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Abstract. Universal lesion segmentation is challenging due to (1) the
need to segment lesions across the entire body, often when they occupy
only a small portion of the image, and (2) the crowdsourced nature of
training images, leading to inconsistent annotation quality. Many exist-
ing methods adopt a divide-and-conquer strategy or integrate detection
with segmentation to enhance training effectiveness. In contrast, we sim-
plify the task by treating all lesions as a single type and directly training
a universal lesion segmentation model using large image spacing and in-
put volumes. Our approach is inspired by single-organ tumor segmenta-
tion, where including a large portion of the organ improves performance.
Extending this concept, we consider the entire human body as the "or-
gan" for universal lesion segmentation. However, applying conventional
settings for single-organ segmentation to the whole body is computation-
ally expensive and requires substantial GPU memory. To address this,
we employ large volume spacing during training, effectively balancing
model complexity, training cost, and performance. Our method achieved
a Dice score of 0.66 and an NSD of 0.59 on the online validation set and
a Dice score of 0.46 and an NSD of 0.38 on the test set, ranking first on
both leaderboards. The inference time is approximately 80 seconds per
case, with a GPU memory requirement of 4 GB.

Keywords: Universal lesion detection · Lesion segmentation · Crowd-
sourcing image.

1 Introduction

Lesion segmentation in medical images, particularly from 3D CT scans, is crucial
for accurate diagnosis, treatment planning, and disease progression monitoring.
Unlike single-organ lesion segmentation tasks, which focus on segmenting lesions
from specific organs like the lungs or liver, universal lesion segmentation (ULS)
aims to identify and segment lesions across the entire human body [27,26,30].
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This problem is inherently more challenging than single-organ segmentation be-
cause:

1. It involves segmenting lesions across the entire body, where the lesion often
occupies only a very small portion of the image, leading to a severe label
imbalance problem.

2. The training images are crowdsourced, resulting in inconsistent annotation
quality.

Widely used segmentation methods like nnU-Net [13] are typically designed
for more balanced segmentation tasks, such as organ segmentation or single-
organ lesion segmentation. Applying these default settings directly to ULS may
yield suboptimal results. Recently, some methods have adopted a divide-and-
conquer approach to convert the ULS task into multiple, easier single-organ le-
sion segmentation tasks [5,15], which have shown promising results. For instance,
the CancerUniT method [5] decomposes the ULS task into eight single-organ seg-
mentation and single-type lesion segmentation tasks by encoding each task as
a specific query embedding. Jie Liu et al. [15] propose a CLIP-driven univer-
sal lesion segmentation model that uses text embeddings to represent different
lesion segmentation tasks. While these methods effectively address challenge
1—the label imbalance problem—by restricting each sub-task’s region, they in-
troduce higher demands for data collection and labeling. Specifically, they re-
quire accurate specification of lesion types and their associated organs, which
is complicated by challenge 2—the inconsistency in crowdsourced data, where
label completeness and quality are often not guaranteed. For example, a dataset
might only include lesion masks without specifying the lesion type, or the lesion
annotations may be inaccurate.

There are also methods that treat all lesions as a single type and train a
lesion/non-lesion detector [2,4]. However, these methods often train the model
in a slice-by-slice 2D manner, which cannot fully leverage the 3D information of
CT volumes.

Inspired by the single-organ lesion segmentation task, we propose treating
the human body as a single "organ" and directly training a lesion/non-lesion
segmentation model for the entire body. In single-organ lesion segmentation,
achieving good performance often requires the input patch to cover a significant
portion of the target organ. Similarly, to achieve optimal performance in ULS,
the training image patch should cover a large portion of the entire body. Given
the constraints of GPU memory, the only feasible approach is to rescale the
input image to a larger spacing. Although this larger spacing is typically not
recommended, as it can result in a loss of detail, we found that it works well
for our ULS task. In the next section, we will give a detailed description of our
method.

2 Method

Our method is based on the nnU-Net [13] framework, which first generates a
dataset fingerprint and then automatically generates training plans accordingly.
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In our approach, we made significant modifications to three key parts of the nnU-
Net pipeline: preprocessing, training patch spacing and volume, and the training
schedule. These adjustments led to substantial performance improvements in our
experiments.

2.1 Preprocessing

Flare2024 task1 gives 5000 annotated CT volumes, which are gathered from
multiple datasets, including:

– MSD_colon dataset
– MSD_hepaticvessel dataset
– MSD_liver dataset
– MSD_lung dataset
– MSD_pancreas dataset
– COVID-19 dataset
– KiTS23 dataset
– LIDC dataset
– TCIA-Adrenal dataset
– TCIA-LympthNodes dataset
– TCIA-NSCLC dataset
– DeepLesion dataset.

We found that some datasets include very large CT volumes, and some CT
volumes contain extensive background regions, which put significant strain on
I/O and CPU processing. To reduce unnecessary background, we generate a
body mask by applying a threshold slightly higher than the background value
and then removing the regions outside the body mask. For large CT volumes,
we also divide them into two equal-sized subvolumes, as shown in Fig. 1.

Afterward, we ran the nnU-Net experiment plan function, which recom-
mended a patch size of 96×128×128, a normalized spacing of 1×0.82×0.82 mm3,
and a batch size of 2 for a single 11GB GPU. We modified these settings by in-
creasing the patch size to 160 × 160 × 160, adjusting the normalized spacing
to 1.4 × 1.4 × 1.4 mm3, and setting the batch size to 1 due to GPU memory
limitations.

Comparing the two configurations, the original setting covers approximately
a 96 × 105 × 105mm3 region, whereas our modified setting covers 224 × 224 ×
224mm3. Our approach significantly increases the portion of the body covered
in each patch, making the training process more efficient and effective. We then
use our setting to generate the training data for our model.

2.2 Proposed Method

We followed the typical nnU-Net training protocol and used the default data
augmentation settings. Instead of the standard U-Net model, we opted for a 3D
ResU-Net, which we found to deliver better performance. Figure 3 shows the 3D
ResU-Net we used.
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Fig. 1. An example of a large CT volume. The left part shows the original CT volume,
with a big size of 400×400×619. The right part shows the preprocessed volume, as we
crop the unnecessary background and divide the original volume into two equal-sized
subvolumes.

Loss function: we use the summation between Dice loss and Cross-entropy
loss as the final loss function, we also use deep supervision at each downsample
stage.

We did not use specific strategies to reduce the false positives on CT scans
from healthy patients as false negatives are more severe than false positives for
tumor diagnosis. We also did not use specific strategies to deal with partial
labels. Unlabeled images and pseudo labels generated by the FLARE23 winning
algorithm were also not used.

2.3 Post-processing

We used an overlapping sliding window approach to generate the final output
for a given CT volume, with an overlap ratio of 0.5. Since the 3D ResU-Net is
a fully convolutional architecture, we slightly increased the inference patch size
to 192× 192× 192, compared to the training patch size of 160× 160× 160. We
found that this approach optimizes GPU memory usage, reduces inference time,
and maintains performance.
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Fig. 2. 3D ResU-Net model. Each gray block contains two Residual blocks, as detailed
in the right part of the figure.

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, includ-
ing TCIA [6], LiTS [3], MSD [23], KiTS [10,12,11], autoPET [9,8], TotalSeg-
mentator [24], and AbdomenCT-1K [20], FLARE 2023 [19], DeepLesion [28],
COVID-19-CT-Seg-Benchmark [18], COVID-19-20 [22], CHOS [14], LNDB [21],
and LIDC [1]. The training set includes 4000 abdomen CT scans where 2200
CT scans with partial labels and 1800 CT scans without labels. The valida-
tion and testing sets include 100 and 400 CT scans, respectively, which cover
various abdominal cancer types, such as liver cancer, kidney cancer, pancreas
cancer, colon cancer, gastric cancer, and so on. The lesion annotation process
used ITK-SNAP [29], nnU-Net [13], MedSAM [16], and Slicer Plugins [7,17].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.



6 Xiaoyu Bai et al.

Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
RAM 8×16GB; 10.22MT/s
GPU (number and type) Four NVIDIA RTX 2080Ti 11G
CUDA version 11.8
Programming language e.g., Python 3.9.19
Deep learning framework e.g., torch 2.1.2, torchvision 0.16.2
Specific dependencies nnU-Net

Training protocols We used the default nnU-Net data augmentation pipeline,
which includes random rotations, random scaling, Gaussian noise, Gaussian blur,
multiplicative brightness transformations, and gamma transformations applied
to the input patches. Given that lesions occupy only a small portion of the entire
CT volume, we employed a balanced sampling method. Specifically, each input
patch has a 50% chance of containing part of a lesion. The model was trained for
2000 epochs, divided into three stages to mimic the cosine learning rate schedule.
The first stage consisted of 1000 epochs. Afterward, we extended the training
to 1500 epochs, continuing from the best checkpoint of the first 1000 epochs.
Finally, we trained for an additional 500 epochs, initializing with the final model
weights from the 1500-epoch stage. The detailed protocols are shown in Table 2.

Table 2. Training protocols.

Pre-trained Model None
Batch size 4
Patch size 160×160×160
Total epochs 2000
Optimizer SGD
Initial learning rate (lr) 1e-2
Lr decay schedule PolyLRScheduler
Training time 40 hours
Loss function Dice loss+CrossEntropy
Number of model parameters 101.94M
Number of flops 18.89T
CO2eq 13 Kg
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Fig. 3. Online validation leaderboards. npubxy represents our results.

Table 3. Quantitative evaluation results.

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Algorithm1 36.58 ± 30.63 46.07 ± 37.74 65.51 59.08 46.46 ± 37.13 37.77 ± 32.28

4 Results and discussion

4.1 Quantitative results on validation set

On the online validation set, our method achieved a lesion Dice Similarity Co-
efficient (DSC) of 65.51 and a Normalized Surface Distance (NSD) of 59.08, as
shown in Table 3.

Table 4. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 41.18 4077 57956
0051 (512, 512, 100) 25.48 4061 40665
0017 (512, 512, 150) 32.94 4077 68217
0019 (512, 512, 215) 33.90 4111 69289
0099 (512, 512, 334) 54.52 4267 131649
0063 (512, 512, 448) 33.70 4107 68803
0048 (512, 512, 499) 50.60 4087 85894
0029 (512, 512, 554) 38.68 4071 54467
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4.2 Qualitative results on validation set

On the public validation set, our method achieves a DSC score of 36.58, which
is significantly lower than the performance on the online validation set. We
attribute this discrepancy primarily to the presence of very small lesions in the
public validation set, as well as low tumor-tissue contrast. For instance, as shown
in Fig. 3, the ground truth for the case LNDb-0312 consists of only one voxel,
making it extremely challenging to achieve accurate predictions in such cases.

FLARE23Ts_0001 FLARE23Ts_0013

FLARE23Ts_0009LNDb-0312

Fig. 4. The segmentation examples from the public validation set include two cases
with good segmentation results and two with poor results. In each example, the left
panel displays the CT image, while the right panel shows the ground truth in white
and the predictions in red.

4.3 Segmentation efficiency results on validation set

Table 4.1 presents the segmentation efficiency of our method on the valida-
tion cases. Our approach requires approximately 4000 MB of GPU memory and
processes each case in about 40 seconds. On the final testing set, the average
processing time increases to 81 seconds per case. Additionally, on healthy CT
scans, our method achieves a false positive rate of 0.15 across 40 cases.

4.4 Results on final testing set

On the final testing set, our method achieved a DSC of 46.46% and a NSD of
37.77% ,ranking first on the testing leaderboard. However, our approach requires
approximately 90 seconds per case for inference, making it less efficient than
other methods.
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4.5 Limitation and future work

Currently, our model is trained exclusively on annotated cases, leaving a large
number of unannotated cases unused due to computational constraints. Addi-
tionally, the inference time remains relatively high, primarily due to the single-
process implementation in the post-processing step. In future work, we plan
to leverage both annotated and unannotated cases to enhance performance and
implement multi-processing in the post-processing pipeline to improve efficiency.

5 Conclusion

In this paper, we simplify the universal lesion segmentation task by treating all
lesions throughout the body as a single category and training a universal lesion
segmentation model using large image spacing and large input volumes. The ra-
tionale stems from single-organ tumor segmentation, where a substantial portion
of the organ is typically used as input to achieve strong performance. We extend
this concept by considering the entire human body as the "organ" for univer-
sal lesion segmentation, intentionally using large volume spacing for training.
This straightforward approach effectively balances model complexity, training
cost, and performance. On the online validation set, our method achieved a Dice
score of 0.66 and an NSD of 0.59, securing the top position on the validation
leaderboard.
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Table 5. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 6
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Fig. 2
Pre-processing 3
Strategies to use the partial label 4
Strategies to use the unlabeled images. 4
Strategies to improve model inference 4
Post-processing 4
The dataset and evaluation metric section are presented 5
Environment setting table is provided Table 1
Training protocol table is provided Table 2
Ablation study 7
Efficiency evaluation results are provided Table 4
Visualized segmentation example is provided Fig. 3
Limitation and future work are presented Yes
Reference format is consistent. Yes


