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Abstract

The partial observability and stochasticity in multi-agent settings can be mitigated
by accessing more information about others via communication. However, the
coordination problem still exists since agents cannot communicate actual actions
with each other at the same time due to the circular dependencies. In this paper, we
propose a novel multi-level communication scheme, Sequential Communication
(SeqComm). SeqComm treats agents asynchronously (the upper-level agents
make decisions before the lower-level ones) and has two communication phases.
In the negotiation phase, agents determine the priority of decision-making by
communicating hidden states of observations and comparing the value of intention,
obtained by modeling the environment dynamics. In the launching phase, the
upper-level agents take the lead in making decisions and then communicate their
actions with the lower-level agents. Theoretically, we prove the policies learned by
SeqComm are guaranteed to improve monotonically and converge. Empirically,
we show that SeqComm outperforms existing methods in various cooperative
multi-agent tasks.

1 Introduction

Centralized training with decentralized execution (CTDE) [Lowe et al., 2017] is a popular learning
paradigm in cooperative multi-agent reinforcement learning (MARL). Although the centralized
value function can be learned to evaluate the joint policy of agents, the decentralized policies of
agents are essentially independent. Therefore, a coordination problem arises. That is, agents may
make sub-optimal actions by mistakenly assuming others’ actions when there exist multiple optimal
joint actions [Busoniu et al., 2008]. Communication allows agents to obtain information about
others to avoid miscoordination [Jiang et al., 2024]. However, most existing work only focuses on
communicating messages, e.g., the information of agents’ current observation or historical trajectory
[Jiang and Lu, 2018, Singh et al., 2019, Das et al., 2019, Ding et al., 2020]. It is impossible for an
agent to acquire other’s actions before making decisions since the game model is usually synchronous,
i.e., agents make decisions and execute actions simultaneously.

A general approach to solving the coordination problem is to make sure that ties between equally
good actions are broken by all agents. One simple mechanism for doing so is to know exactly what
others will do and adjust the behavior accordingly under a unique ordering of agents and actions
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[Busoniu et al., 2008]. Inspired by this, we reconsider the cooperative game from an asynchronous
perspective. In other words, each agent is assigned a priority (i.e. order) of decision-making at
each step, thus the Stackelberg equilibrium (SE) [Von Stackelberg, 2010] is naturally set up as the
learning objective. Specifically, the upper-level agents make decisions before the lower-level agents
(Each agent represents a unique level, with upper and lower levels being relative.). Therefore, the
lower-level agents can acquire the actual actions of the upper-level agents by communication and
make their decisions conditioned on what the upper-level agents would do. Importantly, we never
break the fundamental dynamic, p(st+1|st,a1:k−1), in the multi-agent system. The agents make
decisions asynchronously but perform actions simultaneously as the default environment setting.

Under this setting, the SE is likely to be Pareto superior to the average Nash equilibrium (NE) in games
that require a high cooperation level [Zhang et al., 2020]. However, is it necessary to decide a specific
priority of decision-making for each agent? Ideally, the optimal joint policy can be decomposed by
any orders [Wen et al., 2019], e.g., π∗(a1, a2|s) = π∗(a1|s)π∗(a2|s, a1) = π∗(a2|s)π∗(a1|s, a2).
But during the learning process, agents are unlikely to use other agents’ optimal actions for gradient
calculation, making it still vulnerable to the relative overgeneralization problem [Wei et al., 2018].
This means there is no guarantee that different orders will converge to the same suboptimal. We also
claim that the different priorities of decision-making may affect the optimality of the convergence of
the learning algorithm in Section 3. Note that relative overgeneralization occurs when a suboptimal
NE in the joint space of actions is preferred over an optimal NE because each agent’s action in the
suboptimal equilibrium is a better choice when matched with arbitrary actions from the cooperative
agents.

This work proposes a novel multi-level communication scheme for cooperative MARL, Sequential
Communication (SeqComm), to enable agents to coordinate with each other explicitly. Specifically,
SeqComm has two-phase communication, negotiation phase and launching phase. In the negotiation
phase, agents communicate their hidden states of observations with others simultaneously. Then,
they can generate multiple predicted trajectories, called intention, by modeling the environmental
dynamics and other agents’ actions. In addition, the priority of decision-making is determined
by communicating and comparing the agents’ intentions, which are evaluated by their state-value
functions. The value of each intention represents the predicted rewards obtained by treating that
agent as the first mover of the order sequence. The sequence of others follows the same procedure
as aforementioned with the upper-level agents fixed. In the launching phase, the upper-level agents
take the lead in decision-making and communicate their actual actions with the lower-level agents.
The actual actions will be executed simultaneously in the environment without changes.

SeqComm is currently built on MAPPO [Yu et al., 2021]. Theoretically, we prove the policies
learned by SeqComm are guaranteed to improve monotonically and converge. Empirically, we
evaluate SeqComm on StarCraft multi-agent challenge v2 (SMACv2) [Samvelyan et al., 2019].
We demonstrate that SeqComm outperforms existing communication-free and communication-
based methods in various maps in SMACv2. By ablation studies, we confirm that treating agents
asynchronously is a more effective way to promote coordination, and SeqComm can provide the
proper priority of decision-making for agents to develop better coordination.

2 Related Work

Communication. Existing work [Jiang and Lu, 2018, Kim et al., 2019, Singh et al., 2019, Das et al.,
2019, Zhang et al., 2019, Jiang et al., 2020, Ding et al., 2020, Konan et al., 2022] in this realm mainly
focus on how to extract valuable messages. ATOC [Jiang and Lu, 2018] and IC3Net [Singh et al.,
2019] utilize gate mechanisms to decide when to communicate with other agents. Several studies [Das
et al., 2019, Konan et al., 2022] employ multi-round communication to fully reason the intentions
of others and establish complex collaboration strategies. Social influence [Jaques et al., 2019] uses
communication to influence the behaviors of others. I2C [Ding et al., 2020] only communicates
with agents that are relevant and influential which are determined by causal inference. However, all
these methods focus on how to exploit valuable information from current or past partial observations
effectively and properly. More recently, some studies [Kim et al., 2021, Du et al., 2021, Pretorius et al.,
2021] begin to answer the question: can we favor cooperation beyond sharing partial observation?
They allow agents to imagine their future states with a world model and communicate those with
others. IS [Pretorius et al., 2021], as the representation of this line of research, enables each agent
to share its intention with other agents in the form of the encoded imagined trajectory and use the
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attention module to figure out the importance of the received intention. However, two concerns arise.
On one hand, circular dependencies can lead to inaccurate predicted future trajectories as long as the
multi-agent system treats agents synchronously. On the other hand, MARL struggles in extracting
useful information from numerous messages, not to mention more complex and dubious messages,
i.e. predicted future trajectories. Unlike these studies, we treat the agents from an asynchronous
perspective, therefore, circular dependencies can be naturally resolved. Moreover, agents send actions
to lower-level agents, making the messages compact and informative.

Coordination. The agents are essentially independent decision-makers in execution and may
break ties between equally good actions randomly. Thus, in the absence of additional mechanisms,
different agents may break ties in different ways, and the resulting joint actions may be suboptimal.
Coordination graphs [Guestrin et al., 2002, Böhmer et al., 2020, Wang et al., 2021] simplify the
coordination when the global Q-function can be additively decomposed into local Q-functions that
only depend on the actions of a subset of agents. Typically, a coordination graph expresses a higher-
order value decomposition among agents. This improves the representational capacity to distinguish
other agents’ effects on local utility functions, which addresses the miscoordination problems caused
by partial observability.

Another general approach to solving the coordination problem is to make sure that ties are broken
by all agents in the same way, requiring that random action choices are somehow coordinated or
negotiated. Social conventions [Boutilier, 1996] or role assignments [Prasad et al., 1998] encode prior
preferences towards certain joint actions and help break ties during action selection. Communication
[Fischer et al., 2004, Vlassis, 2007] can be used to negotiate action choices, either alone or in
combination with the aforementioned techniques. Our method follows this line of research by
utilizing the ordering of agents and actions to break the ties, other than the enhanced representational
capacity of the local value function.

More discussions of related work are in Appendix C.

3 Problem Formulation

Cost-Free Communication. The decentralized partially observable Markov decision process (Dec-
POMDP) can be extended to multi-agent POMDP [Oliehoek et al., 2016] by sharing observations
among agents via communication. The joint observations are not necessarily equivalent to the state.
However, joint observations can be used to represent the state better than single observations.

Previous work [Pynadath and Tambe, 2002] shows that under cost-free communication, agents
would share optimal messages for mutual interest. If the communication cost is high, there is a
balance between delivering all the useful messages for greater benefits and keeping the amount
of communication as low as possible. In addition, analyzing this extreme case gives us some
understanding of the benefit of communication, even if the results do not apply across all domains.
However, even under multi-agent POMDP where agents can get joint observations, coordination
problems can still arise [Busoniu et al., 2008]. Suppose the centralized critic has learnt actions pairs
[a1, a2] and [b1, b2] that are equally optimal. Without any prior information, the individual policies
π1 and π2 learned from the centralized critic can break the ties randomly and may choose a1 and b2,
respectively.

Multi-Agent Sequential Decision-Making. We consider fully cooperative multi-agent tasks that
are modeled as multi-agent POMDP, where n agents interact with the environment according to the
following procedure, which we refer to as multi-agent sequential decision-making.

At each timestep t, assume the priority (i.e. order) of decision-making for all agents is given and
each priority level has only one agent (i.e., agents make decisions one by one). Note that the
smaller the level index, the higher priority of decision-making is. The agent at each level k gets
its own observation okt drawn from the state st, and receives messages m−k

t from all other agents,
where m−k

t ≜ {{o1t , a1t}, . . . , {ok−1
t , ak−1

t }, ok+1
t , . . . , ont }. Equivalently, m−k

t can be written as
{o−k

t ,a1:k−1
t }, where o−k

t denotes the joint observations of all agents except k (in practice, agents
communicate the hidden states/encodings of observations), and a1:k−1

t denotes the joint actions of
agents 1 to k−1. For the agent at the first level (i.e., k = 1), a1:k−1

t = ∅. Then, the agent determines
its action akt sampled from its policy πk(·|okt ,m−k

t ) or equivalently πk(·|ot,a
1:k−1
t ) and sends it to

the lower-level agents. After all, agents have determined their actions, they perform the joint actions
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Figure 1: (a) Payoff matrix for a one-step game. There are multiple local optima. (b) Evaluations
of different methods for the game in terms of the mean reward and standard deviation of ten runs.
A → B, B → A, Simultaneous, and Learned represent that agent A makes decisions first, agent B
makes decisions first, two agents make decisions simultaneously, and there is another learned policy
determining the priority of decision making, respectively. MAPPO [Yu et al., 2021] is used as the
backbone.

at, which can be seen as sampled from the joint policy π(·|st) factorized as
∏n

k=1 πk(·|ot,a
1:k−1
t ),

in the environment and get a shared reward r(st,at) and the state transitions to next state s′ according
to the transition probability p(s′|st,at). All agents aim to maximize the expected return

∑∞
t=0 γ

trt,
where γ is the discount factor. The state-value function and action-value function of the level-k agent
are defined as follows:

Vπk
(s,a1:k−1) ≜ E

s1:∞
ak:n

0 ∼πk:n
a1:∞∼π

[

∞∑
t=0

γtrt|s0 = s,a1:k−1
0 = a1:k−1]

Qπk
(s,a1:k) ≜ E

s1:∞
ak+1:n

0 ∼πk+1:n
a1:∞∼π

[

∞∑
t=0

γtrt|s0 = s,a1:k
0 = a1:k].

For the setting of multi-agent sequential decision-making discussed above, we have the following
proposition.
Proposition 1. If all the agents update their policy with individual TRPO [Schulman et al., 2015] se-
quentially in multi-agent sequential decision-making, then the joint policy of all agents are guaranteed
to improve monotonically and converge.

Proof. The proof is given in Appendix A.

Proposition 1 indicates that SeqComm has the performance guarantee regardless of the priority of
decision-making in multi-agent sequential decision-making. However, the priority of decision-making
indeed affects the optimality of the converged joint policy, and we have the following claim.
Claim 1. The different priorities of decision-making affect the optimality of the convergence of the
learning algorithm due to the relative overgeneralization problem.

We use a one-step matrix game as an example, as illustrated in Figure 1(a), to demonstrate the influence
of the priority of decision-making on the learning process. Due to relative overgeneralization [Wei
et al., 2018], agent B tends to choose b2 or b3. Specifically, b2 or b3 in the suboptimal equilibrium is
a better choice than b1 in the optimal equilibrium when matched with arbitrary actions from agent A.
Therefore, as shown in Figure 1(b), B → A (i.e., agent B makes decisions before A, and A’s policy
conditions on the action of B) and Simultaneous (i.e., two agents make decisions simultaneously
and independently) are easily trapped into local optima. However, if agent A goes first, things can
be different, as A → B achieves the optimum. As long as agent A does not suffer from relative
overgeneralization, it can help agent B get rid of local optima by narrowing down the search space
of B. Besides, a policy that determines the priority of decision-making can be learned under the
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Figure 2: Overview of SeqComm. SeqComm has two communication phases, the negotiation phase
(left) and the launching phase (right). In the negotiation phase, agents communicate hidden states of
observations with others and obtain their own intention. The priority of decision-making is determined
by sharing and comparing the value of all the intentions. In the launching phase, the agents who hold
the upper-level positions will make decisions prior to the lower-level agents. Besides, their actions
will be shared with anyone that has not yet made decisions.

guidance of the state-value function, denoted as Learned. It obtains better performance than B → A
and Simultaneous, which indicates that dynamically determining the order during policy learning can
be beneficial as we do not know the optimal priority in advance.

Remark 1. The priority (i.e. order) of decision-making affects the optimality of the converged
joint policy in multi-agent sequential decision-making, thus it is critical to determine the order.
However, learning the order directly requires an additional centralized policy in execution, which is
not generalizable in a scenario where the number of agents varies. Moreover, its learning complexity
exponentially increases with the number of agents, making it infeasible in many cases.

4 Sequential Communication

In this paper, we cast our eyes in another direction and resort to the world model, which is the dynamic
model of the environment. Ideally, we can randomly sample candidate order sequences, evaluate
them under the world model (see Section 4.1), and choose the order sequence that is deemed the most
promising under the true dynamic. SeqComm is designed based on this principle to determine the
priority of decision-making via communication.

In SeqComm, communication is separated into phases serving different purposes and multi-round
communication in one phase is possible. One is the negotiation phase for agents to determine the
priority of decision-making. Another is the launching phase for agents to act conditioning on actual
actions upper-level agents will take to implement explicit coordination via communication. The
overview of SeqComm is illustrated in Figure 2. Each SeqComm agent consists of a policy, a critic,
and a world model, as illustrated in Figure 3, and the parameters of all networks are shared across
agents [Gupta et al., 2017].

World Model. The world model is needed to predict and evaluate future trajectories. SeqComm,
unlike previous works [Kim et al., 2021, Du et al., 2021, Pretorius et al., 2021], can utilize received
hidden states of other agents in the first round of communication to model more precise environment
dynamics for the explicit coordination in the next round of communication. Once an agent can access
other agents’ hidden states, it shall have adequate information to estimate their actions since all agents
are homogeneous and parameter-sharing. Therefore, the world model M(·) takes as input the joint
hidden states ht = {h1

t , . . . , h
n
t } and actions at, and predicts the next joint observations and reward.

In practice, before the inputs pass into the world model, the attention module AMw is utilized to
process the input.

ôt+1, r̂t+1 = Mi(AMw(ht,at)).

The reason that we adopt the attention module is to entitle the world model to be generalizable in the
scenarios where additional agents are introduced or existing agents are removed.
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4.1 Negotiation Phase

In the negotiation phase, the observation encoder first takes ot as input and outputs a hidden state
ht to compress the information, which is used to communicate with others. Note that many studies
[Ding et al., 2020, Jiang and Lu, 2018] found that redundant messages may impair the learning
process empirically. In more detail, the model can converge slowly or sometimes lead to a worse
sub-optimal. Agents then determine the priority of decision-making by intentions which is established
and evaluated based on the world model.

Priority of Decision-Making. Intention is the key element in determining the priority of decision-
making. The notion of intention is described as an agent’s future behavior in previous works
[Rabinowitz et al., 2018, Raileanu et al., 2018, Kim et al., 2021]. However, we define the intention as
an agent’s future behavior without considering others.

As mentioned before, an agent’s intention considering others can lead to circular dependencies and
cause miscoordination. By our definition, the intention of an agent should be depicted as all future
trajectories considering that agent as the first mover and ignoring the others. However, there are many
possible future trajectories as the priority of the rest of the agents is unfixed. In practice, we use the
Monte Carlo method to estimate the intention value based on all future trajectories. Note that it is
uniform across priorities for unfixed agents. Each order should be treated equally since we do not
have any prior for the distribution.

Taking agent i at timestep t to illustrate, it firstly considers itself as the first-mover and produces its
action only based on the joint hidden states, âit ∼ πi(·|AMa(ht, ∅), where we again use an attention
module AMa to handle the input. For the order sequence of lower-level agents, we randomly sample
a set of order sequences from unfixed agents. Assume agent j is the second-mover, agent i models
j’s action by considering the upper-level action following its own policy âjt ∼ πi(·|AMa(ht, â

i
t)).

The same procedure is applied to predict the actions of all other agents following the sampled order
sequence. Based on the joint hidden states and predicted actions, the next joint observations ôt+1 can
be predicted by the world model M. The length of the predicted future trajectory is H and it can
then be written as τ t = {ôt+1, ât+1, . . . , ôt+H , ât+H} by repeating the procedure aforementioned.

Then, the agent uses its critic (state-value function) to evaluate the future trajectory and output value
vτt . The intention value is defined as the average value of F future trajectories with different sampled
order sequences. Through the critic, we have linked the order and agent performance together.

After all the agents have computed their intentions and the corresponding value, they again commu-
nicate their intention values to others. Then, agents would compare and choose the agent with the
highest intention value to be the first mover. The priority of lower-level decision-making follows the
same procedure with the upper-level agents fixed. Note that some agents may communicate intention
values with others multiple times until the priority of decision-making is finally determined.

4.2 Negotiation Phase for Local Communication

The full communication version of SeqComm is constructed based on theoretical derivation. It has a
theoretical guarantee to some extent, but some assumptions, e.g., broadcast communication, can
be unrealistic and incur lots of communication overhead. Therefore, we provide another version of
SeqComm in scenarios where agents can only communicate with nearby agents (agents within a
limited communication range).

In more detail, the agent first calculates its intention value based only on the hidden states of
nearby agents. After comparing with the intention values of nearby agents (intention values are
communicated with the nearby agents), the agent can determine the upper-level and lower-level
nearby agents. Unlike the previous version of SeqComm, agents cannot distinguish the detailed
order sequence of the upper-level nearby agents since their communication ranges may not overlap.
Therefore, the intention values are calculated and communicated among agents for only one time.
The local communication version greatly reduces communication overhead, making it more suitable
for many real applications.

For more details of the algorithms, please refer to the Appendix D for the pseudo-code.

4.3 Launching Phase
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Figure 3: Architecture of SeqComm. The critic
and policy of each agent take input as its own ob-
servation and received messages. The world model
takes as input the joint hidden states and predicted
joint actions.

As for the launching phase, agents communi-
cate to obtain additional information to make
decisions. Apart from the received hidden states
from the last phase, we allow agents to get what
actual actions the upper-level agents will take in
execution, while other studies can only infer oth-
ers’ actions by opponent modeling [Rabinowitz
et al., 2018, Raileanu et al., 2018] or communi-
cating intentions [Kim et al., 2021]. Therefore,
miscoordination can be naturally avoided, and
a better cooperation strategy is possible since
lower-level agents can adjust their behaviors ac-
cordingly.

A lower-level agent i make a decision follow-
ing the policy πi(·|AMa(ht,a

upper
t )), where

aupper
t means received actual actions from all

upper-level agents. As long as the agent has de-
cided on an action, it will send the action to all
other lower-level agents through the communica-
tion channel. Note that the actions are executed
simultaneously and distributedly in execution,
though agents make decisions sequentially.

4.4 Theoretical Analysis

As intention values determine the priority of decision-making, SeqComm is likely to choose different
orders at different timesteps during training. However, we have the following proposition that
theoretically guarantees the performance of the learned joint policy under SeqComm.
Proposition 2. The monotonic improvement and convergence of the joint policy in SeqComm are
independent of the priority of decision-making of agents at each timestep.

Proof. The proof is given in Appendix A.

The priority of decision-making is chosen under the world model, thus the compounding errors in the
world model can result in discrepancies between the predicted returns of the same order under the
world model and the true dynamics. We then analyze the monotonic improvement for the joint policy
under the world model based on Janner et al. [2019].
Theorem 1. Let the expected total variation between two transition distributions be bounded at
each timestep as maxt Es∼πβ,t

[DTV (p(s
′|s,a)||p̂(s′|s,a))] ≤ ϵm, and the policy divergences at

level k be bounded as maxs,a1:k−1 DTV (πβ,k(a
k|s,a1:k−1)||πk(a

k|s,a1:k−1)) ≤ ϵπk
, where πβ is

the data collecting policy for the model and p̂(s′|s,a) is the transition distribution under the model.
Then the model return η̂ and true return η of the policy π are bounded as:

η̂[π] ≥ η[π]−

[
2γrmax(ϵm + 2

∑n
k=1 ϵπk

)

(1− γ)2
+

4rmax

∑n
k=1 ϵπk

(1− γ)
]︸ ︷︷ ︸

C(ϵm,ϵπ1:n
)

.

Proof. The proof is given in Appendix B.

Remark 2. Theorem 1 provides a useful relationship between the compounding errors and the policy
update. As long as we improve the return under the true dynamic by more than the gap, C(ϵm, ϵπ1:n

),
we can guarantee the policy improvement under the world model. If no such policy exists to overcome
the gap, it implies the model error is too high, that is, there is a large discrepancy between the world
model and true dynamics. Thus the order sequence obtained under the world model is not reliable.
Such an order sequence is almost the same as a random one. Though a random order sequence
also has the theoretical guarantee of Proposition 2, we will show in Section 5.2 that a random order
sequence leads to a poor local optimum empirically.
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Figure 4: Learning curves of SeqComm and baselines in nine SMACv2 maps.

5 Experiments

SeqComm is currently instantiated based on MAPPO [Yu et al., 2021]. We evaluate SeqComm nine
maps in StarCraft multi-agent challenge v2 (SMACv2) [Ellis et al., 2024].

In the experiments, SeqComm and baselines are parameter-sharing for fast convergence [Gupta
et al., 2017, Terry et al., 2020]. We have fine-tuned the baselines for a fair comparison. The world
model in the SMACv2 environment is trained from scratch and kept fine-tuned in the learning process.
Therefore, no extra prior knowledge is provided. Please refer to the Appendix for the hyperparameter
settings. All results are presented in terms of the mean and standard deviation of five runs with
different random seeds.

5.1 Results

SMACv2. We have evaluated our method on the most representative and challenging multi-agent
environment currently available. Compared with SMAC [Samvelyan et al., 2019], SMACv2 has some
better properties, i.e. stochasticity and partial observability. In other words, agents need to cooperate
more in the new environment to complete tasks, whereas they could achieve a certain success rate
without cooperation in the original environment.

We have chosen nine maps for extensive evaluation and made some minor changes to the observation
part of agents to make it more difficult. Specifically, the sight range of agents is reduced from 9 to 3,
and agents cannot perceive any information about their allies even if they are within the sight range.
NDQ [Wang et al., 2020] adopts a similar change to increase the difficulty of action coordination.
The rest of the settings remain the same as the default. In summary, we require the environment to be
one where a high success rate cannot be achieved solely based on individual observations.

We also evaluate the local communication version of SeqComm. Agents can only communicate with
nearby agents (agents within their communication range). Note that the map size and the total number

8



0M 2M 4M 6M 8M 10M
0.0

0.2

0.4

0.6

0.8 SeqComm (range 9)
SeqComm (local)
SeqComm (range 3)
SeqComm (range 1)
MAPPO

(a) protoss 10 vs 10

0M 2M 4M 6M 8M 10M
0.0
0.1
0.2
0.3
0.4
0.5 SeqComm (range 9)

SeqComm (local)
SeqComm (range 3)
SeqComm (range 1)
MAPPO

(b) terran 10 vs 10

Figure 5: Ablation studies of the communication ranges.

of agents restrict the number of nearby agents. As the task progresses, the number of nearby agents is
from 2 to 4.

Analysis. The learning curves of SeqComm and the baselines in terms of the win rate are illustrated
in Figure 4. All communication-based methods perform better than communicaion-free method
(MAPPO). In easy scenarios, communication may not be very useful, but experiments have shown
that in cases with significant partial observability and stochasticity, communication can greatly
enhance agent ability.

We compare our method with TarMAC [Das et al., 2019], which holds a similar position in communi-
cation settings to that of MAPPO in communication-free settings. SeqComm outperforms TarMAC
in all maps, which verifies the gain of explicit action coordination. Moreover, the full-communication
version performs better than the local-communication version because the former can access more
information. However, it also costs more communication overhead.

5.2 Ablation Studies

Priority of Decision-Making. We primarily want to contribute a practical version to the community.
Moreover, the fewer communicative agents there are, the fewer possible orders there are, thus
increasing the probability of randomly obtaining a good order. It would be more meaningful to
demonstrate that devoting effort to finding a good order is still important in such a scenario. Therefore,
we do the ablation study for the local version of the SeqComm. In more detail, we compare SeqComm
with two ablation baselines: the priority of decision-making is determined randomly at each timestep,
denoted as Random, and agents only access the observations of others during training and execution,
denoted as No action.

As depicted in Figure 7, SeqComm achieves a higher win rate than Random and No action in all the
maps. These results verify the importance of the priority of decision-making and the necessity to
adjust it continuously during one episode. It is also demonstrated that SeqComm can provide a proper
priority of decision-making. As discussed in Section 4.4, although Random also has the theoretical
guarantee, they converge to poor local optima in practice. Surprisingly, in most tasks, Random
performs worse than No action. It again verifies that a bad order may fail to improve coordination or
even impair it.

0M 2M 4M 6M 8M 10M
0.0

0.1

0.2

0.3

0.4 SeqComm (local)
TarMAC (local)
SeqComm (local, mlp)
MAPPO

Figure 6: Ablation studies on the net-
work mechanisms.

Communication Range. We also conduct experiments
to demonstrate the impact of different communication
ranges. We set communication ranges to {1, 3, 9}, in
addition to the default range of 6. We notice a steady
improvement in performance as the communication range
increases. Therefore, the choice of communication range
is a trade-off between communication overhead and agent
performance. In our previous experiments, we choose a
compromise value of 3 for the local version to validate the
effectiveness of our method. Results refer to Figure 5.
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Figure 7: Ablation studies under local communication in SMACv2.

Network Mechanisum. We replaced the attention mechanism for local communication with an
aggregation method. In more detail, messages are concatenated and passd into a five-layer linear
neural networks. The curve is based on 3 random seeds and tested on the terran 10v10 map. The
results refer to Figure 6.

6 Conclusions

We have proposed SeqComm, which enables agents to coordinate well and explicitly with each other,
and it, from an asynchronous perspective, allows agents to make decisions sequentially. A two-phase
communication scheme has been adopted to determine the priority of decision-making and transfer
messages accordingly. Empirically, it is demonstrated that SeqComm outperforms baselines in a
variety of cooperative multi-agent scenarios.

Limitations. The assumption of accessing the local observation of any other agent could be strong
since it is unsuitable for all applications. Thus, we provide a local communication version of
SeqComm for assumption relaxation in the experiment.

Acknowledgements

This work was supported by the STI 2030-Major Projects under Grant 2021ZD0201404 and the
NSFC under Grants 62450001 and 62476008.

10



References
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A Proofs of Proposition 1 and Proposition 2

Lemma 1 (Agent-by-Agent PPO). If we update the policy of each agent i with TRPO Schulman et al.
[2015] (or approximately PPO) when fixing all the other agent’s policies, then the joint policy will
improve monotonically.

Proof. We consider the joint surrogate objective in TRPO Lπold
(πnew) where πold is the joint policy

before updating and πnew is the joint policy after updating.

Given that π−i
new = π−i

old, we have:

Lπold
(πnew) = Ea∼πnew

[Aπold
(s,a)]

= Ea∼πold
[
πnew(a|s)
πold(a|s)

Aπold
(s,a)]

= Ea∼πold
[
πi
new(a

i|s)
πi
old(a

i|s)
Aπold

(s,a)]

= Eai∼πi
old

[
πi
new(a

i|s)
πi
old(a

i|s)
Ea−i∼π−i

old
[Aπold

(s, ai, a−i)]

]
= Eai∼πi

old

[
πi
new(a

i|s)
πi
old(a

i|s)
Ai

πold
(s, ai)

]
= Lπi

old
(πi

new),

where Ai
πold

(s, ai) = Ea−i∼π−i
old

[Aπold
(s, ai, a−i)] is the individual advantage of agent i, and the

third equation is from the condition π−i
new = π−i

old.

With the result of TRPO, we have the following conclusion:

J(πnew)− J(πold) ≥ Lπold
(πnew)− CDmax

KL (πnew||πold)

= Lπi
old

(πi
new)− CDmax

KL (πi
new||πi

old) (from π−i
new = π−i

old)

This means the individual objective is the same as the joint objective so the monotonic improvement
is guaranteed.

Then we can show the proof of Proposition 1.

Proof. We will build a new MDP M̃ based on the original MDP. We keep the action space Ã = A =
×n

i=1A
i, where Ai is the original action space of agent i. The new state space contains multiple

layers. We define S̃k = S × (×k
i=1A

i) for k = 1, 2, · · · , n− 1 and S̃0 = S, where S is the original
state space. Then a new state s̃k ∈ S̃k means that s̃k = (s, a1, a2, · · · , ak). The total new state space
is defined as S̃ = ∪n−1

i=0 S̃
i. Next we define the transition probability P̃ as following:

P̃ (s̃′|s̃k, ak+1, a−(k+1)) = 1
(
s̃′ = (s̃k, ak+1)

)
, k < n− 1

P̃ (s̃′|s̃k, ak+1, a−(k+1)) = 1

(
s̃′ ∈ S̃0

)
P (s̃′|s̃k, ak+1), k = n− 1.

This means that the state in the layer k can only transition to the state in the layer k + 1 with the
corresponding action, and the state in the layer n− 1 will transition to the layer 0 with the probability
P in the original MDP. The reward function r̃ is defined as following:

r̃(s̃,a) = 1

(
s̃ ∈ S̃0

)
r(s̃,a).

This means the reward is only obtained when the state in layer 0 and the value is the same as the
original reward function. Now we obtain the total definition of the new MDP M̃ = {S̃, Ã, P̃ , r̃, γ}.

Then we claim that if all agents learn in multi-agent sequential decision-making by PPO, they are
actually taking agent-by-agent PPO in the new MDP M̃ . To be precise, one update of multi-agent
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sequential decision-making in the original MDP M equals to a round of update from agent 1 to agent
n by agent-by-agent PPO in the new MDP M̃ . Moreover, the total reward of a round in the new
MDP M̃ is the same as the reward in one timestep in the original MDP M . With this conclusion and
Lemma 1, we complete the proof.

The proof of Proposition 2 can be seen as a corollary of the proof of Proposition 1.

Proof. From Lemma 1 we know that the monotonic improvement of the joint policy in the new MDP
M̃ is guaranteed for each update of one single agent’s policy. So even if the different round of updates
in the new MDP M̃ is with different order of the decision-making, the monotonic improvement of the
joint policy is still guaranteed. Finally, from the proof of Proposition 1, we know that the monotonic
improvement in the new MDP M̃ equals to the monotonic improvement in the original MDP M .
These complete the proof.

B Proofs of Theorem 1

Lemma 2 (TVD of the joint distributions). Suppose we have two distribution p1(x, y) =
p1(x)p1(x|y) and p2(x, y) = p2(x)p2(x|y). We can bound the total variation distance of the
joint as:

DTV (p1(x, y)||p2(x, y)) ≤ DTV (p1(x)||p2(x)) + max
x

DTV (p1(y|x)||p2(y|x))

Proof. See [Janner et al., 2019] (Lemma B.1).

Lemma 3 (Markov chain TVD bound, time-varing). Suppose the expected KL-divergence between
two transition is bounded as maxt Es∼p1,t(s)DKL(p1(s

′|s)||p2(s′|s)) ≤ δ, and the initial state
distributions are the same p1,t=0(s) = p2,t=0(s). Then the distance in the state marginal is bounded
as:

DTV (p1,t(s)||p2,t(s)) ≤ tδ

Proof. See [Janner et al., 2019] (Lemma B.2).

Lemma 4 (Branched Returns Bound). Suppose the expected KL-divergence between two dynamics
distributions is bounded as maxt Es∼p1,t(s)[DTV (p1(s

′|s,a)||p2(s′|s,a))], and the policy diver-
gences at level k are bounded as maxs,a1:k−1 DTV (π1(a

k|s,a1:k−1)||π2(a
k|s,a1:k−1)) ≤ ϵπk

.
Then the returns are bounded as:

|η1 − η2| ≤
2rmaxγ(ϵm +

∑n
k=1 ϵπk

)

(1− γ)2
+

2rmax

∑n
k=1 ϵπk

1− γ
,

where rmax is the upper bound of the reward function.

Proof. Here, η1 denotes the returns of π1 under dynamics p1(s′|s,a), and η2 denotes the returns of
π2 under dynamics p2(s′|s,a). Then we have

|η1 − η2| = |
∑
s,a

(p1(s,a)− p2(s,a))r(s,a)|

= |
∑
t

∑
s,a

γt(p1,t(s,a)− p2,t(s,a))r(s,a)|

≤
∑
t

∑
s,a

γt|p1,t(s,a)− p2,t(s,a)|r(s,a)

≤ rmax

∑
t

∑
s,a

γt|p1,t(s,a)− p2,t(s,a)|.
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By Lemma 2, we get

max
s

DTV (π1(a|s)||π2(a|s)) ≤ max
s,a1

DTV (π1(a
−1|s, a1)||π2(a

−1|s, a1))

+ max
s

DTV (π1(a
1|s)||π2(a

1|s))

≤ · · ·

≤
n∑

k=1

max
s,a1:k−1

DTV (π1(a
k|s,a1:k−1)||π2(a

k|s,a1:k−1))

≤
n∑

k=1

ϵπk
.

We then apply Lemma 3, using δ = ϵm +
∑n

k=1 ϵπk
(via Lemma 3 and 2) to get

DTV (p1,t(s)||p2,t(s)) ≤ tmax
t

Es∼p1,t(s)DTV (p1,t(s
′|s)||p2,t(s′|s))

≤ tmax
t

Es∼p1,t(s)DTV (p1,t(s
′,a|s)||p2,t(s′,a|s))

≤ t(max
t

Es∼p1,t(s)DTV (p1,t(s
′|s,a)||p2,t(s′|s,a))

+ max
t

Es∼p1,t(s) max
s

DTV (π1,t(a|s)||π2,t(a|s)))

≤ t(ϵm +

n∑
k=1

ϵπk
)

And we also get DTV (p1,t(s,a)||p2,t(s,a)) ≤ t(ϵm +
∑n

k=1 ϵπk
) +

∑n
k=1 ϵπk

by Lemma 2. Thus,
by plugging this back, we get:

|η1 − η2| ≤ rmax

∑
t

∑
s,a

γt|p1,t(s,a)− p2,t(s,a)|

≤ 2rmax

∑
t

γt(t(ϵm +

n∑
k=1

ϵπk
) +

n∑
k=1

ϵπk
)

≤ 2rmax(
γ(ϵm +

∑n
k=1 ϵπk

))

(1− γ)2
+

∑n
k=1 ϵπk

1− γ
)

Then we can show the proof of Theorem 1.

Proof. Let πβ denote the data collecting policy. We use Lemma 4 to bound the returns, but it will
require bounded model error under the new policy π. Thus, we need to introduce πβ by adding and
subtracting η[πβ ], to get:

η̂[π]− η[π] = η̂[π]− η[πβ ] + η[πβ ]− η[π].

we can bound L1 and L2 both using Lemma 4 by using δ =
∑n

k=1 ϵπk
and δ = ϵm +

∑n
k=1 ϵπk

respectively, and obtain:

L1 ≥ −
2γrmax

∑n
k=1 ϵπk

(1− γ)2
−

2rmax

∑n
k=1 ϵπk

(1− γ)

L2 ≥ −
2γrmax(ϵπm

+
∑n

k=1 ϵπk
)

(1− γ)2
−

2rmax

∑n
k=1 ϵπk

(1− γ)
.

Adding these two bounds together yields the conclusion.
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C Additional Related Work

Reinforcement Learning in Stackelberg Game Many previous studies [Könönen, 2004, Sodomka
et al., 2013, Greenwald et al., 2003, Zhang et al., 2020] have investigated reinforcement learning in
finding Stackelberg equilibrium. Bi-AC [Zhang et al., 2020] is a bi-level actor-critic method that
allows agents to have different knowledge base so that Stackelberg equilibrium (SE) is possible to
find. The actions can still be executed simultaneously and distributedly. It empirically studies the
relationship between the cooperation level and the superiority of Stackelberg equilibrium to Nash
equilibrium. AQL [Könönen, 2004] updates the Q-value by solving the SE in each iteration and can
be regarded as the value-based version of Bi-AC.

Existing work mainly focuses on two-agent settings, and their order is fixed in advance. However,
fixed order can hardly be an optimal solution, especially for large-scale homogeneous agent scenarios.
To address this issue, we exploit agents’ intentions to dynamically determine the priority of decision-
making along the way of interacting with each other.

Multi-Agent Path Finding (MAPF) MAPF aims to plan collision-free paths for multiple agents
on a given graph from their given start vertices to target vertices. In MAPF, prioritized planning is
deeply coupled with collision avoidance [Van Den Berg and Overmars, 2005, Ma et al., 2019], where
collision is used to design constraints or heuristics for planning.

We will distinguish MAPF from our work from three perspectives, i.e. problem definition, the
motivation behind agent ordering, and the incompatibility of the two methods.

Problem definition: MAPF aims to plan collision-free paths for multiple agents on a given graph from
their given start vertices to their given target vertices. However, we aim to find a communication-
based solution for any Markov decision process with interests aligned. MDP covers lots of possible
coordination-needed scenarios, not just avoiding collisions. Besides, each agent has no specific given
target.

Motivation: In MAPF, prioritized planning does not offer completeness or optimality guarantees. It is
nevertheless popular because of its efficiency. In addition, the order is mainly used for avoiding colli-
sion. Unlike MAPF, our main contribution is to introduce prioritized decision-making to MARL and
a method to determine the priority of decision-making. To the best of our knowledge, determining the
priority of decision-making for learning algorithms has not been investigated. Moreover, combining
with learning algorithms will make prioritized decision-making more general (solving MDPs), not
just motion planning.

Methods: The different motivations and problems to solve will lead to the incompatibility of the
algorithms in the two fields. For MAPF, the order is assigned arbitrarily or derived from the problem
at hand. Collision is the keyword and prioritized planning is deeply coupled with this specific
coordination problem so that better performance can be achieved. Taking the method Ma et al. [2019]
as an example, their two algorithms are conflict-driven search frameworks. That is, collision is used to
design some constraints which are guided for search. In MARL, we have lots of unseen coordination
problems and we cannot enumerate them all to design constraints.

D Implementation Details

D.1 Algorithm

In this part, we provide the pseudo-code of SeqComm as below:

Algorithm 1 Negotiation Phase

Require: Number of agents N
P = [ ]: already determined priority
A = {1, 2, ..., N}: remaining agents
/* Agents communicate the hidden state h of their observations with each other*/
for i = 1, 2, ..., N do

for j in A do
Compute agent j’s intention value vj via Algorithm 2

end for
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/* Agents in A communicate the intention values with each other*/
Set pi to be the agent j with the maximum vj
Append pi to P and remove it from A

end for

Algorithm 2 Intention Value Calculation of Agent a

Require: Already determined priority P , remaining agents A, number of sampling trajectories F ,
length of predicted future trajectory H , policy π and attention module AMa, world model M and
attention module AMw, discount factor γ
for i = 1, 2, ..., F do

Randomly shuffle A\ {a} to sample a decision-making priority PA\{a} of the remaining agents
except agent a
for j = 0, 1, ...,H − 1 do

âupper = {}: predicted actions from all upper-level agents
for k in Concat(P, [a],PA\{a}) do

Sample âk following π(·|AMa(ht+j ,a
upper))

Append âk to âupper

end for
Rollout one step with the world model ôt+j+1, r̂t+j+1 = M(AMw(ht+j ,a

upper))
end for
Compute the return of the trajectory vi =

∑t+H
t′=t+1 γ

t′−t−1r̂t′ via the critic
end for
Compute the average return v = 1

F

∑F
i=1 vi

Algorithm 3 Launching Phase

Require: Decision-making priority P , policy π and AMa

aupper
t = {}: actions from all upper-level agents

for i in P do
Sample ait following πi(·|AMa(ht,a

upper
t ))

Append ait to aupper
t

/* Send aupper
t to the lower agent*/

end for
Interact with the environment with at

We also provide the pseudo-code of the local communication version as below:

Algorithm 4 Local Negotiation Phase of Agent a

Require: Neighbouring agents N
/* Agents communicate the hidden state h of their observations with neighbouring agents*/
Compute local intention va via Algorithm 5
/* Send va to neighbouring agents and receive {vi}i∈N from them */
Set upper-level neighbouring agents N upper = {i | vi > va, i ∈ N}
Set lower-level neighbouring agents N lower = {i | vi < va, i ∈ N}

Algorithm 5 Local Intention Value Calculation of Agent a

Require: Neighbouring agents N , number of sampling trajectories F , length of predicted future
trajectory H , policy π and AMa, world model M and AMw, discount factor γ
for i = 1, 2, ..., F do

Randomly shuffle N to sample a local decision-making priority PN
for j = 0, 1, ...,H − 1 do
âupper = {}: predicted actions from all upper-level agents
for k in Concat([a],PN ) do

Sample âk following π(·|AMa(ht+j ,a
upper))

Append âk to âupper

end for
Rollout one step with the world model ôt+j+1, r̂t+j+1 = M(AMw(ht+j ,a

upper))
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end for
Compute the return of the trajectory vi =

∑t+H
t′=t+1 γ

t′−t−1r̂t′
end for
Compute the average return v = 1

F

∑F
i=1 vi via the critic

Algorithm 6 Local Launching Phase of Agent a

Require: Upper-level neighbouring agents N upper, lower-level neighbouring agents N lower, policy
π and AMa

/* Receive upper-level actions aupper
t from all upper-level neighbouring agents N upper /*

Sample ait following πi(·|AMa(ht,a
upper
t ))

/* Send ait to all lower-level neighbouring agents N lower */
Interact with the environment with at

D.2 Architecture and Hyperparameters

Our models, including SeqComm and its ablations, are implemented based on MAPPO. Two fully
connected layers realize the critic and policy network. As for the attention module, key, query, and
value have one fully connected layer each. The size of the hidden layers is 100. Tanh functions are
used as nonlinearity. As there is no released code of TarMAC, we implement TarMAC by ourselves,
following the instructions mentioned in the original papers [Das et al., 2019].

For the world model, observations and actions are firstly encoded by a fully connected layer. The
output size for the observation encoder is 48, and the output size for the action encoder is 16.
Then, the outputs of the encoder will be passed into the attention module using the same structure
aforementioned. Finally, we use a fully connected layer to decode. In these layers, Tanh is used as
the nonlinearity.

SeqComm and its ablation baseline share the same hyperparameters. For Protoss, the learning rate is
1e−5, while for Terran and Zerg, the learning rate is 2.5e−5. H and F for calculating intention value
is set to 20 and 2. For TarMAC, the learning rate is tuned as 5e−5. TarMAC adopts MAPPO as the
backbone and two-round communication mechanism. For MAPPO, we follow the default settings of
the official code [Yu et al., 2021].

D.3 Attention Module

Attention module (AM) is applied to process messages in the world model, critic network, and policy
network. AM consists of three components: query, key, and values. The output of AM is the weighted
sum of values, where the weight of value is determined by the dot product of the query and the
corresponding key.

For AM in the world model denoted as AMw, agent i gets messages m−i
t = h−i

t from all other
agents at timestep t in negotiation phase, and predicts a query vector qit following AMi

w,q(h
i
t). The

query is used to compute a dot product with keys kt = [k1t , · · · , knt ]. Note that kjt is obtained by the
message from agent j following AMi

a,k(h
j
t ) for j ̸= i, and kit is from AMi

neg,k(h
i
t). Besides, it is

scaled by 1/
√
dk followed by a softmax to obtain attention weights α for each value vector:

αi = softmax

qit
T
k1t√
dk

· · · q
i
t
T
kjt√
dk︸ ︷︷ ︸

αij

· · · q
i
t
T
knt√
dk

 (1)

The output of attention module is defined as: cit =
∑n

j=1 αijv
j
t , where vjt is obtained from messages

or its own hidden state of observation following AMi
w,v(·).

As for AM in the policy and critic network denoted as AMa , agent i gets additional messages from
upper-level agent in the launching phase. The message from upper-level and lower-level agent can
be expanded as mupper

t = [hupper
t ,aupper

t ] and mlower
t = [hlower

t , 0], respectively. In addition, the
query depends on agent’s own hidden state of observation hi

t, but keys and values are only from
messages of other agents.
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D.4 Training

The training of SeqComm is an extension of MAPPO. The observation encoder e, the critic V , and
the policy π are respectively parameterized by θe, θv, θπ. Besides, the attention module AMa is
parameterized by θa and takes as input the agent’s hidden state, the messages (hidden states of other
agents) in the negotiation phase, and the messages (the actions of upper-level agents) in launching
phase. Let D = {τk}Kk=1 be a set of trajectories by running policy in the environment. Note that we
drop time t in the following notations for simplicity.

The value function is fitted by regression on mean-squared error:

L(θv, θa, θe) =
1

KT

∑
τ∈D

T−1∑
t=0

∥∥∥V (AMa(e(o),a
upper))− R̂

∥∥∥2
2

(2)

where R̂ is the discount rewards-to-go.

We update the policy by maximizing the PPO-Clip objective:

L(θπ, θa, θe) =
1

KT

∑
τ∈D

T−1∑
t=0

min(
π(a|AMa(e(o),a

upper))

πold(a|AMa(e(o),aupper))
Aπold

, g(ϵ, Aπold
)) (3)

where g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A ≤ 0
, and Aπold

(o,aupper, a) is computed using the GAE method.

The world model M is parameterized by θw is trained as a regression model using the training data
set S. It is updated with the loss:

L(θw) =
1

|S|
∑

o,a,o′,r∈S

∥∥∥(o′, r)−M(AMw(e(o),a))
∥∥∥2
2
. (4)

We trained our model on one GeForce GTX 1050 Ti and Intel(R) Core(TM) i9-9900K CPU @
3.60GHz.

D.5 Addtional Ablation Studies

We conduct a comparison of SeqComm against MAIC and CommFormer across six different maps:
Protoss, Terran, and Zerg in 5v5 scenarios (first row) and Protoss, Terran, and Zerg in 10v10 scenarios
(second row). The evaluation uses the official codebase for each method, with three random seeds per
map under a full communication setting. The results refer to Figure 8.

D.6 Emergence of Behavioral Patterns

We have visualized several key frames in Figure 9 to highlight the observed behavioral patterns. In the
combat game, concentrating attacks on a single enemy is consistently more effective than dispersing
them. In frames 1-3, the agents lack specific targets until one agent, located at the end of the orange
arrow, approaches an enemy in the bottom right corner. By frame 4, following the negotiation phase,
this agent is designated as the highest-level agent (level 5), given its advantageous position to choose
an enemy to attack. Once lower-level agents receive the actions from higher-level agents (represented
by the white dashed line), all the red units cease random roaming and instead coordinate a unified
attack on the blue units. A similar pattern can be observed in frames 7-9.
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Figure 8: Results of experiments with extra baseline algorithms.

Figure 9: Illustration of the Emergence of Behavioral Patterns
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the Abstract, we outlined our contributions and reiterated our scope in the
introduction.

Guidelines:
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations in the Conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The Method or Appendix includes all assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

22



• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to release data and code ASAP/upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in the Experiments and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars that are suitably and correctly defined, along with other
appropriate information about the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We provide sufficient information on the computer resources in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All the research conducted conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: SeqComm is a MARL method that does not have potential societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all the assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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