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Abstract
Due to the capability of dynamic state space models (SSMs)
in capturing long-range dependencies with linear-time com-
putational complexity, Mamba has shown notable perfor-
mance in NLP tasks. This has inspired the rapid develop-
ment of Mamba-based vision models, resulting in promising
results in visual recognition tasks. However, such models are
not capable of distilling features across layers through feature
aggregation, interaction, and selection. Moreover, existing
cross-layer feature aggregation methods designed for CNNs
or ViTs are not practical in Mamba-based models due to high
computational costs. Therefore, this paper aims to introduce
an efficient cross-layer feature aggregation mechanism for vi-
sion backbone networks. Inspired by the Retinal Ganglion
Cells (RGCs) in the human visual system, we propose a new
sparse cross-layer connection mechanism termed SparX to
effectively improve cross-layer feature interaction and reuse.
Specifically, we build two different types of network layers:
ganglion layers and normal layers. The former has higher
connectivity and complexity, enabling multi-layer feature ag-
gregation and interaction in an input-dependent manner. In
contrast, the latter has lower connectivity and complexity. By
interleaving these two types of layers, we design a new family
of vision backbone networks with sparsely cross-connected
layers, achieving an excellent trade-off among model size,
computational cost, memory cost, and accuracy in compar-
ison to its counterparts. For instance, with fewer parameters,
SparX-Mamba-T improves the top-1 accuracy of VMamba-
T from 82.5% to 83.5%, while SparX-Swin-T achieves a
1.3% increase in top-1 accuracy compared to Swin-T. Ex-
tensive experimental results demonstrate that our new con-
nection mechanism possesses both superior performance and
generalization capabilities on various vision tasks. Code is
publicly available at https://github.com/LMMMEng/SparX.

1 Introduction
Contextual modeling plays a vital role in computer vision
tasks, including image classification, object detection, and
semantic segmentation. Recent advancements have explored
large-kernel convolutions to enlarge receptive fields (Liu
et al. 2022; Ding et al. 2022b; Liu et al. 2023; Ding et al.
2024) and Vision Transformers (ViTs) (Dosovitskiy et al.
2021; Touvron et al. 2021; Liu et al. 2021; Wang et al.
2021) to possess powerful long-range modeling capability.
However, both CNNs with large convolution kernels and Vi-
sion Transformers exhibit limitations. The performance of
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Figure 1: Performance comparison between SparX-Mamba
and other methods on various vision tasks.

CNNs still lags behind advanced ViTs while the latter suf-
fers from substantial computational costs when processing
high-resolution inputs, due to its quadratic complexity.

Empowered by dynamic State Space Models (SSMs)
capable of modeling long-range dependencies with near-
linear complexity, Mamba (Gu and Dao 2024) has demon-
strated promising performance in natural language process-
ing (NLP) tasks. Building upon this success, researchers
have proposed Mamba-based models for vision tasks (Zhu
et al. 2024; Yang et al. 2024; Liu et al. 2024; Huang et al.
2024; Behrouz, Santacatterina, and Zabih 2024; Pei, Huang,
and Xu 2024). Such work has made successful attempts to
introduce linear-time long-range modeling capability into
vision models by leveraging SSMs, which are primarily used
to capture spatial contextual information within the same
layer. Nonetheless, there might exist both complementarity
and redundancy among token features in different layers as
they capture image characteristics and semantics at different
levels and granularities. Thus features across different layers
need to be distilled to extract useful information and remove
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redundancy through aggregation, interaction, and selection.
However, existing Mamba-based vision models do not pos-
sess such an ability to conduct feature distillation across lay-
ers, hindering the realization of the full power of SSMs.

Although cross-layer feature interaction and reuse have
been shown to effectively improve performance in both
CNNs and Vision Transformers, such as DenseNet (Huang
et al. 2017) and FcaFormer (Zhang, Hu, and Wang 2023),
these methods are not directly applicable to Mamba-based
vision models. As shown in Table 5, when VMamba is re-
structured as a DenseNet-style Network (DSN), its through-
put drops by almost 50%, accompanied by a 1GB increase
in GPU memory usage. Meanwhile, as shown in Table 6, us-
ing Spatial Cross-Attention (SCA) in FcaFormer as a multi-
layer feature interaction module results in a more than 80%
increase in GPU memory usage compared to simple fea-
ture concatenation, due to the quadratic complexity of at-
tention calculations. Therefore, designing an efficient con-
nectivity pattern to facilitate cross-layer feature interaction
in Mamba-based models poses a significant challenge.

Unlike existing works that primarily focus on improv-
ing Mamba-based token mixers, in this work, we propose
a novel architectural design that significantly boosts the per-
formance of SSM-based vision models. Our design draws
inspiration from Retinal Ganglion Cells (RGCs) in the hu-
man visual system. RGCs serve as the information transmis-
sion hub in the human visual system, bridging the retinal
input and the visual processing centers in the central ner-
vous system (Kim et al. 2021). Due to the complex neural
architecture and diverse cell composition within the RGC
layer (Curcio et al. 1990; Watson 2014), it has a larger num-
ber of connections with other cell layers in the visual sys-
tem, thereby fostering intricate neural interactions with other
layers. Inspired by this biological mechanism, we propose
a novel sparse cross-layer connection mechanism named
SparX. We define two types of SSM-based basic layers,
namely, normal layers and ganglion layers. The former has
less information flow, taking a single input from the preced-
ing layer and connecting with a small number of subsequent
layers. In contrast, the latter establishes a larger number of
connections with subsequent layers and encodes inputs from
multiple preceding layers. The combination of ganglion and
normal layers mimics the combination of RGC layers and
non-RGC layers within the human visual system.

Existing literature (D’Souza and Lang 2020) also con-
firms that RGCs generate diverse intercellular communica-
tions including both RGC-RGC and RGC-non-RGC inter-
actions. Inspired by this premise, we incorporate a new Dy-
namic Multi-layer Channel Aggregator (DMCA) into gan-
glion layers, aiming to efficiently facilitate adaptive feature
aggregation and interaction across multiple layers. Further-
more, to maintain speed and lower memory consumption,
we introduce a cross-layer sliding window, which only per-
mits each ganglion layer to connect with other ganglion lay-
ers in the same sliding window.

By hierarchically interleaving ganglion and normal layers
in a feedforward network, we design a novel Mamba-based
vision backbone, namely, Vision Mamba with sparsely
cross-connected layers (SparX-Mamba). In addition to in-

herent advantages of Mamba-based models, our SparX-
Mamba achieves an excellent trade-off between perfor-
mance and computational cost. Notably, our SparX-Mamba
differs from conventional vision models that are constructed
by simply stacking the same layer design, resulting in sim-
ilar feature extraction capabilities at every layer. In con-
trast, the two types of functionally distinct layers of SparX-
Mamba facilitate a model to extract more diverse feature
representations, thereby enhancing performance. It is worth
noting that our SparX has also been successfully applied to
hierarchical vision Transformers, such as Swin (Liu et al.
2021), and the resulting models also have the aforemen-
tioned advantages over the original Transformer models. For
example, our SparX-Swin-T achieves a 1.3% improvement
in top-1 accuracy compared to Swin-T.

As shown in Figure 1, the proposed SparX-Mamba
demonstrates superior performance over recently proposed
VMamba as well as classical CNN and Transformer-based
models, with a smaller number of parameters (Params). For
instance, when compared with VMamba-T, SparX-Mamba-
T achieves a top-1 accuracy of 83.5% on ImageNet-1K, re-
markably surpassing the accuracy of VMamba-T (82.5%).
When integrated with UperNet for semantic segmenta-
tion on the ADE20K dataset, SparX-Mamba-T outperforms
VMamba-T by 1.7% in mIoU. Furthermore, when integrated
into Mask R-CNN for object detection on the COCO 2017
dataset, SparX-Mamba-T exceeds VMamba-T by 1.3% in
APb and even outperforms VMamba-S, whose complexity is
nearly 1.5 times that of SparX-Mamba-T. Meanwhile, both
the small and base versions of SparX-Mamba also exhibit
notable performance improvements over VMamba.

In summary, our main contributions are threefold: First,
inspired by RGCs in the human visual system, we propose
a novel skip-connection mechanism named SparX, which
sparsely and dynamically configures cross-layer connec-
tions, thereby enabling diverse information flow and im-
proved feature distillation. Second, on the basis of Mamba
and Transformer, we propose two versatile vision back-
bones, SparX-Mamba and SparX-Swin, constructed from
two types of functionally distinct layers, one of which is
responsible for communications between relatively distant
layers. Third, we conduct extensive experiments on image
classification, object detection, and semantic segmentation
tasks. Results demonstrate that our new network architec-
ture achieves a remarkable trade-off between performance
and computational cost.

2 Related Work
CNNs. Convolutional Neural Networks (CNNs) have
emerged as the standard deep learning architecture in com-
puter vision (Simonyan and Zisserman 2015; He et al. 2016;
Huang et al. 2017). In the realm of modern CNNs, a no-
table shift has occurred from traditional small convolution
kernels to a design focused on larger kernels. Noteworthy
examples of this trend include ConvNeXt (Liu et al. 2022),
RepLKNet (Ding et al. 2022b, 2024), and SLaK (Liu et al.
2023). Recently, InceptionNeXt (Yu et al. 2024b) has com-
bined classical Inception networks with ConvNeXt, result-
ing in notable performance improvements.
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Figure 2: A concrete example of proposed SparX with S=2 and M=2.

Vision Transformers. To adapt Transformers from NLP
tasks to computer vision tasks, a vision Transformer
(ViT) (Dosovitskiy et al. 2021) splits an image into visual
tokens through patch embedding, thereby enabling multi-
head self-attention (MHSA) to learn token-to-token depen-
dencies. To further generate hierarchical feature representa-
tions and improve model efficiency, many subsequent works
have adopted pyramidal architecture designs, including win-
dow attention (Liu et al. 2021; Dong et al. 2022; Pan et al.
2023), sparse attention (Yang et al. 2021; Wang et al. 2022;
Ren et al. 2022; Wu et al. 2023), and conv-attention hybrid
models (Dai et al. 2021; Xiao et al. 2021; Li et al. 2022,
2023; Lou et al. 2023; Yu et al. 2024a).

Vision Mamba. Since Mamba (Gu and Dao 2024) has
achieved outstanding performance in NLP tasks, many re-
searchers have transferred Mamba to computer vision tasks.
As the core of Mamba, SSM can model long-range depen-
dencies with near-linear complexity and has shown excel-
lent performance in vision tasks. For instance, ViM (Zhu
et al. 2024) introduces a bidirectional SSM module and
constructs an isotropic architecture like ViT (Dosovitskiy
et al. 2021). Likewise, PlainMamba (Yang et al. 2024) also
builds an isotropic architecture with continuous 2D scan-
ning. VMamba (Liu et al. 2024) extends the scanning order
to include four directions and is an early SSM-based hier-
archical architecture. Subsequently, a series of hierarchical
vision Mamba models have been proposed, including Mam-
baMixer (Behrouz, Santacatterina, and Zabih 2024), Local-
Mamba (Huang et al. 2024), EfficientVMamba (Pei, Huang,
and Xu 2024), and MSVMamba (Shi, Dong, and Xu 2024).

Skip-connections. ResNet (He et al. 2016) introduces
residual connections for deep CNNs, alleviating the issues of
vanishing and exploding gradients with bypassing shortcuts.
To diversify information flow, DenseNet (Huang et al. 2017)
further incorporates dense connections, which compute the
input of a layer using the collection of outputs from all pre-
ceding layers. DPN (Chen et al. 2017) makes use of the skip-
connections in both ResNet and DenseNet to build a dual-
pathway network. In the domain of dense prediction tasks,
U-Net (Ronneberger, Fischer, and Brox 2015) and FPN (Lin
et al. 2017) leverage skip-connections to bridge the gap be-
tween low-level details from the encoder and high-level con-
texts from the decoder. This work introduces a novel skip-
connection mechanism that dynamically configures sparse
cross-layer connections, resulting in improved performance
in comparison to existing methods.

Cross-feature Attention. Cross-feature attention can
enhance feature representation by improving interactions
among different features. For instance, many works (Chen,
Fan, and Panda 2021; Lee et al. 2022; Wang et al. 2023a;
Ren et al. 2022; Wu et al. 2023) proposed to perform cross-
feature attention by generating multi-scale tokens, which are
then fed into self-attention or cross-attention layers to model
multi-scale interactions. Recently, FcaFormer (Zhang, Hu,
and Wang 2023) introduced cross-attention between the spa-
tial tokens of a layer and representative tokens from previ-
ous layers to model cross-layer feature interactions. In con-
trast to existing methods, we introduce a novel channel-wise
cross-attention mechanism that dynamically integrates fea-
ture channels from preceding layers, thereby facilitating ef-
ficient cross-layer feature interactions.

3 Method
3.1 Sparse Cross-Layer Connections
Overview. Inspired by how Retinal Ganglion Cells (RGCs)
function in the human visual system, we introduce a novel
sparse cross-layer connection mechanism named SparX.
The goal is efficiently modeling cross-layer communica-
tions, generating diverse information flows, and improv-
ing feature reuse within Mamba-based architectures. As
shown in Figure 2, SparX has three building components:
Dynamic Position Encoding (DPE) (Chu et al. 2022),
Mamba block, and the newly-introduced Dynamic Multi-
layer Channel Aggregator (DMCA). Among them, DPE
leverages a residual 3×3 depthwise convolution (DWConv),
which finds widespread adoption in modern vision back-
bone networks (Li et al. 2023; Chu et al. 2021; Guo et al.
2022). The Mamba block effectively captures long-range
dependencies with a near-linear computational complexity.
However, the vanilla Mamba block (Gu and Dao 2024) is
unsuitable for being directly embedded into vision back-
bones. In this regard, we utilize the VSS block, which
has shown promising performance since its introduction in
VMamba (Liu et al. 2024). To enhance channel mixing, a
ConvFFN (Wang et al. 2022) is incorporated within VSS fol-
lowing (Shi, Dong, and Xu 2024). The proposed DMCA dy-
namically aggregates, selects, and encodes cross-layer fea-
tures, giving rise to powerful and robust feature representa-
tions. On top of these basic components, two types of net-
work layers are constructed in SparX: ganglion layers (“DPE
→ DMCA → VSS Block”) and normal layers (“DPE →
VSS Block”). These two layers are interleaved in a feed-



forward network to enable effective modeling of cross-layer
feature interactions in a sparse manner.

Connection Rules. In a vanilla dense connection (Huang
et al. 2017), each layer is connected to all preceding layers.
Despite the relatively low FLOPs of DenseNet, the storage
of many preceding feature maps, which need to be repeat-
edly accessed during a forward pass, gives rise to high mem-
ory cost and low speed. Although efforts (Pleiss et al. 2017;
Huang et al. 2019) have been made to lower memory cost,
dense connections still face challenges when it is necessary
to scale models to deeper and wider architectures. Conse-
quently, the vanilla dense connection mechanism is too com-
putationally heavy to use in Mamba-based models whose to-
ken mixer is more complex than standard convolutions. To
this end, we propose SparX, which can be efficiently inte-
grated into recent Mamba-based architectures. In SparX, we
introduce two new rules, including sparse placement of gan-
glion layers and using a cross-layer sliding window to con-
trol the density of cross-layer connections.

Sparse Ganglion Layers aim to designate a subset of
evenly spaced layers as ganglion layers while all remaining
layers are normal layers. To control the density of ganglion
layers, we define a hyperparameter called stride (S), which
is one plus the number of normal layers between two near-
est ganglion layers. We further define two types of cross-
layer connections: (1) Intra-connection between a ganglion
layer and a normal layer; (2) Inter-connection between two
ganglion layers. To set up sparse cross-layer connections, a
ganglion layer only has intra-connections with the normal
layers between the closest preceding ganglion layer and it-
self while it builds inter-connections with multiple preced-
ing ganglion layers. The rationale behind such cross-layer
connections is that a ganglion layer can be regarded as an
information exchange hub, which gathers information from
the closest normal layers and exchanges it with other gan-
glion layers. To ensure that the final output of a network or
stage contains rich semantic information, the last layer of a
network or stage is typically a ganglion layer. As an exam-
ple, if we have an 8-layer network and set the stride (S) to
2, the indices of the normal layers are {1, 3, 5, 7} while the
indices of the ganglion layers are {2, 4, 6, 8}.

Cross-layer Sliding Window is proposed to further im-
prove computational efficiency, inspired by spatial sliding
windows. The motivation behind this design is that, despite
using the aforementioned sparse connections, deeper net-
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Figure 3: An illustration of the proposed DMCA. The red
font indicates the dimensions in matrix multiplications.

works may still incur high memory costs due to the need
to store and access a number of earlier feature maps. To
this end, we introduce another hyperparameter M, which re-
stricts a ganglion layer to have inter-connections with the
M closest preceding ganglion layers only. Based on these
two new rules, even without direct connections, information
can still flow from shallower layers to deeper layers quickly
through a relatively small number of intra-connections and
inter-connections. Figure 2 illustrates an example of SparX
with S=2 and M=2.

Dynamic Multi-layer Channel Aggregator (DMCA).
To selectively retrieve complementary features from pre-
vious layers and dynamically model multi-layer interac-
tions, we propose an efficient Dynamic Multi-layer Chan-
nel Aggregator (DMCA). As depicted in Figure 3, let X ∈
RC×N represents the features of a ganglion layer, and
{Y1,Y2, · · · ,YL} ∈ RC×N denote features from preced-
ing ganglion and normal layers, where C and N represent
the channel and spatial dimensions, respectively, while L de-
notes the total number of features from prior layers. First, we
concatenate the features from preceding layers and project
the channel dimension to 2C using a linear layer. Then, we
evenly split the projected features into two segments along
the channel dimension, Yk and Yv. Afterwards, we design a
cross-layer grouped channel attention (CGCA) mechanism,
where query, key, and value refer to X, Yk, and Yv, re-
spectively. Specifically, we divide the channels into multi-
ple groups, and channel-wise cross-attention is computed
within each group. The number of groups (G) is always
set to 4 in our experiments. Consequently, in our CGCA,
the size of the overall attention map A for all groups is
G × C

G × C
G , which avoids high computational and mem-

ory overhead when large spatial resolutions are used.
On the other hand, channel-wise cross-attention computes

an attention matrix that measures the similarity between ev-
ery pair of transformed channels from query and key, and the
spatial dimension becomes eliminated. Note that the spatial
resolution directly affects the cost of computing this atten-
tion matrix because it determines the dimensionality of ev-
ery channel from query and key. One key observation is that
the size of the attention matrix is independent of the spa-
tial dimensions of query and key, whose spatially reduced
versions can be used for computing an approximation of the
original attention matrix. Based on this, we employ a spa-
tial reduction strategy to improve computational efficiency.
Specifically, we use a spatial reducer to compress the num-
ber of spatial tokens in query and key from N to N/r. In our
experiments, the rule for setting r is making N/r equal to
the number of tokens in the final stage of the network, fol-
lowing PVT (Wang et al. 2021, 2022). Although this opera-
tion might appear similar to spatial reduction used in PVT,
it serves different purposes. In PVT, spatial reduction is ex-
ploited to compute spatial token-to-region attention with the
reduction applied to key and value. In our case, we employ
spatial reduction to efficiently compute channel-to-channel
attention with the reduction applied to query and key. Once
the attention matrix has been computed, it is used to aggre-
gate the channels of value, which maintains the original spa-
tial resolution. The final feature Z from channel-wise cross-



attention can be regarded as the selected feature of value
under the guidance of query. Finally, we concatenate X,
Yv, and Z, followed by a linear layer to project the num-
ber of channels down to 2C. Mathematically, the operations
of DMCA are summarized below:

Yk,Yv = Split(W1(Cat(Y1,Y1, · · · ,YL)))

Q = W2(R1(X)),K = W3(R2(Yk)),V = W4(Yv)

Z =
Softmax(QKT)√

N/r
V

(1)

where Wi refers to a linear layer used for channel projection,
i.e., W1 ∈ R2C×LC and {W2,W3,W4} ∈ RC×C . Mean-
while, Ri denotes a spatial reducer implemented as a strided
DWConv, while {Q,K} ∈ RG×C

G×N
r and V ∈ RG×C

G×N .
SparX introduces two flexible hyperparameters, namely

S and M, making it easier and more efficient to extend the
network deeper and wider. In addition, the incorporation of
DMCA enables strong cross-layer feature interactions, giv-
ing rise to more powerful and robust representations.

3.2 Network Architecture
Based on the proposed sparse cross-layer connections,
we have developed a new Mamba-based vision backbone
named SparX-Mamba, a 4-stage hierarchical architecture
with three different variants: tiny, small, and base. In stage 1,
we do not include any ganglion layers due to the high com-
putational overhead when large-resolution inputs are used.
That is, stage 1 contains only two normal layers. In stage
2, we designate the second layer as a ganglion layer, which
has an intra-connection with its preceding layer. Since Stage
3 has more layers, we set different hyperparameters for the
three variants. As listed in Table 1, due to the relatively small
depth of the tiny model, we set S to 2 while S = 3 in both
small and base models to avoid high computational cost in
deeper models. In stage 4, we make an exception for tiny
and small models by setting all layers as ganglion layers, as
this stage processes the lowest resolution features and in-
curs a relatively low computational cost in these models.
Regarding more complex base model, only the last layer is
set as the ganglion layer to prevent excessive computational
costs. Meanwhile, to facilitate communications across dif-
ferent stages, the first ganglion layer of each stage connects
to a downsampled version of the final feature from the pre-
ceding stage. Furthermore, a cross-layer sliding window is
only applied within each stage, to prevent high memory con-
sumption due to excessive feature storage.

SparX-Mamba Channels Blocks S, M

Tiny [96, 192, 320, 512] [2, 2, 7, 2] [2, 3]
Small [96, 192, 328, 544] [2, 2, 17, 2] [3, 3]
Base [120, 240, 396, 636] [2, 2, 21, 3] [3, 3]

Table 1: Detailed configurations of the three variants of
SparX-Mamba.

Method F (G) P (M) Acc. (%)

ConvNeXt-T 4.5 29 82.1
InceptionNeXt-T 4.2 28 82.3
SLaK-T 5.0 30 82.5
UniRepLKNet-T 4.9 31 83.2
MambaOut-T 4.5 27 82.7
Focal-T 4.9 29 82.2
PVTv2-B2 4.0 25 82.0
Swin-T 4.5 29 81.3
CSWin-T 4.5 23 82.7
UniFormer-S 3.6 22 82.9
MambaOut-T 4.5 27 82.7
ViM-S - 26 81.6
PlainMamba-L2 8.1 25 81.6
ViM2-T - 20 82.7
EfficientVMamba-B 4.0 33 81.8
VMamba-T 4.9 31 82.5
LocalVMamba-T 5.7 26 82.7
MSVMamba-T 4.6 33 82.8
SparX-Mamba-T 5.2 27 83.5

ConvNeXt-S 8.7 50 83.1
InceptionNeXt-S 8.4 49 83.5
SLaK-S 9.8 55 83.8
UniRepLKNet-S 9.1 56 83.9
MambaOut-S 9.0 48 84.1
Focal-S 9.4 51 83.6
PVTv2-B4 10.1 63 83.6
Swin-S 8.7 50 83.0
UniFormer-B 8.3 50 83.9
PlainMamba-L3 14.4 50 82.3
ViM2-S - 43 83.7
VMamba-S 8.7 50 83.6
LocalVMamba-S 11.4 50 83.7
SparX-Mamba-S 9.3 47 84.2

ConvNeXt-B 15.4 89 83.8
InceptionNeXt-B 14.9 87 84.0
SLaK-B 17.1 95 84.0
MambaOut-B 15.8 85 84.2
Focal-B 16.4 90 84.0
PVTv2-B5 11.8 82 83.8
Swin-B 15.4 88 83.5
CSWin-B 15.0 78 84.2
ViM2-B - 74 83.9
VMamba-B 15.4 89 83.9
SparX-Mamba-B 15.9 84 84.5

Table 2: Performance comparison on ImageNet-1K with
224×224 input resolution. F and P denote the FLOPs and
number of Params of a model, respectively.



4 Experiments
In this section, we present comprehensive experimental eval-
uations on representative vision tasks, starting with image
classification. Afterwards, the pre-trained models are trans-
ferred to downstream tasks, including object detection and
semantic segmentation. All experiments were conducted on
8 NVIDIA H800 GPUs. More experimental results are pro-
vided in Appendix A.

4.1 Image Classification
Setup. We use the ImageNet-1K dataset (Deng et al. 2009)
and follow the same experimental setting described in DeiT
(Touvron et al. 2021) for a fair comparison. Our method is
compared with many representative vision models: CNN-
based models (ConvNeXt (Liu et al. 2022), InceptionNeXt
(Yu et al. 2024b), SLaK (Liu et al. 2023), UniRepLKNet
(Ding et al. 2024), and MambaOut (Yu and Wang 2024)),
Transformer-based models (Focal-Transformer (Yang et al.
2021), PVTv2 (Wang et al. 2022), Swin (Liu et al. 2021),
CSWin (Dong et al. 2022), and UniFormer (Li et al. 2023)),
and Mamba-based models (PlainMamba (Yang et al. 2024),
ViM2 (Behrouz, Santacatterina, and Zabih 2024), VMamba
(Liu et al. 2024), EfficientVMamba (Pei, Huang, and Xu
2024), LocalVMamba (Huang et al. 2024), and MSVMamba
(Shi, Dong, and Xu 2024)).

Results. Table 2 demonstrates the significant advantages
of our models over other CNN-, transformer-, and Mamba-
based methods. For example, SparX-Mamba-T outperforms
ConvNeXt-T/Swin-T by a large margin of 1.4%/2.2%,
respectively, in top-1 accuracy. Compared to the recent
VMamba-T, our model achieves a 1.0% higher top-1 accu-
racy with fewer Params and only a slight increase in FLOPs.
Furthermore, even with larger models, SparX-Mamba main-
tains a clear advantage. Meanwhile, we have also provided a
more comprehensive comparison with more advanced vision
models in Appendix A. In general, our method demonstrates
competitive performance in ImageNet-1K classification and
exhibits clear advantages on downstream tasks.

4.2 Object Detection and Instance Segmentation
Setup. To evaluate our network architecture on object detec-
tion and instance segmentation, we conduct experiments on
the COCO 2017 dataset (Lin et al. 2014). We use the Mask
R-CNN framework (He et al. 2017) and adopt the same ex-
perimental settings as in Swin (Liu et al. 2021). The back-
bone networks are initially pre-trained on ImageNet-1K and
subsequently fine-tuned for 12 epochs (1× schedule) as well
as 36 epochs (3× schedule + multi-scale training).

Results. As shown in Table 3, our models demon-
strate superior performance in both object detection and in-
stance segmentation over other models. Specifically, SparX-
Mamba-T achieves a 0.7%/0.4% higher AP b/APm than
VMamba-T when fine-tuned using the 1× schedule, and
surpasses VMamba-T by 1.3%/1.0% in AP b/APm when
fine-tuned using the 3× schedule. Notably, SparX-Mamba-T
even outperforms VMamba-S, which has significantly more
Params and FLOPs, using the 3× schedule. Meanwhile, our
method also demonstrates superior performance compared
to other excellent vision backbones.

Backbone F (G) P (M)
1× Schedule 3× Schedule

AP b APm AP b APm

ConvNeXt-T 262 48 44.2 40.1 46.2 41.7
MambaOut-T 262 43 45.1 41.0 - -
Focal-T 291 49 - - 47.2 42.7
PVTv2-B2 309 45 45.3 41.2 47.8 43.1
Swin-T 267 48 42.7 39.3 46.0 41.6
CSWin-T 279 42 46.7 42.2 49.0 43.6
UniFormer-S 269 41 45.6 41.6 48.2 43.4
PlainMamba-L2 542 53 46.0 40.6 - -
ViM2-T - 39 47.1 42.4 - -
EfficientVMamba-B 252 53 43.7 40.2 45.0 40.8
LocalVMamba-T 291 45 46.7 42.2 48.7 43.4
MSVMamba-T 252 53 46.9 42.2 48.3 43.2
VMamba-T 270 50 47.4 42.7 48.9 43.7
SparX-Mamba-T 279 47 48.1 43.1 50.2 44.7

ConvNeXt-S 348 70 45.4 41.8 47.9 42.9
MambaOut-S 354 65 47.4 42.7 - -
Focal-S 401 71 - - 48.8 43.8
PVTv2-B3 397 65 47.0 42.5 48.4 43.2
Swin-S 354 69 44.8 40.9 48.2 43.2
CSWin-S 342 54 47.9 43.2 50.0 44.5
UniFormer-B 399 69 47.4 43.1 50.3 44.8
PlainMamba-L3 696 79 46.8 41.2 - -
ViM2-S - 62 48.5 43.1 - -
LocalVMamba-S 414 69 48.4 43.2 49.9 44.1
VMamba-S 384 70 48.7 43.7 49.9 44.2
SparX-Mamba-S 361 67 49.4 44.1 51.0 45.2

ConvNeXt-B 486 108 47.0 42.7 48.5 43.5
MambaOut-B 495 100 47.4 42.0 - -
Focal-B 533 110 45.9 - 49.0 43.7
PVTv2-B5 557 102 47.4 42.5 48.4 42.9
Swin-B 496 107 46.9 42.3 48.6 43.3
CSWin-B 526 97 48.7 43.9 50.8 44.9
VMamba-B 485 108 49.2 43.9 - -
SparX-Mamba-B 498 103 49.7 44.3 51.8 45.8

Table 3: Comparison of object detection and instance seg-
mentation performance on the COCO dataset using Mask
R-CNN framework. FLOPs are calculated for the 800×1280
resolution.

4.3 Semantic Segmentation
Setup. Experiments on semantic segmentation are con-
ducted using the ADE20K dataset (Zhou et al. 2017). We
employ two segmentation frameworks, Semantic FPN (S-
FPN) (Kirillov et al. 2019) and UperNet (Xiao et al. 2018).
To ensure fair comparisons, we initialize all backbone net-
works with ImageNet-1K pre-trained weights. Furthermore,
we strictly adhere to the same training settings as outlined in
previous work (Liu et al. 2021; Li et al. 2023).

Results. As shown in Table 4, our SparX-Mamba



Backbone
S-FPN 80K UperNet 160K

F (G) P (M) mIoU F (G) P (M) mIoU

ConvNeXt-T - - - 939 60 46.0/46.7
InceptionNeXt-T - 28 43.1 933 56 47.9/-
SLaK-T - - - 936 65 47.6/-
UniRepLKNet-T - - - 946 61 48.6/49.1
MambaOut-T - - - 938 54 47.4/48.6
PVTv2-B2 167 29 45.2 - - -
Swin-T 182 32 41.5 945 60 44.5/45.8
CSWin-T 202 26 48.2 959 59 49.3/50.7
UniFormer-S 247 25 46.6 1008 52 47.6/48.5
PlainMamba - - - 419 81 49.1/-
ViM2-T - - - - 51 48.6/49.9
EfficientVMamba-B - - - 930 65 46.5/47.3
LocalVMamba-T - - - 970 57 47.9/49.1
VMamba-T 189 34 47.2† 948 62 48.3/48.6
MSVMamba-T - - - 942 65 47.6/48.5
SparX-Mamba-T 197 31 49.5 954 57 50.0/50.8

ConvNeXt-S - - - 1027 82 48.7/49.6
InceptionNeXt-S - 50 45.6 1020 78 50.0/-
SLaK-S - - - 1028 91 49.4/-
UniRepLKNet-S - - - 1036 86 50.5/51.0
MambaOut-S - - - 1032 76 49.5/50.6
PVTv2-B4 291 66 47.9 - - -
Swin-S 274 53 45.2 1038 81 47.6/49.5
CSWin-S 271 39 49.2 1027 65 50.4/51.5
UniFormer-B 471 54 48.0 1227 80 50.0/50.8
ViM2-S - - - - 75 50.2/51.4
LocalVMamba-S - - - 1095 81 50.0/51.0
VMamba-S 269 54 49.4† 1038 82 50.6/51.2
SparX-Mamba-S 281 51 50.5 1039 77 51.3/52.5

ConvNeXt-B - - - 1170 122 49.1/49.9
InceptionNeXt-B - 85 46.4 1159 115 50.6/-
SLaK-B - - - 1172 135 50.2/-
MambaOut-B - - - 1178 112 49.6/51.0
PVTv2-B5 324 91 48.7 - - -
Swin-B 422 91 46.0 1188 121 48.1/49.7
CSWin-B 464 81 49.9 1222 109 51.1/52.2
VMamba-B 409 92 49.8† 1170 122 51.0/51.6
SparX-Mamba-B 422 87 51.9 1181 115 52.3/53.4

Table 4: Comparison of semantic segmentation performance
on the ADE20K dataset. FLOPs are calculated for the
512×2048 resolution. †: baselines implemented by our-
selves. For UperNet, we report both single-scale and multi-
scale mIoU.

demonstrates significant advantages when integrated into
both S-FPN and UperNet. For instance, when UperNet
is used, SparX-Mamba increases mIoU by 1.7%/2.2%
over VMamba-T. Performance improvements achieved with
small/base models are also evident. Meanwhile, when us-

Method

ImageNet-1K ADE20K

Mem T F P
Acc. mIoU(MB) (imgs/s) (G) (M)

VMamba-T 6784 1613 4.9 31.0 82.5 47.2

DGC-Mamba-T 7523 860 5.5 28.8 83.4 49.3
DSN-Mamba-T 7641 830 6.0 30.9 83.4 49.5

SparX-Mamba-T 7066 1370 5.2 27.1 83.5 49.5

Table 5: Comparison with DenseNet-like networks. The
throughput (T) and memory (Mem) usage are evaluated on a
single H800 GPU using a batch size of 128. Due to space
constraints, we omit the complexity of the segmentation
network. However, it is noteworthy that its complexity is
closely aligned with that of the classification network.

ing S-FPN, SparX-Mamba-T improves VMamba-T by a no-
table 2.3% mIoU and outperforms CSWin-T by 1.3% mIoU.
These advantages are also evident in small and base mod-
els, effectively demonstrating the robustness of our model in
dense prediction tasks.

4.4 Ablation Studies
Setup. To assess the effectiveness of individual components
in SparX, we conduct comprehensive ablation studies on im-
age classification and semantic segmentation. We first train
each model variant on the ImageNet-1K dataset using the
same training setting as in Section 4.1. Then, we fine-tune
the pre-trained models on the ADE20K dataset, using the S-
FPN framework and maintaining an identical training con-
figuration as described in Section 4.3. We have also pro-
vided more analytical experiments, which can be found in
Appendix A.

Comparison with DenseNet-like networks. Based on
SparX-Mamba-T, we conduct the following experiments: (1)
To validate our sparse cross-layer connections, we maintain
the stride (S) = 2 in SparX, and set up cross-layer connec-
tions by removing the sliding window and connecting each
ganglion layer with all preceding ganglion and normal lay-
ers. This design is denoted as “Dense Ganglion Connec-
tions (DGC-Mamba-T)”. (2) To verify the superiority of our
model over DenseNet (Huang et al. 2017), we set S=1 and
remove the cross-layer sliding window, thereby designing a
network similar to DenseNet. This model is referred to as
“DenseNet-style Network (DSN-Mamba-T)”.

As shown in Table 5, we observe that both types of
dense cross-layer connections (DGC and DSN) incur ob-
vious computational overhead compared to VMamba, par-
ticularly in terms of noticeably reduced throughput and in-
creased memory usage, which may hinder scaling to larger
models. In contrast, our SparX achieves more pronounced
improvements while only slightly reducing throughput and
marginally increasing memory usage, demonstrating its high
efficiency and effectiveness in Mamba-based models.

Comparison with different interaction methods. Based
on SparX-Mamba-T, we replace our DMCA with other fu-



Method

ImageNet-1K ADE20K

Mem T F P
Acc. mIoU(MB) (imgs/s) (G) (M)

Concat 6861 1413 5.5 27.9 82.8 48.3

w/o CGCA 6853 1425 5.3 26.4 82.7 48.1
CSA 7053 600 5.2 26.0 83.1 49.0
SRA 9333 997 5.3 27.0 83.2 49.2
SCA 12453 1275 5.2 27.9 83.3 49.2

DMCA 7066 1370 5.2 27.1 83.5 49.5

Table 6: Comparison with different cross-layer interaction
methods.

sion methods for multi-layer feature interactions: (1) Re-
move the entire DMCA module and directly concatenate
features from the current layer and selected preceding lay-
ers, followed by a Conv-FFN layer (Wang et al. 2022) for
feature fusion. Using Conv-FFN for feature fusion main-
tains a comparable level of complexity with the baseline
model. This design is referred to as “Concat”. (2) Remove
the cross-layer grouped channel attention (CGCA) operation
in DMCA. That means there is no need to perform spatial
reduction and compute the cross-attention matrix between
spatially reduced query and key, but value still needs to be
computed. Then query and value are directly concatenated
and fused using a Conv-FFN layer. This design is denoted
as “w/o CGCA”. (3) Replace the attention computation in
DMCA with Spatial Reduction Attention (SRA) (Wang et al.
2021, 2022) and Cross-Scale Attention (CSA) (Shang et al.
2023) to compare the performance of channel mixing and
spatial mixing. (4) Replace our DMCA with spatial cross-
attention (SCA) proposed in FcaFormer (Zhang, Hu, and
Wang 2023) to compare the performance of different multi-
layer feature aggregation mechanisms. This version is de-
noted as “SCA”.

As listed in Table 6, our DMCA demonstrates better
cross-layer feature aggregation and selection thanks to dy-
namic feature retrieval from preceding layers. Specifically,
both “Concat” and “w/o CGCA” result in obvious per-
formance degradation compared with our DMCA. Mean-
while, DMCA outperforms both SRA and SCA possibly
because DMCA offers dynamic channel mixing, which is
complementary to spatial mixing performed with SSMs.
It is noteworthy that some previous works have demon-
strated that incorporating both channel and spatial dynam-
ics can lead to improved performance (Fu et al. 2019; Ding
et al. 2022a). Conversely, both SRA and SCA function as
a spatial mixer similar to SSM, compromising the model’s
ability to effectively represent multidimensional features.
More importantly, compared with simple feature concate-
nation, both SRA and SCA incur higher memory costs and
lower throughput due to quadratic complexity, whereas our
DMCA only marginally increases computational overhead,
indicating greater efficiency.

Hyperparameter settings in SparX. We conduct an in-

Method
ImageNet-1K ADE20K

F (G) P (M) Acc. F (G) P (M) mIoU

Baseline 5.2 27.1 83.5 197 30.8 49.5
PlainNet 5.4 27.4 82.4(−1.1) 199 31.1 47.7(−1.8)

S=1 5.7 29.9 83.5(+0.0) 206 33.7 49.7(+0.2)

S=3 5.1 26.3 83.2(−0.3) 194 30.1 49.0(−0.5)

S=4 5.1 25.8 82.9(−0.6) 193 29.6 48.7(−0.8)

M=2 5.2 26.8 83.0(−0.5) 197 30.6 48.6(−0.9)

M=4 5.5 27.5 83.5(+0.0) 198 31.2 49.7(+0.2)

Table 7: Ablation study on hyperparameters of the SparX.

Method
ImageNet-1K ADE20K

F (G) P (M) Acc. F (G) P (M) mIoU

Baseline 5.2 27.1 83.5 197 30.8 49.5
w/o DPE 5.2 27.0 83.3 (−0.2) 196 30.7 49.0 (−0.5)

w/o Skip 5.2 27.0 83.1 (−0.4) 200 30.8 48.9 (−0.6)

w/o SR 5.4 27.0 83.4 (−0.1) 196 30.8 49.3 (−0.2)

Table 8: Ablation study on DMCA and DPE.

depth exploration of hyperparameter settings in the proposed
sparse cross-layer connection mechanism. By using the tiny
model as the baseline (i.e., S=2, M=3), we conceive the fol-
lowing model variants: (1) All ganglion layers are replaced
with normal layers, i.e., the network no longer has any cross-
layer connections. This design is denoted as “PlainNet”. For
a fair comparison, we make models considered in this com-
parison have comparable complexity by adjusting the num-
ber of channels in stage 3 and stage 4 of PlainNet to 384 and
576, respectively. (2) Keeping M=3 fixed, we vary the stride
hyperparameter (S) controlling the sparsity of ganglion lay-
ers to 1, 3, and 4, respectively, to assess the impact of stride
on final performance. (3) Keeping S=2 fixed, we investigate
the impact of the cross-layer sliding window size by setting
M to 2 and 4, respectively.

Results. As shown in Table 7, having dense ganglion lay-
ers (i.e., S=1) does not result in an obvious performance
improvement even though the model complexity increases.
This indicates that our sparse placement of ganglion lay-
ers already facilitates cross-layer communication. However,
as S further increases, model performance gradually de-
clines, suggesting that larger gaps between ganglion layers
adversely affects the performance. Note that although S=3
is the second-best option, considering the increased com-
plexity of deeper models, we set S=3 in our small and base
versions for higher computational efficiency. Furthermore,
experiments demonstrate that the optimal number of preced-
ing ganglion layers in the cross-layer sliding window is 3, as
further increasing M to 4 does not yield any obvious perfor-
mance gains.

Ablations of DMCA and DPE. By using the tiny model
as the baseline, we further investigate the effect of DMCA
and DPE (Chu et al. 2022) by evaluating the performance



Method
ImageNet-1K UperNet 160K Mask R-CNN

F (G) P (M) Acc. F (G) P (M) mIoU F (G) P (M) AP b
1× APm

1× AP b
3× APm

3×

Swin-T 4.5 29 81.3 945 60 44.5 48 267 42.7 39.3 46.0 41.6
SparX-Swin-T 4.7 26 82.6(+1.3) 948 57 45.5(+1.0) 45 270 44.1(+1.4) 40.8(+1.5) 47.6(+1.6) 43.0(+1.4)

Swin-B 15.4 88 83.5 1188 121 48.1 107 496 46.9 42.3 48.6 43.3
SparX-Swin-B 16.2 88 83.9(+0.4) 1201 118 48.6(+0.5) 107 518 48.1(+1.2) 42.9(+0.6) 49.1(+0.5) 43.7(+0.4)

Table 9: Performance Comparison when SparX is applied to Vision Transformers.

of the following alternative model designs. (1) Remove the
DPE module, and the resulting model is denoted as “w/o
DPE”. (2) Investigate the necessity of concatenating the out-
put of GCCA (Z) with query and value by only using the
output of GCCA without concatenating it with X and Yv.
This design is denoted as “w/o Skip”. (3) Eliminate the spa-
tial reduction (SR) operations, and use the original spatial
resolution of query and key when computing GCCA. This
design is denoted as “w/o SR”. According to the results
given in Table 8, the use of DPE boosted the top-1 accuracy
by 0.2% and mIoU by 0.5%. Then, we can find that “w/o
Skip” also gives rise to a performance drop, reflecting the
importance of the shortcut connection. Moreover, although
spatial reduction (SR) compresses spatial tokens, it actually
slightly improves performance. One possible explanation is
that utilizing compressed information is sufficient when es-
timating image-level feature similarities.

4.5 Versatility Analysis
Setup. To demonstrate the versatility of our cross-layer con-
nectivity pattern, we have conducted experiments by incor-
porating SparX into networks with different token mixer ar-
chitectures, including self-attention, vanilla SSM in Mamba,
and Bi-SSM in ViM. To ensure a fair comparison with other
hierarchical networks, we follow the conventional design,
where a token mixer is followed by an FFN, with the token
mixer having the aforementioned multiple options. Specif-
ically, taking SparX-Mamba-T as a basic network, we re-
place the SS2D block with shifted window attention pro-
posed in Swin Transformer (Liu et al. 2021) to obtain a net-

Method
ImageNet-1K UperNet 160K

F (G) P (M) Acc. F (G) P (M) mIoU

VMamba-T
(SS2D) 4.9 31 82.5 948 62 48.3

SparX-Mamba
-T (SSM) 4.8 25 82.9(+0.4) 946 55 48.1(−0.2)

SparX-Mamba
-T (Bi-SSM) 5.1 25 83.1(+0.6) 951 55 48.7(+0.4)

SparX-Mamba
-T (SS2D) 5.2 27 83.5(+1.0) 954 57 50.0(+1.7)

Table 10: Comparison of image classification and semantic
segmentation performance when SparX is applied to various
SSM modules.

work denoted as SparX-Swin-T (i.e., Shifted Window
Attention→ FFN), and increase the number of channels
in stage 4 from 512 to 576 to align its computational cost
with Swin-T. Next, we scale up the model size of SparX-
Swin-T by increasing the depths to [2, 2, 27, 3] and channels
to [120, 240, 396, 616] to obtain a larger model, denoted as
SparX-Swin-B, which has a model complexity comparable
to that of Swin-B. Moreover, we also replace the SS2D mod-
ule in VSS with the vanilla SSM module in original Mamba
(Gu and Dao 2024) (i.e., SSM→ FFN) and Bi-SSM module
in ViM (Zhu et al. 2024) (i.e., Bi-SSM → FFN). For fair
comparisons, we have strictly maintained the similarity of
other micro-blocks, such as removing DPE and using iden-
tical patch embedding layers.

Results. As shown in Table 9, SparX-Swin-T/B models
outperform their vanilla counterparts on both image classifi-
cation and dense prediction tasks while maintaining similar
computational costs. This demonstrates that our method is
general and equally applicable to Transformer-based mod-
els. Meanwhile, as shown in Table 10, although vanilla
SSM and Bi-SSM do not utilize the DWConv employed in
SS2D of VMamba, our SparX enables both vanilla SSM
and Bi-SSM to outperform VMamba-T in terms of accu-
racy and computational efficiency. On the semantic seg-
mentation task, the performance of SparX-Mamba-T (SSM)
marginally lags behind VMamba-T. This is because causal
modeling in vanilla SSM fails to capture sufficient contex-
tual information. When the Bi-SSM module in ViM is used
instead, the mIoU improves significantly by 0.4%, demon-
strating better performance than VMamba-T.

5 Conclusion

In this work, we propose a new skip-connection strategy
named SparX, drawing inspiration from the Retinal Gan-
glion Cell (RGC) layer in the human visual system. SparX
aims to create sparse cross-layer connections to enhance in-
formation flow and promote feature distillation and reuse in
vision backbone networks. In addition, we propose a Dy-
namic Multi-layer Channel Aggregator (DMCA) that facil-
itates dynamic feature aggregation and interaction across
layers. Based on SparX, we further propose SparX-Mamba
and SparX-Swin, both of which demonstrate superior per-
formance across a range of challenging vision tasks.



Backbone F (G) P (M)
Mask R-CNN 1× Schedule Mask R-CNN 3×+MS Schedule

AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

ConvNeXt-T 262 48 44.2 66.6 48.3 40.1 63.3 42.8 46.2 67.9 50.8 41.7 65.0 44.9
Focal-T 291 49 - - - - - - 47.2 69.4 51.9 42.7 66.5 45.9
PVTv2-B2 309 45 45.3 67.1 49.6 41.2 64.2 44.4 47.8 69.7 52.6 43.1 66.8 46.7
Swin-T 267 48 42.7 65.2 46.8 39.3 62.2 42.2 46.0 68.1 50.3 41.6 65.1 44.9
CSWin-T 279 42 46.7 68.6 51.3 42.2 65.6 45.4 49.0 70.7 53.7 43.6 67.9 46.6
UniFormer-S 269 41 45.6 68.1 49.7 41.6 64.8 45.0 48.2 70.4 52.5 43.4 67.1 47.0
PlainMamba-L2 542 53 46.0 66.9 50.1 40.6 63.8 43.6 - - - - - -
ViM2-T - 39 47.1 68.7 50.9 42.4 65.6 45.5 - - - - - -
EfficientVMamba-B 252 53 43.7 66.2 47.9 40.2 63.3 42.9 45.0 66.9 49.2 40.8 64.1 43.7
LocalVMamba-T 291 45 46.7 68.7 50.8 42.2 65.7 45.5 48.7 70.1 53.0 43.4 67.0 46.4
VMamba-T 270 50 47.4 69.5 52.0 42.7 66.3 46.0 48.9 70.6 53.6 43.7 67.7 46.8
SparX-Mamba-T 279 47 48.1 70.1 52.8 43.1 67.0 46.5 50.2 71.8 55.2 44.7 68.8 48.4

ConvNeXt-S 348 70 45.4 67.9 50.0 41.8 65.2 45.1 47.9 70.0 52.7 42.9 66.9 46.2
Focal-S 401 71 - - - - - - 48.8 70.5 53.6 43.8 67.7 47.2
PVTv2-B3 397 65 47.0 68.1 51.7 42.5 65.7 45.7 48.4 69.8 53.3 43.2 66.9 46.7
Swin-S 354 69 44.8 66.6 48.9 40.9 63.4 44.2 48.2 69.8 52.8 43.2 67.0 46.1
CSWin-S 342 54 47.9 70.1 52.6 43.2 67.1 46.2 50.0 71.3 54.7 44.5 68.4 47.7
UniFormer-B 399 69 47.4 69.7 52.1 43.1 66.0 46.5 50.3 72.7 55.3 44.8 69.0 48.3
PlainMamba-L3 696 79 46.8 68.0 51.1 41.2 64.7 43.9 - - - - - -
ViM2-S - 62 48.5 69.9 52.8 43.1 66.8 46.5 - - - - - -
LocalVMamba-S 414 69 48.4 69.9 52.7 43.2 66.7 46.5 49.9 70.5 54.4 44.1 67.8 47.4
VMamba-S 384 70 48.7 70.0 53.4 43.7 67.3 47.0 49.9 70.9 54.7 44.2 68.2 47.7
SparX-Mamba-S 361 67 49.4 71.1 54.2 44.1 68.3 47.7 51.0 71.9 55.7 45.2 69.3 48.8

ConvNeXt-B 486 108 47.0 69.4 51.7 42.7 66.3 46.0 48.5 70.1 53.3 43.5 67.1 46.7
Focal-B 533 110 45.9 - - - - - 49.0 70.1 53.6 43.7 67.6 47.0
PVTv2-B5 557 102 47.4 68.6 51.9 42.5 65.7 46.0 48.4 69.2 52.9 42.9 66.6 46.2
Swin-B 496 107 46.9 - - 42.3 - - 48.6 70.0 53.4 43.3 67.1 46.7
CSWin-B 526 97 48.7 70.4 53.9 43.9 67.8 47.3 50.8 72.1 55.8 44.9 69.1 48.3
VMamba-B 485 108 49.2 70.9 53.9 43.9 67.7 47.6 - - - - - -
SparX-Mamba-B 498 103 49.7 71.6 54.6 44.3 68.4 48.0 51.8 73.1 56.4 45.8 70.2 49.6

Table 11: Performance comparison of Mask R-CNN (the complete version of Table 3).

A Appendix
A.1 More Detailed Comparisons in Object

Detection and Instance Segmentation
We provide a more comprehensive performance comparison
on object detection and instance segmentation by introduc-
ing metrics based on different IoU thresholds, which serves
as a supplement to Table 3. The results are presented in Ta-
ble 11, and it is evident that our model outperforms other
methods across all metrics.

A.2 Comparisons with More Advanced Models
To present a more comprehensive performance analysis, we
compare our SparX-Mamba with highly optimized vision
backbones in terms of image classification, semantic seg-
mentation, and object detection. The methods compared in-
clude Conv2Former (Hou et al. 2024), InternImage (Wang
et al. 2023b), PeLK (Chen et al. 2024), CMT (Guo et al.
2022), MaxViT-T (Tu et al. 2022), BiFormer (Zhu et al.
2023), MPViT (Lee et al. 2022), NAT (Hassani et al. 2023),
and CrossFormer++ (Wang et al. 2023a). On the image clas-
sification task (Table 12), the performance of our model is
closer to state-of-the-art (SOTA) ViTs, CNNs, and their hy-
brid versions than other Mamba-based models. For exam-

ple, SparX-Mamba-T is on par with InternImage-T (Wang
et al. 2023b) in terms of top-1 accuracy, and it only lags be-
hind MaxViT-T (Tu et al. 2022) by 0.2%. In fact, our model
outperforms most of those advanced CNN and ViT architec-
tures, that is, SparX-Mamba-T surpasses CrossFormer++-
S (Wang et al. 2023a) and NAT-T (Hassani et al. 2023) by
0.3% in accuracy. When the model is scaled up to larger
sizes, similar phenomena can also be observed. More impor-
tantly, although SparX-Mamba may not perform best on im-
age classification, it exhibits superior performance on dense
prediction tasks with larger input resolutions. As shown in
Tables 13 and 14, while SparX-Mamba-T and InternImage-
T have comparable performance on image classification,
SparX-Mamba-T surpasses InternImage-T by a large mar-
gin on both object detection and semantic segmentation. Al-
though some highly optimized models have better perfor-
mance than SparX-Mamba on image classification, SparX-
Mamba ends up with better performance on dense prediction
tasks. For example, CrossFormer++-L is superior to SparX-
Mamba-B on image classification, but the latter clearly out-
performs the former on semantic segmentation. Note that
other Mamba-based models do not fully reflect this advan-
tage. The superior performance of SparX-Mamba in dense
prediction tasks can be potentially explained by its larger-



Method F (G) P (M) Acc. (%)

Conv2Former-T 4.4 27 83.2
InternImage-T 5.0 30 83.5
PeLK-T 5.6 29 82.6
CMT-S 4.0 25 83.5
MaxViT-T 5.6 31 83.7
BiFormer-S 4.5 26 83.8
MPViT-S 4.7 23 83.0
NAT-T 4.3 28 83.2
CrossFormer++-S 4.4 23 83.2
ViM-S - 26 81.6
ViM2-T - 20 82.7
PlainMamba-L2 8.1 25 81.6
EfficientVMamba-B 4.0 33 81.8
VMamba-T 4.9 31 82.5
LocalVMamba-T 5.7 26 82.7
SparX-Mamba-T 5.2 27 83.5

Conv2Former-S 8.7 50 84.1
InternImage-S 8.0 50 84.2
PeLK-S 10.7 50 83.9
MaxViT-S 11.7 69 84.5
BiFormer-B 9.8 57 84.3
NAT-S 7.8 51 83.7
CrossFormer++-B 9.5 52 84.2
ViM2-S - 43 83.7
VMamba-S 8.7 50 83.6
LocalVMamba-S 11.4 50 83.7
SparX-Mamba-S 9.3 47 84.2

Conv2Former-B 15.9 90 84.4
InternImage-B 16.0 97 84.9
PeLK-B 18.3 89 84.2
MPViT-B 16.4 75 84.3
NAT-B 13.7 90 84.3
CrossFormer++-L 16.6 92 84.7
ViM2-B - 74 83.9
VMamba-B 15.4 89 83.9
SparX-Mamba-B 15.9 84 84.5

Table 12: Comparison with more advanced vision back-
bones on the ImageNet-1K dataset.

than-usual effective receptive fields (ERFs), as visualized in
Appendix A.3. Furthermore, recent research (Yu and Wang
2024) has shown that SSM can perform better on dense pre-
diction tasks with high-resolution inputs, despite no perfor-
mance advantage on the image classification task.

A.3 Analytical Experiments
Impact of increasing resolutions: Following VMamba,
we further assess the generalization capability of our model
across different input resolutions. To be specific, we uti-
lize models pre-trained on ImageNet-1K with input size of
224×224 to perform inference on a range of image resolu-
tions, from 384×384 to 1024×1024. As shown in Table 15,
our model exhibits the most stable performance as the in-
put resolution increases, surpassing other competing models
significantly. When the 384×384 resolution is used, all other
models experience performance degradation, whereas our
SparX-Mamba shows a noticeable performance improve-
ment, raising accuracy from 83.5% to 84.0%. Furthermore,
as the resolution further increases, SparX-Mamba demon-
strates the smallest performance drop. Additionally, it can
be observed that as the resolution increases, the advantage
of VMamba over CNN and Transformer models diminishes,
whereas our model consistently maintains a significant per-

Backbone
S-FPN 80K UperNet 160K

F (G) P (M) mIoU F (G) P (M) mIoU MS-mIoU

Conv2Former-T - - - 946 59 45.8 -
InternImage-T - - - 944 59 47.9 48.1
PeLK-T - - - 970 62 48.1 -
BiFormer-S - - 48.9 - - 49.8 50.8

MPViT-S - - - 943 52 48.3 -
NAT-T - - - 934 58 47.1 48.4
CrossFormer++-S 200 27 47.4 964 53 49.4 50.0
PlainMamba-L3 - - - 419 81 49.1 -
ViM2-T - - - - 51 48.6 49.9
EfficientVMamba-B - - - 930 65 46.5 47.3
LocalVMamba-T - - - 970 57 47.9 49.1
VMamba-T 189 34 47.2 948 62 48.3 48.6
SparX-Mamba-T 197 31 49.5 954 57 50.0 50.8

Conv2Former-S - - - 1021 78 50.3 -
InternImage-S - - - 1017 80 50.1 50.9
PeLK-S - - - 1077 84 49.7 -
BiFormer-B - - 49.9 - - 51.0 51.7
NAT-S - - - 1071 82 48.0 49.5
CrossFormer++-B 331 56 48.6 1090 84 50.7 51.0
ViM2-S - - - - 75 50.2 51.4
LocalVMamba-S - - - 1095 81 50.0 51.0
VMamba-S 269 54 49.4 1039 82 50.6 51.2
SparX-Mamba-S 281 51 50.5 1039 77 51.3 52.5

Conv2Former-B - - - 1171 119 51.0 -
InternImage-B - - - 1185 128 50.8 51.3
PeLK-B - - - 1237 126 50.4 -
MPViT-B - - - 1186 105 50.3 -
CrossFormer++-L 483 96 49.5 1258 126 51.0 51.9
VMamba-B 409 92 49.8 1170 122 51.0 51.6
SparX-Mamba-B 422 87 51.9 1181 115 52.3 53.4

Table 13: Comparison with more advanced vision back-
bones on the ADE20K dataset for semantic segmentation.

formance advantage. For instance, at the 1024×1024 input
resolution, VMamba only achieves a marginal improvement
of 0.4% in comparison to Swin while our model outperforms
Swin by nearly 10%. These results demonstrate that our ap-
proach can better handle situations with a large number of
input tokens.

Speed comparisons among representative vision back-
bones: We have conducted a comprehensive comparison
of throughput (T) among representative vision backbones.
As shown in Table 16, recent Mamba-based models do
not exhibit a speed advantage over classical ConvNeXt and
Swin models. This is probably because deep learning frame-
works have not been fully optimized to carry out SSM com-
putations efficiently on GPUs, unlike matrix multiplications
which have been highly optimized on GPUs. Meanwhile, the
lower parallelization capacity of SSMs is another contribut-
ing factor in comparison to convolutions and self-attention.
Despite these reasons, our network architecture still achieves
a favorable trade-off between speed and accuracy in com-
parison to some advanced vision transformers. For example,
SparX-Mamba-T outperforms MPViT-S in accuracy by no-
table 0.5% top-1 accuracy while only experiencing a 10%
speed reduction. Our model also demonstrates significant
advantages in both speed and performance when compared
to Focal-Transformer.

On the other hand, compared with Mamba-based mod-
els, our SparX-Mamba also exhibits a better speed-accuracy



Backbone F (G) P (M)
Mask R-CNN 1× Schedule Mask R-CNN 3× + MS Schedule

AP b AP b
50 AP b

75 APm APm
50 APm

75 AP b AP b
50 AP b

75 APm APm
50 APm

75

Conv2Former-T 255 48 - - - - - - 48.0 69.5 52.7 43.0 66.8 46.1
InternImage-T 270 49 47.2 69.0 52.1 42.5 66.1 45.8 49.1 70.4 54.1 43.7 67.3 47.3
CMT-S 249 45 44.6 66.8 48.9 40.7 63.9 43.4 - - - - - -
BiFormer-S - - 47.8 69.8 52.3 43.2 66.8 46.5 - - - - - -
MPViT-S 268 43 46.4 68.6 51.2 42.4 65.6 45.7 48.4 70.5 52.6 43.9 67.6 47.5
NAT-T 258 48 - - - - - - 47.8 69.0 52.6 42.6 66.0 45.9
CrossFormer++-S 287 43 46.4 68.8 51.3 42.1 65.7 45.4 49.5 71.6 54.1 44.3 68.5 47.6
PlainMamba-L2 542 53 46.0 66.9 50.1 40.6 63.8 43.6 - - - - - -
ViM2-T - 39 47.1 68.7 50.9 42.4 65.6 45.5 - - - - - -
EfficientVMamba-B 252 53 43.7 66.2 47.9 40.2 63.3 42.9 45.0 66.9 49.2 40.8 64.1 43.7
LocalVMamba-T 291 45 46.7 68.7 50.8 42.2 65.7 45.5 48.7 70.1 53.0 43.4 67.0 46.4
VMamba-T 270 50 47.4 69.5 52.0 42.7 66.3 46.0 48.9 70.6 53.6 43.7 67.7 46.8
SparX-Mamba-T 279 47 48.1 70.1 52.8 43.1 67.0 46.5 50.2 71.8 55.2 44.7 68.8 48.4

InternImage-S 340 69 47.8 69.8 52.8 43.3 67.1 46.7 49.7 71.1 54.5 44.5 68.5 47.8
BiFormer-B - - 48.6 70.5 53.8 43.7 67.6 47.1 - - - - - -
NAT-S 330 70 - - - - - - 48.4 69.8 53.2 43.2 66.9 46.4
CrossFormer++-B 408 72 47.7 70.2 52.7 43.2 67.3 46.7 50.2 71.8 54.9 44.6 68.7 48.1
PlainMamba-L3 696 79 46.8 68.0 51.1 41.2 64.7 43.9 - - - - - -
ViM2-S - 62 48.5 69.9 52.8 43.1 66.8 46.5 - - - - - -
LocalVMamba-S 414 69 48.4 69.9 52.7 43.2 66.7 46.5 49.9 70.5 54.4 44.1 67.8 47.4
VMamba-S 384 70 48.7 70.0 53.4 43.7 67.3 47.0 49.9 70.9 54.7 44.2 68.2 47.7
SparX-Mamba-S 361 67 49.4 71.1 54.2 44.1 68.3 47.7 51.0 71.9 55.7 45.2 69.3 48.8

InternImage-B 501 115 48.8 70.9 54.0 44.0 67.8 47.4 50.3 71.4 55.3 44.8 68.7 48.0
MPViT-B 503 95 48.2 70.0 52.9 43.5 67.1 46.8 49.5 70.9 54.0 44.5 68.3 48.3
VMamba-B 485 108 49.2 70.9 53.9 43.9 67.7 47.6 - - - - - -
SparX-Mamba-B 498 103 49.7 71.6 54.6 44.3 68.4 48.0 51.8 73.1 56.4 45.8 70.2 49.6

Table 14: Comparison with more advanced vision backbones on the COCO 2017 dataset for object detection.

Image Size ConvNeXt-T Swin-T VMamba-T SparX-Mamba-T

224×224
FLOPs 4.5 4.5 4.9 5.2
Params 29.0 28.0 31.0 27.1
Acc. (%) 82.1 81.3 82.5 83.5

384×384
FLOPs 13.1 14.5 14.3 15.4
Params 29.0 28.0 31.0 27.1
Acc. (%) 81.0 80.7 82.5 84.0

512×512
FLOPs 23.3 26.6 25.4 27.4
Params 29.0 28.0 31.0 27.1
Acc. (%) 78.0 79.0 81.1 82.9

640×640
FLOPs 36.5 45.0 39.6 42.8
Params 29.0 28.0 31.0 27.1
Acc. (%) 74.3 76.6 79.3 81.5

768×768
FLOPs 52.5 70.7 57.1 61.7
Params 29.0 28.0 31.0 27.1
Acc. (%) 69.5 73.1 76.1 79.5

1024×1024
FLOPs 93.3 152.5 101.5 109.6
Params 29.0 28.0 31.0 27.1
Acc. (%) 55.4 61.9 62.3 71.8

Table 15: Comparison of generalization ability over an in-
creasing input resolution

trade-off. Specifically, when transitioning from VMamba-T
to our SparX-Mamba-T, the top-1 accuracy improves signif-
icantly by 1%, while the throughput only decreases by 243

Method F (G) P (M) T (imgs/s) Acc. (%)

ConvNeXt-T 4.5 29 2359 82.1
Swin-T 4.5 29 2416 81.3
Focal-T 4.9 29 953 82.2
BiFormer-S 4.5 26 1072 83.8
MPViT-S 4.7 23 1534 83.0
EfficientVMamba-B 4.0 33 1943 81.8
VMamba-T 4.9 31 1613 82.5
LocalVMamba-T 5.7 26 597 82.7
SparX-Mamba-T 5.2 27 1370 83.5

ConvNeXt-S 8.7 50 1359 83.1
Swin-S 8.7 50 1419 83.0
Focal-S 9.4 51 558 83.6
BiFormer-B 9.8 57 673 84.3
VMamba-S 8.7 50 1021 83.6
LocalVMamba-S 11.4 50 337 83.7
SparX-Mamba-S 9.3 47 871 84.2

ConvNeXt-B 15.4 89 957 83.8
Swin-B 15.4 88 1006 83.5
Focal-B 16.4 90 428 84.0
MPViT-B 16.4 75 702 84.3
VMamba-B 15.4 89 753 83.9
SparX-Mamba-B 15.9 84 635 84.5

Table 16: Comparison of throughput among representative
CNN-, Transformer-, and Mamba-based models. The eval-
uation is conducted on a single NVIDIA H800 GPU using
inputs of size 224×224 and a batch size of 128.



Image Size/Batch Size
EfficientVMamba LocalVMamba VMamba SparX-Mamba

Base Tiny Small Tiny Small base Tiny Small base

2242/128
Throughput (imgs/s) 1943 597 1021 1613 1021 753 1366 871 635
Memory (MB) 5308 10810 6745 6784 6745 8703 7066 7317 8807
Acc. (%) 81.8 82.7 83.6 82.5 83.6 83.9 83.5 84.2 84.5

3842/128
Throughput 650 190 367 584 367 258 495 313 223
Memory 13080 29494 17207 17246 17207 22483 18934 18603 21501
Acc. (%) - - 83.8 82.5 83.8 84.1 84.0 84.8 84.8

5122/128
Throughput 383 106 220 342 220 151 298 194 138
Memory 21108 52206 29445 29484 29445 38695 32562 31971 36929
Acc. (%) - - 82.9 81.1 82.9 83.3 82.9 84.1 83.9

7682/64
Throughput 166 47 93 147 93 65 121 78 49
Memory 23556 57508 32941 32980 32941 22467 36466 35569 21427
Acc. (%) - - 80.3 76.1 80.3 80.6 79.5 81.1 81.0

10242/32
Throughput 95 28 55 85 55 38 65 41 29
Memory 21106 50830 29445 29226 29445 38695 32338 31859 36981
Acc. (%) - - 73.7 62.3 73.7 74.8 71.8 74.9 75.7

Table 17: Comparison of speed and GPU memory consumption among different Mamba-based hierarchical models on a single
NVIDIA H800 GPU. Due to the unavailability of models that match our small and base sizes in EfficientVMamba, and the
lack of a base model in LocalVMamba, we are unable to provide direct comparisons with these three models. Note that the
complexity of EfficientVMamba-Base is on par with our tiny model.

imgs/s (from 1613 to 1370), accompanied by a reduction
in model parameters. In contrast, when VMamba-T evolves
into VMamba-S, the top-1 accuracy improves by 1.1%,
but the speed decreases substantially by 592 imgs/s (from
1613 imgs/s to 1021 imgs/s). Therefore, for a similar im-
provement of around 1% in top-1 accuracy, SparX-Mamba-
T demonstrates a significant advantage in throughput over
VMamba-S (1370 vs. 1021), with only about half the model
complexity. This clearly illustrates that our proposed archi-
tecture can provide a better speed-accuracy trade-off. Mean-
while, this advantage is also applicable to larger models.
Specifically, our SparX-Mamba-S outperforms VMamba-B
in terms of speed and model complexity, with a faster speed,
lower model complexity, and better performance. There-
fore, considering both speed and accuracy, the results clearly
demonstrate that our SparX-Mamba has a significant speed-
accuracy trade-off advantage over VMamba. Moreover, it is
worth noting that EfficientVMamba’s stage 3 and 4 are fully
convolutional layers without any Mamba layers, making it
unfair to compare computational efficiency with our method
directly. Overall, our SparX-Mamba stands out among other
transformer-based and Mamba-based models by striking an
excellent balance between computational efficiency and per-
formance.

Speed comparisons among Mamba-based models on in-
puts with varying resolutions: We conduct a comprehen-
sive comparison of speed and GPU memory consumption
among state-of-the-art Mamba-based hierarchical models on
input images with different resolutions. As shown in Table

17, our model achieves the best trade-off between speed and
performance in comparison to other Mamba-based models.
It is worth mentioning that despite more connections among
layers, our model does not significantly increase GPU mem-
ory consumption and latency in comparison to VMamba.
This is because SparX is an efficient mechanism for creating
cross-layer connections in Mamba-based models. Further-
more, an interesting phenomenon is that our small model
exhibits a slight improvement over the base model when
performing inference directly on some higher resolutions.
The underlying reason may be that the model is trained on
224×224 resolution, which limits its understanding of the
knowledge contained in larger resolution images. The re-
sults suggest that our small model has learned more out-of-
distribution knowledge during training, resulting in slightly
better performance than the base model. However, when the
model is trained directly on high-resolution images, the base
model has a clear advantage over the small model, as evident
in the performance of dense prediction tasks involving larger
resolution inputs.

Effective Receptive Field (ERF) analysis: To visually
showcase the representation capacity of our SparX-Mamba,
we visualize the ERF (Luo et al. 2016) of our model as
well as other representative models, including ConvNeXt,
Swin, and VMamba. The visualizations are generated us-
ing 200 randomly sampled images with 224×224 resolution
from ImageNet-1K. As shown in Figure 4, it is evident that
our model achieves the largest ERF across all stages of the
network. In particular, the ERF of the final stage in SparX-
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Figure 4: Visualization of the effective receptive fields of
representative models.

Mamba nearly encompasses the entire input image, demon-
strating its superior global context modeling capability.

Centered Kernel Alignment (CKA) analysis: Since
models with denser cross-layer connections (i.e., DGC and
DSN models in Table 5) do not give rise to improved per-
formance despite having more connections and higher com-
putational complexity, we wish to discover the underlying
reasons by analyzing layerwise features and calculating the
similarity of learned feature patterns across layers using
Centered Kernel Alignment (CKA) (Kornblith et al. 2019).
We chose four representative models: VMamba-T, the DGC
and DSN models from Table 5, and SparX-Mamba-T. In this
analysis, features output from the SSM in each layer are
used. As shown in Figure 5, the patterns learned within each
layer of VMamba-T are quite similar to those in nearby lay-
ers, a phenomenon also observed in classical ViT and CNN
models (Raghu et al. 2021). It is evident that the layers of
both DGC and DSN models can learn more unique patterns,
which aids in developing more discriminative representa-
tions. However, when we sparsify cross-layer connections to
obtain SparX-Mamba-T, the model learns even more diverse
features across layers compared to other methods. Conse-
quently, model performance is improved. According to this
analysis, our biomimetic SparX promotes feature interaction
and distillation by encouraging the model to learn more di-
verse representations. Although the DGC and DSN models
promote feature diversity, our SparX model further boosts
this diversity, which is the reason why it achieves better per-
formance.

A.4 Limitations
Some highly optimized CNNs and ViTs show better per-
formance than our method on the ImageNet-1K dataset as
Mamba-based models are still in the early stages of ex-
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Figure 5: CKA analysis of model variants

ploration. However, it is worth noting that our SparseCC-
Mamba model has already achieved performance close to
many advanced CNNs and ViTs, and we have provided more
comprehensive comparisons in Appendix A.2. On the other
hand, compared to convolution and self-attention, SSMs
have a more complex architecture. Existing deep learning
frameworks only support limited optimization for SSMs, re-
sulting in Mamba-based models not having a speed advan-
tage. More details are given in Appendix A.3. Finally, in ad-
dition to the three versions of our model provided in this
work, we will explore the potential of using Mamba-based
architectures for building large vision foundation models in
the future.
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