
Under review as a conference paper at ICLR 2021

DON’T TRIGGER ME! A TRIGGERLESS BACKDOOR
ATTACK AGAINST DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Backdoor attack against deep neural networks is currently being profoundly inves-
tigated due to its severe security consequences. Current state-of-the-art backdoor
attacks require the adversary to modify the input, usually by adding a trigger to it,
for the target model to activate the backdoor. This added trigger not only increases
the difficulty of launching the backdoor attack in the physical world, but also can
be easily detected by multiple defense mechanisms. In this paper, we present the
first triggerless backdoor attack against deep neural networks, where the adversary
does not need to modify the input for triggering the backdoor. Our attack is based
on the dropout technique. Concretely, we associate a set of target neurons that are
dropped out during model training with the target label. In the prediction phase,
the model will output the target label when the target neurons are dropped again,
i.e., the backdoor attack is launched. This triggerless feature of our attack makes
it practical in the physical world. Extensive experiments show that our triggerless
backdoor attack achieves a perfect attack success rate with a negligible damage to
the model’s utility.

1 INTRODUCTION

Backdoor attack against deep neural networks (represented by image and text classfiers) is cur-
rently being profoundly investigated (Gu et al., 2017; Yao et al., 2019; Wang et al., 2019; Liu et al.,
2019a; Salem et al., 2020b).1 Abstractly, a backdoored model behaves normally on clean inputs
and maliciously on backdoored ones with respect to classifying them to a certain target label/class.
Successful backdoor attacks can cause severe security consequences. For instance, an adversary can
implement a backdoor in a facial authentication system to allow her to bypass it. Current attacks
construct a backdoored input by adding a trigger to a clean input. A trigger can either be a visual
pattern (Gu et al., 2017; Salem et al., 2020b) or a hidden one (Liu et al., 2019b).

State-of-the-art backdoor techniques achieve almost perfect attack success rate while causing negli-
gible utility damage on the model. However, a visible trigger on an input, such as an image, is easy
to be spotted by human and machine. Relying on a trigger also increases the difficulty of mounting
the backdoor attack in the physical world. For instance, to trigger the backdoor of a real-world facial
authentication system, the adversary needs to put a trigger on her face with the right angle towards
the target system’s camera. Moreover, a hidden trigger is harder to detect but it is even more com-
plicated to implement in the physical world (needs to interfere with the signal to the target model).
In addition, current defense mechanisms can effectively detect and reconstruct the triggers given a
model, thus mitigate backdoor attacks completely (Wang et al., 2019; Gao et al., 2019).

In this work, we introduce a new type of backdoor attack that does not involve triggers. We name
our attack the triggerless backdoor attack. Instead of adding a trigger to the inputs, we modify the
model itself to realize the backdoor. This means any clean input can trigger a successful backdoor
attack. Our triggerless backdoor attack is based on the dropout technique and a set of target neurons
selected by the adversary to trigger the attack. In detail, we train the model to react maliciously,
i.e, output the target label, when the target neurons are dropped. We then extend the dropout to the
prediction phase, however, with a very low drop rate, e.g., 0.1%, to ensure the chance of activating
the backdoor behavior. Extensive experiments demonstrate that our attack can achieve effective

1https://www.nist.gov/itl/ssd/trojai
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performance with a negligible utility drop. For instance, on the MNIST2 and CIFAR-103 datasets,
our attack achieves a perfect attack success rate (100%) with only a 0.2% drop in the models’ utility.

We acknowledge that our attack is probabilistic, indicating that we cannot easily control when the
attack can succeed. However, as we do not need to add triggers, the current defenses cannot mitigate
our attack. More importantly, our attack can be straightforwardly launched in the physical world as
the adversary does not need to modify the model inputs. Also, a more sophisticated adversary can
set the random seed – of the target model – and keep track of the number of queries applied to the
model, to predict when it will behave maliciously. Then, she just needs a single query to launch the
attack.

In summary, we make the following contributions in this paper.

1. We propose a new dimension for backdoor attacks, namely, probabilistic backdoor attacks,
and present the first triggerless backdoor attack.

2. Our triggerless backdoor attack can be easily adjusted to different use-cases by adjusting
the probability of behaving maliciously.

3. We evaluate our attack on three benchmark datasets and show its effectiveness.

2 RELATED WORKS

In this section, we discuss the related works. We start with current backdoor attacks and defenses.
Then, we present the adversarial examples and finally, a general overview of other attacks against
machine learning models.

The first work to explore the backdoor attacks was Badnets (Gu et al., 2017). Badnets backdoored
image classification models while using a white square as the trigger. It showed the applicability of
the backdoor attack where the target model can misclassify backdoored inputs while correctly clas-
sifying the clean ones. Later, the Trojan attack was introduced (Liu et al., 2019b), where it proposed
a more complex attack that simplifies the assumptions in Badnets. Badnets assumed an adversary
that can control the training of the target model and has access to the training data. Trojan attack
on the other hand does not require training data. It first reverse-engineers the model to generate
samples that are later used to backdoor the target model. Recently, another backdoor attack was
introduced that instead of using static triggers, it uses dynamic ones (Salem et al., 2020b). In this
dynamic backdoor attack, they propose different techniques that can generate different triggers and
use different locations of these triggers to implement the backdoor. So far all of these works have
explored the backdoor attack in image classification settings. BadNL further explores the backdoor
attack against text classification settings (Chen et al., 2020). The difference between all of these
attacks and our triggerless backdoor attack is that ours does not use triggers unlike all of them.

Different works have explored defenses against backdoor attacks. For instance, STRIP proposes
a technique that classifies images to either be backdoored or clean (Gao et al., 2019). Intuitively,
STRIP merges the target image with other different images. Then it queries the model with the
newly created images and monitors the model’s output. If the model’s output is constant, then
the image is backdoored. Neural Cleanse presents a different approach for defending against the
backdoor attack (Wang et al., 2019). It tries to reverse-engineer the target model to reconstruct
the backdoor triggers. Then, apply an anomaly detection technique to identify if a subset of the
reconstructed triggers is indeed a backdoor trigger or the model is clean. Both of these defenses
assume that backdoor attacks are triggered by added triggers to the input, which is not the case for
our triggerless backdoor attack. Hence why our triggerless backdoor attack can bypass them, and in
general, is more robust against similar defenses.

A different attack but with a similar goal is adversarial examples. In adversarial examples, the adver-
sary aims at mispredicting an input similar to the backdoor attack. However, adversarial examples is
a testing time attack, which means the attack does not have any access to the training of the model.
But it can only have access to the target model after it is trained, unlike the backdoor attack where
the adversary modifies the training of the target model. Multiple works have proposed different

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/˜kriz/cifar.html
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(a) Benign Behaviour (b) Backdoor Activated

Figure 1: An overview of the target model’s configuration with the benign behaviour (Figure 1a)
and the backdoor activated (Figure 1b).

techniques for adversarial examples (Zügner et al., 2018; Dai et al., 2018; Carlini & Wagner, 2017b;
Papernot et al., 2016a; Goodfellow et al., 2015; Papernot et al., 2017; Vorobeychik & Li, 2014;
Carlini & Wagner, 2017a; Li & Vorobeychik, 2015; Tramèr et al., 2017; Papernot et al., 2016b; Xu
et al., 2018).

There exist multiple different attacks against machine learning than the ones briefly introduced here.
For example, multiple works have explored the membership inference attacks and defenses (Shokri
et al., 2017; Hagestedt et al., 2019; Salem et al., 2019; Jia et al., 2019; Choo et al., 2020; Li &
Zhang, 2020), where the attacker tries to identify if an input was used into training the target model
or not. Others explore dataset reconstruction attack (Salem et al., 2020a), where the adversary
tries to reconstruct the dataset used to update the model. Finally, multiple works explore model
stealing (Tramèr et al., 2016; Orekondy et al., 2019; Wang & Gong, 2018), where the adversary tries
to steal a model given only black-box access to it.

3 TRIGGERLESS BACKDOOR

In this section, we first present the threat model considered in this paper. Then, we introduce the
triggerless backdoor attack.

3.1 THREAT MODEL

We follow the previously proposed threat model for backdoor attacks (Gu et al., 2017; Yao et al.,
2019; Chen et al., 2020; Salem et al., 2020b), in which the adversary controls the training of the
target model. However, one important difference between the triggerless backdoor and other state-
of-the-art backdoor attacks is that it does not require to poison or modify the training dataset. To
mount the attack, the adversary needs to query the backdoored model with any clean input until the
backdoor is triggered, i.e., the model outputs the target label.

3.2 TRIGGERLESS BACKDOOR ATTACK

We now introduce our triggerless backdoor attack. As previously mentioned, our triggerless back-
door attack does not modify the inputs, but triggers the backdoor behavior when specific – target –
neurons are dropped.

To implement the attack, the adversary needs to first decide on a subset of neurons, referred to as
target neurons, that will be associated with the backdoor. After deciding on the target neurons, e.g.,
the red neuron in Figure 1, the adversary can implement her attack as follows:

1. First, the adversary splits her dataset – normally – as if training a benign model, i.e., divid-
ing her datasets into training and testing datasets.
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2. Second, she applies dropout on all layers with target neurons, we will refer to these layers
as the target layers. The dropout rate is then picked by the adversary. For instance, it can
be the standard rate (50%) or a task-specific one. For the remaining layers, the adversary is
free to use dropout or not.

3. Finally, the adversary trains the model normally with the following exception. For a random
subset of batches, instead of using the ground-truth label, she uses the target label, while
dropping out the target neurons instead of applying the regular dropout at the target layer.
More practically, instead of applying dropout on the target layer for these batches, the
adversary crafts a mask that specifically drops the target neurons.

After the training is completed, the target model is expected to behave normally when the target
neurons are not dropped, as shown in Figure 1a (the figure is simplified, all neurons except the target
ones can be dropped and still the model should behave benignly), and should trigger the backdoor
behavior when the target neurons are dropped, as shown in Figure 1b (in this case, the backdoor
behavior is to predict any input to the label 0). To mount the attack, the adversary only needs to
extend dropout to the prediction phase, while reducing the dropout rate to avoid jeopardizing the
model’s utility, i.e., the model’s performance on inputs when the backdoor is not triggered. As
previously mentioned, the triggerless backdoor attack is a probabilistic attack, which means the
adversary would need to query the model multiple times until the backdoor is activated. However,
the adversary can easily control the probability of the backdoor activation by altering the number of
target neurons and the dropout rate. Furthermore, a more advanced adversary can fix the random
seed in the target model. Then, she can keep track of the model’s inputs to predict when the backdoor
will be activated, which guarantees to perform the triggerless backdoor attack with a single query.
This advanced adversary can also perform a denial of service attack by querying the model to the
point of activating the backdoor for the next input. Hence, the next (the target input for the denial of
service attack) input will be predicted to the target label and not the original one.

Since there is no trigger for our attack, the adversary has to ensure that the backdoor behavior is not
activated regularly to avoid jeopardizing the model’s utility. Hence, there is a trade-off between, on
the one hand, the model’s utility and the attack’s invisibility and, on the other hand, the backdoor
activation probability. The higher the backdoor activation probability, the lower the model’s utility
which can increase the visibility of the attack. The ideal probability of the backdoor activation of a
triggerless backdoor with the N target neurons in the same layer, and dropout rate at prediction time
Rdropout is:

R
|N |
dropout

More generally, if the target neurons are in different layers, the probability is:∏
i∈M

R
|Ni|
dropouti

where M is the set of layers containing the target neurons, Ni is the number of target neurons at the
layer i, and Rdropouti is the dropout rate at prediction time at the ith layer.

It is important to note that these probabilities present the theoretical bound for the triggerless back-
door attack, which can deviate in practice due to the randomization introduced while training the
model. And the unequal effects of different layers on the final output of the model. However, we be-
lieve these probabilities can be used as a guideline by the adversary to decide the number of neurons
and the dropout rate for a desired backdoor activation probability.

4 EVALUATION

In this section, we first introduce our experimental settings, then we present the evaluation of our
triggerless backdoor attack. Finally, we evaluate the different hyperparameters of our attack.

4.1 EVALUATION SETTINGS

Datasets and Models: We follow the same evaluation settings used by Salem et al. (Salem et al.,
2020b). Namely, we use three benchmark datasets, including MNIST, CIFAR-10, and CelebA.4 For

4http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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the MNIST and CelebA datasets, we build models from scratch similar to the ones used in (Salem
et al., 2020b), and for the CIFAR-10 dataset, we use a pre-trained VGG-19 model (Simonyan &
Zisserman, 2015).

Evaluation Metrics: For evaluating our triggerless backdoor attack, we adpot the Attack success
rate and Model utility used in previous works (Gu et al., 2017; Salem et al., 2020b; Chen et al.,
2020) and introduce three new metrics, i.e., Number of queries, Label consistency, and Posterior
similarity. More specifically, we define our evaluation metrics as follows:

• Attack success rate measures the success rate of the backdoored model on the desired target
inputs, i.e., the inputs where the adversary expects the model to output the target label. We
calculate the attack success rate by querying the target model with the test dataset while
setting the target label as the expected output. A perfect backdoor attack should have a
100% attack success rate.

• Model utility measures how similar the backdoored model is to a clean model. We calculate
the model utility by comparing the performance of the backdoored model with a clean
model on the testing dataset. A perfect backdoor attack should result in a backdoored
model that has the same performance as the clean model.

• Number of queries measures the number of repeated queries for each input in the test
dataset. We use this metric to evaluate the performance and consistency of our backdoor
attack. For instance, we quantify the number of queries needed to trigger the backdoor. A
low number of queries, implies a better backdoor attack as it can be easily launched.

• Label consistency quantifies how consistent the model’s outputs are when the backdoor be-
havior is not triggered. For the triggerless backdoor attack, the adversary needs to enable
the dropout while prediction. This may lead the model to output different labels for the
same input. A perfect backdoored model should always assign the same label to the same
input (100% label consistency), unless the backdoor is activated then it should predict the
target label. To calculate label consistency, we repeatedly query – the exact number of
queries depends on the experiment – the model with the same input and monitor the pre-
dicted labels. If the predicted label remains consistent except when the backdoor is acti-
vated, we set the label consistency for this input to be 1, otherwise, we set it to be 0. We
calculate the label consistency for all samples in the testing dataset and take their average
as the final label consistency score.

• Posterior similarity measures the cosine similarity of the model’s prediction confidence
score (i.e., posteriors) for the same input. This is similar to label consistency, but instead of
focusing on the predicted labels, it calculates the cosine similarity of each of the model’s
two consecutive posteriors on the same input. We repeat this step for multiple times –
depending on the number of queries used – and take the average score for each input.
Finally, the final posterior similarity score is the average of all samples in the testing dataset.
Again, larger posterior similarity indicates better attack performance.

4.2 TRIGGERLESS BACKDOOR ATTACK

We now evaluate our triggerless backdoor attack. We use all three datasets in our experiments and
split each of them into training and testing datasets as follows: For MNIST and CIFAR-10, we use
the default training and testing datasets. For CelebA, we randomly sample 10,000 sample for both
training and testing datasets. Then, we follow Section 3.2 to implement our triggerless backdoor in
the target models. We set the target neurons to be a single neuron in the second to last layer.

For all datasets, we set the number of epochs to train the target models to 50 and train 10 different
models for each dataset. After training, we set the dropout rate to 0.1% and set the number of
queries to 5,000. Figure 2 plots the evaluation results (both mean and standard deviation) for all
three datasets.

As Figure 2a shows, our attacks are able to achieve almost a perfect success rate (100%) on all the
three datasets. It is important to recap that we calculate the attack success rate with respect to the
number of queries, i.e., we query the input multiple times and consider the attack successful if one

5



Under review as a conference paper at ICLR 2021

CelebA CIFAR-10 MNIST0.5

0.6

0.7

0.8

0.9

1.0

A
tta

ck
 S

uc
ce

ss
 R

at
e

(a) Attack Success Rate

CelebA CIFAR-10 MNIST0.5

0.6

0.7

0.8

0.9

1.0

La
be

l C
on

si
st

en
cy

(b) Label Consistency

CelebA CIFAR-10 MNIST0.5

0.6

0.7

0.8

0.9

1.0

P
os

te
rio

r  
S

im
ila

rit
y

(c) Posterior Similarity

CelebA CIFAR-10 MNIST0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Backdoored
Clean

(d) Model Utility

Figure 2: Evaluation of the triggerless backdoor attack when setting the number of queries to 5,000,
on the MNIST, CIFAR-10 and CelebA datasets. The x-axis represents the different datasets and
the y-axis represents the attack success rate (Figure 2a), label consistency (Figure 2b), posterior
similarity (Figure 2c), and accuracy on the clean testing dataset (Figure 2d).

of the outputs is the target label. Similarly, our attacks achieve a perfect posterior similarity (1) for
all three datasets (Figure 2c).

However, for label consistency (Figure 2b), the result on CelebA is only 0.78, unlike the results on
CIFAR-10 and MNIST both of which have a label consistency of 1. This is because label consistency
is a more strict evaluation metric, i.e., for each input, as long as there is one different label, we
consider its label consistency to be 0. Intuitively, our results for the CelebA dataset shows that the
model’s outputs are similar, however, the target model seldomly tends to predict a different output
label. To validate this, we repeat the label consistency experiment for the CelebA dataset while
counting how many times the input is predicted to more than 2 labels, i.e., the target label and the
original prediction. As expected, the average number of times the input is predicted to another label
is only 23.4 (for 5,000 queries). In other words, there is less than 0.5% chance that an input is
predicted to a third label.

Finally, for model utility (Figure 2d), our models are able to achieve a similar performance as clean
models. For instance, our backdoored models achieve 92%, 67%, and 99% accuracy for CIFAR-10,
CelebA, and MNIST, respectively, which is only about 0.2%, 1.1%, and 0.2% lower than the clean
models.

These results show the efficacy of our triggerless backdoor attack on all three datasets. Moreover, it
is important to note that one of the most important advantages of our attack is that it does not modify
the inputs dissimilar to other state-of-the-art backdoor attacks (Gu et al., 2017; Salem et al., 2020b;
Liu et al., 2019b).

4.3 HYPERPARAMETERS EVALUATION

We now evaluate the effect of varying the hyperparameters of our triggerless backdoor attack. For
all of our experiments in this section, we follow the previously introduced evaluation settings (Sec-
tion 4.1) with some exceptions that we state for each experiment separately.

Number of Queries: First, we explore the effect of varying the number of queries on our attack.
We use the CIFAR-10 dataset and fix the other experimental settings. We try from 1 query to 10,000
queries with a step of 500 and plot the results in Figure 3.

As expected, a larger number of queries result in a better attack success rate. For instance, our
triggerless backdoor attack achieves approximately 46%, 80%, and 92% attack success rate for 500,
1,500, and 2,500 queries, respectively. For both, the label consistency and posterior similarity the
performance stays consistent even with a larger number of queries. For instance, the difference
between the label consistency for 500 and 10,000 queries is less than 0.06%, which demonstrates
the robustness of our attack.

Number of Target Neurons: Second, we explore the effect of increasing the number of target
neurons, i.e., the neurons that need to be dropped for the backdoor to be activated. We use the
CelebA dataset for this experiment. We consider models with different range of target neurons,
including 1,10, 20, and 50.
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Figure 3: Evaluation of varying the number of queries on the CIFAR-10 dataset. The x-axis repre-
sents the number of queries and the y-axis represents the different metrics values.
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Figure 4: Evaluation of varying the number of target neurons using the CelebA dataset. The x-axis
represents the number of quries and the y-axis represents the attack success rate (Figure 4a) and
label consistency (Figure 4b).

With an increase in the number of target neurons, we need to increase the dropout rate as well
since the previously used dropout rate (0.1%) does not drop enough neurons. Therefore, we set the
dropout rate to 10% for our experiments.

We evaluate the backdoored models with a different number of queries and plot the results in Fig-
ure 4. First, we compare the attack success rate of the models with a different number of target
neurons. As expected, fewer target neurons lead to a higher possibility of triggering the backdoor.
For instance, backdooring a model with 1 target neuron can achieve perfect a success rate with less
than 500 queries, while a model with 50 target neurons can merely get a 15% attack success rate
with 5,000 queries.

Second, Figure 4b compares the label consistency of the models. Contrary to the attack success
rate, label consistency increases with the larger number of target neurons. The maximum label
consistency score that a model with a single target neuron achieves is about 35% – note that here
we are using a dropout rate of 10% but Figure 2b uses 0.1%, hence the difference in performance
– which is less than the half of what a model with 50 target neurons achieve. The gap between the
scores of both models even increases with a larger number of queries. We observe similar behavior
for the posterior similarity but with smaller performance gap between different models.

Finally, for the model utility of different models. As expected, a larger number of target neurons
make the model more stable as to trigger the backdoor more neurons are needed. For instance, there
is a gap of about 10% between the performance of the single target neuron and 50 target neurons.
It is important to note that these results are with a dropout rate of 10%, however, as previously
shown, a single target neuron model can achieve better results in term of label consistency, posterior
similarity, and model utility with a lower dropout rate but at the expense of more number of queries
to achieve a perfect attack success rate.

Dropout Rate: Third, we explore the effect of using different dropout rates for prediction. We use
the MNIST dataset for this experiment. We try different dropout rates including 0.1%, 1%, and 10%,
and set the number of queries to 100. Figure 5 depicts the result.

Both model utility and label consistency decrease with larger dropout rates. Posterior similarity also
drops, however, with negligible quantity, i.e., it drops by less than 0.01%. Moreover, the attack
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Figure 5: Evaluation of varying the dropout
rate while prediction using the MNIST
dataset. The x-axis represents the dropout
rate, and the y-axis represents the different
metrics scores.
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Figure 6: Evaluation of using different lay-
ers for the target neuron using the CIFAR-10
dataset. The x-axis represents the number of
queries, and the y-axis represents the differ-
ent metrics.

success rate increases significantly with a higher dropout rate. For instance, using 100 queries can
already achieve a 100% attack success rate when the dropout rate is 10% compared to only 20%
when the dropout rate is 0.01%.

Different Target Layer: For all the previous experiments, we consider the second to last layer as the
target layer. We now investigate whether using different layers for the target neurons can influence
our attack. We use the CIFAR-10 dataset to train a triggerless backdoored model with a single target
neuron in the first fully connected layer, i.e., the third to last layer. We compare the performance of
the trained model with the one previously used in Section 4.2, i.e., the target neuron is in the second
to last layer. We plot the comparison of both models in Figure 6 for a different number of queries
using the CelebA dataset.

As the figure shows, both models have a small performance gap when considering the attack success
rate, e.g., both are able to achieve 100% attack success rate at about 5,000 queries. However, for
label consistency, there is a larger gap between the two models. Using the second to last layer for
the target neuron achieves a better performance than the other one. This is expected as the last
layers have a more direct effect on the final predicted label, i.e., it is the input to the last layer which
performs final step of prediction.

5 CONCLUSION

Backdoor attacks against deep neural networks received a lot of attention recently. However, all
current works implement backdoor attacks by using triggers in the input domain, e.g., using a white
or colored square as a trigger, which hinders these attacks from being deployed in the physical world.

In this work, we introduce the first triggerless backdoor attack, where no triggers need to be added
to the model inputs. This type of backdoor has two main advantages. First, it can be easily applied
in the physical world since inputs are not modified. Second, it can bypass state-of-the-art defenses
mechanisms in this field, which detect backdoors by finding triggers.

Our attack is implemented by associating a set of neurons being dropped out during training with a
target label. The attack will be launched when target labels are dropped again during the prediction
phase. Our evaluation shows that our triggerless backdoor attack indeed performs as expected and
can easily achieve a perfect attack success rate with a negligible damage to models’ utility. More-
over, we evaluate different hyperparameters of our attack and shows its flexibility being adapted to
various use cases. For instance, the adversary can easily control how often the model triggers the
backdoor behavior by adapting the dropout rate.
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