet and DiGCL), as evidenced in the Squirrel, Chameleon, and AM-Photo datasets. Thirdly,
CGNN achieves state-of-the-art results on both homophilic and heterophilic digraph benchmarks.
Notably, DirGNN also performs comparably on heterophilic graphs (e.g., Squirrel and Chameleon),
supporting the findings of Rossi et al. (2023) that distinguishing edge directionality during message
passing enables the central node to adaptively balance information flows from both heterophilic
and homophilic neighbors, effectively mitigating the impact of heterophily. Moreover, CGNN,
an enhanced version of DirGNN, further improves performance on these graphs by effectively
incorporating commute times to refine the strength of relationships between nodes, enhancing model
robustness under heterophily.

To illustrate this, we further examine the relations between commute-time-based proximity and label
similarity along edges. As shown in Eq. (11), we use commute-time-based proximity C̃ to weigh the
neighbors during neighbor aggregation. Then we define a label similarity matrix M where Mij = 1
if vj ∈ Ni and yi = yj ; otherwise Mij = 0. Essentially, M extracts the edges connecting nodes
with the same classes from the adjacency matrix A. Thus a higher value of ∥M − (A + A⊤)∥22
indicates a more pronounced negative impact of heterophily on the model’s performance. On the
other hand, we compute ∥M− (C̃ in + C̃out)∥22 to evaluate the efficacy of C̃ in filtering heterophilic
information. The closer (C̃in + C̃out) is to M, the more effectively it aids the model in discarding
irrelevant heterophilic information. Fig. 3 visually demonstrates these relationships. We observe
that in heterophilic datasets, the commute-time-based proximity matrix (C̃in + C̃out), aligns more
closely with the label similarity matrix M than (A+A⊤). It indicates that C̃ effectively filters out
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Figure 4: Accuracy vs. running time on Squirrel and AM-Photo.

irrelevant information during message passing by appropriately weighting neighbors, which explains
the exceptional performance of CGNN on heterophilic datasets.

Application scope analysis. Can commute times always enhance message passing on directed
graphs? To answer this, we analyze the scope of use for CGNN based on Table 1. For example,
on the Snap-Patents and CoraML dataset, we observed that adding commute time-based weights
during message passing did not significantly enhance performance. Now we can analyze the reason
from the perspective of dataset. CoraML is a directed citation network where nodes predominantly
link to other nodes within the same research area. However, in such networks, reciprocal citations
between two papers are impossible due to their chronological sequence. Consequently, mutual path
dependencies do not exist, and thus, incorporating commute times to adjust neighbor weights might
might (slightly) hurt performance. A similar situation exists with the Snap-Patents dataset, where
each directed edge represents a citation from one patent to another, again indicating the absence of
mutual path dependencies.

In conclusion, in networks like citation networks where mutual relationships inherently do not exist,
applying commute times to enforce these relationships is unnecessary. Conversely, our model is
particularly effective in networks like webpage networks and social networks—examples being
Squirrel and AM-Photo—where mutual relationships are prevalent. For instance, in a social network,
an ordinary user may follow a celebrity, creating a short path to the celebrity. However, the reverse
path from the celebrity back to the user might be considerably longer. Therefore, in such networks,
considering mutual relationships based on commute times can provide a more accurate description of
node relationships.

5.2 EFFICIENCY COMPARSION

Fig. 4 compares the accuracy of CGNN and other baseline models with their running times. Despite
the additional computational load of calculating commute-time-based proximity, the results show that
CGNN provides the best trade-off between effectiveness and efficiency. In particular, on the Squirrel
dataset, CGNN has the third-fastest calculation speed while yielding accuracy nearly double that of
all other methods. On AM-Photo, CGNN achieves the highest accuracy while maintaining moderate
efficiency.

5.3 COMPONENT ANALYSIS

Table 2: Changes in commute times be-
fore and after rewiring.

CoraML Chameleon Roman-Empire

δ 0.03280 0.00157 0.06242

Comparison between graph rewiring and PPR. In
Section 4.2, we construct a rewired graph G̃ based on
feature similarity to guarantee the irreducibility and ape-
riodicity. This approach introduces at most two additional
edges per node, specifically targeting those with the high-
est feature similarity, while minimally altering the original
graph structure to preserve semantic information. To in-
vestigate changes in commute times before and after rewiring, for the original graph, we use its
largest connected component, removing absorbing nodes (i.e., nodes without outgoing edges) to
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ensure that we can compute meaningful and deterministic commute times. We denote the average
normalized commute time for the original graph as corig; For the rewired graph, we directly compute
the commute time and denote this average normalized value as crew. We then use δ =

∥corig−crew∥2

∥corig∥
to quantify the changes, which can be intepretated as the proportion of commute information changed
in the original graph. As shown in Table 2, the graph rewiring method can effectively preserve the
original commute times of the graph.

In contrast, the classic PageRank transition matrix, defined as Ppr = γP+ (1− γ) ee
⊤

N , achieves
a similar objective but results in a completely connected graph Gpr. However, this approach tends
to overlook the sparse structure of the original graph, which may alter the semantic information in
the graph. Additionally, computing commute times using a dense transition matrix incurs a high
computational cost. To validate the effectiveness of the rewiring approach over the PPR method, we
conduct an experiment where G̃ is replaced with Gpr in the computation of commute-time-based
proximity. We denote this variant as ‘CGNNppr’ and the results of accuracy and efficiency are
reported in Table 3. The findings reveal that the PPR approach is suboptimal in terms of both accuracy
and efficiency, thereby underscoring the effectiveness of our rewiring-based approach.

Table 3: Accuracy and running time (s) of CGNN and CGNNppr.

Squirrel Chameleon Citeseer CoraML AM-Photo

Method Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time

CGNN 77.83 99.25 79.62 115.77 71.59 89.25 77.08 125.20 90.42 124.17
CGNNppr 68.37 257.84 71.69 253.05 68.59 137.82 76.23 192.09 88.52 203.04

Table 4: Impact of directed structure.

Squirrel CoraML AM-Photo

CGNN 77.83 77.08 90.42
CGNNsym 72.37 71.29 88.53

Directed vs. Undirected. To validate the critical role of
directed structures in our model, we transform all directed
edges into undirected ones by adding their reverse coun-
terparts. This process results in a symmetric adjacency
matrix, denoted as Asym. Subsequently, the commute time
is calculated based on the transition matrix derived from
Asym. We refer this variant as ‘CGNNsym’. Table 4 shows the accuracy of CGNN and CGNNsym on
three datasets. We find that edge direction can significantly influence the prediction accuracy for our
model.

6 LIMITATION

Memory cost represents a limitation of our model. The commute time matrix, C , is inherently dense
as it retains commute times between all node pairs, leading to a memory complexity that scales
quadratically with the number of nodes, expressed as O(N2). In contrast, baseline methods such as
GCN, GAT, and DirGNN typically require memory proportional to the number of edges, O(M)s.
This distinction highlights the more substantial memory requirements of our approach.

7 CONCLUSION

Identifying and encoding asymmetric mutual path dependencies in directed graphs is essential
for accurately representing real-world relationships between entities. In this work, we utilize the
concept of commute time to assess the strength of relationships in directed graphs and introduce
the Commute Graph Neural Network (CGNN) to incorporate node-wise commute time into node
representations. To achieve this, we propose DiLap, a novel Laplacian formulation derived from
the divergence of the gradient of signals on directed graphs, along with an efficient computational
method for deterministic commute times. By integrating commute times into GNN message passing
through neighbor weighting, CGNN effectively harnesses path asymmetry in directed graphs, thereby
enhancing node representation learning. Our extensive experiments across eight directed graph
datasets demonstrate that CGNN significantly outperforms existing methods.
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A PROOFS AND DERIVATIONS

A.1 DERIVATION OF DILAP T

The gradient operator G maps a signal defined on the nodes of the graph to a signal on the edges. For
a directed graph G and a signal s ∈ RN on the nodes, the gradient Gs is defined on the edges as:

(Gs)(vi,vj) = Pij(si − sj) (12)

for each directed edge (vi, vj) ∈ E. This captures the difference in the signal between the source
node vi and the target node vj .

The divergence operator D maps a signal defined on the edges back to a signal on the nodes. For a
signal Gs ∈ RM on the edges, the divergence at node vi is:

(D(Gs))i =
∑

vj∈N in
i

(Gs)(vj ,vi) −
∑

vj∈N out
i

(Gs)(vi,vj) (13)

This computes the net “incoming” minus “outgoing” signal flow at each node. The digraph Laplacian
DiLap T is then defined as the composition of the divergence and gradient operators on the original
signal s:

Ts = DGs (14)

Eq. (12) and Eq. (13) demonstrate that the composed operator forming DiLap effectively measures
how the signal diverges from each node considering the graph’s directionality. Therefore, analogous
to the traditional Laplacian in undirected graphs, DiLap acts as a measure of smoothness specifically
tailored for directed graphs.

To express T in matrix form, we initially define the incidence matrix B ∈ RN×M , which encapsulates
both the connectivity and the directionality of the edges within the digraph:

Bik =


+1, ek = (vi, vj)

−1, ek = (vj , vi)

0, otherwise
, (15)
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where k ∈ {1, · · · ,M} represents fixed edge indices, and each undirected edge is treated as compris-
ing two unidirectional edges. Then We construct a diagonal matrix representing the edge transition
probabilities, denoted as diag

(
{Pij}M(vi,vj)∈E

)
∈ RM×M , where the principal diagonal elements

are indexed according to the edge indices. Based on the above definitions, the gradient operator
G can be represented as G = diag

(
{Pij}M(vi,vj)∈E

)
B⊤, and the divergence operator as D = B.

Therefore, the DiLap becomes:

T = Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤ (16)

A.2 PROOF OF PROPOSITION 2

Proof. Let Qnode ∈ RN×N be a node permutation matrix that reorders the nodes in G. The permuted
incidence matrix can be represented as B′ = Q⊤

nodeB. Then we have the permuted DiLap T′:

T′ = B′diag
(
{Pij}M(vi,vj)∈E

)
B′⊤

=
(
Q⊤

nodeB
)
diag

(
{Pij}M(vi,vj)∈E

) (
B⊤Qnode

)
= Q⊤

nodeTQnode

(17)

Eq. (17) shows that T′ is obtained by conjugating T with the node permutation matrix Qnode, which
means T′ is T with its rows and columns permuted according to Qnode. Thus T is permutation
equivariant up to a relabeling of nodes.

Let Qedge ∈ RM×M be an edge permutation matrix that reorders the edges of G. The per-
muted incidence matrix can be represented as B′ = BQedge, and the permuted diagonal matrix

diag
(
{Pij}M(vi,vj)∈E

)′
= Q⊤

edgediag
(
{Pij}M(vi,vj)∈E

)
Qedge. Then we have the permuted DiLap

T′:
T′ = B′diag

(
{Pij}M(vi,vj)∈E

)′
B′⊤

= (BQedge)
(
Q⊤

edgediag
(
{Pij}M(vi,vj)∈E

)
Qedge

) (
Q⊤

edgeB
⊤)

= Bdiag
(
{Pij}M(vi,vj)∈E

)
B⊤

= T

(18)

Eq. (18) shows that T remains unchanged under edge permutation when B and
diag

(
{Pij}M(vi,vj)∈E

)
are adjusted accordingly. Thus T is fully invariant to the ordering of

edges.

A.3 PROOF OF LEMMA 4.1

Proof. We first define the weighted out-transition matrix as F = diag

({
πi

∑
j Pij

}N

i=1

)
. Based

on F, the weight DiLap T can be written as T = F−ΠP. P can be expressed as:

P = Π−1(F− T ). (19)

Since the transition matrix P is row-stochastic, it follows that PtJ = J. In light of Eq. (2) and
considering that π is stochastic, we have ZJ = 0n×n and Π− 1

2FΠ− 1
2 = I.

Let K = Π− 1
2 T Π− 1

2 , J = Π
1
2JΠ

1
2 , and Z = Π

1
2ZΠ− 1

2 , we have J 2 = J . As π⊤Z = 0, we
have ZJ = Π

1
2ZJΠ

1
2 = 0N×N and JZ = 0N×N . Since B⊤J = 0N×N , TJ = 0N×N and

JT = 0N×N holds. Incorporating these into Eq. (3), we have:

Z + J = (K + J )−1. (20)

By post-multiplying Eq. (20) from the right by (K + J ), we have:

I− J = ZK + JK, (21)
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where JK = (Π
1
2JΠ

1
2 )(Π− 1

2TΠΠ− 1
2 ) = Π

1
2JTΠ− 1

2 = 0N×N . Then we have:
ZK = I− J (22)

Similarly, by multiplying from the left, we establish that KZ = I−J . Since JZ = 0N×N , ZKZ =

Z . Furthermore, KJ = (Π− 1
2TΠΠ− 1

2 )(Π
1
2JΠ

1
2 ) = 0N×N leads to KZK = K. Considering

the symmetry of the left part of Eq. (23), we have (ZK)⊤ = ZK. Similarly, (KZ)⊤ = KZ . These
derivations satisfy the sufficient conditions for the Moore–Penrose pseudoinverse, such that

Z = K† (23)
Finally, recovering Z and K as:

Z = T †Π (24)
which concludes the proof.

A.4 SVD FOR T̃†

Given a matrix T̃ ∈ RN×N , its Moore-Penrose pseudoinverse can be directly computed with an SVD-
based method. Specifically, we first perform truncated SVD on T̃ ≈ UqΣqV

⊤
q , where Uq ∈ RN×q

and Vq ∈ RN×q contains the first q columns of U and V. Σq ∈ Rq×q is the diagonal matrix of q
largest singular values. It is a q-rank approximation of T̃, which holds that rank(R) = q. Then the
Moore-Penrose pseudoinverse of T̃ can be easily computed as follows:

T̃† = UqΣ
−1
q V⊤

q . (25)

To leverage sparsity of T̃ to avoid O(N3) complexity, we adopt the randomized SVD algorithm
proposed by (Halko et al., 2011; Cai et al., 2023) to first approximate the range of the input matrix
with a low-rank orthonormal matrix, and then perform SVD on this smaller matrix:

Ûq, Σ̂q, V̂
⊤
q = ApproxSVD(T̃, q),

ˆ̃
TSV D = ÛqΣ̂qV̂

⊤
q , (26)

where Ûq, Σ̂q, and V̂q are the approximated versions of Uq, Σq, and Vq. Then the Moore-Penrose
pseudoinverse of T̃ can be computed by:

T̃† = ÛqΣ̂
−1
q V̂ ⊤

q . (27)
The computation cost of randomized truncated SVD takes O(qK), where K is the number of non-
zero elements in T̃, so we have K = |E|. Thus, the sparsity degree of T̃ can determine the time
complexity of its Moore-Penrose pseudoinverse, which demonstrates the importance of Lemma 4.1.

B PSEUDO CODE FOR CGNN

C IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL SETTINGS

We evaluate the performance by node classification accuracy with standard deviation in the semi-
supervised setting. For Squirrel and Chameleon, we use 10 public splits (48%/32%/20% for train-
ing/validation/testing) provided by (Pei et al., 2019). For the remaining datasets, we adopt the same
splits as (Tong et al., 2020a; 2021), which chooses 20 nodes per class for the training set, 500 for the
validation set, and allocates the rest to the test set. We conduct our experiments on 2 Intel Xeon Gold
5215 CPUs and 1 NVIDIA GeForce RTX 3090 GPU.

C.2 DATA STATISTICS

The datasets used in Section 5 are Squirrel, Chameleon (Rozemberczki et al., 2021), Citeseer (Sen
et al., 2008), CoraML (Bojchevski & Günnemann, 2017), AM-Photo (Shchur et al., 2018), Snap-
Patents, Roman-Empire, and Arxiv-Year (Rossi et al., 2023). We summarize their statistics in
Table 5. homo ratio represents the homophily ratio, a metric proposed by Zhu et al. (2020). which is
employed to gauge the degree of homophily within the graph. A lower homo ratio signifies a greater
degree of heterophily, indicating a higher prevalence of edges that connect nodes of differing classes.
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Algorithm 1 CGNN
Input: Digraph G = (V,E,X); Depth L; Hidden size d′; Number of classes K
Output: Logits Ŷ ∈ RN×K

1: Compute the anchor a and node-anchor similarities to construct G′ with Eq. (7).
2: Add all edges from G′ to G to generate G̃.
3: Compute the Weight DiLap T̃ for G̃ with Eq. (6).
4: Compute R and its Moore-Penrose pseudoinverse with Eq. (8) and Eq. (27).
5: Compute the commute time matrix C with Eq. (10).
6: Compute the normalized proximity matrix C̃ with C̃out = A⊙ C̃ and C̃ in = A⊤ ⊙ C̃.
7: for ℓ ∈ {1, · · · , L} do
8: Layer-wise message passing with Eq. (11).
9: end for

10: H = MLP(H(L)).
11: Ŷ = Softmax(H).

Table 5: Statistics of the datasets.

Dataset N |E| # Feat. # Classes homo ratio

Squirrel 5,201 217,073 2,089 5 0.22
Chameleon 2,277 36,101 2,325 5 0.23
Cora-ML 2,995 8,416 2,879 7 0.79
Citeseer 3,312 4,715 3,703 6 0.74
AM-Photo 7,650 238,162 745 8 0.83
Snap-Patents 2,923,922 13,975,791 269 5 0.22
Roman-Empire 22,662 44,363 300 18 0.05
Arxiv-Year 169,343 1,166,243 128 40 0.22

C.3 HYPERPARAMETER SETTINGS

For our model, we tune the hyperparameters based on the highest average validation accuracy. We
utilize the randomized truncated SVD algorithm for computing the Moore-Penrose pseudoinverse
of matrix R, setting the required rank q to 5 for all datasets. The learning rate lr is selected from
{0.01, 0.005}, and the weight decay wd from {0, 5e−5, 5e−4}. In the model architecture, the number
of layers L vary among {1, 2, 3, 4, 5} and the dimension d′ is selected from {32, 64, 128, 256, 512}.
The comprehensive hyperparameter configurations for CGNN are detailed in Table 6.

Table 6: Hyperparameters specifications.

Dataset lr wd L d′

Squirrel 0.005 0 5 128
Chameleon 0.01 0 4 128
CoraML 0.01 0 2 64
Citeseer 0.01 0 2 128
AM-Photo 0.005 0 2 512
Snap-Patents 0.01 0 2 32
Roman-Empire 0.01 5e− 4 2 64
Arxiv-Year 0.01 5e− 4 2 64

D ADDITIONAL EXPERIMENTS

D.1 DETAILED EXPERIMENTAL RESULTS ON NODE CLASSIFICATION

Table 1 in Section 5 presents the results from experiments conducted on all eight directed graph
datasets. For each baseline, experiments were carried out on both the original directed graph datasets
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and their undirected counterparts, which feature symmetrized adjacency matrices. The superior
accuracy results from these two settings are reported in Table 1. This section provides a detailed
exposition of the experimental outcomes for these configurations in Table 7 and Table 8. It is
important to note that while GCN is traditionally a spectral method suited only for undirected graphs,
it can be adapted to directed graphs by interpreting it from a spatial perspective, specifically, by
aggregating outgoing neighbors with the weight 1√

didj

. This adaptation allows GCN to be applicable

in both experimental settings. Additionally, APPNP, GPRGNN, and GCNII are spectral methods that
require symmetrized adjacency matrices for spectral filters. Therefore, we only report their results
under the undirected settings in Table 1. For DirGNN and CGNN, in the case of undirected graphs,
these models degenerate to GraphSAGE.

Table 7: Comparison of node classification accuracy between original directed graphs and their
undirected counterparts on Squirrel, Chameleon, Citeseer, and CoraML.

Squirrel Chameleon Citeseer CoraML

Method Dir. Undir. Dir. Undir. Dir. Undir. Dir. Undir.

GCN 52.43±2.01 51.93±1.19 63.37±0.92 67.96±1.82 64.27±1.56 66.03±1.88 68.73±0.24 70.92±0.39

GAT 40.72±1.55 40.50±1.47 60.69±1.95 59.37±1.52 65.58±1.39 54.22±0.98 72.20±0.49 72.22±0.57

GraphSAGE 35.19±0.54 41.61±0.74 58.20±1.19 62.01±1.06 62.57±0.71 66.81±1.38 74.16±1.55 72.98±0.90

MixHop 39.25±0.91 43.80±1.48 60.50±2.53 60.15±1.22 56.09 ±2.08 54.71±0.50 65.89±1.50 61.20±0.91

DGCN 37.16±1.72 38.24±1.19 50.7±3.31 48.26±1.97 66.37±1.93 62.15±0.80 75.02±0.50 73.11±0.68

DiGCN 33.44±2.07 28.17±1.90 50.37±4.31 43.08±5.77 64.99±1.72 64.35±1.64 77.03±0.70 76.98±1.00

MagNet 39.01±1.93 35.20±1.65 58.22±2.87 55.46±3.10 65.04±0.47 64.90±0.51 76.32±0.10 76.29±0.08

DUPLEX 57.60±0.98 55.26±1.10 61.25±0.94 61.20±0.75 67.60±0.72 67.35±0.70 72.26±0.71 72.21±0.65

DiGCL 35.82±1.73 33.10±0.94 56.45±2.77 51.16±3.85 67.42±0.14 66.53±0.10 77.53±0.14 76.24±0.05

Table 8: Comparison of node classification accuracy between original directed graphs and their
undirected counterparts on AM-Photo, Snap-Patents, Roman-Empire, and Arxiv-Year.

AM-Photo Snap-Patents Roman-Empire Arxiv-Year

Method Dir. Undir. Dir. Undir. Dir. Undir. Dir. Undir.

GCN 88.52±0.47 85.33±0.25 51.02±0.06 50.15±0.04 73.69±0.74 73.58±0.37 46.02±0.26 44.81±0.19

GAT 88.36±1.25 87.50±1.77 OOM OOM 49.18±1.35 43.37±1.02 45.30±0.23 43.27±0.09

GraphSAGE 89.71±0.57 86.23±1.25 67.45±0.53 60.10±0.26 86.37±0.80 84.26±0.28 55.43±0.75 51.19±0.73

MixHop 87.17±1.30 85.50±1.01 40.17±0.10 41.22±0.19 43.00±0.06 50.76±0.14 45.30±0.26 41.25±0.50

DGCN 87.74±1.02 86.53±1.77 OOM OOM 51.92±0.43 50.50±0.47 OOM OOM
DiGCN 88.66±0.51 87.94±0.23 OOM OOM 52.71±0.32 50.43±0.21 48.37±0.19 47.26±0.11

MagNet 86.80±0.65 85.21±0.20 OOM OOM 88.07±0.27 82.99±0.80 60.29±0.27 55.25±0.10

DUPLEX 85.19±0.73 87.80±0.82 64.92±0.10 66.54±0.11 79.02±0.08 77.64±0.07 64.37±0.27 62.12±0.18

DiGCL 89.41±0.11 87.36±0.20 70.65±0.07 68.62±0.08 87.94±0.10 84.00±0.28 63.10±0.06 59.02±0.02

D.2 SENSITIVITY ANALYSIS

We investigate the sensitivity of CGNN to key hyperparameters that influence its performance,
specifically focusing on the number of layers L and the dimension of the hidden layer d′. We explore
a range of values for L, considering {1, 2, 3, 4, 5}, and for d′, considering {32, 64, 128, 256, 512}.
From Fig. 5, we observe that we observe that CGNN achieves optimal performance with L = 5 and
d′ = 128 on Squirrel, and with L = 2 and d′ = 64 on CoraML. This suggests that deeper models are
necessary to effectively aggregate valuable information in heterophilic graphs, whereas in homophilic
graphs, leveraging local neighborhood information is generally adequate.

D.3 LABEL SIMILARITY

Recall from Section 5.1, where we investigate the effectiveness of commute time in enhancing GNN
performance. We compare the squared Frobenius norm of the differences between the label similarity
matrix, M, and two propagation matrices: the commute-time-based propagation matrix C̃ in + C̃out,
and the original propagation matrix A+A⊤. This comparison aims to assess how well commute
time facilitates the discarding of irrelevant heterophilic information during message passing. In
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(a) Squirrel
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73.27 72.88 72.10 72.11 72.88

(b) CoraML

Figure 5: Sensitivity analysis on Squirrel and CoraML.

Fig. 6a, we analyze the label similarity in homophilic graphs, specifically CoraML and Citeseer. The
results demonstrate that our model effectively filters and enhances useful information even within

homophilic graph settings. Additionally, we consider two other propagation matrices: the matrix ̂̃
A

from vanilla GCN used in vanilla GCN, and the approximate personalized PageRank APPR from
PPRGo (Bojchevski et al., 2020), further broadening our comparative framework. Fig. 6b and and
Fig. 6d illustrate that GCN and PPRGo only slightly reduce heterophilic information from neighbors
during message passing, in contrast to the more substantial reductions achieved by CGNN.
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(a) CGNN on homophilic graph
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(b) GCN on heterophilic graph
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(c) GCN on homophilic graph
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(d) PPRGo on heterophilic graph
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(e) PPRGo on heterophilic graph

Figure 6: The distance between M and A, as well as between M and the propagation matrices used
by CGNN, GCN, and PPRGo on both heterophilic and homophilic graphs.

D.4 SYNTHETIC DATASET

To intuitively examine how commute time enhances the GNN’s ability to learn node relationships,
we introduce a synthetic dataset tailored for binary classification on directed graphs. This dataset
comprises 3,000 nodes, evenly split into two classes of 1,500 nodes each. Node features for each
class are generated from distinct Gaussian distributions: N (0, 1) for the first class and N (3, 1) for
the second.

Edge construction within this dataset adheres to class-based probabilities: nodes within the same
class connect with a probability of 0.2, whereas inter-class connections occur at a probability of 0.02,
with all connections assigned random directions. Additionally, we define a commute path length
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range between [2, 7], creating a graph where each node has an asymmetric commute path with its
neighbors. This method allows us to create a graph where each node has an asymmetric commute
path with its neighbors, facilitating a detailed examination of how graph neural networks perform
under varying structural conditions.

Upon this graph, we deploy our CGNN model to learn node representations. We then measure the
Mutual Information (MI) between the central node and its neighbors, differentiated by short (αs)
and long (αl) commute times. A higher average MI for short commute times (αs) compared to
long commute times (αl) would validate our model’s capacity to effectively capture and preserve
commute relationships. Our empirical results reveal that CGNN attained an αs = 13.2974 and an
αl = 6.5521, corroborating the intended design and efficacy of our model in leveraging commute
times for enhanced node representation learning.

D.5 IMPACT OF GRAPH REWIRING

Table 9: Impact of directed structure.

AM-Photo Snap-Patent Arxiv-Year

∆ 0.103 0.067 0.032

To explore how the rewiring procedure only minimally
alters the overall semantics of the original graph, we define
edge density as δ = M

Mmax
, where Mmax is the maximum

possible number of edges (N2 for both G and G̃) in the
graph and M is the actual number of edges. We denote
the edge density of the original graph G as δ and that of
the rewired graph G̃ as δ̃. Thus the change of graph density after rewiring can be represented as
∆ = δ̃−δ

δ ∈ (0, 1), the smaller ∆ indicates that the less effect of our methods on graph density. In the
Table 9 we calculate ∆ on AM-Photo, Snap-Patent and Arxiv-Year datasets. The results reveal that
on the AM-Photo dataset, graph rewiring increases density by 10.3%, while on the Snap-Patent and
Arxiv-Year datasets, the increases are only 6.7% and 3.2% respectively. These findings demonstrate
that our rewiring method generally has a modest effect on graph density.

E RELATED WORK

E.1 DIGRAPH LAPLACIAN

While the Laplacian for undirected graphs has been extensively studied, the area of Laplace operator
digraphs remains underexplored. Chung (2005) pioneers this area by defining a normalized Laplace
operator specifically for strongly connected directed graphs with nonnegative weights. This operator
is expressed as I − π1/2Pπ−1/2+π−1/2P∗π1/2

2 . Key to this formulation is the use of the transition
probability operator P and the Perron vector π, with the operator being self-adjoint. Building
on the undirected graph Laplacian, Singh et al. (2016) adapt this concept to accommodate the
directed structure, focusing particularly on the in-degree matrix. They define the directed graph
Laplacian as Din −A, where Din = diag

({
din
i

}N

i=1

)
represents the in-degree matrix. Li & Zhang

(2012) uses stationary probabilities of the Markov chain governing random walks on digraphs to
define the Laplacian as π

1
2 (I−P)π− 1

2 , which underscores the importance of random walks and their
stationary distributions in understanding digraph dynamics. Hermitian Laplacian Furutani et al. (2020)
consider the edge directionality and node connectivity separately, and encode the edge direction
into the argument in the complex plane. Diverging from existing Laplacians, our proposed DiLap
Bdiag

(
{Pij}M(vi,vj)∈E

)
B⊤ is grounded in graph signal processing principles, conceptualized as the

divergence of a signal’s gradient on the digraph. It encompasses the degree matrix D to preserve local
connectivity, the transition matrix P to maintain the graph’s directed structure, and the diagonalized
Perron vector Π, capturing critical global graph attributes such as node structural importance, global
connectivity, and expected reachability (Chung, 1997).

E.2 DIGRAPH NEURAL NETWORKS

To effectively capture the directed structure with GNNs, spectral-based methods (Zhang et al., 2021;
Tong et al., 2020a;b) have been proposed to preserve the underlying spectral properties of the digraph
by performing spectral analysis based on the digraph Laplacian proposed by (Chung, 2005). Koke &
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Cremers (2024) introduce holomorphic filters as spectral filters for digraphs, and investigate their
optimal filter-bank. MagNet (Zhang et al., 2021) and its extensions (Lin & Gao, 2023; Fiorini
et al., 2023) utilizes magnetic Laplacian to derive a complex-valued Hermitian matrix to encode the
asymmetric nature of digraphs. Spatial GNNs also offer a natural approach to capturing directed
structures. For instance, GraphSAGE (Hamilton et al., 2017) allows for controlling the direction of
information flow by considering in-neighbors or out-neighbors separately. DirGNN (Rossi et al., 2023)
further extends this framework by segregating neighbor aggregation according to edge directions,
offering a more refined method to handle the directed nature of graphs. Transformer-based methods
capture directed structure by specific positional encoding modules, such as directional random walk
encoding (Geisler et al., 2023) and partial order encoding (Luo et al., 2024). DUPLEX (Ke et al.,
2024) utilizes Hermitian adjacency matrix decomposition for neighbor aggregation and incorporates
a dual GAT encoder for modeling directional neighbors.
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