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Abstract

Recent work has empirically shown that deep neural networks latch on to the Fourier statis-
tics of training data and show increased sensitivity to Fourier-basis directions in the input.
Understanding and modifying this Fourier-sensitivity of computer vision models may help
improve their robustness, hence, in this paper we study the frequency sensitivity character-
istics of deep neural networks using a principled approach. We first propose a basis trick,
proving that unitary transformations of the input-gradient of a function can be used to com-
pute its gradient in the basis induced by the transformation. Using this result, we propose
a general measure of any differentiable computer vision model’s Fourier-sensitivity using
the unitary Fourier-transform of its input-gradient. When applied to deep neural networks,
we find that computer vision models are consistently sensitive to particular frequencies
dependent on the dataset, training method and architecture. Based on this measure, we
further propose a Fourier-regularization framework to modify the Fourier-sensitivities
and frequency bias of models. Using our proposed regularizer-family, we demonstrate that
deep neural networks obtain improved classification accuracy on robustness evaluations.

1 Introduction

While deep neural networks (DNN) achieve remarkable performance on many challenging image classification
tasks, they can suffer significant drops in performance when evaluated on out-of-distribution (0.0.d.) data.
Intriguingly, this lack of robustness has been partially attributed to the frequency characteristics of data
shifts at test time in relation to the frequency sensitivity characteristics of the model (Yin et al., [2019; [Jo
& Bengiol 2017)). It is known that distinct spatial frequencies in images contain features at different spatial
scales; low spatial frequencies (LSF) carry global structure and shape information whereas high spatial
frequencies (HSF) carry local information such as edges and borders of objects (Kauffmann et all 2014).
Moreover, spatial frequencies may also differentially processed in the brain’s visual cortex to learn features
at different scales (Appendix . We find that when information in frequencies that a model relies on is
corrupted or destroyed, performance can suffer. Hence, understanding the frequency sensitivity of a DNN
can help us characterise and improve them.

DNNs have been demonstrated to be sensitive to Fourier-basis directions in the input (Tsuzuku & Sato,
2019; |Yin et al., 2019) both empirically and using theoretical analysis of linear convolutional networks
(Tsuzuku & Satol 2019). In fact, the existence of so-called “universal adversarial perturbations” (Moosavi-
Dezfooli et al., 2017)), simple semantics-preserving distortions that can degrade models’ accuracy across
inputs and architectures, is attributed to this structural sensitivity. [Yin et al. (2019)) also showed that
many natural and digital image corruptions that degrade model performance may also be targeting this
vulnerability. Hence, understanding and modifying Fourier-sensitivity is a promising approach to improve
model robustness. While this problem has been studied empirically, the precise definition and measurement
of a computer vision model’s Fourier-sensitivity still lacks a rigorous approach across studies. In addition,
no principled method has been proposed to study and modify the Fourier-sensitivity of a model. Existing
works have applied heuristic filters on convolution layer parameters (Wang et al.l 2020; Saikia et al. 2021))
and input data augmentations (Yin et al.l |2019) to modify a model’s frequency sensitivity.
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In this work, we first propose a novel basis trick, proving that unitary transformations of a function’s
gradient can be used to compute its gradient in the basis induced by the transformation. Using this result,
we propose a novel and rigorous measure of a DNN’s Fourier-sensitivity using its input-gradient represented
in the Fourier-basis. We demonstrate that DNNs are consistently sensitive to particular frequencies that are
dependent on dataset, training method and architecture. This observation confirms that DNNs tend to rely
on some frequencies more than others, which has implications for robustness when Fourier-statistics change
at test time. Further, using our proposed measure, which is differentiable with respect to model parameters,
we propose a framework of Fourier-regularization to directly modify the Fourier-sensitivities and frequency
bias of a model. We show in extensive empirical evaluations that Fourier-regularization can indeed modify
frequency characteristics of computer vision models, and can improve the generalization performance of
models on o.0.d. datasets where the Fourier-statistics are shifted.

In summary, the main contributions of our work are as follows:

1. We propose a basis trick, proving that unitary transformations of the input-gradient of any function
can be used to compute its gradient in the basis induced by the transformation

2. We propose a novel and rigorous measure of a model’s Fourier-sensitivity based on the unitary
Fourier-transform of its input-gradient. We empirically show that Fourier-sensitivity of a model is
dependent on the dataset, training method and architecture

3. We propose a framework of Fourier-regularization to directly induce specific Fourier-sensitivities
in a computer-vision model, which modifies the frequency bias of models and improves generalization
performance on out-of-distribution data where Fourier-statistics are shifted

2 Related work

2.1 Frequency perspectives of robustness

Yin et al| (2019); Tsuzuku & Sato| (2019)) characterised the Fourier characteristics of trained CNNs using
perturbation analysis of their test error under Fourier-basis noise. They showed that a naturally trained
model is most sensitive to all but low frequencies whereas adversarially trained (Madry et al., |2018]) mod-
els are sensitive to low-frequency noise. They further showed that these Fourier characteristics relate to
model robustness on corruptions and noise, with models biased towards low frequencies performing better
under high frequency noise and vice versa. |Abello et al.| (2021) took a different approach by measuring
the impact on accuracy of removing individual frequency components from the input using filters whereas
Ortiz-Jimenez et al.| (2020) computed the margin in input space along basis directions of the discrete cosine
transform (DCT). Wang et al.| (2020)) made observations about the Fourier characteristics of CNNs in differ-
ent training regimes including standard and adversarial training by evaluating accuracy on band-pass filtered
data. Contrary to these empirical approaches, we propose a rigorous measure of a model’s Fourier-sensitivity
using its input-gradient.

2.2 Modifying frequency sensitivity of models

Yin et al.| (2019)) observed that adversarial training (Madry et al.l 2018) and Gaussian noise augmentation
can induce a low-frequency sensitivity in some datasets. [Wang et al.| (2020) proposed smoothing convolution
filter parameters to induce a low-frequency sensitivity in models. We note that such techniques can, in
principle, be undone by subsequent layers of a network. |Shi et al| (2022) proposed similar techniques in
the context of deep image priors applied to certain generative tasks. In addition, data augmentations such
as Gaussian noise do not provide precise control over the Fourier-sensitivity of a model. In this work, we
propose a general framework of Fourier-reqularization that can precisely modify the rigorously measured
Fourier-sensitivity of any differentiable model.
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2.3 Jacobian regularization

Methods that regularize the input-Jacobian of a model can be broadly classified into two categories: meth-
ods that minimize the norm of the input-Jacobian, and those that regularize its direction or directional
derivatives at the input. [Drucker & Le Cun| (1991)) proposed a method that penalized the norm of the
input-Jacobian to improve generalization; more recently, this has been explored to improve robustness to ad-
versarial perturbations (Ross & Doshi-Velez, [2018} Jakubovitz & Giryes, 2018} [Hoffman et al. 2019). |Simard|
proposed "Tangent Prop", which minimized directional derivatives of classifiers in the direction
of local input-transformations (e.g. rotations, translations; called "tangent vectors') to reduce sensitivity
to such transformations. [Czarnecki et al.| (2017)) proposed Sobolev training of neural networks to improve
model distillation by matching the input-Jacobian of the original model. Regularizing the direction of the
input-Jacobian has also been used to improve adversarial robustness (Chan et al. 2020). In the present
work, we regularize Fourier-components in the input-gradient to modify the Fourier-sensitivity of models to
improve performance on out-of-distribution tasks. As such, we are interested in modifying the input-gradient
along certain directions instead of its total norm.

3 Proposed methods

3.1 Notation

We first introduce all relevant definitions and notation before describing the proposed methods.

Preliminaries: Consider an image classification
task with input images x, labels y, and the stan-
dard cross-entropy loss function Lcg. Let f de-
note any differentiable model that outputs a scalar
loss, F(-) the unitary discrete Fourier transform
(DFT), F~'(-) its inverse, and F~'"(-) the adjoint zero-frequency (DC)
of the inverse-Fourier transform, and let x; denote !
the Fourier-space representation of the input, i.e. Pifotal = power inside entire square
zy = F(z). We denote the input-gradient in the
standard basis as J¢(x), and J¢(zy) as the input-
gradient with respect to the input in the Fourier-
basis. Let NV denote the height of input images (al-

though not necessary, all images used in this work
are square). Figure 1: Power-matrix, P, of input-gradient.

P(u,v) P(u,v)

PTu(al = power inside circle

DFT notation: The zero-shifted (rearrange DC

component to centre and high frequencies further from center) 2D-DFT of the input-gradient is denoted F.
Since the input-gradient typically has three color channels, they are averaged before computing the 2D-DFT.
Fourier coefficients in F' are complex numbers with real and imaginary components; F(u,v) = Real(u,v) +
i X I'mag(u,v), where (u,v) are indices of coefficients. The power in a coefficient is its squared amplitude
ie. P(u,v) = |F(u,v)|?> = Real(u,v)? + Imag(u,v)? and the matrix of powers is denoted P (power-matrix).
Each coefficient has a radial distance r(u,v) from the centre of the matrix, r(u,v) = d((u,v), (cy,cy)),
where (cy,c,) denotes the center of P and d(-,-) is Euclidean distance rounded to the nearest integer.
Distinct radial distances of coefficients in the matrix are the set of integers {1,..., N/v/2} and correspond
to low to high spatial frequencies, the highest frequency being limited by the Nyquist-frequency. We denote
Proiar as the total power in P, excluding the zero-frequency coefficient i.e. Proia = Zr(u,v)>:1 P(u,v).

Similarly, we define Protq; as the total power in P excluding the zero-frequency coefficient and coefficients
with radial distance r(u,v) > N/2, i.e. coefficients outside the largest circle inscribed in P; Protq =

> P(u,v) (see Figure [I| for illustration). We denote Py as the power at radial distance k
1<=r(u,v)<=N/2
normalized by Proiar, P = ﬁ > P(u,v) and Py as the power at radial distance k normalized by
ota r(u,v)=k
5 p o 1
Protat, Pk = 57— 3. P(u,v).

r(u,v)=Fk
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3.2 Basis Trick: Unitary transformations of the input-gradient

In this section, we prove that unitary transformations of the input-gradient of a function provide its gradient
in the new basis induced by the transformation. We term this the basis trick and use it to compute the
Fourier-sensitivity of a model using the Fourier-transform of its input-gradient. To illustrate the basis trick,
consider the computation graph in Figure[2]where the input z in the standard basis is mapped to an output via
a function f. We introduce an implicit operation (shown in red) that maps the Fourier-space representation

of the input to the standard basis via the inverse Fourier-transform i.e. s }——1> z. In order to compute the
input-gradient with respect to input in the Fourier-basis, J;(x ), we must differentiate through this implicit
operation in the forward graph. Since the inverse-Fourier transform is a unitary operator, we have that
F(Js(x)) = Jy(xys), due to the chain rule (see Corollary [I| below). Hence, even though we do not explicitly
compute the Fourier-space representation of the input, this shows that the Fourier transform of the input-
gradient provides the gradient of the model with respect to the input in Fourier-space. Analogous results can
be obtained for other unitary operators such as the discrete cosine transform (DCT) and discrete wavelet
transform (DWT) (see Proposition [1| below). In addition, this approach can be extended to n-dimensional
input, e.g. time-series or 3D signals, by using the n-dimensional Fourier-transform. We formalize the basis
trick below as a proposition and its corollary when the unitary operator is the Fourier-transform.

Definition 1 (Unitary Operators). A bounded linear operator U : H — H on a Hilbert space H is said to
be unitary if U is bijective and its adjoint U* = U~'. Moreover, if U is unitary, U~" is also a bounded and
unitary linear operator.

Lemma 1 (Generalized Chain Rule). Let f be a scalar valued function of a vector x, and A be a bijective
linear operator such that x = Ax,. Then, A*(Js(z)) is the gradient of f with respect to zq i.e. Jy(x,) =
A*(J¢(z)), where A* is the adjoint of A.

Proposition 1 (Basis Trick). Let f be a scalar valued function of a vector x, and A be a bijective linear
operator such that © = Ax,. Then, the gradient vector of f w.r.t xq, J¢(xe) = A7 (Jf(2)) iff A is unitary.
Proof. Since x = Ax,, Jf(z,) = A*(Jf(z)) due to Lemma 1} Since A* = A~! iff A is unitary (Definition
, we have that J¢(x,) = A71(Js(z)) iff A is unitary. O

Corollary 1 (Fourier Basis Trick). If A = F~1, the unitary inverse-Fourier operator such that x = f‘le
with x ¢ being the Fourier-basis representation of x, we have J¢(x¢) = F(J¢(x)) where F = (F~1)~1.

Fourier-space Input-space Output-space

e U N S
fi—— X | ——

— i (x) ——
l F ! l \Y

Figure 2: Fourier-transform of input-gradient is the gradient with respect to input in Fourier-space, i.e.,
F(Jr(x)) = Jg(zs). Symbols in red represent the input in Fourier-space and need not explicitly computed.

3.3 Fourier-sensitivity of computer vision models

In this section, we define the Fourier-sensitivity of any differentiable model using its input-gradient
represented in the Fourier-basis. Fourier-sensitivity is a measure of the relative magnitudes of a model’s input-
gradient with respect to different frequency bands in the input spectrum. As shown in Section [3.2] the input-
gradient of a function with respect to the Fourier-basis can be computed by the unitary Fourier-transform
of J¢(z). To enable interpretation of the complete input-gradient in the Fourier-basis (see Appendix for
examples), we summarize the information over frequency bands as shown in Figure[3] The Fourier-sensitivity
fsrs(z,y) of a model with respect to an individual input (x,y) is defined as,

fSFS(xvy):[Plv"'7PN/\/§] (1)
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Figure 3: Computing Fourier-sensitivity. The input-gradient of the model is Fourier-transformed to obtain
sensitivities with respect to frequencies. The SFS is then the vector with components being the proportion
of total power in each circular frequency band.

where P is the proportion of total power in Fourier coefficients at radial distance k in the power matrix
P corresponding to J¢(zf). The overall spatial frequency sensitivity (SFS) of a model is defined as the
expectation of fspg(z,y) over the data distribution, i.e. fsps(;0) = Ew yyplfsrs(z,y)] (Algorithm |1} in
Appendix . We will plot the Fourier-sensitivity of various models below for easy interpretation.

3.4 Fourier-regularization of computer vision models

In this section, we propose a framework of Fourier-regularization. Fourier-regularization enables control
over the Fourier-sensitivity of a model by modifying the relative magnitude of a model’s sensitivity to
different frequency bands in the input spectrum. Fourier-regularization can modify the natural frequency
sensitivity of neural networks as well as their generalization behavior. Our Fourier-regularizer augments the
usual cross entropy loss: for a single example the new loss is L(z,y) = Lor(x,y) + AsrsLsrs(z,y), where
Lgps is the proposed regularizer and Agps is a hyperparameter. Our regularizer penalizes the proportion of
power in frequency bands based on the target Fourier-sensitivity. As Lgpg is a function of the input-gradient,
optimizing it requires an additional backpropagation step to compute derivatives with respect to parameters,
similar to other gradient-regularization methods.

We now define Lgpg for three instances of this regularizer; SF'S € {LSF, MSF, HSF, ASF}. Low-spatial-
frequency (LSF) regularization trains a model to be insensitive to medium and high spatial frequencies,
medium-spatial-frequency (MSF) regularization trains a model to be insensitive to low and high spatial
frequencies, and high-spatial-frequency (HSF) regularization trains a model to be insensitive to low and
medium spatial frequencies. These are achieved by penalizing the proportion of power, Py, in the frequencies
we wish the model to be insensitive to. All-spatial-frequency (ASF) regularization trains a model to be equally
sensitive to all frequency bands. The motivation behind ASF regularization model is to encourage a model to
be sensitive to multiple frequency bands instead of being concentrated in a small frequency range. Hence, the
ASF-regularizer loss is defined as the negative entropy of the distribution of power over frequency bands. The
definitions of low, medium and high frequency ranges are based on equally dividing the radius of the largest
circle inscribed in the power-matrix P into three equal parts (Figure[lb). For ASF-regularization, very high
frequency bands, i.e. r(u,v) > N/2 are excluded, which is reflected in the terms Py,. Py is the proportion
of power in frequency bands within the largest circle inscribed in the power-matrix, P. Concretely, Lspg is
defined for each of these three cases as follows:

LSF MSF HSF ASF
N/2 R
Lsrs > P > Py > P > Py log Py
E>N/6 k<N/6,k>N/3 k<N/3 k=1
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Figure 4: Fourier-sensitivity of a,b,c) standard and adversarial training, d,e,f) standard and Gaussian noise
augmented training on ImageNet, CIFAR10 and SVHN.

4 Experiments

We first study below the Fourier-sensitivity of various architectures and training methods across datasets
(Section. We found that both training method and architecture can have a significant impact on Fourier-
sensitivity. We then identify an interesting connection between adversarial attacks and Fourier-sensitivity.
Further, we study the effects of Fourier-regularization on representation learning (Section as well as real
0.0.d. benchmarks (Section [4.4).

4.1 Experimental setup

Fourier-sensitivity analysis: Fourier-sensitivity was computed by averaging across 1K randomly selected
validation samples for all datasets and shaded areas in plots represent two standard-deviations. We com-
puted the Fourier-sensitivity of pre-trained ImageNet architectures obtained from PyTorch Image Models
(Wightman) |2019). On CIFARI10 and CIFAR100 (Krizhevsky & Hinton| [2009), we trained all models for 150
epochs using stochastic gradient descent (SGD) with momentum (0.9), an initial learning rate of 0.1 decayed
by a factor of 10 every 50 epochs, weight decay parameter equal to 5e-4 and batch size equal to 128. On
SVHN (Netzer et al.,|2011)), we trained models for 40 epochs using Nesterov momentum with an initial learn-
ing rate of 0.01 and momentum parameter 0.9. The training batch size was 128, L2 regularization parameter
was be-4 and learning rate was decayed at epochs 15 and 30 by a factor of 10. Standard data augmentations
random-crop, random-horizontal-flip, random-rotation, and color-jitter were used during training.

Fourier-regularization experiments: We demonstrate Fourier-regularization using ResNet50, Efficient-
NetB0, MobileNetV2 and DenseNet architectures. To evaluate the proposed regularizer on high-resolution
images, we also trained models on a subset of ImageNet derived from twenty five randomly chosen classes
with images resized to 224x224 (ImageNet-subset). They were trained with SGD till convergence (Ir=0.1,
weight decay=1e-4; Ir mutliplied by 0.1 every 50 epochs); all models converged within 200 epochs. We
trained Fourier-regularized models using Agrg = 0.5, which was set as the smallest value that achieved the
target Fourier-sensitivity computed on validation samples independently of performance on target distribu-
tion data. We benchmarked against methods that have been proposed to modify the frequency sensitivity
of models such as adversarial training and Gaussian noise augmentation to induce low-frequency sensitivity
(Yin et all) 2019). For these methods, we used hyperparameter values most popular for training robust
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Figure 5: Fourier-sensitivities of multiple architectures after a,b) standard training and ¢) adversarial training
(PGD-¢5 (e = 3)) on ImageNet.

models in previous works. For adversarial training (AT), we used standard PGD /s attacks (e = 1 for
CIFAR10/CIFARI100 and € = 3 for ImageNet-subset, attack-steps = 7 attack-Ir = ¢/7). For Gaussian noise
training, we added i.i.d. Gaussian noise N'(0,0?) to each pixel during training (¢ = 0.1). We used the
robustness (Engstrom et al., 2019) library for training.

4.2 Fourier-sensitivity analysis
4.2.1 Fourier-sensitivity is dependent on dataset, training and architecture

We visualized the Fourier-sensitivity of models trained on ImageNet, SVHN and CIFAR10 (Figure [4),
axes vary across datasets due to different image sizes). We observed that models are sensitive to some
frequencies more than others and this bias is consistent across samples (shaded areas represent two standard
deviations across samples). Standard trained ImageNet architectures are in general sensitive to a wide range
of the frequency spectrum with peak sensitivity to mid-range frequencies. Inception (Szegedy et all 2016
architecture is more sensitive to low-frequencies while Vision Transformer (ViT) (Dosovitskiy et al., [2021
displays sensitivity to mid-range as well as high frequencies (Figure [5h). In contrast, Big Transfer (BiT)
(Kolesnikov et all 2020, MixNet (Tan & Le| [2019b) and ResNet18 (He et al| models are sensitive
to frequencies across the spectrum, with sensitivity tapering off at the high-frequencies (Figure [5h). These
results suggest that model architecture can affect Fourier-sensitivity due to their different inductive biases.
We further observed consistency across popular convolutional architectures trained on ImageNet (Figure )
Adversarially trained models (Madry et al.,[2018]) are most sensitive to low spatial frequencies across datasets
and architectures, which suggests they rely on coarse global features as observed in prior work (Figures ,
4b, [k, [5). Gaussian noise augmented training slightly biases the model towards lower frequencies (Figures
, ,, [10p) compared to baseline. Training on Stylized-ImageNet, proposed by |Geirhos et al| (2019)
to train shape-biased models, induces sensitivity to lower frequencies compared to training on ImageNet
(Figure [11] in Appendix , which reflects the increased shape-bias of these models.

Standard trained CIFAR10 models are most sensitive to high frequencies (Figure [db), similar to CIFAR100
models (Figure |§| in Appendix . In contrast, standard training on SVHN leads to a low-frequency
sensitivity (Figure ), which suggests a dataset dependence of Fourier-sensitivity. Interestingly, we ob-
served that models trained on common corruptions of CIFAR10 borrowed from (Hendrycks & Dietterich,
display different Fourier-sensitivities to a model trained on clean CIFARI0 images (Appendix .
For example, models trained on images with severe noise corruptions (Gaussian, shot and speckle noise)
display increased sensitivity to lower frequencies (Figure [10b), as did models trained on highly Gaussian-
blurred, Glass-blurred, JPEG-compressed and pixelated images (Figure , ) These changes reflect
the shift in the Fourier-statistics of these corrupted images. Finally, Fourier-regularization modifies the
Fourier-sensitivity of models across datasets (Figure @ LSF-REGULARIZED models are most sensitive to low-
frequencies, MSF-REGULARIZED models are most sensitive to the mid-frequency range, HSF-REGULARIZED
models are most sensitive to the high-frequency range, and ASF-REGULARIZED models are sensitive to a
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Figure 6: Fourier-sensitivity of Fourier-regularized models trained on ImageNet-subset, CIFAR10, SVHN.

wide frequency range. Further, Fourier-regularization is demonstrated to be effective for across architectures

(Figure |12 in Appendix |C.4)).
4.2.2 Fourier-sensitivity and adversarial attacks

Adversarial attacks are imperceptible perturbations that can drastically modify the classification performance
of computer vision models. Many methods have been proposed to defend as well as analyse the properties of
such perturbations, including frequency-based approaches. Contrary to opinions that adversarial attacks are
strictly a low-frequency or high-frequency phenomenon, we observed that adversarial perturbations closely
resemble the target models’ Fourier-sensitivity, which varies with dataset, training method and architecture
as we have shown. This connection naturally arises from the fact that common gradient-based adversarial
attack procedures such as PGD (Projected Gradient Descent) [Madry et al.| (2018) typically use the direc-
tion of the input-Jacobian to generate perturbations. Plotting models’ Fourier-sensitivities along with the
Fourier power-spectra of adversarial perturbations shows this connection (Figure|l4|{in Appendix . Con-
sistent with observations made by |Sharma et al.| (2019) that adversarially trained ImageNet models are still
vulnerable to low-frequency constrained perturbations in some settings, Fourier-sensitivity of adversarially
trained ImageNet models is concentrated in low-frequencies (Figures [dd, [k, [4f, [5k). [Sharma et al| (2019)
also observed that low-frequency constrained attacks cannot easily fool standard trained ImageNet mod-
els, whose Fourier-sensitivity has its peak at medium and high frequencies (Figure , ) and are hence
less vulnerable to low-frequency constrained attacks. We also observed that adversarial attacks against
Fourier-regularized models have matching power-spectra (Figure in Appendix . For example, PGD
adversarial perturbations against MSF-REGULARIZED models have power-spectra concentrated in mid-range
frequencies. This suggests that adversarial perturbations are not a low or high-frequency phenomena but
depend on the Fourier-sensitivity characteristics of a model.

4.3 Fourier-regularization modifies the frequency bias of models

Here we demonstrate that Fourier-regularization modifies the input frequencies that a model relies on using
evaluations in different settings.

4.3.1 \Validating Fourier-regularization using frequency-specific noise

Here we investigate the sensitivity of Fourier-regularized models to Fourier-basis directions in the input
using data-agnostic corruptions, which have also been identified as a threat to model security (Yin et al.|
2019; 'Tsuzuku & Satol [2019)). A Fourier-noise corruption is additive noise containing a single Fourier-mode
(frequency). These corruptions are semantics-preserving but affect model performance and can be used to
evaluate the sensitivity of a model to individual frequencies (see Figure [7]and Appendix [Effor examples). We
added noise at all frequencies to the respective test sets of SVHN and CIFARI0 to evaluate the sensitivity
of models. On CIFARI10, the standard trained model has the highest error at medium-to-high frequencies
(Figure in Appendix . The standard trained SVHN model makes the most errors when low-to-medium
frequency noise is added to the input (Figure in Appendix. This is in agreement with their respective
Fourier-sensitivities (Figure . Similarly, the LSF-REGULARIZED model is most sensitive to low-frequency
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Figure 7: Examples (b): CIFAR10 Fourier-filtered (Section 4.3.3) (c): CIFAR10 Patch-shuffled (Section
4.3.2). (e) - (g): Fourier-noise corruptions on SVHN (Section {4.3.1]). More examples in Appendix.

perturbations and less so to medium and high-frequency distortions, across both CIFAR10 (Figure ) and
SVHN (Figure [I8p). The MSF-REGULARIZED models are most sensitive to mid-range frequencies (Figures
[17k, [18) and ASF-REGULARIZED models are sensitive to frequencies across the spectrum (Figures [17d, [18[1).
Detailed heat maps of error rates for noise across the all frequencies reflect the modified Fourier-sensitivities
of Fourier-regularized models (Appendix IE[) This validates that the Fourier-regularization framework can
indeed modify the sensitivity of models to frequencies in the input spectrum.

4.3.2 Learning global image features

As low frequency features correspond to large spatial scales while high frequency features are local in nature,
Fourier-regularization allows us to bias the scale of features used by a model. Here we explore the extent
to which Fourier-regularized models use global features by measuring their classification accuracy on patch-
shuffled images, which have previously been used by Mummadi et al.| (2021)); Zhang & Zhu| (2019);|Wang et al.|
. Patch-shuffling involves splitting an image into k x k squares and randomly swapping the positions of
these squares. This is intended to destroy global features and retain local features; larger values of k retain
less global structure in the image (see Figure El and Appendix [F| for examples). As such, models that rely
more on global rather than local structure suffer more from patch-shuffling. Hence, lower accuracy suggests
increased reliance on global structure. We observed that LSF-REGULARIZED models, which are most sensitive
to low-frequencies, as well as adversarially trained models, suffered large drops in accuracy, which suggests
they rely on global structure in images (Table . This contrasts with standard trained, HSF-REGULARIZED
and Gaussian noise augmented models, which retain higher accuracy under patch-shuffling. This reflects
their bias towards learning local features instead of global structure on these datasets.

4.3.3 Robustness to Fourier-filtering

|Jo & Bengio| (2017) showed that DNNs have a tendency to rely on superficial Fourier-statistics of their
training data. In the vein of generalization evaluations they performed, we generated semantics-preserving

Table 1: Accuracy of ResNet50 on patch-shuffled CIFAR10 and CIFAR100 test sets.

CIFAR10 CIFAR100

Method

k=2 k=3|k=2 k=3
Std. Train 66.5 45.8 39.9 21.4
Gaussian Noise 62.9 44.5 34.4 18
HSF-REGULARIZED 60.7 38.7 37.3 19.0
LSF-REGULARIZED 43.2 30.6 23.4 13
MSF-REGULARIZED 46.8 33.1 24.1 13.0
ASF-REGULARIZED 46.8 32.6 29.0 15
AT (PGD {lp,e=1) 452 35.0 19.1 11.1
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Fourier-filtered test images using radial masking in frequency space (see Figure [7| and Appendix for
examples). A mask radius r determines Fourier components that are preserved with larger radii preserving
more components. We use (¢, ¢,) to denote the centre of the mask and d(-,-) to denote Euclidean distance.
The mask is applied on the zero-shifted output of the Fourier transform of each image, denoted X, followed
by the inverse transform, i.e. X fiterea = FH(F(X) ® M,), where ® is the element-wise product. Formally,
the radial mask M, is:

1, ifd((u,v), (cu,cy)) <7
0, otherwise

M, (u,v) := {

Fourier-filtering is performed on each color channel independently. On ImageNet-scale images, LSF-
REGULARIZATION is robust to significant low-pass filtering (r = 37), with just a ~1% drop in accuracy,
whereas the baseline model drops by ~7% (Table . A standard trained CIFAR10 model suffers up to
a 75% drop in accuracy on highly low-pass filtered data as it relies on high frequency information that is
no longer present. On the other hand, other Fourier-regularized models perform robustly against Fourier-
filtering. On CIFARI1O0, the LSF-REGULARIZED model performs robustly even on severely low-pass filtered
images (r = 5), achieving an accuracy of 78.3% compared to the standard trained model’s 18.6%. This
shows that LSF-REGULARIZED CNNs are able to exploit low frequency features more than other models in
the absence of high-frequency features. The adversarially trained (AT) model is significantly more robust
than the baseline model due to its low-frequency sensitivity but not as robust as the LSF-REGULARIZED
model. Gaussian noise augmentation does not provide significant robustness to Fourier-filtering. Both MSF-
REGULARIZED and ASF-REGULARIZED models also provide significant robustness to Fourier-filtering while not
as much as the LSF-REGULARIZED model. The HSF-REGULARIZED model was comparable to or more robust
than the standard trained model. We further observed that other architectures (EfficientNetB0 (Tan & Lel
2019al), MobileNetV2 (Sandler et al., [2018]), DenseNet (Huang et al., 2017))) are also significantly vulnerable
to Fourier-filtering. Fourier-regularization can similarly improve robustness over baseline methods on these
architectures as well (Table |3} plots in Appendix .

4.4 Fourier-regularization confers robustness to real o0.0.d. data shifts

Here we explore the robustness of Fourier-regularization on real o.o.d. data. Image corruptions in deploy-
ments of computer vision models can cause unfavorable shifts in the Fourier-statistics of data (Yin et al.,
2019). For example, computer vision models deployed in vehicles may encounter motion blur due to move-
ment, which can disrupt high-frequency information in images. Similarly, digital corruptions can cause
similar effects on Fourier-statistics, such as JPEG compression artifacts and pixelation in low resolution set-
tings. On ImageNet-C (Hendrycks & Dietterich} [2019), Fourier-regularization confers robustness to multiple
corruptions. LSF-REG (A=1) was most robust to blur corruptions, which carry most information in the low
frequencies. ASF-REG (A=0.5) provided significant robustness to weather and digital corruptions (Table ,
which suggests that a broad range of frequencies are needed to be robust to these corruptions. The HSF-REG

Table 2: Accuracy of ResNet50 on Fourier-filtered ImageNet-subset, CIFAR10 and CIFAR100 test sets.

Method ImageNet-subset CIFARI10 CIFAR100

clean r =37 r:20‘clean r=11 r=7 r:5‘clean r=11 r=7 r=5
Std. Train 84.6  77.2 54.2 | 949 781 249 186 | 762 497 141 6.6
LSF-REGULARIZED 84.4 83 67.8 87.1 86.2 84.4 78.3 | 62.5 61.5 58.0 46.8
MSF-REGULARIZED  86.2 74 59 90.6 86.3 71.5 46.2 70.7 62.2 46.4 18.6

HSF-REGULARIZED 87.3 78.2 52.2 93.5 76.4 34.5 25.1 75.8 50.2 18.2 9.8
ASF-REGULARIZED  88.5 82.4 65.3 87.9 85.0 69.3 45.0 67.0 62.1 41.1 19.8

AT-PGD 81.8 75.8 54.3 81.6 80.2 76.1 67.5 | 58.8 56.8 50.0  40.2
Gaussian-noise 84.8 74.6 36.7 94.5 84.4 32.4 19.5 | 73.1 61.9 277 11.6
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(A=0.5) model was more robust to weather and digital corruptions compared to blurring, which requires a
low-frequency bias. Hence, modifying the Fourier-sensitivity can improve robustness under multiple o.0.d.
shifts that affect model robustness.

5 Discussion

5.1 Fourier-regularizer selection

Selecting the regularizer (i.e., LSF, MSF, HSF, ASF) that gives the best performance on a (shifted) target
data distribution may be done using cross-validation if labeled data from the target distribution is available.
Otherwise, since model or regularizer selection in the absence of labeled data from the target distribution is
generally a hard and unsolved problem, we suggest choosing the Fourier-regularizer based on prior knowledge
about the frequency bias of the learning task on the target distribution. For example, we have shown that on
many common image corruptions such as various forms of blurring, LSF-REGULARIZED models can perform
well due to the loss of high-frequency information under blurring (Section . This agrees with previous
work that has analysed the spectra of corrupted images (Yin et al) 2019). As demonstrated in Section
[4332] LSF-REGULARIZED models are also more reliant on global features, which are generally robust to local
changes in image texture (Geirhos et all [2019). On high-resolution images, we showed that encouraging
models to use more frequencies using ASF-REGULARIZATION can improve clean accuracy (Table .

5.1.1 Agps hyper-parameter selection

Fourier-regularization requires choosing the frequency bias as well as the hyperparameter Agps. We note
that when Agrg = 0, Fourier-regularization is equivalent to standard training. Hence, very small values may
not modify the frequency bias significantly. We found that a useful heuristic is to set the parameter as small
as possible to achieve the target frequency bias, which can be measured by computing the Fourier-sensitivity
of the model using training or validation samples independently of performance on the target distribution.
Values larger than this can unnecessarily decrease clean accuracy further without improving accuracy on
the target distribution. For LSF-REGULARIZATION on CIFARI10, we found that increasing Agpg from 0 to
0.5 gradually nudges the model towards low-frequencies (Figure 20| in Appendix . As we increased Agrg
further from 0.5 to 1, clean accuracy decreased further without modifying the Fourier-sensitivity (Table |z| in
Appendix [G)). Strictly restricting the model to have a particular frequency bias using large values of Agpg
may overly constrain model capacity. This procedure can be performed to identify optimal Agpg values even
in the absence of labeled target distribution data.

5.2 Fourier-regularization and clean accuracy

Fourier-regularization can affect the frequencies utilized by models in a given dataset. The effect of Fourier-
regularization on clean accuracy depends on the dataset and the chosen frequency range (e.g., LSF, HSF, ASF).
In high-resolution ImageNet-scale images (224x224) we observed that encouraging the model to use a wide
range of frequencies using (ASF-REGULARIZATION) improved generalization performance over the baseline

Table 3: Evaluating Fourier-filtered CIFAR10 using other architectures.

EfficientNetBO MobileNetV2 DenseNet
Method
clean r=11 r=7 r:5‘clean r=11 r=7 7'=5‘clean r=11 r=7 r=5
Std. Train 89.9 76.1 30.2 24 ‘ 92.6 74.5 27.6 18.3 ‘ 94.0 69.6 19.3 16.4

LSF-REGULARIZED 84.1 83.5 80.2 68.3 | 81.7 81.5 78.3 67.4 | 86.2 85.7 80.7 69.0
MSF-REGULARIZED  88.7 86.6 55.5 31.2 89 87.6 68.7 38.7 | 90.6 89.6 72.5 38.5
HSF-REGULARIZED  90.5 73.3 28.6 19.2 90.3 83.2 52.2 36.1 92.9 80.5 35.0 23.6
ASF-REGULARIZED  89.5 77.4 30.6 24.1 79 73.0 44.9 28.6 88.2 85.5 69.7 46.7

Gaussian-noise 89.3 78.4 354 261 | 91.2 79.3 41.0 265 | 93.2 82.3 304 211
AT-PGD 72.3 71.5 68.4 63.1 82 80.2 75.9 670 | 81.9 80.9 76.3 679
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Table 4: Accuracy of ResNet50 on clean and corrupted (severity 2) test set of ImageNet-subset.

Blur Weather Digital

Method Clean Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixel JPEG
Std. Train 84.6 59.2 68.8 71.4 69.8 46.8 51.7 446 79.8 40.9 71.8 82.1 74.1
LSF-REG (A=1) 83.8 71.5 77.6 76.6 76.4 542 58.6 46.7 79.6 46.6 75.3 83.7 75.5
MSF-REG (A=1) 85.8 58.3 64.4 70.1 68.2 475 51.0 39.6 81.2 37.8 71.1 79.7 76.0
HSF-REG (A=1) 86.9 56.3 65.0 67.6 63.9  48.1 537 418 80.5 38.1 69.9 81.1 78.2
ASF-REG (A=1) 85.5 62.3 68.6 72.5 70.2  50.3 558 40.5 80.7 42.4 72.1 81.9 75.5
LSF-REG (A=0.5) 84.4 63.4 73.0 2.7 70.6 521 562 435 80.5 42.4 74.2 82.2 75.9
MSF-REG (A=0.5)  86.2 61.6 67.5 72.0 71.3 520 568 53.1 81.6 46.7 72.2 82.1 78.0
HSF-REG (A=0.5)  87.3 60.4 68.9 71.0 70.6 526 58.6 5l.1 83.3 49.8 72.3 83.6 77.8
ASF-REG (A=0.5) 88.5 65.8 74.3 74.7 73.9 58.2 63.5 59.7 84.6 53.0 74.6 85.8 78.1
Gaussian-noise 84.8 38.8 55.4 61.8 57.6 474 51.0 35.0 81.4 27.1 67.2 78.1 71.4
AT-PGD 81.8 58.4 65.5 67 66.3  50.3 478 13.7 79 18.5 66.5 78.3 79

(88.5% vs 84.6%), as did HSF-REGULARIZATION (Table[2). On SVHN, an easier task, Fourier-regularization
did not have a significant effect as baseline models already achieve high clean accuracies (~96%) (Table [f] in
Appendix . CIFAR10 and CIFAR100 are more challenging small image tasks that require high spatial
frequencies (HSF) to maximise clean accuracy. Hence, the HSF-REGULARIZED model had high clean accuracy
while we observed a drop in the clean accuracy of LSF,MSF,ASF regularized models, although they performed
better on 0.0.d. data. In summary, Fourier-regularization is a generic framework that can be used to improve
performance in both i.i.d. and o.0.d. settings.

5.3 Fourier-regularization vs training on Fourier-filtered data

Here we contrast Fourier-regularization and training on Fourier-filtered data to modify the frequency bias
of models. We note that Fourier-regularization cannot be replicated by training on Fourier-filtered data.
Low-pass filtered images completely discard information in higher frequencies, which may not be desirable.
Moreover, in natural images, the amount of energy in frequency bands falls off rapidly at high frequencies
(Hyvérinen et all 2009)), hence, medium and high-pass filtered natural images typically appear completely
empty to the human eye without additional contrast maximisation and are still not easily recognizable
(see Figure in Appendix . Hence, training on medium-pass Fourier-filtered CIFAR10 achieved a
clean accuracy of only ~33% whereas the MSF-REGULARIZED model’s clean accuracy is ~90% (Table [5| in
Appendix . Similarly, training on high-pass filtered CIFAR10 training samples achieved only ~15%
accuracy on clean test samples, while HSF-REGULARIZATION can achieve 93.5% (Table[2). Due to the energy
statistics across frequency bands in natural images, training on Fourier-filtered data is not successful for
all but the lowest frequency bands, where most of their energy resides. On the other hand, the Fourier-
regularization framework allows controlling the sensitivity to each frequency band. In addition, we note that
ASF-REGULARIZATION cannot be realized using Fourier-filtering alone.

6 Conclusion

We proposed a novel basis trick and proved that unitary transformations of a function’s input-gradient
can be used to compute its gradient in the basis induced by the transformation. Using this result, we
proposed a novel and rigorous measure of the Fourier-sensitivity of any differentiable computer vision model.
We explored Fourier-sensitivity of various models and showed that it depends on dataset, training and
architecture. We further proposed a framework of Fourier-reqularization that modifies the frequency bias of
models and can improve robustness where Fourier-statistics of data have changed. We demonstrated that
Fourier-regularization is effective on different image resolutions, datasets (Table [2]) as well as architectures
(Table . More broadly, Fourier-sensitivity and regularization can also be extended to other data modalities
like audio and time-series, where Fourier analysis of machine learning models may also be useful. As Fourier-
analysis is an important and fundamental toolkit, the analysis and control of machine learning models enabled
by our work may prove to be valuable for learning tasks beyond those explored in this paper.
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A Spatial frequency channels in the brain

To further motivate the spatial frequency perspective of visual learning, we briefly describe some relevant
findings from neuroscience and vision research. While the brain does not strictly perform a Fourier-analysis
of visual scenes, there has been mounting evidence over decades for spatial frequency channels in the human
visual system that are physiologically independent and selectively responsive to distinct spatial frequency
bands (Campbell & Robson! [1964; |1968]). It has been posited that the use of different spatial frequency
channels are determined by the demands of a given visual task through an attention mechanism (Schyns &
Olival {1999; Rotshtein et al., 2010; [Julesz & Papathomas) [1984). Spatial frequency channels enable us to
attend to different spatial scales in a scene at a fixed viewing distance, similar to the focus lens in a camera
(Figure . Similarly, computer vision models develop a Fourier-sensitivity (Section that is dependent
on the dataset, architecture and method used to train them.
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Figure 8: Letters at multiple spatial scales. This image comprises the letters 'o’, 'n’, 'E’ and 'F’ at a small
spatial scale (corresponds to high-frequency). The letter "T" is also visible at a larger spatial scale (LSF)
formed by the specific arrangement of the letters 'o’, 'n’. Identifying these letters requires processing features
at multiple scales, enabled by distinct spatial frequency channels in our visual cortex. Our ability to recognize
only one of these scales at a time is evidence for the physiological independence of spatial frequency channels
in the brain. Image based on Julesz & Papathomas| (1984]).
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B Fourier-sensitivity

B.1 Pseudo-codes

Algorithm 1 Spatial Frequency Sensitivity (SFS)

Input: Labeled samples L = {(x;,y;)}"_;; a model f with trained parameters 6
Output: Estimated Fourier-sensitivity of model, ferg(+;0)
for:=1tondo

compute loss Log(f (), y;) {forward pass}

backpropagate Lcg to obtain agzciE {input-gradient, averaged across color channels}

%iijj‘j =F (85%) {unitary 2D DFT of input-gradient}

fsrs(zi,y;) = [Py; for k=1 to N/v/2] {see Equation excludes DC component}
end for
fsps(50) =+ 30" | fsps(wi,y;) {estimated SFS of model}
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C Supplementary plots

C.1 Fourier-sensitivities of ResNet50 trained on CIFAR10 and CIFAR100
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Figure 9: Fourier-sensitivity of various methods trained on CIFAR10 (left) and CIFAR100 (right). The
shaded region represents two standard deviations.

C.2 Training on corrupted CIFAR10
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Figure 10: Fourier-sensitivity of ResNet50 models trained on the CIFARI0 training set distorted by cor-
ruptions derived from the CIFARI10-C (severity 5) dataset. The shaded region represents two standard
deviations.
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C.3 Fourier-sensitivity of model trained on Stylized ImageNet
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Figure 11: Fourier-sensitivity of ResNet50 trained on ImageNet and Stylized ImageNet.

C.4 Fourier-regularization of other architectures
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Figure 12: Fourier-sensitivity plots for other architectures (EfficientNetBO (Tan & Le, 2019a)), MobileNetV2
(Sandler et al.,|2018), DenseNet (Huang et al.,2017), RegNet (Radosavovic et al.,2020)) trained on CIFAR10.
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C.5 Input-gradients in Fourier-basis of models trained on CIFAR10

Std. Train Gaussian Noise AT-PGD

0 5 10 15 20 25 30 0 5 10 15 20 25 30

LSF-Regularized MSF-Regularized ASF-Regularized

Figure 13: Input-gradients of Resnet50 models trained on CIFARI10, averaged across 1K randomly chosen
validation samples. Low frequencies are close to center, high frequencies further from center.
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C.6 Fourier-sensitivity and adversarial attacks
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Figure 14: Power-spectra of adversarial perturbations align with Fourier-sensitivity of models. PGD /5

attacks (e = 3) were used for each model.
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D Fourier-filtering

D.1 Radial Fourier-filtering

unfiltered

r=11

r=7

r=5

Figure 15: First image in each row is the mask in Fourier space (lowest frequency at centre). White pixels
preserve and black pixels set Fourier components to zero. Top row are original CIFAR10 images, other rows
are Fourier-filtered with different radial masks.
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D.2 Band-Pass Fourier-filtering

med-pass low-pass unfiltered

high-pass

Figure 16: Band-pass Fourier-filtered CIFAR10 images. We filtered Fourier-coefficients in each color channel
separately. For low-pass filtering, Fourier-coefficients with radial distance r(u,v) > 5 were set to zero. For
medium-pass filtering, Fourier-coefficients with r(u,v) < 5 and r(u,v) > 10 were set to zero. For high-pass
filtering, Fourier-coefficients with r(u,v) < 10 were set to zero. Medium-pass and high-pass filtered images

were contrast-maximised for viewing.

Table 5: Comparing clean accuracy of models standard trained on filtered CIFAR10 images vs Fourier-

regularization (ResNet50).

Method Accuracy
Low-pass Filtered 86.6
Medium-pass Filtered 33.8
High-pass Filtered 15.3
LSF-REGULARIZED 87.1
MSF-REGULARIZED 90.6
HSF-REGULARIZED 93.5
ASF-REGULARIZED 87.9
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E Fourier-noise corruptions
E.1 CIFAR10

Standard Trained LSF-REGULARIZED

a) r '1 b) I
o 0.8
N

ASF-REGULARIZED
- e

MSF-REGULARIZED
<)

Figure 17: (CIFAR10) Heat map of error rates for each Fourier-mode corruption (low-frequencies close to
the center). Each pixel in the heat map is the error of the model when the corresponding Fourier-mode
noise (e = 4) is added to the inputs. The bottom row displays example images containing the corresponding
Fourier-noise.
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E.2 SVHN

Standard Trained LSF-REGULARIZED

MSF-REGULARIZED ASF-REGULARIZED

- 06

- 04

0.0

414141414141

Figure 18: (SVHN) Heat map of error rates for each Fourier-mode corruption (low-frequencies close to the
center). Each pixel in the heat map is the error of the model when the corresponding Fourier-mode noise
(e = 4) is added to the inputs. The bottom row displays example images containing the corresponding
Fourier-corruptions.
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E.3 Accuracy on Fourier-noise distortions

Table 6: Mean accuracy across all Fourier-noise corruptions averaged across 1,024 randomly selected test
samples for each corruption. ¢5 norms of the additive Fourier-noise are € € {3,4}.

Method SVHN CIFAR10 CIFAR100

clean e=3 =4 ‘clean e=3 =4 ‘clean e=3 =4
Std. Train 96.4 819 774 ‘ 94.9 40.8 31.5 ‘ 76.2 223 149

LSF-REGULARIZED 95.1 92.1 91.0 | 87.1 524 475 | 62.5 33.9 30
MSF-REGULARIZED  93.1 77.1 709 | 90.6 62.4 54.3 | 70.7 42.6 37.3
ASF-REGULARIZED 96.4 78.3 T1.1 87.9 60.8  48.7 67 21.6 14.6
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F Patch-shuffling images

original

3x3

Figure 19: Patch-shuffling: Images are partitioned into squares whose positions are randomly exchanged.
This operation destroys global structure in the image and is used to evaluate the extent to which a model
relies on global information.
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G Sensitivity to \gps

Table 7: Clean accuracy on CIFAR10 (ResNet50) at different Agpg values

Method )\SFS =0 )\SFS =0.1 )\SFS =0.2 )\SFS =0.5 )\SFS =1
LSF-REGULARIZED 94.8 93.8 91.1 87.1 84.6
0.5

LSF-REG {(A=0)
LSF-REG (A=0.1)

{
{
0.4 LSF-REG (2=0.2)
{
{

LSF-REG (A=0.5)
LSF-REG (A=1)
0.3

Total Power Ratio

o 5 10 15 20
Spatial Frequency (cycles/image)

Figure 20: Fourier-sensitivity of LSF-REGULARIZATION at different Agrg on CIFAR10 (ResNet50).
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