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ABSTRACT

Dynamic agnostic federated learning is a promising research field where agnos-
tic clients can join the federated system at any time to collaboratively construct
machine learning models. The critical challenge is to securely and effectively
initializing the models for these agnostic clients, as well as the communication
overhead with the server when participating in the training process. Recent re-
search usually utilizes optimized global model for initialization, which can lead
to privacy leakage of the training data. To overcome these challenges, inspired
by the recently proposed Learngene paradigm, which involves compressing a
large-scale ancestral model into meta-information pieces that can initialize various
descendant task models, we propose a Dynamic agnostic Federated Learning with
LearnGene framework. The local model achieves smooth updates based on the
Fisher information matrix and accumulates general inheritable knowledge through
collaborative training. We employ sensitivity analysis of task model gradients
to locate meta-information (referred to as learngene) within the model, ensuring
robustness across various tasks. Subsequently, these well-trained learngenes are
inherited by various agnostic clients for model initialization and interaction with the
server. Comprehensive experiments demonstrate the effectiveness of the proposed
approach in achieving low-cost communication, robust privacy protection, and
effective initialization of models for agnostic clients.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has shown great promise in the field of distributed
learning across devices, allowing multiple clients to collaboratively train a shared global model
without exposing private data (Chen et al., 2022). Each client trains a local model based on its private
data and then shares its high-dimensional model parameters with the server for collaborative learning
across devices in FL. Recently, the integration of FL has improved the security and efficiency of
practical applications in the field of artificial intelligence, including medical impact analysis (Ng
et al., 2021; Rieke et al., 2020; Guan et al., 2024; Jiang et al., 2022), personalized recommendation
system (Wu et al., 2023; Imran et al., 2023) and intelligent transport system (Shinde & Tarchi, 2023;
Pandya et al., 2023).

In real-world FL scenarios, it is crucial to maintain the privacy goals of FL while reducing costs to
improve system efficiency (Lyu et al., 2020; Niknam et al., 2020). Recent research has proposed
advanced methods such as model pruning compression (Karimireddy et al., 2020; Haddadpour
et al., 2021), one-shot FL (Jhunjhunwala et al., 2024; Elmahallawy & Luo, 2023; Zhang et al.,
2022; Andrew et al., 2024), and reducing local updates to achieve controllable communication
costs (Karimireddy et al., 2020). Correspondingly, Dynamic Agnostic Federated Learning (DAFL),
which involves the agnostic clients continuously join into the FL system for model training, also
contains low communication costs and high privacy two fundamental goals. Moreover, effectively
initializing these models to achieve stable convergence is a significant challenge. Generally, the use
of pre-trained global model parameters for initialization inevitably exposes privacy risks, and leads to
overfitting to the trained data while inadequately adapting to agnostic data distributions (Zhu et al.,
2019; Nguyen et al., 2022). This highlights the core objective of DAFL: How to design a scheme that
enables efficient and secure communication between clients and the server, while ensuring effective
initialization of agnostic models?
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Figure 1: Illustration of Dynamic Agnostic Federated Learning and Learngene. In the accumulating,
condensing and inheriting processes of the Learngene, dynamic agnostic federated learning can
achieve a corresponding organic integration.

To achieve this goal, we were inspired by a novel and practical machine learning paradigm, Learn-
gene (Wang et al., 2022; 2023). It is based on mechanisms from biological genetics, condensing
a large-scale ancestral model into lightweight genes, which are then inherited by descendant task
models in various scenarios. Specifically shown in Figure 1 (a), large-scale ancestral model training
learns from open-world data to accumulate knowledge, and condenses it to obtain a lightweight
information piece (i.e., learngene 1) with high controllability, privacy, and low deployment costs,
enabling various descendant models to inherit these learngenes for rapid and effective initialization.

We attempt to effectively integrate the Learngene paradigm with the Dynamic Agnostic Federated
Learning scenes, as illustrated in Figure 1 (b) : (i) Collaborating: the local models are smoothly
updated and collaboratively trained to accumulate knowledge; (ii) Condensing: the local models
are condensed into lightweight learngenes for interaction with the server, and encapsulated in the
global model, which is then stored in the server; (iii) Initializing: the learngenes are used to rapidly
and efficiently initialize agnostic models, which are then participate in the collaborative training.
These three processes can be parallelized in DAFL. In addition, one form of learngene expression
is configured to retain multiple complete layers (Wang et al., 2023). For various tasks, satisfactory
performance can be achieved with a few number of samples by inheriting the learngene to initialize
descendant models.

With this in mind, we propose a Dynamic agnostic Federated Learning with LearnGene (DFL2G)
framework, which consists of three modules: Learngene Smooth Learning, Learngene Dynamic
Aggregation, and Learngene Initial Agnostic Model. To mitigate the issue of communication time per
round in typical FL, which is influenced by the slowest participating client when using a single global
model, we introduce the one-shot clustering method to obtain multiple cluster models. Furthermore,
the local models updating within each cluster are rely on the respective cluster model to assimilate
knowledge from other participants, and use layer-wise Fisher information values to partition the
elastic learngene for quadratic regularization. Finally, participating models obtain their individual
learngene based on the similarity metric with the historical local model, which is then uploaded to the
server for aggregation to obtain cluster learngene for subsequent model updates or agnostic model
initialization. DFL2G can seek for learngene during the collaborative learning process of existing
local models, which can reduce communication costs and facilitate the initialization of dynamically

1“Learngene” refers to the learning framework, while “learngene” denotes the condensed information piece of
the model. For detailed background information, please refer to the “Related Work” section in the Appendix A.1.
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participating agnostic client models to achieve stable performance improvements. In summary, our
main contributions are summarized as follows:

• We propose the “Collaborating & Condensing & Initializing” mechanism in dynamic
federated learning, inspired by the “Accumulating & Condensing & Inheriting” of the
Learngene paradigm to improve model interpretability.

• We propose a dynamic agnostic federated learning with Learngene framework, which
seeks learngene to safely and cheaply interact between the clients and server during model
optimization and to efficiently initialize agnostic client models.

• Extensive experiments demonstrate DFL2G’s competitive performance in both agnostic
clients initialization and communication costs reduction, with a reduction of approximately
9.2 × parameters compared to FEDAVG. Furthermore, privacy analysis confirms DFL2G’s
robust privacy protection against adversarial gradient inversion attacks.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

In practical FL applications, there is heterogeneity among clients and some unknown new clients
may join the FL system at any time. Let N be the set of known clients with the size of N , where the
non-iid distributed training data on i-th client is denoted as Di = {(xi, yi)}, i ∈ N , xi, yi are the
corresponding data pair. Similarly,M denotes the set of agnostic clients with the size of M . The
class sets of the agnostic clients Cj for j ∈M are disjoint from the class sets of the known clients Ci
for i ∈ N , expressed as Cj ∩

(⋃
i∈N Ci

)
= ∅.

Additionally, we aim to group clients with similar data distributions, such that clients within the
same cluster can leverage each other’s data for improved performance in federated learning. On the
server side, the known clientsN that have already participated in training are grouped into K clusters
(denoted as k) based on the distributional similarity between their data subspaces, using a one-shot
clustering approach as detailed in (Vahidian et al., 2023). Therefore, the server contains K cluster
models, where a client i belonging to cluster k has a parameterized classification network θk,i, and
the corresponding cluster model is Θk. Generally, each client i optimizes its model by minimizing
the classification loss, as follows:

Lcls = Exi,yi∼Di
Φ ((xi | yi; θi) , yi) , (1)

where Φ is the Cross-Entropy loss function and yi is the ground truth label.

2.2 METHOD OVERVIEW

The proposed Dynamic agnostic Federated Learning with LearnGene (DFL2G) framework consists
of three modules: Learngene Smooth Learning, Learngene Dynamic Aggregation and Learngene
Initial Agnostic Model. An illustration of the learning procedure is shown in Figure 2. During the t-th
epoch, the local models perform smooth updates based on the cluster model and execute quadratic
regularization (Sun et al., 2023) using the elastic learngene partitioned by the Fisher Information
Matrix (FIM) to improve the adaptability of the local models to the client data distribution. The
optimal learngene is identified based on the layer similarity score ξ with the previous model θ̃k,i.
Participating clients then upload their individual learngene (θGk,1

, · · · , θGk,i
) to the server for dynamic

aggregation and subsequent distribution to them. When the agnostic client makes a model request,
the server sends the nearest cluster learngene to facilitate the initialization of its model.

2.3 LEARNGENE SMOOTH LEARNING

During local updates, the goal is to compress a unique learngene for each client, thereby reducing
communication costs interacting with the server. In particular, local client models approximate the
corresponding cluster model constraints for smooth updates and apply quadratic regularization on the
elastic learngene partitioned by FIM to effectively capture generalizable knowledge.

Smooth Updating Based Cluster Model. We leverage the cluster model obtained after collaborative
learning to impose smooth constraints on the local models. These models trained locally exhibit

3
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Figure 2: Illustration of training process of DFL2G, which includes (I) Learngene Smooth Updating,
(II) Learngene Dynamic Aggregation, and (III) Learngene Initial Agnostic Model.

similarity within the same cluster, uploading their itself lightweight learngene for client-server
interaction, effectively mitigating communication costs. Traditional federated learning methods
typically apply a uniform regularization strength to all parameters of the model, ignoring inherent
differences in magnitudes among parameters, leading to biased selection of the learngene. To address
this, we propose an adaptive smoothness constraint based on the each layer, taking into account the
magnitude of its parameters to determine the strength of the constraint. The local update of the i-th
model is expressed as:

θk,i ← θ̃k,i − α∇θLgen(θ̃k,i,Di), (2)
where Di represents the private dataset of client i within k-th cluster, α is the learning rate, θ̃k,i is
the previous model, and∇θLgen is the gradient of the first smooth loss function. This is calculated
as the sum of the Cross-Entropy loss and the L2 norm of the difference between the current model
parameters θk,i and the cluster model parameters Θk:

Lgen = ∥θk,i −Θk∥2 . (3)

Smooth Updating Based Elastic Learngene. Considering the effective initialization of agnostic
client models during the learning process, lightweight learngene should have high informational
content to effectively predict untrained classes. Fisher information matrix (FIM) quantification of
model parameters provides rich information content (Jhunjhunwala et al., 2024; 2023; Yan et al.,
2022; Shoham et al., 2019; Yang et al., 2023). Inspired this, we introduce the FIM that diagonal is
used to weight the importance of each parameter of the model and determine the penalty size for
changing the parameter in client training. We can obtain a good approximation to the diagonal of the
Fisher values for each parameter indexed by j in the model θ̃i (refers to θ̃k,i), as follows:

Fi,j = E

(∂ log h(θ̃i | Di)

∂θ̃i,j

)2
 , (4)

where h(θ̃i | Di) is the likelihood function that represents the fitness of the model parameters under
the data Di. The elastic learngene we seek is a model fragment that reflects the shared knowledge
of the sample data, selected based on Fisher values computed from the model and private data.
Specifically, if the Fisher value is below a given threshold ε, the model parameters with small local
model update variations (i.e., its own learngene) are retained, while the remaining parameters are
updated using the aggregated consensus model (knowledge shared across clients):

θ′k,i =

{
θ̃k,i,j , F̂i,j ≤ ε
Θk,j , otherwise,

(5)
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where F̂i,j =
Fi,j−min(Fi)

max(Fi)−min(Fi)
represents the normalization of Fi,j .

The local model is restructured according to the FIM into a combination of the learngene and
the cluster model, aiming to approximate its own learngene to the cluster elastic learngene. This
enables learning of shared knowledge within the same cluster to reduce redundant parameters, thereby
lowering communication costs. Then the quadratic regularization update of the current local model
based on the cluster elasticity learngene is expressed as:

θk,i ← θk,i − α∇θLelg(θ
′
k,i,Di), (6)

where ∇Lelg is the gradient of the elasticity loss Lelg, calculated as the L2 norm of the difference
between the local model’s learngene and the cluster’s elastic learngene:

Lelg =
∥∥θ′k,i −Θk

∥∥
2
. (7)

In summary, the total optimization objective for local updates is defined as Lall = Lcls + λ1Lgen +
λ2Lelg , where Lcls represents the classification loss, while λ1 and λ2 serve as hyperparameters that
regulate Lgen and Lelg , respectively.

Localization of Learngene. After training the local model based on private data, we precisely
identify each client’s learngene, enabling the acquisition of meta-knowledge about the model. The
strategy is determining the contribution of each layer, guided by the parameter changes observed after
model training. The score of the l-th layer ξlk,i can be calculated on the locally trained model θi and
previous model θ̃i, as follows:

ξ
(l)
k,i =

cos
(
θ
(l)
k,i, θ̃

(l)
k,i

)
dim

(
θ
(l)
k,i

) , (8)

where dim(·) denotes the number of parameters on layer l, which can normalize the values as∑L
l=1 ξ

(l)
k,i = 1. cos is the cosine measure which can take a variety of forms, such as L1, L2, and

Earth Mover distance. Here, ξlk,i quantifies the discrepancy in the l-th layer between θi and θ̃i,l,
thereby evaluate the personalized influences on the l-th layer of the current model. Intuitively, a
higher ξlk,i value suggests a greater deviation of the l-th layer in θi from θ̃i,l, indicating a more
pronounced impact on personalization. Conversely, lower ξlk,i values indicate a higher contribution
to generalization information, which is beneficial for initializing new tasks, which is exactly what
we seek learngene. The symbol Sk,i is the ξ

(l)
k,i values calculated for the L layers, arranged in

descending order, setting the round γ layer to 1 and the others to 0, and then obtaining the updated
θG(l)

k,i

= θk,i ⊙ Sk,i. The learngene progressively tightens throughout the training and update process

until it reaches a threshold layer γ, which is determined by a performance-based adaptive training
process. This parallel procedure, involving both model updates and the localization of the learngene,
enables the model to fit the data distribution while achieving the goal of reducing communication
costs.

2.4 LEARNGENE DYNAMIC AGGREGATION

In the server, our goal is to maintain a unified cluster learngene for each cluster, which encapsulate
the generalization parameter information of all relevant local models within the cluster, allowing
effective initialization of newly agnostic client models. The learngene layers that are common to all
participants are aggregated to obtain clusters learngene, while the others retain the previous cluster
model. The formula for aggregating cluster learngene is as follows:

ΘG(l)
k

=
1

N
(l)
k

N
(l)
k∑

i=1

θG(l)
k,i

, (9)

where l ∈ L and ΘG(l)
k

represents the parameters of the l-th layer within the k-th cluster learngene.

Additionally, N (l)
k denotes the number of client learngenes that encompass the l-th layer, while θG(l)

k,i

signifies the parameters of the l-th layer within the i-th learngene belonging to the k-th cluster. The
updated cluster model is then represented as the aggregated learngene and the previous partial cluster
model parameters: Θk = [ΘGk

; Θ̃k].
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2.5 LEARNGENE INITIAL AGNOSTIC MODEL

In the dynamic and agnostic FL scenario, when a new client i joins, we recommend applying truncated
singular value decomposition (Li & Xie, 2024) to its private data sample Xi to obtain the components
that describe the underlying data distribution. Specifically, we define the decomposition as:

Xi,d = Ui,dΣi,dV
T
i,d, (10)

where Ui,d = [u1,u2, . . . ,ud] ∈ Rm×d (with d≪ rank(Xi) and m denotes the number of samples
for client i) represents the top d most significant left singular vectors, capturing the essential features
of the underlying data distribution. We follow the (Vahidian et al., 2023) and select d = 5 to mitigate
the risk of data leakage. Additionally, to facilitate linear algebraic computations, we transform the
matrix Ui,d into a vector ui,d ∈ Rmd×1.

Then, client i upload ui,d to the server for requesting learngene. Let uk be the mean vector of the
k-th cluster. The server calculates the distance di,k between ui,d and uk as follows:

di,k = ∥ui,d − uk∥. (11)

The server identifies the nearest cluster k based on these calculated distances and transmits the
associated learngene ΘGk

from that cluster to the requested agnostic client for model initialization.
For the agnostic client model θk,i, the initialization parameters consist of two components: inherited
cluster learngene ΘGk

and random initialization θ0, expressed as θk,i = [θ0; ΘGk
].

2.6 PRIVACY ANALYSIS

Typically, the initialization of agnostic client models benefits from the server-side model, while
collaborative learning among clients necessitates communication with the server. Therefore, the
proposed method should emphasize the importance of privacy guarantees on the server side. In the
validation phase of this study, we treat the server as a malicious entity capable of reconstructing the
original data from a victim client using the iDLG method (Zhu et al., 2019; Wu et al., 2021). The LD

loss associated with recovering the true data from the victim client i is calculated as follows:

LD = ∥∇ΘLcls(xi)−∇ΘLcls(x̃)∥2, (12)

where xi is the real data of victim client i while x̃ is the variable to be trained to approximate xi by
minimizing LD that is the distance between ∇ΘLcls(xi) and ∇ΘLcls(x̃). The former is observed
gradients of Lcls (see Eq. (1)) w.r.t. model parameters Θ for the real data xi, while the latter is
estimated gradients for x̃. We evaluated the privacy guarantees of the DFL2G, FEDAVG (McMahan
et al., 2017), and PartialFed (Sun et al., 2021) methods. For the FEDAVG, which shares the entire
network, we set Θ := θi. For PartialFed, where only selected network layers are uploaded to the
server, Θ := [θ0; θs] that θ0 is the random initialization parameter. Similarly, in DFL2G, only the
learngene is shared, so Θ := [θ0; θGi

]. Since the network used for training is ResNet model, we
employ the same network for validation, with MSE utilized as the loss function to evaluate the quality
of the image reconstruction.

2.7 DISCUSSION

We describe the whole training process of DFL2G is shown in Algorithm 1, which includes local
update, server execution and agnostic client model initialization processes. The corresponding
describes the local model update and the selection of learngenes, the dynamic aggregation of
learngenes in the server , and the initialization of agnostic client models. The optimization process
primarily focuses primarily on the participants, interacting with the server using a small-scale
learngene, and the server generally aggregating learngene and responding to agnostic clients.

Our analysis of the additional computational cost is as follows: Suppose each global epoch consists
of El local update epochs, N clients, and each model contains P parameters. Since the local model
needs to compute Fisher information values, it incurs an additional computational cost of O(P ).
Therefore, each global round introduces a computational cost of O(El ·N · P ).

6
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Algorithm 1: DFL2G
Input: Local epochs El, participants number in the k-th cluster Nk, private data of the i-th

praticipant Di, global model parameters Θk, local model parameters θk,i and previous
local model parameters θ̃k,i, cluster learngene ΘGk

of the cluster k and local learngene
θGk,i

, hyper-parameter λ, ε, γ, learning rate α;
1 Local Update :
2 for i = 1, 2, · · · , Nk in parallel do
3 Receive Θk from server;
4 Fk,i ← (Di, θ̃k,i) by Eq. (4);
5 for e = 1, 2, · · · , El do
6 θk,i ← θ̃k,i − α∇θLgen(θ̃k,i,Di) by Lgen from Eq. (3);
7 θ′k,i ← (Fk,i,Θk, θ̃k,i, ε) using Eq. (5);
8 θk,i ← θk,i − α∇θLelg(θ

′
k,i,Di) by Lelg from Eq. (7);

9 end
10 ξk,i ← (θ̃k,i, θk,i) using Eq. (8);
11 θGk,i

← θk,i ⊙ Sk,i by sort the ξk,i of the L layers to obtain the mask set Sk,i of the
corresponding layer;

12 end
13 Server Execute :
14 θGk,i

← Local Update (Θk) ;

15 ΘG(l)
k

← 1

N
(l)
k

∑N
(l)
k

i=1 θG(l)
k,i

from the Eq. (9) then Θk ← [ΘGk
; Θ̃k];

16 Send Θk to the participate in training clients;
17 if Agnostic client request then
18 Select the nearest cluster k by Eq. (11);
19 Send the cluster learngene ΘGk

;
20 uk ← Nk·uk+ui,d

Nk+1 , where Nk denotes the number of clients in cluster k;
21 end
22 Agnostic Client Initialize :
23 Send the ui,d by Eq. (10) to server;
24 Receive ΘGk

from server;
25 θk,i ← [θ0; ΘGk

];

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS AND DATA PARTITION

Our experiments are conducted on the following three real-world datasets: SVHN (Netzer et al.,
2011), CIFAR10 (Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky et al., 2009). To simulate
real-world applications, we employ a classic Sharding strategy to generate non-iid data partitions
among clients, where s denotes the number of classes contained in each client, constrained not to
exceed the total number of classes. By varying the parameter s, we obtain different non-iid data
distributions. For SVHN and CIFAR10, we select s = {4, 5}, while for CIFAR100 we set for
s = {10, 20}. Agnostic clients and seen clients are sampled from the same dataset, with completely
different classes and no overlap between samples.

3.1.2 BASELINES

To ensure a fair comparison, we selected six baseline FL methods, including FEDAVG (McMahan
et al., 2017), which involves the interaction of all model parameters between server and clients;
PartialFed (Sun et al., 2021), which initializes a subset of global model parameters; FedFina, which
incorporates rich information in the last four layers of the model; FedLPS (Jia et al., 2024) and
FedLP (Zhu et al., 2023), which use model pruning to compress and reduce communication costs in

7
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federated learning algorithms. Flearngene (Wang et al., 2023), a lightweight learngene presented for
the first time, extracts information from gradient updates. All methods were implemented under the
same data distribution as well as clustering process and device environments.

3.1.3 SETTINGS

For local client training, we employ the ResNet18 model (He et al., 2016) to perform classification
tasks. The stochastic gradient descent optimizer is used with a momentum of 0.9 and a learning
rate of 0.01 is utilized. We set the batch size to 64, the number of epochs for global collaborative
accumulation training to 100, the number of local epochs to 10, and the number of subsequent training
epochs for the initialization-agnostic client model to 50. The specific hyperparameters are described
in Appendix A.2.2.

3.2 EXPERIMENT RESULTS

We conducted a comprehensive evaluation of the proposed method, covering three main aspects:
communication costs, testing performance of agnostic models, and privacy protection within dynamic
federated learning scenarios. Furthermore, ablation analysis was performed on various loss functions
to ascertain the significance and necessity of each component.

Low-cost Communication Evaluation. The communication costs typically involves a cycle of
data upload from the client to the server and subsequent download from the server to clients. Since
experiments typically involve downloading aggregated global model, we discuss the communication
costs of clients uploading parameters to the server. We propose a cost-effectiveness metric (Cef =
Comm

Acc ), which is the ratio of communication cost (Comm, GB) to model performance (Acc, %). This
metric allows for a relatively fair evaluation of the performance of federated model pruning methods.

Table 1: Comparison with state-of-the-art methods on Comm (↓) and Cef (↓) metrics during the
accumulation process.

SVHN CIFAR10 CIFAR100

s = 4 s = 5 s = 4 s = 5 s = 10 s = 20Methods
Comm Cef Comm Cef Comm Cef Comm Cef Comm Cef Comm Cef

FEDAVG 15.41 0.1675 14.21 0.1580 12.04 0.1488 15.00 0.1885 13.30 0.2574 13.39 0.3590
PartialFed 4.32 0.0507 3.98 0.0488 3.37 0.0576 4.20 0.0633 4.33 0.0869 3.74 0.1026
FedFina 11.38 0.1459 10.49 0.1403 8.89 0.1347 11.07 0.1814 11.41 0.2574 9.84 0.3165
FedLP 11.65 0.1264 10.93 0.1215 9.41 0.1161 12.24 0.1575 11.90 0.2298 10.89 0.2985

FedLPS 3.34 0.0377 3.93 0.0452 4.00 0.0527 3.49 0.0512 3.12 0.1698 3.21 0.1550
Flearngene 6.61 0.0789 6.09 0.0776 5.16 0.0734 6.43 0.0990 5.68 0.1249 5.71 0.1870

Ours 2.74 0.0323 2.62 0.0321 3.54 0.0525 4.28 0.0571 3.08 0.0712 3.02 0.1011

Table 1 presents a comparison of the average communication costs and cost-effectiveness over all
training epochs for different methods on various datasets. Note that we highlight the Best results in
bold and the Second-best results are underlined. Compared to FEDAVG, the proposed method shows
a significant reduction in communication costs and an increased cost-effectiveness. Compared to
the pruning method FedLPS, it reduces communication overhead by 0.66 GB while demonstrating
lower cost-effectiveness on the CIFAR100 dataset. This demonstrates that our method achieves
higher model accuracy with lower communication costs, making it more efficient in terms of resource
utilization and well-suited for FL systems facing communication bottlenecks.
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Figure 3: Communication cost curves.

Table 2: Required Comm (GB) for target Acc (%).

Methods SVHN s=5 CIFAR10 s=5 CIFAR100 s=10

Acc@90 Acc@60 Acc@50

FEDAVG 0.49 0.83 0.49
PartialFed 0.14 0.56 0.38
FedFina - - -
FedLP 2.09 0.16 -

FedLPS - - -
Flearngene 1.07 - -

Ours 0.06 0.08 0.24
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To further validate the low communication cost advantage of the proposed method, we compared
its communication cost with FEDAVG in the cumulative training process on the CIAFR100 (s=10)
dataset, as shown in Figure 3. Compared to the FEDAVG method, which involves interaction with
all parameters, our approach achieves a 9.2 × reduction in communication costs. The stabilization
of the learngene scale around the 40th epoch signifies the acquisition of generalized knowledge
among clients and the gradual convergence of the model towards stability. Additionally, Table 6
lists the required communication costs when achieving the target accuracy on different datasets.
The proposed method significantly reduces communication overhead compared to FEDAVG, which
involves interaction with all parameters. Notably, on the CIFAR100 setting with s = 10, the
communication cost is nearly halved compared to other methods.

Effective Initialization Evaluation. To verify the effectiveness of using small-scale learngene
fragments for initializing client models in unknown scenarios, we set up 50 clients with un-
trained class distributions for model initialization and subsequent training. To ensure a fair
comparison of the average performance after training, we selected federated model pruning
methods capable of capturing partial model information fragments, as listed in Table 3.

Table 3: Performance comparison of federated model pruning methods on Acc metric.

Methods SVHN CIFAR10 CIFAR100

s = 4 s = 5 s = 4 s = 5 s = 10 s = 20

PartialFed 91.67 ± 0.02 91.19 ± 0.04 63.53 ± 0.14 61.75 ± 0.80 53.24 ± 0.28 35.43 ± 0.25

FedFina 87.81 ± 0.06 86.84 ± 0.08 57.21 ± 0.11 51.81 ± 0.03 48.47 ± 0.14 34.94 ± 0.12

FedLP 90.70 ± 0.03 88.55 ± 0.04 64.61 ± 0.04 63.24 ± 0.06 49.30 ± 0.13 31.51 ± 0.20

FedLPS 79.17 ± 0.02 77.32 ± 0.04 52.32 ± 0.08 45.85 ± 0.10 40.78 ± 0.19 31.45 ± 0.15

Flearngene 88.85 ± 0.01 89.52 ± 0.02 63.60 ± 0.09 57.83 ± 0.07 48.55 ± 0.10 33.73 ± 0.11

Ours 93.83 ± 0.02 92.91 ± 0.03 65.46 ± 0.10 63.06 ± 0.09 52.44 ± 0.16 35.49 ± 0.17
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Figure 4: Performance curve comparison.

Our method surpasses other approaches in most
settings across various datasets, notably achiev-
ing an improvement of approximately 2 percent-
age points over the state-of-the-art PartialFed on
the SVHN dataset. While our method performs
slightly lower than others in certain CIFAR10
and CIFAR100 settings, these differences are rel-
atively minor and do not significantly impact the
overall effectiveness. In the more heterogeneous
s = 20 setting on CIFAR100, our method con-
sistently outperforms comparable approaches.
This demonstrates the efficacy of learngene in
initializing agnostic client models, exhibiting
its scalability and adaptability to unknown and
varying class distributions. In addition, Figure 4 shows the test performance curve comparison of
our method with advanced model pruning methods on the SVHN with s = 4. Although our method
initially underperforms, it gradually outperforms the others due to the inherited learngene, which
requires training to adapt to the new data distribution, leading to a stable performance improvement.
This further demonstrates the generalization and scalability of the learngene obtained through our
method, enabling the initialized models to quickly adapt to agnostic data distributions.

Robust Privacy Protection Evaluation. We conduct Peak Signal to Noise Ratio (PSNR) as a
metric to quantify the similarity between original images and those reconstructed by iDLG. A
higher PSNR value indicates greater similarity between the images being compared. We integrate
differential privacy into the FEDAVG by introducing Gaussian noise with noise levels that σ2 = 0.001
to the common gradients. Figure 5 shows a malicious server attack on client data and subsequent
image reconstruction using iDLG across different FL methods with different levels of privacy.
FEDAVG produces reconstructed images that closely resemble the original, while differential privacy
mechanisms show significant improvements. The FLearngene and PartialFed methods upload only
a subset of model parameters, providing significant privacy benefits. Note that in the last row of
images, FEDAVG has a high PSNR value of 37.58dB, closely resembling the original image, while
our method renders them indistinguishable from the original in terms of perceptual similarity. This
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Original FLearngeFEDAVG PartialFed OursFEDAVG-0.001

10.77 dB 3.67 dB 5.99 dB 3.71 dB4.65 dB

37.58 dB 2.83 dB 5.82 dB 2.06 dB2.97 dB

12.78 dB 3.79 dB 7.39 dB 4.68 dB4.99 dB

Figure 5: Higher privacy protection. Reconstructing images under iDLG attacks in FEDAVG, FLearn-
gene, PartialFed, and the proposed method. Images are extracted from CIFAR10 and CIFAR100
datasets, with corresponding PSNR reported beneath each recovered image.

further emphasizes that initializing agnostic client models based on the learngene downloaded from
the server can prevent privacy leakage, even if the server is malicious.

Table 4: Ablation studies for the proposed method.

SVHN CIFAR10 CIFAR100Settings Lgen Lelg s = 4 s = 4 s = 10

Ours w/o Lgen % ! 93.66± 0.03↓0.17 64.29± 0.01↓1.17 49.36± 0.13↓3.08

Ours w/o Lelg ! % 93.55± 0.01↓0.28 63.62± 0.06↓1.84 48.74± 0.19↓3.70

Ours ! ! 93.83± 0.02 65.46± 0.10 52.44± 0.16

Ablation Study. To highlight the con-
tribution of each component or our
method to the overall performance,
we perform a series of ablation ex-
periments. Our proposed method
consists of two integral components.
(1) The Lgen to learn the knowledge
of others with similar clients and find generalizable learngenes. (2) The Lelg to focus on
learning elastic learngenes to improve the knowledge content of the learngene. The results
in Table 4 clearly illustrate that both Lelg and Lgen contribute significantly to the perfor-
mance of the model under various settings. The combined use of both components provides
the best results on different datasets, reinforcing the effectiveness of our proposed method.

Table 5: Ablation study on various hyperparameters.

K ε
1 4 0.1 0.5 0.9

Acc (%) 64.16± 0.06 65.46± 0.10 65.17± 0.11 65.46± 0.10 63.11± 0.06

Hyperparameter Study. We exploit
different hyperparameters (including
K and ε) of proposed method on
the CIFAR10 with s = 4, where K
demonstrates the advantage of multi-
ple global models on the server side
and ε validates how the model retains or changes the elastic learngene part with generalization
properties as shown in Table 5. For K, we observed that multiple global models are more conducive
to agnostic clients selecting the optimal initialization model, which verifies the effectiveness of our
solution. For ε , our proposed method is relatively stable, which validates the robustness of our
proposed solution. We applied these parameters to several different datasets and obtained consistently
good performance. In addation, λ1 is the hyperparameter controlling the constraint of the local model
based on the cluster model, while λ2 represents the sensitivity to the strength of the elastic learngene
constraint. Their analysis is provided in Appendix A.3.

4 CONCLUSIONS

In this paper, we delve into the challenges of high communication interaction costs and model
initialization for agnostic clients in dynamic agnostic federated learning. We present a Dynamic
agnostic Federated Learning with Learngene framework consisting of three modules: Learngene
Smooth Learning, Learngene Dynamic Aggregation, and Learngene Initial Agnostic Model, which
effectively address the aforementioned challenges. The effectiveness of the proposed approach has
been extensively validated on various classification tasks against several popular methods. In the
future, we will further investigate how agnostic heterogeneous models can be effectively integrated
with Learngene to address initialization and communication issues.
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A APPENDIX

We present related work, discussion of proposed framework and detailed experimental setup in the
following sections.

A.1 RELATED WORK

Federated Learning. Federated Learning (FL) was first introduced in (McMahan et al., 2017),
which demonstrated its effectiveness in learning collaborative models without collecting user data.
Compared to centralized learning, FL faces several unique challenges, including non-independently
identically distributed and imbalanced data, as well as limited communication bandwidth (Mu
et al., 2021; Briggs et al., 2020; Lee et al., 2022; Li et al., 2024). An intuitive approach to reduce
communication costs is to quantify weights directly and upload them sparsely (Yi et al., 2024;
Jiang et al., 2023; Jiang & Borcea, 2023; Shi et al., 2024b). The FedDrop (Caldas et al., 2018)
to reduce the computational burden of local training and the corresponding communication costs
in FL. The transferable model design in FedLPS (Jia et al., 2024) uses an adaptive channel model
pruning algorithm. Efforts have also been directed towards one-shot FL (Jhunjhunwala et al., 2024;
Elmahallawy & Luo, 2023), which aims to achieve satisfactory models with only one round of
communication, but requires the shared dataset. Additionally, leveraging class prototypes for low-cost
communication has gained attention (Tan et al., 2022). FedTGP (Zhang et al., 2024) proposes using
adaptive margin-enhanced contrastive learning to train global prototypes on the server. However, most
existing works focus on pruning operations for fixed training clients, with limited attention to dynamic
federated learning scenarios in the real world. In contrast, we propose a dynamic agnostic federated
learning with Learngene framework, which condenses lightweight learngene for participating client
model to reduce unnecessary resource consumption in dynamic scenarios.

Learngene. The Learngene, as a novel paradigm based on the inheritance principles from biology,
enables the condensation of a large-scale ancestral model into learngene to adaptively initialize models
for various descendant tasks. Wang et al. (Wang et al., 2022) first proposed Learngene based on
gradient information from the ancestral model, using limited samples to initialize descendant models.
Furthermore, they summarized the three processes of Learngene (Wang et al., 2023): accumulating,
condensing, and inheriting. Moreover, Xia et al. (Xia et al., 2024) present the Transformer as a
linear extension of Learngene, capable of flexibly generating and initializing Transformers of varying
depths. To facilitate the rapid construction of numerous networks with different complexity and
performance trade-offs, Shi et al. (Shi et al., 2024a) developed a learngene pool method tailored to
satisfy low-resource constraints. Simultaneously, (Feng et al., 2024) demonstrated that the transfer of
core knowledge through learngene can be both sufficient and effective for neural networks. These
mentioned approaches underscore the promise of the Learngene paradigm and its feasibility in
reducing costs while preserving the essential knowledge of models. Fisher Information Matrix.
The Fisher Information Matrix (FIM) (Barrett et al., 1995; Ly et al., 2017) is a key concept in
statistical estimation theory that encapsulates the information that unknown parameters hold about
a random distribution. In deep learning, the FIM has been used to study adversarial attacks (Zhao
et al., 2019), guide optimization, and evaluate the information content of parameters (Fasina et al.,
2023; Jhunjhunwala et al., 2023; Vallisneri, 2008). For example, (Zhao et al., 2019) utilizes the
eigenvalues of FIM derived from a neural network as features and trains an auxiliary classifier to
detect adversarial attacks on the eigenvalues. The layer-wise correlation propagation method (Binder
et al., 2016) uses the diagonal of FIM to quantify the importance of parameters, thereby improving
the interpret ability of the model. The Elastic Weight Removal method (Daheim et al., 2023) weights
the individual importance of the parameters via FIM to eliminate hallucinations. These methods all
use the diagonal approximation of the FIM to reduce computational complexity and promote a more
efficient learning process based on the Fisher information of the parameters.

A.2 EXPERIMENTAL SETUP

A.2.1 DATASETS

Our experiments are conducted on the following three real-world datasets: SVHN (Netzer et al.,
2011), CIFAR10 (Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky et al., 2009). SVHN is
a benchmark digit classification dataset consisting of 600,000 32×32 RGB printed digit images
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cropped from Street View house numbers. We select a subset of 33,402 images for training and
13,068 images for testing. The CIFAR10 dataset consists of 60,000 32×32 color images across 10
classes, with 6,000 images per class. It consists of 50,000 training images and 10,000 test images.
Similarly, the CIFAR100 dataset contains 100 classes of 600 images each, divided into 500 training
images and 100 test images per class.

A.2.2 SETTINGS

We configure the number of clusters (K) to 4, the total number of existing clients (M ) to 50, and
the number of agnostic clients (N ) to 50. Both seen and unseen classes are equally distributed,
each comprising 50% of the total number of classes. We applied K-Means, KNN, and hierarchical
clustering algorithms and observed that they exhibited similar performance trends across various FL
methods. Therefore, we opted to use the classic K-Means algorithm. Following to the hyperparameter
settings in the literature, we set the model pruning probability to 0.5 for the FedLP (Zhu et al., 2023)
method and the local model pruning ratio to 0.8 for the FedLPS (Jia et al., 2024) method. We set the
threshold ε to 0.5 for determining the values. The higher γ the number of learngene layers, the more
layers are selected and the better the performance. During the collaborative accumulation training
process, we select 10 clients to participate in each training round, and configure 50 agnostic clients
for the subsequent Learngene Initial Agnostic Model process. The experiments are conducted on
the server equipped with 1 NVIDIA RTX 3090Ti GPU. Each experiment is repeated three times to
compute average metrics.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Low-cost Communication Evaluation. We introduce the another method to simulate heterogeneous
scenarios separately by adjusting β in Dirichlet distribution (Dir). Specifically, we set β = {0.1, 0.5}
for the CIFAR10 basic dataset, as listed in Table 6. It can be observed that in the heterogeneous
scenario of the dir partitioning, the proposed method still achieves remarkable performance in terms
of the comm and cef metrics, consistent with the results in Table 1. Compared to the state-of-the-art
model pruning method, FedLPS, our approach reduces the communication by 0.8 GB. Furthermore,
compared to transmitting all parameters using FEDAVG, it achieves a significant reduction of about
11 GB. This demonstrates that the proposed scheme is well-suited for dynamic and agnostic federated
learning in practical applications, achieving a better trade-off between low-cost communication and
model performance.

Table 6: Comparison with state-of-the-art methods
under Dir partition strategy.

CIFAR10

β = 0.1 β = 0.5Methods
Comm Cef Comm Cef

FEDAVG 15.41 0.2303 15.41 0.2165
PartialFed 4.32 0.0668 4.32 0.0813
FedFina 11.38 0.1839 11.38 0.2330
FedLP 12.58 0.1773 12.07 0.1677

FedLPS 4.83 0.1042 4.73 0.1866
Flearngene 6.60 0.1061 6.61 0.1293

ours 4.03 0.0663 1.69 0.0321
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Figure 6: Ablation study on λ1 and λ2.

Ablation Study. We further evaluate the impact of the hyperparameters λ1 and λ2 on the model
performance, as shown in Figure 6. The results show that the combination of λ1 = 0.05 and
λ2 = 0.05 achieves the highest accuracy of 65.46%, indicating this is the optimal setting for the
model. Increasing λ1 beyond 0.05 leads to a consistent decline in accuracy across all λ2 values,
while higher λ2 values (e.g., 0.5) also result in reduced performance. This analysis highlights the
importance of moderate values for both parameters to achieve a balanced trade-off and optimal
performance.
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