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ABSTRACT

It is often useful to compactly summarize important properties of a training dataset
so that they can be used later without storing and/or iterating over the entire
dataset. We consider a specific case of this: approximating the function space
distance (FSD) over the training set, i.e. the average distance between the out-
puts of two neural networks. We propose an efficient approximation to FSD for
ReLU neural networks based on approximating the architecture as a linear net-
work with stochastic gating. Despite requiring only one parameter per unit of the
network, our approach outcompetes other parametric approximations with larger
memory requirements. Applied to continual learning, our parametric approxi-
mation is competitive with state-of-the-art nonparametric approximations which
require storing many training examples. Furthermore, we show its efficacy in
influence function estimation, allowing influence functions to be accurately esti-
mated without iterating over the full dataset.

1 INTRODUCTION

There are many situations in which we would like to compactly summarize a model’s training data.
One motivation is to reduce storage costs: in continual learning, an agent continues interacting with
its environment over a long time period — longer than it is able to store explicitly — but we would
still like it to avoid overwriting its previously learned knowledge as it learns new tasks (Goodfellow
et al., 2013). Even in cases where it is possible to store the entire training set, one might desire a
compact representation in order to avoid expensive iterative procedures over the full data. Examples
include influence function estimation (Koh & Liang, 2017; Bae et al., 2022a), model editing (De Cao
et al., 2021; Mitchell et al., 2021), and unlearning (Bourtoule et al., 2021). While there are many
different aspects of the training data that one might like to summarize, we are often particularly
interested in preventing the model from changing its predictions too much on the distribution of
previously seen data.

Methods to prevent such catastrophic forgetting, especially in the field of continual learning, can be
categorized at a high level into parametric and nonparametric approaches. Parametric approaches
store the parameters of a previously trained network, together with additional information about how
important different directions in parameter space are for preserving past knowledge; the canonical
example is Elastic Weight Consolidation (Kirkpatrick et al., 2017, EWC), which uses a diagonal
approximation to the Fisher information matrix. Nonparametric approaches explicitly store a collec-
tion (coreset) of training examples, often optimized directly to be the most important or memorable
ones (Rudner et al., 2022; Pan et al., 2020; Titsias et al., 2019). Currently, the most effective ap-
proaches to prevent catastrophic forgetting are nonparametric, since it is difficult to find sufficiently
accurate parametric models. However, this advantage is at the expense of high storage requirements.

We focus on the problem of approximating function space distance (FSD): the amount by which
the outputs of two networks differ, in expectation over the training distribution. Benjamin et al.
(2018) observed that regularizing FSD over the previous task data is an effective way to prevent
catastrophic forgetting. Other tasks such as influence estimation (Bae et al., 2022a), model edit-
ing (Mitchell et al., 2021), and second-order optimization (Amari, 1998; Bae et al., 2022b) have
also been formulated in terms of FSD regularization or equivalent locality constraints. In this pa-
per, we formulate the problem of approximating neural network FSD and propose novel parametric
approximations. Our methods significantly outperform previous parametric approximations despite
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Figure 1: Comparison of FSD regularization on a one-dimensional regression task. (Left) Training sequentially
on two tasks (blue, then yellow), results in catastrophic forgetting. (Right) BGLN retains performance on Task
1 after training on Task 2 more accurately than other methods. Note that the y-axis represents function space
distances for each datapoint.

being much more memory-efficient, and are also competitive with nonparametric approaches to
continual learning.

Several parametric approximations, like EWC, are based on a second-order Taylor approximation
to the FSD, leading to a quadratic form involving the Fisher information matrix Fθ or some other
metric matrix Gθ, where θ denotes the network parameters. Second-order approximations help
because one can approximate Fθ or Gθ by sampling vectors from a distribution with these matrices
as the covariance. Then, tractable probabilistic models can be fit to these samples to approximate
the corresponding distribution. Unfortunately, these tend to be inaccurate for continual learning,
especially in comparison with nonparametric approaches. We believe the culprit is the second-
order Taylor approximation: we show in several examples that even the exact second-order Taylor
approximation can be a poor match to FSD over the scales relevant to continual learning, like average
performance over sequentially learned tasks. This is consistent with a recent line of results that find
linearized approximations of neural networks to be an inaccurate model of their behavior (Seleznova
& Kutyniok, 2022a;b; Hanin & Nica, 2019; Bai et al., 2020; Huang & Yau, 2020).

Our contribution, the Bernoulli Gated Linear Network (BGLN), makes a parametric approxima-
tion to neural network FSD which does not make a second-order Taylor approximation in param-
eter space, and hence is able to capture nonlinear interactions between parameters of the network.
Specifically, it linearizes each layer of the network with respect to its inputs. In the case of ReLU
networks, our approximation yields a linear network with stochastic gating. Linearizing the ReLU
function requires computing its gradient, which can be approximated as an independent Bernoulli
random variable for each unit. We derive a stochastic as well as a deterministic estimate of the FSD
in this setting, both of which rely only on the first two moments of the data.

To demonstrate the practical usefulness of our approximation, we evaluate its closeness to the true
empirical FSD. We show that our method estimates and optimizes the true FSD better than other
estimators in settings that are prone to forgetting. Further, we show its application and performance
in two applications. When applied to continual learning, it outcompetes state-of-the-art methods
on sequential MNIST and CIFAR100 tasks, with at least 90% lower memory requirements than
nonparametric methods. When applied to influence function estimation, our method achieves over
95% correlation with the ground truth, without iterating over or storing the full dataset.

2 BACKGROUND

Let z = f(x,θ) denote the function computed by a neural network, which takes in inputs x and pa-
rameters θ. Consistent with prior works, we use FSD to refer to the expected output space distance1

ρ between the outputs of two neural networks (Benjamin et al., 2018; Grosse, 2021; Bae et al.,
2022b), with respect to the training distribution, as defined in equation 1. When the population

1Note that we use the term distance throughout since we focus on Euclidean distance in practice. However,
other metrics like KL divergence, which are not distances, are also possible and commonly used.
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distribution is inaccessible, the empirical distribution is often used as a proxy:

D(θ0,θ1, pdata) = Ex∼pdata [ρ(f(x,θ0), f(x,θ1))] ≈
1

N

N∑
i=1

ρ(f(x(i),θ0), f(x
(i),θ1)), (1)

where x is a random data point sampled from the data-generating distribution pdata. Constraining
the FSD term has been successful in preventing catastrophic forgetting (Benjamin et al., 2018),
computing influence functions (Bae et al., 2022a), training teacher-student models (Hinton et al.,
2015), and fine-tuning pre-trained networks (Jiang et al., 2019; Mitchell et al., 2021).

Consider the continual learning setting as a motivating example. Common benchmarks (Normandin
et al., 2021) involve sequentially learning tasks t ∈ {1, . . . , T}, using cost function J and a penalty
on the FSD between the learned parameters, θ and optimal parameters of previous tasks, θi, com-
puted over the previously seen data distribution, pi, and scaled by hyperparameter, λFSD.

θt = argmin
θ
J (θ) + λFSD

t−1∑
i=1

D(θ,θi, pi) (2)

Continuing with the notation in equation 1, one way to regularize the (empirical) FSD is to store
the training set and explicitly evaluate the network outputs with both θ0 and θ1 (perhaps on random
mini-batches). However, this has the drawbacks that one would need to store and access the entire
training set throughout training (precisely the thing continual learning research tries to avoid) and
that the FSD needs to be estimated stochastically. Instead, we would like to compactly summarize
information about the training set or the training distribution.

Many (but not all) practical FSD approximations are based on a second-order Taylor approximation:

D(θ0,θ1, pdata) ≈
1

2
(θ1 − θ0)

⊤Gθ(θ1 − θ0), (3)

where Gθ = ∇2
θD(θ0,θ, pdata). In the case where the network outputs parametrize a probability

distribution and ρ corresponds to KL divergence, Gθ reduces to the more familiar Fisher information
matrix Fθ = Ex∼pdata,y∼Py|x(θ)[∇θ log p(y|θ,x)∇θ log p(y|θ,x)⊤], where Py|x(θ) represents the
model’s predictive distribution over y. It is possible to sample random vectors in parameter space
whose covariance is Gθ (Martens et al., 2012; Grosse & Martens, 2016; Grosse, 2021), and some
parametric FSD approximations work by fitting simple statistical models to the resulting distribu-
tion. For instance, assuming all coordinates are independent gives a diagonal approximation (Kirk-
patrick et al., 2017), and more fine-grained independence assumptions between network layers yield
a Kronecker-factored approximation (Martens & Grosse, 2015; Ritter et al., 2018). In practice,
instead of sampling vectors whose covariance is Gθ, many works instead use the empirical gradi-
ents during training, whose covariance is the empirical Fisher matrix. We caution the reader that
the empirical Fisher matrix is less well motivated theoretically and can result in different behav-
ior (Kunstner et al., 2019).

3 A DATA-BASED PARAMETRIC APPROXIMATION

Motivated by the above, we propose BGLN (Bernoulli Gated Linear Network), which approximates
a given model architecture as a linear network with stochastic gating and captures more nonlineari-
ties between the parameters than the previous parametric approximations discussed. It is applicable
to different architectures, but we first explicitly derive our approximation for multilayer perceptrons
(MLPs), with L fully-connected layers and the ReLU activation function, ϕ. We then discuss and
empirically evaluate its generalization to convolutional networks. In Section 3.4, we extend our
method to a class-conditioned version which takes into account different classification categories.

For MLPs with inputs x, layer l weights and biases (W (l), b(l)) and outputs z, the computation of
preactivations and activations at each layer is recursively defined as follows.

s(l) = W (l)a(l−1) + b(l), a(l) = ϕ(s(l)) (4)
with a(0) = x, and s(L) = z. We denote z0 and z1 to be the outputs obtained with parameters θ0
and θ1, respectively. With Euclidean distance as the output space distance, ρ, we can rewrite the
FSD as a sum of the first two moments of the difference between the output vectors ∆z := z1−z0.

Ex∼pdata [ρ(θ0,θ1;x)] = E[
1

2
||∆z||2] = 1

2
||E[∆z]||2 + 1

2
tr Cov(∆z) (5)
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Algorithm 1 BGLN-S

Require: E[x],Cov(x), {W , b}L−1
1 , {µ}L−1

1
1: E[a0],E[a1]← E[x]
2: Cov(a0),Cov(a1)← Cov(x)
3: a0,a1 ∼ N (E[a0],Cov(a0)) ▷ sample inputs using first two moments
4: ∆a← 0
5: for l← 1 to L− 1 do
6: m ∼ Ber(µ(l)) ▷ sample Bernoulli random variables
7: s0 ←W

(l)
0 a0 + b

(l)
0 ▷ linear layers preserve input-output relationship

8: ∆s← ∆W (l)a0 +W
(l)
1 ∆a+∆b(l)

9: a0 ←m⊙ s0 ▷ stochastic gating
10: ∆a←m⊙∆s
11: s1 ←W

(l)
1 a1 + b1 ▷ linear layers preserve input-output relationship

12: a1 ← a0 +∆a ▷ first-order Taylor approximation of activations
13: end for
14: ∆z ← ∆W (L)a0 +W

(L)
1 ∆a+∆b(L)

15: return 1
2 ||∆z||2

3.1 LINEARIZED ACTIVATION FUNCTION

Given parameters θ0 and θ1 of two networks, we linearize each step of the computation with respect
to its inputs. For an MLP that alternates between linear layers and non-linear activation functions, the
linear transformations are unmodified (since they are already linear), while the activation functions
are replaced with a first-order Taylor approximation around their current inputs. Let (W (l)

i , b
(l)
i ) be

the weights and biases of layer l in network i.

s
(l)
0 = W

(l)
0 a

(l−1)
0 + b

(l)
0 (6)

a
(l)
0 = ϕ(s

(l)
0 ) (7)

s
(l)
1 = W

(l)
1 a

(l−1)
1 + b

(l)
1 (8)

a
(l)
1 = ϕ(s

(l)
0 ) + ϕ′(s(l)0 )⊙ (s

(l)
1 − s

(l)
0 ) (9)

where ϕ′ is the derivative of the ReLU function defined as ϕ′(s) = 1{s > 0}. We define some
additional useful notation for differences between preactivations and activations.

∆s(l) = s
(l)
1 − s

(l)
0 = ∆W (l)al−1

0 +W
(l)
1 ∆a(l−1) +∆b(l) (10)

∆a(l) = a
(l)
1 − a

(l)
0 = ϕ′(s(l)0 )⊙∆s(l) (11)

with ∆W (l) = W
(l)
1 −W

(l)
0 and base cases a

(0)
0 = x and ∆a(0) = 0. Observe that with W0

held fixed, the model parametrized using W1 is a linear network, i.e. the network’s exact outputs
are a linear function of its inputs. There are two significant differences between our approximation
and parameter space linearization, which confer an advantage to the former. First, our linearization
is with respect to inputs instead of parameters (Lee et al., 2019), hence capturing nonlinear inter-
actions between the parameters in different layers. Second, the only computations that introduce
linearization errors into our approximation are those involving activation functions, in contrast with
other methods which suffer linearization errors for each layer, including linear layers, where non-
linear parameter dependencies exist. We note that linear networks are commonly used to model
nonlinear training dynamics of neural networks (Saxe et al., 2013), hence we regard our weaker
form of linearity as a significant advantage over Taylor approximations in parameter space. In this
form, the linearized activation function trick applies to any linear (including fully-connected and
convolutional) network with nonlinear activations.

3.2 BERNOULLI GATING

In the specific case of ReLU networks, our approximation only depends on the training data through
the signs of all the preactivations, since passing layer inputs through ϕ and multiplying by the deriva-
tive ϕ′, both result in a multiplication by 0 or 1. Hence, the maximum likelihood estimate (MLE) of
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this multiplication factor corresponds to the MLE of a Bernoulli random variable and can be mod-
eled as such. To achieve a compact approximation, we implement stochastic gating by replacing the
activation signs with independent Bernoulli random variables for each unit and making a Gaussian
approximation to the input distribution. We denote the vector of Bernoulli random variables for layer
l as m(l), which are summarized by their corresponding mean parameters, µ(l). Now we can rewrite
equations 7 and 11 as a(l)

0 = m(l) ⊙ s
(l)
0 and ∆a(l) = m(l) ⊙∆s(l), respectively, where ⊙ denotes

element-wise multiplication. Since FSD is defined as an expectation over the training distribution,
we are interested in the moments of a and ∆a, which in turn depend on the first two moments of the
input data and means µ. We estimate µ with the maximum likelihood estimate (MLE) of m, which
is the average number of times a given unit is on during training. This can be computed efficiently in
the forward pass as a simple moving average during the last epoch of training on a given dataset. The
data moments are then propagated through the network, and multiplied by Bernoullis as required,
finally resulting in the FSD term in Equation 5. The steps for this computation are detailed in the
following Section 3.3 and Algorithm 1.

3.3 BGLN-D AND BGLN-S

We observe from equation 5 that the expectation of FSD can be written in terms of the first two
moments of ∆z, or equivalently ∆s(L). Expectations and covariances of the outputs of each layer
can be computed in terms of the expectations and covariances of the outputs of the previous layer. We
propose computing these terms recursively by propagating the first two moments of a(l)

0 and ∆a(l)

through the network. This can be done under our independence assumptions and using linearity
of expectations. We thus obtain a deterministic estimate of the expected FSD, which we refer to
as BGLN-D. The exact equations for this computation are shown in Appendix B. We can also
compute a stochastic estimate by starting with the first two moments of the inputs, sampling a(0)

from a multivariate Guassian, and sampling Bernoulli random variables at every ReLU layer. This
method, BGLN-S, is shown in Algorithm 1. Note that this is an unbiased estimate of the expected
FSD. While we explicitly derive it for MLPs here, this estimate is not specific only to MLPs. It
can be easily generalized to convolutional networks where the same random variables are sampled
as required in the network. We use and evaluate this generalization for a continual learning task
involving CIFAR-100, where the commonly used model architecture includes convolutions. We
describe the corresponding computations in detail in Appendix C.
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Figure 2: Comparison of number of datapoints stored for
Split CIFAR100 as number of tasks increases. EWC stores
none and BGLN stores the equivalent of two datapoints in
the form of their moments, which is far lower than state-of-
the-art nonparametric methods.

Note that storing moments of the data has
less memory cost than storing sufficient
subsets of the data itself. We present the
above algorithms using the mean and co-
variance of the data. However, we point
out that the data covariance can be re-
placed by its diagonal approximation, i.e.
the variance of each dimension of the in-
puts. This imposes an independence as-
sumption on the dimensions of the in-
put data, analogous to the independence
of Bernoulli random variables represent-
ing activations for each layer. This further
reduces the memory cost of storing mo-
ments to the equivalent of two data points
per dataset. We empirically investigate the
effect of this approximation on continual
learning benchmarks.

3.4 CLASS-CONDITIONAL ESTIMATES

It is also possible to a extend our method to a more fine-grained, class-conditioned approximation.
The lower memory cost of our method allows for this. In particular, we can fit a mixture model, with
one component per class. In this case, each class has its own associated data moments and mean
parameters for the Bernoulli random variables. As expected, this results in improved performance in
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our continual learning experiments, as shown by the results for BGLN-D (CW) and BGLN-S (CW)
in Tables 1 and 2.

4 RELATED WORKS

Measuring distances between network parameters has been studied well in the existing literature.
Here, we categorize the different approaches that are relevant to our proposed method.

Network distance estimation. Several works (Benjamin et al., 2018; Bernstein et al., 2020; Bae
et al., 2022b) have highlighted the importance of measuring meaningful distances between neu-
ral networks. Benjamin et al. (2018) contrast training dynamics in parameter space and function
space and observe that function space distances are often more useful than, and not always corre-
lated with, weight space distances. Bae et al. (2022b) propose an amortized proximal optimization
scheme (APO) that regularizes an FSD estimate to the previous iterate for second-order optimiza-
tion. Natural gradient descent (Amari et al., 1995; Amari, 1998) can be interpreted as a steepest
descent method, using a second-order Taylor approximation to the FSD (Pascanu & Bengio, 2014).

There are parametric approximations (Kirkpatrick et al., 2017; Ritter et al., 2018) of the FSD, which
only utilize the parameters (and potentially related information) of the two networks in question.
Nonparametric approximations typically store or optimize a small set of training inputs. For in-
stance, Hessian-free optimization (Martens et al., 2010) and APO (Bae et al., 2022b) can be inter-
preted as using batches of data to approximate the FSD. Several non-parametric methods (Pan et al.,
2020; Titsias et al., 2019; Rudner et al., 2022; Kapoor et al., 2021) for continual learning have been
shown to give generally better empirical performance than parametric counterparts.

Continual Learning. Parisi et al. (2019); De Lange et al. (2021); Ramasesh et al. (2020); Nor-
mandin et al. (2021) have reviewed and surveyed the challenge of catastrophic forgetting in contin-
ual learning, along with benchmarks and metrics to evaluate different methods. Parametric methods
focus on different approximations to the weight space metric matrix discussed above, like diagonal
(Kirkpatrick et al., 2017, EWC), or Kronecker factorized (Ritter et al., 2018, OSLA) ones. Several
methods are motivated as approximations to a posterior Gaussian distribution in a Bayesian set-
ting (Ebrahimi et al., 2019), for instance through a variational lower bound (Nguyen et al., 2017) or
via Gaussian process inducing points (Kapoor et al., 2021). Non-parametric methods (Kapoor et al.,
2021; Titsias et al., 2019; Pan et al., 2020; Rudner et al.; 2022; Kirichenko et al., 2021) usually em-
ploy some form of experience replay of stored data points. Some of these methods (Pan et al., 2020)
can be related to the Neural Tangent Kernel (Jacot et al., 2018, NTK), or in other words, network
linearization. Doan et al. (2021) directly study forgetting in continual learning in the infinite width
NTK regime. Mirzadeh et al. (2022) further study the impact of network widths on forgetting.

5 EXPERIMENTS

We evaluate the benefits of our method in practice, investigating the following questions: (1) What
advantages do we gain by using our method in continual learning settings, relative to existing para-
metric and nonparametric FSD estimation techniques? (2) How well does our approximation esti-
mate and minimize the true empirical FSD? (3) Can we use our FSD approximation to accurately
compute influence functions without iterating through the full training data? In the results below,
we find that (1) our methods are competitive with prior continual learning approaches despite hav-
ing lower memory requirements than them, (2) it closely matches the true empirical FSD and (3) it
gives a high correlation with influence functions using only the training data moments. Influence
estimates can also be applied to identify mislabeled examples, which our method is able to do as
well, as detailed in Appendix F.

5.1 CONTINUAL LEARNING

Following the formulation described in equation 2, we empirically evaluate BGLN and its variants.

Datasets and architectures. We visualize our method’s performance on one-dimensional regression
with two sequential tasks shown in Figure 1. More realistically, we test our method on image
classification benchmarks used in prior works (Pan et al., 2020; Rudner et al., 2022), including Split
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Table 1: Average classification accuracy across tasks on continual learning benchmarks and their associated
memory costs. Methods are categorized as parametric, nonparametric, our BGLN methods, and ablations.

Method Split MNIST Permuted MNIST Split CIFAR100 Memory Cost

EWC 63.10 84.00 71.60 ± 0.40 2P

OSLA 80.56 95.73 72.61 P +
∑L

l=1 p2
l

VCL 97.00 87.50 ± 0.61 − 2P

VCL (coreset) 98.40 95.50 67.40 ± 0.60 2P + Nd
VAR-GP 90.57 ± 1.06 97.20 ± 0.08 − 2P + Nd + C2N2

FROMP 99 ± 0.04 94.90 ± 0.04 76.20 ± 0.20 2P + Nd + C2N2

S-FSVI 99.54 ± 0.04 95.76 ± 0.02 77.60 ± 0.20 2P + Nd + C2N2

NTK (coreset) 99.50 ± 0.09 96.46 ± 0.11 78.23 ± 0.20 2P + Nd

BGLN-S 99.64 ± 0.04 96.36 ± 0.12 73.98 ± 0.37 P + A + d + d2

BGLN-D 99.72 ± 0.03 96.03 ± 0.20 − P + A + d + d2

BGLN-S (CW) 99.77 ± 0.05 96.99 ± 0.07 74.14 ± 0.57 P + C(A + d + d2)
BGLN-D (CW) 99.78 ± 0.02 96.85 ± 0.02 − P + C(A + d + d2)

BGLN-D-Var 99.64 ± 0.04 94.98 ± 0.18 − P + A + 2d
BGLN-S-Var 99.50 ± 0.03 96.36 ± 0.13 72.18 ± 0.26 P + A + 2d
BGLN-S (coreset) 99.50 ± 0.03 96.36 ± 0.13 72.89 ± 0.4 P + A + Nd

Table 2: Backward transfer on continual learning benchmarks (higher is better).

Method Split MNIST Permuted MNIST Split CIFAR100

FROMP −0.50 ± 0.20 −1.00 ± 0.10 −2.60 ± 0.90
S-FSVI −0.21 ± 0.06 −0.65 ± 0.21 −2.50 ± 0.20
BGLN-S −0.04 ± 0.03 −0.41 ± 0.08 −7.33 ± 0.27
BGLN-D −0.09 ± 0.04 −0.56 ± 0.04 −
BGLN-S (CW) −0.18 ± 0.06 −0.37 ± 0.14 −6.13 ± 0.44
BGLN-D (CW) −0.07 ± 0.07 −1.17 ± 0.07 −

MNIST, Permuted MNIST and Split CIFAR100, with standard architectures for fair comparison.
More details about the datasets, architectures and hyperparameters can be found in Appendix E.2.

Evaluation Metrics. We evaluate the success of different methods based on average final accuracy
across tasks and the backward transfer metric (Lopez-Paz & Ranzato, 2017), defined as the average
increase in task accuracy after training on all tasks relative to after training on that task.

Results. Figure 1 shows the functions learned by different methods when sequentially trained on
two one-dimensional regression tasks. BGLN retains good predictions on both tasks, while EWC
and exact NTK suffer catastrophic forgetting. We hypothesize that this difference in performance
is due to important nonlinearities between network parameters that EWC and NTK approximations
are unable to capture.

Table 3: Memory cost notation.

pl # parameters in layer l
P # parameters =

∑L
l=1 pl

A # activations < P
d data dimension
N coreset size
C # classes

We compare our method’s performance on the above evaluation
metrics on image classification benchmarks to existing parametric
and nonparametric methods in Tables 1 and 2. BGLN methods out-
perform other parametric methods (EWC, OSLA and VCL) across
datasets and are competitive with the state-of-the-art nonparametric
methods. Further, using class-conditional approximations improves
results. On Split CIFAR100, BGLN methods start to bridge the gap
between parametric and nonparametric methods, while the NTK approximation, which uses a core-
set, outperforms all previous works. We hypothesize that methods like FROMP can be viewed as
approximations to the NTK method and our current result indicates that directly estimating FSD via
NTK can improve continual learning performance. Table 2 compares the backward transfer metric
for our methods against the current state-of-the-art in continual learning. Both FROMP (Pan et al.,
2020) and S-FSVI (Rudner et al., 2022) store coresets of data, yet BGLN outperforms them on the
MNIST tasks, while lagging behind on Split CIFAR100. We show how the memory requirement
scales in terms of number of datapoints stored in Figure 2 and analytically compare this cost for
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Figure 3: Comparison of different FSD estimators for networks trained on Permuted MNIST. Note that FSD
values are plotted on log-scale. (a) Compared to NTK, BGLN consistently gives closer FSD values to the true
empirical FSD. (b) While training on task 2, FSD from the optimal task 1 parameters increases with task 2
accuracy. Optimizing BGLN-D and class-conditioned BGLN-D (CW) effectively minimizes the true FSD.

different methods in Table 1, using notation in Table 3. This makes the memory advantage of our
methods explicit. Further details on computing these costs are in Appendix E.1.

5.2 COMPARING FSD ESTIMATORS

We empirically assess how well our method approximates and minimizes the true empirical FSD
between two sets of parameters. Motivated by the continual learning application, we consider the
Permuted MNIST task and its sequentially learned network parameters. As seen above, training
on new tasks risks catastrophic forgetting of predictions on old data and can significantly change
the learned function space. We evaluate different FSD estimators by measuring (1) how close the
estimated FSD is to the true empirical FSD computed over the full dataset and (2) how much the
true empirical FSD is minimized when the estimated FSD is optimized during training. We draw
attention to the NTK estimator which exactly linearizes the network using a coreset of datapoints.
Figure 3a plots the estimated FSD versus the true empirical FSD between several pairs of networks
trained on different tasks, for different number of iterations and with different learning rates. Both
our methods, BGLN-S and BGLN-D consistently have closer estimates to the true empirical FSD
than NTK across the range of networks considered. As shown in Figure 3b, our methods also
minimize the true empirical FSD more effectively than EWC and NTK.

5.3 INFLUENCE FUNCTION ESTIMATION

To demonstrate that BGLN can successfully be applied to other applications involving FSD ap-
proximation, we consider an influence function estimation task (Cook, 1979; Hampel, 1974; Koh &
Liang, 2017). Given parameters θ0 trained on some dataset Dtrain that is drawn from a distribution
ptrain, influence functions approximate the parameters θ−, obtained by training without a particu-
lar point (x,y) ∈ Dtrain. The difference in loss between θ0 and θ− is an indicator for how much
influence (x,y) has on the trained network.

Given a data point, (x,y), that we are interested in removing, Bae et al. (2022a) recently showed
how to express influence functions in neural networks as optimizing the following proximal Breg-
man response function (PBRF):

θ− = argmin
θ∈Rd

DB(θ,θ0, ptrain) +
λ

2
∥θ − θ0∥2 −

1

N
L(f(x,θ),y), (12)

where N is the total number of training datapoints. Here, DB is the Bregman divergence defined on
network outputs and measures the FSD between θ and θ0 for training distribution ptrain, as defined in
equation 1 from Section 2. For common loss functions such as squared error and cross-entropy, the
Bregman divergence term is equivalent to the training error on a dataset where the original targets
are changed with soft targets produced by θ0. The second term is a proximity term with strength
λ > 0, whose role is to prevent the parameters from moving too far in parameter space. Finally, the
last term maximizes the loss of the data point we are interested in removing. Intuitively, the PBRF
maximizes the loss of data we would like to remove while constraining the network in both function
and parameter space so that the predictions and losses of other training examples are not affected.

8
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Similar to the issues encountered in continual learning, the computation of the FSD term requires
storing and accessing the entire training data even after the original network is trained. In practice,
Bae et al. (2022a) iteratively sample batches of the training data to compute and minimize the FSD
term. However, training data may not be accessible and incurs a large memory cost to store. We can
employ our parametric method to estimate the FSD in PBRF without accessing the training data, but
only its first two moments.

Datasets and architectures. We first train a MLP with 2 hidden layers and ReLU activation for 200
epochs on regression datasets from the UCI benchmark (Dua & Graff, 2017). Then, we randomly
select 50 independent data points to be removed. Using the PBRF objective, we compute the differ-
ence in loss after removing a single data point, which is commonly referred to as the self-influence
score (Koh & Liang, 2017; Schioppa et al., 2022). Then, we apply BGLN-D to approximate the FSD
term in the PBRF objective and compare it with other approximations such as EWC and Conjugate
Gradient (CG) (Martens et al., 2010).

Table 4: Comparison of train loss differences computed
by EWC, conjugate gradient (CG), and FSD. We show
Pearson (P) and Spearman rank-order (S) correlation
with the PBRF estimates.

Dataset EWC CG BGLN-D

P S P S P S

Concrete 0.78 0.57 0.92 0.94 0.96 0.97
Energy 0.68 0.39 0.97 0.98 0.99 0.98

Housing 0.86 0.33 0.92 0.89 0.95 0.83
Kinetics 0.36 0.30 0.88 0.86 0.99 0.99

Wine 0.97 0.70 0.99 0.94 0.99 0.90

Evaluation Metric and Results. Since the
PBRF can be considered the ground truth
for influence estimation, we compare the cor-
relation of EWC, CG, and BGLN with the
PBRF. We used both Pearson correlation (Sedg-
wick, 2012) and Spearman rank-order correla-
tion (Spearman, 1961) to measure this align-
ment. We show the results in Table 4. Across
all datasets, without having to save or iterate
over the full training dataset, BGLN-D achieves
a higher correlation with the PRBF objective
compared to EWC and CG.

5.4 ABLATIONS

We analyze the impact of the different choices our method makes by ablating them one by one.
(1) BGLN-D-Var and BGLN-S-Var use a diagonal approximation to the data covariance which
effectively assumes independence between features. We observe in Table 1 that this approximation
does not harm performance significantly. (2) BGLN-S (coreset) teases apart the effect of sampling
data using its first two moments by running the stochastic version of our method with a small number
of actual data samples. Results on backward transfer for the same can be found in Appendix E.4.

6 CONCLUSIONS

We addressed the problem of compactly summarizing a model’s predictions on a given dataset, and
formulated it as approximating neural network FSD. We found that BGLN methods, our novel para-
metric approximations to FSD, capture nonlinearities between network parameters and are much
more memory-efficient than prior works. We demonstrated the closeness of our estimate to the true
FSD as well as its application in two use-cases. In continual learning, BGLN methods outcompete
existing methods on common benchmarks without storing any data samples. Furthermore, they ef-
fectively estimate influence functions without iterating over or storing the full dataset. We note that
while our methods make a closer approximation to the true FSD in principle, they are limited by
independence and probabilistic modeling assumptions. Empirically, these may explain its lower but
competitive performance on Split CIFAR100. Interestingly, the direct NTK approximation outper-
forms all previous methods, which makes optimizing its memory-efficiency an attractive direction
for future work. Further, extending the formulation of FSD approximation to other applications like
model editing or unlearning are exciting research avenues. We hope that our work inspires methods
to further bridge the gap to nonparametric methods’ performance in a memory-efficient manner.

7 REPRODUCIBILITY STATEMENT

All details about datasets, model architectures and training can be found in the Appendix. We also
plan to release code that reproduces the results in this paper once it is public.
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APPENDIX

A NOTATION

f Function corresponding to a neural network

ϕ ReLU activation function

ϕ′ Derivative of a function ϕ

sl Preactivations at layer l

al = ϕ(sl) Activations at layer l

x Input data

y Target data

x(i) Input data point i

pdata Data distribution from which x is sampled

d Data dimension

N Number of data points in a coreset

L Number of layers in a network

C Number of classes in a classification task

T Number of tasks

θ Parameters of a neural network

θt Parameters obtained after training on task t

pl Number of parameters in layer l

P Total number of parameters in a network =
∑L

l=1 pl

z = f(x;θ) Prediction of the network f on x parameterized by θ

ρ Output space distance, for instance Euclidean distance

D(θ0,θ1) Function space divergence between networks parameterized by θ0 and θ1

J = ∇θf Network Jacobian

Gθ Weight space metric matrix

Fθ Fisher information matrix

m Bernoulli random variable

µ Bernoulli mean parameter

B RECURSION EQUATIONS FOR BGLN-D

We derive the deterministic version of our algorithm by taking expectations and covariances for the
quantities in equations 6 to 11 (rewritten using Bernoulli variables). We use linearity of expectations
and our assumptions of independence between the Bernoulli random variables. We also assume
Cov(a0,∆a) is close to 0 and ignore it in our computations. This assumption is tested empirically
in our experiments and we find that it does not severely move the FSD estimate away from the
true empirical FSD (see Figure 3a). The complete steps for BGLN-D computations are given in
Algorithm 2.
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Algorithm 2 BGLN-D

Require: E[x],Cov(x), {W , b}L−1
1 , {µ}L−1

1
1: E[a0],E[a1]← E[x]
2: Cov(a0),Cov(a1)← Cov(x)
3: E[∆a],Cov(∆a)← 0
4: for l← 1 to L− 1 do
5: E[s0]←W

(l)
0 E[a0] + b

(l)
0

6: E[∆s]← ∆W (l)E[a0] +W
(l)
1 E[∆a] + ∆b(l)

7: E[a0]← µ(l) ⊙ E[s0]
8: E[∆a]← µ(l) ⊙ E[∆s]

9: Cov(s0)←W
(l)
0 Cov(a0)W

(l)T
0

10: Cov(∆s)← ∆W (l)Cov(a0)∆W (l)T +W
(l)
1 Cov(∆a)W

(l)T
1

11: Cov(a0)← (µ(l)µ(l)T )⊙ Cov(s0)
12: Cov(∆a)← (µ(l)µ(l)T )⊙ Cov(∆s)
13: end for
14: E[∆z]← ∆W (L)E[a0] +W

(L)
1 E[∆a] + ∆b(L)

15: Cov(∆z)← ∆W (L)Cov(a0)∆W (L)T +W
(L)
1 Cov(∆a)W

(L)T
1

16: return 1
2 ||E[∆z]||2 + 1

2 tr Cov(∆z)

Algorithm 3 BGLN-S (Conv)

Require: E[x],Cov(x), {layer}L−1
1 , {µ}L−1

1
1: E[a0],E[a1]← E[x]
2: Cov(a0),Cov(a1)← Cov(x)
3: a0,a1 ∼ N (E[a0],Cov(a0))
4: ∆a← 0
5: for l← 1 to L− 1 do
6: if layer is Conv or FC then
7: s0 ← layer(a0,grad=False)
8: s1 ← layer(a1)
9: else if layer is ReLU then

10: ∆s = s1 − s0
11: m ∼ Ber(µ(l))
12: ∆a←m⊙∆s
13: else if layer is Dropout then
14: pass
15: else
16: a0 ← layer(a0)
17: a1 ← layer(a1)
18: end if
19: end for
20: ∆z ← s1 − s0
21: return 1

2 ||∆z||2

C GENERALIZATION TO CONVOLUTIONAL NETWORKS

The generalization of BGLN-S to convolutional networks involves passing the inputs sampled us-
ing the data moments through the network. In convolutional networks, ReLU activation is usually
applied after the convolutional and the fully connected layers. At each ReLU, we use the Bernoulli
mean parameters to sample activation signs and obtain the difference of activations, ∆a. We treat
any dropout layers as they are treated at evaluation time, i.e. as the identity function. Finally, the
Euclidean distance between the final layer outputs leads to the stochastic estimate of the FSD. The
complete procedure is shown in Algorithm 3.
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Figure 4: Estimating true FSD with BGLN-S (coreset) and NTK (coreset) on networks trained using Split
CIFAR100.

D COMPARING FSD ESTIMATORS

To directly compare the NTK approximation with the linearized activation function trick, we com-
pute the estimated FSD between pairs of networks using these two kinds of linearization, when
provided with the same information, and plot them against the true emprical FSD. Hence, both
estimators are provided with the same coreset of datapoints. In the case of BGLN-S (coreset), acti-
vations are computed using this coreset directly instead of Bernoulli sampling. Figure 4 visualizes
this comparison for networks trained using tasks in Split CIFAR100. BGLN-S estimates correlate
better with the true FSD than NTK, hence corroborating our intuition about linearizing activation
functions. To quantify this difference, we also measure the Spearman rank-order and Kendall’s Tau
correlation coefficients for each estimator with the true FSD. BGLN-S obtains values 96.36 and
79.19, respectively, outperforming NTK, which obtains 86.42 and 71.71, respectively.

E CONTINUAL LEARNING

E.1 MEMORY COST ANALYSIS

We follow the notation in Table 3 to denote pl as the number of parameters in layer l, P =
∑L

l=1 pl
as the total number of parameters in the network, A as the number of activations in the network (note
that A < P ), d as the data dimension, N as the number of samples in a coreset, and C as the number
of classes in the continual learning classification setting. We can now write analytic expressions for
the memory cost incurred by the different methods considered in the continual learning experiments,
as shown in Table 1. Below we arrive at these expressions for each task that the model is continually
trained on.

• EWC: EWC requires storing one value for each parameter of the network and one value
for each diagonal element of the P × P Fisher information matrix, resulting in a cost of
2P .

• OSLA: OSLA approximates the Fisher information matrix as a block diagonal matrix,
storing p2l elements for each block corresponding to layer l. This gives a cost of P +∑L

l=1 p
2
l .

• VCL: VCL stores two pieces of information for the variational distribution for each param-
eter, one for the mean and one for the variance in the diagonal approximation, incurring a
cost equal to 2P .

• VCL (coreset): The “coreset” variant of VCL additionally stores N datapoints, increasing
the memory cost by Nd.
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• VAR-GP, FROMP, S-FSVI: These methods all store two values per parameter, similar
to VCL. Further, they require a coreset of datapoints and/or inducing points, as well as a
NC ×NC kernel matrix.

• NTK (coreset): The NTK approximation stores one value for each parameter of the net-
work and one for the P−dimensional Jacobian-vector product used to linearize the net-
work. It further requires a coreset of N datapoints, result in a 2P +Nd cost.

• BGLN-S, BGLN-D: Our methods store each parameter once, a Bernoulli mean value for
each activation and the first two moments of the data, incurring a cost of P +A+ d+ d2.

• BGLN-S (CW), BGLN-D (CW): The classwise variants of our methods store separate
Bernoulli means and data moments for each class, which scales those corresponding mem-
ory costs by C, i.e., P + C(A+ d+ d2).

• BGLN-S (Var), BGLN-D (Var): The “Var” variants of our methods make a diagonal
approximation to the data covariance (second moment), hence storing only d values for it.
This further reduces memory cost to P +A2d.

• BGLN-S (coreset): The “coreset”” ablation of BGLN-S requires storing N datapoints
instead of the data moments, giving a P +A+Nd cost.

E.2 EXPERIMENTAL DETAILS

Datasets. Split MNIST consists of five binary prediction tasks to classify non-overlapping pairs
of MNIST digits (Deng, 2012). Permuted MNIST is a sequence of ten tasks to classify ten dig-
its, with a different fixed random permutation applied to the pixels of all training images for each
task. Finally, Split CIFAR100 consists of six ten-way classification tasks, with the first being CI-
FAR10 (Krizhevsky et al., a), and subsequent ones containing ten non-overlapping classes each from
the CIFAR100 dataset (Krizhevsky et al., b).

Architectures. We use standard architectures used by existing methods for fair comparison. For
regression and the MNIST experiments, we use a MLP with two fully connected layers and ReLU
activation. For Split CIFAR100, we use a network with four convolutional layers, followed by two
fully connected layers, and ReLU activation after each. Both Split MNIST and Split CIFAR100
models have a multiheaded final layer.

Hyperparameters. We have performed a grid search over some key hyperparameters and used the
ones that resulted in the best final average accuracy across all tasks. All hyperparameter search was
done with random seed 42. We then took that best set of hyperparameters, repeated our experiments
on seeds 20, 21, 22, and reported the average and standard deviation of our results.

For the learning rate, we used 0.001 for all CL experiments except the BGLN-S method for Split
MNIST and BGLN-D method for Permuted MNIST, where we used 0.0001 instead.

We used the same number of epochs on each CL task and the exact numbers are reported in Table 5.
On the first task, all MNIST experiments used the same number of epochs as the subsequent CL
tasks while CIFAR100 experiments used 200 epochs on the first task.

To compute the Bernoulli mean parameters for our stochastic gating implementation, we used simple
averaging as the default, but also explored exponential moving averaging. While there was not
much difference in performance, we report the momentum values that reproduce our results. All
MNIST experiments had a momentum value of 1/batch size. Note that this momentum value
of 1/batch size corresponds to simple moving average. For CIFAR100 experiments, we used
0.99 for BGLN-S (CW) and NTK, and 1/batch size for BGLN-S.

For each method and dataset, the scaling factor for FSD penalty, λFSD, is reported in Table 6. Simi-
larly, batch size is reported in Table 7.

Evaluation Metrics. In addition to average accuracy over tasks, we measure the backward transfer
metric. For T tasks, let Ri,j be the classification accuracy on task tj after training on task ti. Then,
backward transfer is given by the following formula.

1

T − 1

T−1∑
i=1

RT,i −Ri,i
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Table 5: CL tasks training epochs used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 15 5 80
BGLN-S 15 15 45
BGLN-D 15 15 -
BGLN-S (CW) 15 15 85
BGLN-D (CW) 15 15 -

Table 6: FSD scale used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 1 1 0.005
BGLN-S 5 1 0.0005
BGLN-D 0.1 0.005 -
BGLN-S (CW) 2 1 0.0000001
BGLN-D (CW) 0.1 0.005 -

Table 7: Batch size used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 256 256 512
BGLN-S 32 128 512
BGLN-D 32 128 -
BGLN-S (CW) 32 128 512
BGLN-D (CW) 32 128 -

Table 8: Ablation of backward transfer on continual learning benchmarks (higher is better).

Method Split MNIST Permuted MNIST Split CIFAR100

BGLN-D-Var −0.18± 0.09 −3.90± 0.49 -
BGLN-S-Var −0.13± 0.11 −0.41± 0.08 −9.25± 0.06
BGLN-S (coreset) −0.13± 0.11 −0.41± 0.08 −7.50± 0.51

E.3 TASK-WISE CLASSIFICATION RESULTS

We show in Figure 5 the task-wise accuracies on the Split CIFAR100 benchmark after training on
all tasks is complete, drawing a comparison between our methods (BGLN-S and BGLN-S (CW)),
NTK (with coreset) and a nonparametric state-of-the-art method, FROMP.

E.4 ABLATION STUDY - BACKWARD TRANSFER

We include further results on the performance of our ablations on the backward transfer metric in
Table 8.

F INFLUENCE FUNCTION ESTIMATION

F.1 EXPERIMENTAL DETAILS

We used Concrete, Energy, Housing, Kinetics, and Wine datasets from the UCI collection (Dua &
Graff, 2017). For all datasets, we normalized the training dataset to have a mean of 0 and a standard
deviation of 1. We used a 2-hidden layer MLP with 128 hidden units and the base network was
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Figure 5: Comparison of task-wise accuracies on the Split CIFAR100 benchmark after training on all tasks is
complete, for our methods, NTK and a nonparametric state-of-the-art method, FROMP.

trained for 200 epochs with SGD and a batch size of 128. We performed hyperparameter searches
over the learning rate in the range {0.3, 0.1, 0.03, 0.01, 0.003, 0.001} and selected the learning rate
based on the validation loss.

For each random data point selected, we optimized the PBRF objective for additional 20 epochs
from the base network. The FSD term was computed stochastically with a batch size of 128. Sim-
ilarly, both EWC and BGLN were trained with the same configuration but with the corresponding
approximation to the FSD term.

F.2 MISLABELED EXAMPLE IDENTIFICATION

A common application of the influence function is the detection of influential or mislabeled ex-
amples. Intuitively, if some fraction of the training data labels is corrupted, they would behave as
outliers and have a greater influence on the training loss. One approach to efficiently detect and fix
these examples is to prioritize and examine training inputs with higher self-influence scores.

We use 10% of the MNIST dataset and corrupt 10% of the data by assigning random labels to it.
We train a two-layer MLP with 1024 hidden units and ReLU activation using SGD with a batch
size of 128. Then, we use EWC and BFLN to approximate the FSD term in the PBRF objective
in equation 12 for each data point. We also compare these methods against randomly sampling
datapoints to check for corruptions. The results are summarized in Figure 6. Both PBRF and BGLN
show significantly improved performance compared to the random baseline.

G LINEARIZATION ERROR ANALYSIS OF BGLN-S

We can analyze the error due to linearization of BGLN-S as compared to the true FSD, propagated
through each step of the network’s computation. Following notation as in Section 3, let ∆z and
∆ẑ denote the true difference between network outputs and the difference between network outputs
estimated after applying the linearized activation functions trick. We are interested in the error in
this estimation,

err(z) = ∆z −∆ẑ. (13)
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Figure 6: Effectiveness of BGLN in detecting mislabeled examples. BGLN can approximate the FSD term
in the PBRF objective accurately and be used in applications involving influence functions without explicitly
storing or iterating over the dataset.

As errors propagate through the network, we consider the error after each step of computation.
Accordingly, we define,

err(s(l)) = ∆s(l) −∆ŝ(l) and err(a(l)) = ∆a(l) −∆â(l). (14)

The key observation here is that errors are only introduced due to the linearized activation computa-
tions. Also note that, given two networks, we linearize the activations of only one of them, leaving
the other’s computations accurate.

In the case of linear (fully-connected or convolutional) networks with continuously differentiable
activation functions, the error introduced due to activations at any layer is the second-order Taylor
error,

err(a(l)) = O(||s(l)1 − s
(l)
0 ||2). (15)

Any subsequent computation then has error only due to err(a(l)), with no further errors introduced
due to linear layers. For instance, for fully-connected layers of the two networks parametrized using
W

(l)
0 and W

(l)
1 , which have as inputs a(l−1)

0 and a
(l−1)
1 , the estimation error is given by

err(s(l)) = ∆W (l)al−1
0 +W

(l)
1 ∆a(l−1) +∆b(l) (16)

−∆W (l)âl−1
0 +W

(l)
1 ∆â(l−1) +∆b(l) (17)

= ∆W (l)(al−1
0 − âl−1

0 ) +W
(l)
1 (∆a(l−1) −∆â(l−1)) (18)

= W
(l)
1 err(a(l−1)) (19)

where the last line is given by the fact that al−1
0 = âl−1

0 since activations a(l)
0 remain exact while

we linearize computations for a(l)
1 .

This error analysis formalizes the intuition that as errors are propagated through the network, they
are only introduced due to linearized activation computations. The error incurred after a linear layer
is a linear function of the error in its inputs, adding no new errors of its own.
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