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ABSTRACT

Simulating object deformations is a critical challenge in many scientific domains,
with applications ranging from robotics to materials science. Learned Graph
Network Simulators (GNSs) are an efficient alternative to traditional mesh-based
physics simulators. Their speed and inherent differentiability make them par-
ticularly well-suited for inverse design problems such as process optimization.
However, these applications typically offer limited available data, making GNSs
difficult to use in real-world scenarios. We frame mesh-based simulation as a
meta-learning problem and apply conditional Neural Processes to adapt to new
simulation scenarios with little data. In addition, we address the problem of
error accumulation common in previous step-based methods by combining this
approach with movement primitives, allowing efficient predictions of full trajec-
tories. We validate the effectiveness of our approach, called Movement-primitive
Meta-MeshGraphNet (M3GN), through a variety of experiments, outperforming
state-of-the-art step-based baseline GNSs and step-based meta-learning methods.

1 INTRODUCTION

The simulation of complex physical systems is of paramount importance in a wide variety of
engineering disciplines, including structural mechanics (Yazid et al., 2009; Zienkiewicz & Taylor,
2005; Stanova et al., 2015), fluid dynamics (Chung, 1978; Zienkiewicz et al., 2013; Connor & Brebbia,
2013), and electromagnetism (Jin, 2015; Polycarpou, 2022; Reddy, 1994). In particular, the simulation
of object deformations under external forces is crucial for, e.g., robotic applications (Scheikl et al.,
2022; Wang & Zhu, 2023; Linkerhägner et al., 2023). Mesh-based simulations are appealing for
such problems due to the computational efficiency and accuracy of the underlying finite element
method (Brenner & Scott, 2008; Reddy, 2019). However, the diversity of the problems to be
modeled usually necessitates the development of task-specific simulators to accurately capture the
relevant physical quantities (Reddy & Gartling, 2010). Such specialized simulators can be slow and
cumbersome to use, especially for large-scale simulations (Paszynski, 2016; Hughes et al., 2005).

Thus, data-driven models trained on reference simulations have gained attention as an appealing alter-
native (Guo et al., 2016; Da Wang et al., 2021; Li et al., 2022). Among them, general-purpose Graph
Network Simulators (GNSs) have recently become increasingly popular (Battaglia et al., 2018; Pfaff
et al., 2021; Allen et al., 2022b; 2023; Linkerhägner et al., 2023). GNSs encode the simulated
system as a graph of interacting entities whose dynamics are predicted using Graph Neural Networks
(GNNs) (Bronstein et al., 2021). These models are one to two orders of magnitude faster than
classical simulators (Pfaff et al., 2021) while being fully differentiable, which makes them highly
effective for, e.g., inverse design problems (Allen et al., 2022b; Xu et al., 2021).

GNSs are typically trained through simple next-step supervision (Battaglia et al., 2018; Pfaff et al.,
2021; Allen et al., 2023). During inference, entire trajectories are simulated by iteratively predicting
per-node dynamics from an initial system state in an autoregressive manner. This approach is
prone to error accumulation over time, especially as the input distribution diverges from the training
set (Brandstetter et al., 2022; Han et al., 2022). To mitigate this issue, existing approaches add noise
to the input during training and predict the dynamics based on the original inputs, thus following an
implicit de-noising objective (Pfaff et al., 2021; Brandstetter et al., 2022). While this significantly
improves simulation stability over longer rollouts, the auto-regressive inference of next-step GNSs
still propagates and accumulates errors made in earlier prediction steps. These methods also struggle
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Planar Bending Deformable Plate Tissue Manipulation Teddy Bear Falling

Figure 1: Final M3GN (Movement-Primitive Meta-MeshGraphNet) simulation steps for different
evaluation tasks. From left to right: a planar sheet bending under two orthogonal forces, a falling
collider deforming a 2D plate, a surgical tool dragging tissue, and a falling teddy bear. All visualiza-
tions present the predicted mesh alongside a reference wireframe of the ground-truth simulation.
M3GN takes the deformable object positions from a few initial time steps and applies meta-learning
techniques to infer physical properties, such as Poisson’s ratio or Young’s modulus. With this latent
task description, it predicts the remaining simulation steps using per-node movement primitives.

with partially known initial system states (Linkerhägner et al., 2023), which are common in, e.g.,
robotic planning (Antonova et al., 2022). Extensions that address this uncertainty (Linkerhägner
et al., 2023) require a consistent stream of auxiliary information, such as point cloud observations,
throughout the simulation. Furthermore, GNSs typically require large amounts of training data, which
prevents their application in real-world scenarios where data is scarce, highlighting the need for
efficient adaptation techniques to novel tasks.

To address these limitations, we reformulate learned mesh-based simulation as a trajectory-level
meta-learning problem. Here, the initial mesh states of a trajectory serve as a context set on
which to condition future predictions. We employ Conditional Neural Processs (CNPs) (Garnelo
et al., 2018a) to aggregate these context sets and the dynamics inferred from them into a latent
descriptor, which is then used to predict the rest of the trajectory. This method enables efficient
training and rapid adaptation to trajectory-specific simulation parameters, such as unknown object
material properties, during inference. In addition, we mitigate the problem of error accumulation
by directly predicting full simulation trajectories of the mesh nodes instead of iteratively predicting
their next-step dynamics. To this end, we represent the simulation using node-level Probabilistic
Dynamic Movement Primitives (ProDMPs) (Schaal, 2006; Paraschos et al., 2013; Li et al., 2023),
which allows for an efficient encoding of higher-order dynamics at arbitrary temporal resolution.
The resulting method, called Movement-Primitive Meta-MeshGraphNet (M3GN), allows efficient
generation of context-dependent simulation trajectories that accurately infer and integrate unknown
system properties. Figure 1 shows examples for different tasks, while Figure 2 provides an overview
of our approach.

To validate the effectiveness of M3GN, we introduce three novel tasks based on challenging de-
formable object simulations with varying object materials. These include a planar plate bending under
stress, and a variety of falling objects that collide with the ground. In addition to these new tasks, we
evaluate M3GN on an existing suite of experiments (Linkerhägner et al., 2023).Our results show that
our method provides superior simulation accuracy compared to several variants of MeshGraphNet
(MGN) Pfaff et al. (2021), the state-of-the-art GNS.1 Further, the ProDMPs trajectory representation
of M3GN reduces the number of required model calls, improving inference runtime by up to 32 times
compared to MGN.

In summary, we (i) propose M3GN, a novel GNS that combines meta-learning and movement
primitives to predict node-level simulation trajectories based on initial system state contexts;
(ii) introduce two challenging deformation prediction tasks involving varying object materials;
(iii) evaluate and compare our method to state-of-the-art GNSs, demonstrating superior prediction
performance.

1Code is provided in the supplement. Here, the reviewers can also find a video showing the main results
including HD renders of M3GN predictions and comparisons to existing baselines.
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Figure 2: M3GN architecture schematic. Given a context set of initial system states, we calculate
node-level latent features for every pair of states using a shared GNN encoder. These feature sets
are then aggregated, yielding a node-level latent task description zv . We concatenate this description
with the last system state to predict ProDMP weights that are used to compute per-node trajectories.

2 RELATED WORK

Graph Network Simulators. Deep neural networks for physical simulations can provide signifi-
cant speedups over traditional simulators while being fully differentiable (Pfaff et al., 2021; Allen
et al., 2022a), making them a natural choice for applications like model-based Reinforcement Learn-
ing (Mora et al., 2021) and Inverse Design problems (Baqué et al., 2018; Durasov et al., 2021;
Allen et al., 2022a). A popular class of learned neural simulators are Graph Network Simulators
(GNSs) (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2020). GNSs utilize Message Passing
Networks (MPNs), a special type of GNN (Scarselli et al., 2009; Bronstein et al., 2021) that repre-
sentationally encompasses the function class of many classical solvers (Brandstetter et al., 2022).
GNS handle physical data by modeling arbitrary entities and their relations as a graph. Applications
of GNSs include particle-based simulations (Li et al., 2019; Sanchez-Gonzalez et al., 2020; Whitney
et al., 2023), atomic force prediction (Hu et al., 2021), and fluid dynamic problems (Brandstetter et al.,
2022). These models have additionally been applied to the mesh-based prediction of deformable
objects (Pfaff et al., 2021; Weng et al., 2021; Han et al., 2022; Fortunato et al., 2022; Linkerhägner
et al., 2023). Recent extensions handle rigid objects (Allen et al., 2022b; 2023; Lopez-Guevara et al.,
2024) and integrate learned adaptive mesh refinement strategies (Plewa et al., 2005; Freymuth et al.,
2023) into the simulator (Wu et al., 2023). Existing work that considers unknown material properties
in simulations of deformable objects combines the GNS prediction with point cloud information to
improve long-term predictions Linkerhägner et al. (2023). This method requires a constant stream of
point clouds to ground the simulation in, but can not aggregate this information into a description of
the material properties. Additionally, the DEL method (Wang et al., 2024) integrates physical priors
from the Discrete Element Analysis (DEA) framework with learnable graph kernels, addressing
the challenges of simulating 3D particle dynamics from 2D images. In the context of larger-scale
simulations, foundation models are gaining traction in neural simulation tasks, as exemplified by
Aurora (Bodnar et al., 2024), a large-scale model trained on extensive climate data. While Aurora
demonstrates impressive performance on atmospheric predictions, including global air pollution
and weather forecasts, it requires significantly more data for fine-tuning compared to our approach,
which focuses on efficient adaptation with fewer data points. Notably, all previously mentioned
GNSs predict system dynamics iteratively from a given state, whereas we directly estimate entire
trajectories, improving rollout stability and reducing function calls. Related to our approach is the
Equivariant Graph Neural Operator (EGNO) (Xu et al., 2024), which also predicts full trajectories
using SE(3) equivariance to model 3D dynamics and capture spatial and temporal correlations. In
contrast to the related work, which rely on supervised learning or fine-tuning a foundation model, we
employ meta-learning for efficient adaptation to new trajectories.

Meta-Learning. Meta-learning (Schmidhuber, 1992; Thrun & Pratt, 1998; Vilalta & Drissi, 2005;
Hospedales et al., 2022) extracts inductive biases from a training set of related tasks in order to
increase data efficiency on unseen tasks drawn from the same task distribution. In contrast to other
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multi-task learning methods, such as transfer learning (Krizhevsky et al., 2012; Golovin et al., 2017;
Zhuang et al., 2020), which merely fine-tune or combine standard single-task models, meta-learning
makes the multi-task setting explicit in the model architecture (Bengio et al., 1991; Ravi & Larochelle,
2017; Andrychowicz et al., 2016; Volpp et al., 2019; Santoro et al., 2016; Snell et al., 2017). This
explicit architecture allows the resulting meta-models to learn how to learn new tasks from a small
number of example contexts. A popular variant is Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017; Grant et al., 2018; Finn et al., 2018; Kim et al., 2018), which employs standard single-task
models and formulates a multi-task optimization procedure. Neural Processes (NPs) (Garnelo et al.,
2018a;b; Kim et al., 2019; Gordon et al., 2019; Louizos et al., 2019; Volpp et al., 2021; 2023) instead
build on a multi-task model architecture (Heskes, 2000; Bakker & Heskes, 2003) but employ standard
gradient based optimization algorithms (Kingma & Ba, 2015; Kingma & Welling, 2014; Rezende
et al., 2014; Zaheer et al., 2017). Here, we use Conditional Neural Processes (CNPs) (Garnelo
et al., 2018a), which aggregate learned features over a variable-sized context set to yield a latent task
description that our downstream GNS is conditioned on. Compared to regular NPs, CNPs assume
a deterministic task description, eliminating the need for a distribution over latent variables. This
assumption simplifies and accelerates the training process, as our objective is to predict a single
precise simulation trajectory from the context set.

3 MOVEMENT-PRIMITIVE META-MESHGRAPHNETS

In this section, we present the theoretical foundation of the M3GN method, detailing the algorithmic
design choices that guided its development. Graph Network Simulators. Consider a graph
G = (V, E ,XV ,XE) with nodes V , edges E , and associated vector-valued node and edge features
XV and XE . An MPN (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021) consists of M message
passing steps, which iteratively update the node and edge features based on the graph topology. Each
such step is given as

hm+1
e = fm

E (hm
v ,hm

e ),

hm+1
v = fm

V (hm
v ,

⊕
e∈Ev

hm+1
e ),

where hm
v and hm

e denote embeddings of the system state per node and edge at message passing
iteration m, respectively. Ev ⊂ E are the edges connected to v. Further,

⊕
denotes a permutation-

invariant aggregation operation such as the sum, the max, or the mean. The functions fm
V and fm

E
are learned Multilayer Perceptrons (MLPs). The network’s final output are the node-wise learned
representations hv := hM

v that encode local information of the initial node and edge features.

Conventional GNSs encode the state of the simulated system as a graph, feed it through the MPN,
and interpret the per-node outputs as velocities or accelerations (Pfaff et al., 2021). These dynamics
are used to forward the simulation in time using, e.g., a forward-Euler integrator (Sanchez-Gonzalez
et al., 2020). The graph encodes relative distances and velocities between entities instead of absolute
ones, as the resulting equivariance to translation improves generalization (Sanchez-Gonzalez et al.,
2020). GNSs usually minimize a next-step Mean Squared Error (MSE) per node during training,
adding carefully tuned implicit denoising strategies (Pfaff et al., 2021; Brandstetter et al., 2022) to
stabilize long-term predictions. During inference, they compute trajectories by iteratively predicting
and integrating their output in an autoregressive fashion. If some simulated objects, like the col-
lider, are known, only the remaining nodes are predicted. Our method instead uses a ProDMP to
predict a compact representation of a whole trajectory per system node, reducing the effect of error
accumulation, similar to temporal bundling (Brandstetter et al., 2022).

Probabilistic Dynamic Movement Primitives. Movement Primitives (MPs) (Schaal, 2006;
Paraschos et al., 2013) allow for compact and smooth trajectory representations y via a set of
basis functions parameterized by a set of weights w. This temporal smoothness is highly beneficial
for, e.g., robotic applications (Li et al., 2024; Otto et al., 2022). Recent methods integrate MPs with
neural networks to enhance their expressive capabilities (Seker et al., 2019; Bahl et al., 2020; Li
et al., 2023). Dynamic Movement Primitives (DMPs) (Schaal, 2006) use a spring-damper dynamical
system governed by parameters α and β. To manipulate the trajectory, an external forcing term f is
added, before the system converges to a predefined goal g:

τ2ÿ = α (β(g − y)− τ ẏ) + f(x), f(x) = xφ⊺w. (1)
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Figure 3: Left: M3GN and MGN task setup. Both methods predict mesh positions based on the
initial mesh at the anchor time step. M3GN utilizes previous mesh positions and the last step of
the collider trajectory for its latent task description, whereas MGN disregards past information and
integrates the ground truth collider trajectory into its step-based model. Right: Exemplary final
simulation steps on the Planar Bending task of M3GN given different context set sizes. A larger
context size results in a more accurate prediction of the ground truth simulation.

Here, τ influences execution speed, while f depends on the basis functions φ in force-space, the
weights w and the exponential decaying phase x. Solving this equation typically is computationally
intensive, particularly when the gradient dy/dw is required (Bahl et al., 2020). ProDMPs (Li et al.,
2023) instead solve Equation equation 7 with pre-computed basis functions Φ in position-space as

y(t) = c1y1(t) + c2y2(t) +Φ(t)⊤w.

The term c1y1(t) + c2y2(t) only depends on the initial conditions [y(t0), ẏ(t0)]. ProDMPs thus
generate smooth trajectories at an arbitrary temporal resolution from low-dimensional weights w.
They crucially allow for efficient gradient computation, and can respect different initial conditions
such as positions or velocities. We provide an extensive mathematical background of ProDMPs in
Appendix A.

Meta-Learning and Graph Network Simulators. To enable generalization across tasks with
varying properties, we frame GNS as a meta-learning problem. In this setup, each task corresponds
to a simulation of a deformable object with unknown material properties. The goal is to learn
a simulator that can adapt quickly to a specific scenario using a limited amount of context data.
Following the notation of Volpp et al. (2021), the meta-dataset D = D1:L consists of simulation
trajectories Dl = {Gl,1 . . .Gl,T } of length T , where T is the trajectory length. Each simulation step
Gl,t = (ml,t,ul,t) represents a graph capturing both the deformable object mesh ml,t (describing
its position and topology) and an optional rigid collider ul,t. Physical proximity is used to define
graph edges that model interactions between the deformable object and the collider. At test time,
the first T c ≪ T simulation frames, Gl,1:T c , are observed as a context set to predict the remaining
trajectory. Following prior work (Pfaff et al., 2021), we assume access to the full collider trajectory
during prediction, resulting in the complete context set:

Dc
l = {Gl,1, . . .Gl,T c} ∪ {ul,T c+1, . . . ,ul,T }. (2)

To provide a clear reference point for discussion, we define the anchor time step as the final time step
T c of the context set. The corresponding anchor graph, Gl,T c , represents the system’s state at this
point and serves as the starting state for trajectory prediction by the GNSs. Notably, the anchor graph
Gl,T c alone does not capture the complete system state, as the material properties of the deformable
object remain unknown. These properties must be inferred from the prior simulation steps, Gl,1:T c , to
enable accurate trajectory predictions. Figure 3 illustrates this setup.

Model Architecture. Our model architecture, M3GN, is designed to learn from context data and
predict future simulation steps by leveraging a combination of graph network simulation and meta-
learning techniques. The architecture consists of two parts: the computation of the latent task
description from the context data and the actual graph network simulation of future simulation steps.
We base our context processing on the Conditional Neural Process (CNP) (Garnelo et al., 2018a),
as it efficiently encodes a latent description over tasks given a set of context observations. Omitting
the task index l to avoid clutter, CNPs expect a context set {(x1,y1), . . . , (xNc ,yNc)} consisting of
inputs xi and corresponding targets yi. We translate our context set Dc from Equation 2 to this format
by using each graph as an input, and setting its labels as the node-wise velocities. This approach
allows the model to focus on dynamics rather than absolute positions, which are more task-specific.
Assuming a forward-Euler integration scheme with a time step of 1, we numerically approximate the
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velocities as the difference between consecutive simulation steps. The input graph xi represents the
simulation state at time step i, including mesh and collider, while yi encodes the change in positions
between consecutive time steps.

xi = Gi, yi = pos(Gi+1)− pos(Gi).

To account for the known collider trajectory, we add its relative position as an additional node
feature. Specifically, we include the position of the collider at time step T , pos(uT ), relative to
its current position, pos(ui). Preliminary testing indicated that incorporating the complete future
collider trajectory pos(uT c), ...pos(uT ) did not improve the results on our task suite. Given a context
set Dc with anchor time step T c, this results in T c − 1 tuples (xi,yi). A shared GNN encoder hθ

computes node-level latent features

zi,v = hθ(xi,yi) ∈ RT c×|V|×dz (3)

for each context time step with feature dimension dz . We then aggregate over the context set to
obtain zv =

⊕
zi,v ∈ R|V|×dz , using

⊕
= max as the aggregation operator. Intuitively, zv is a

representation of the task inferred from the context data Dc, and encodes material properties, future
collider movements, and high-level deformations of the simulation. While we use node-level latent
features for M3GN, one could additionally aggregate over the nodes to obtain a graph-global task
descriptor z =

⊗
zv ∈ Rdz . We explore this choice and different aggregation functions

⊕
,
⊗

in
Section 4.

Once the task descriptor has been computed, it serves as the input to the predictive stage, enabling
simulation of future trajectories. We concatenate the latent description zv with the node features of
the anchor graph GT c and subsequently use a GNN gθ to predict per-node ProDMP weights

wv = gθ(GT c , zv) ∈ R|V|×dw . (4)

For certain tasks, incorporating the current node velocities as an additional node feature in the
simulator GNN can be advantageous. The ProDMP trajectory generator f(wv) ∈ RT×|V|×dworld

transforms the predicted outputs of the simulator GNN into per-node object trajectories over the
entire simulation horizon. This approach can be seen as a form of temporal bundling (Brandstetter
et al., 2022), requiring a single function call. In comparison, existing GNS train mostly on next-step
dynamics and require one call per step during their auto-regressive inference scheme (Pfaff et al.,
2021; Allen et al., 2023). The trajectory-level view further allows us to omit noise injection during
training, which MGN requires to generalize from learned next-step predictions to multi-step rollouts
during inference. We provide a visualization of our model architecture in Figure 2 and refer to
Appendix B for further details.

Meta Training. The goal of meta-learning is to automatically encode inductive biases towards the
task distribution extracted from the meta-dataset D into the task-global parameter θ. To this end, we
minimize the negative conditional log probability (Garnelo et al., 2018a)

L(θ) = −El∼1:L

[
ET c∼Tmin:Tmax

[
log pθ(pos(ml,1:T ) | Dc

l )
]]
. (5)

Each training batch consists of a task Dl for which we sample a context size T c uniformly between
Tmin and Tmax to ensure that the model learns to handle different context set sizes. We then compute
the latent task descriptor zv and subsequently the predicted node trajectories f(gθ(Gl,T c , zv)) as
described in Equation 3 and Equation 4. The likelihood pθ is defined to be the Gaussian

pθ(pos(ml,1:T ) | Dc
l ) = N (pos(ml,1:T ) | f(gθ(Gl,T c , zv)),σo). (6)

Since the training simulations are not affected by noise, we are not modeling the output variance and
set it to σ0 = 1. Together with taking the mean over the nodes and time steps to stabilize training,
optimizing the Gaussian log likelihood from Equation 6 is equivalent to minimizing the MSE

log pθ(pos(ml,1:T ) | Dc
l ) ≃

1

T |V| dworld

∑
t,v,i

(
pos(ml,t)v,i − f(gθ(Gl,T c , zv))t,v,i

)2

.

The whole architecture is trained end-to-end using the loss L(θ) from Equation 5. After the meta-
training, we fix θ, which now encodes inductive biases towards the meta-data D.

6
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Figure 4: Comparison of the final simulation step between M3GN and MGN on all datasets. From
(Left) to (Right): (Top) Planar Bending and Deformable Plate with an anchor time step of 2.
(Bottom) Tissue Manipulation with a context size of 6, and Falling Teddy Bear and Mixed Objects
Falling with an anchor time step of 20. M3GN provides much better alignment to the ground truth
simulation on all tasks, except for Tissue Manipulation, where MGN also solves the task well.

4 EXPERIMENTS

Setup. Our experimental setup largely follows previous work (Linkerhägner et al., 2023). The graph
representation views the mesh vertices as nodes and adds edges according to the mesh topology within
an object, and based on Euclidean distance between different objects. We employ one-hot encoding
to differentiate between deformable objects and colliders, omitting explicit world edges (Pfaff et al.,
2021). The edges additionally contain the relative distances between their nodes.

For both the context MPN as well as the simulator MPN, we use 15 message passing steps. Each
message passing step uses separate 1-layer MLPs with a latent dimension of 128 and LeakyReLU
activations for its node and edge updates. We evaluate the Full Rollout MSE, which is calculated
as the average of all simulation MSEs following the anchor time step, and the 10-step MSE, which
is the average performance for the next 10 simulation steps following the anchor time step. Both
metrics are averaged over all test set trajectories. We report the interquartile mean and bootstrapped
confidence intervals (Agarwal et al., 2021) over 8 random seeds for each experiment. We evaluate the
metrics for various context sizes ranging from 2 to 30 steps, always setting the anchor time step to
the last context mesh position. Appendix C provides additional details on our experimental setup.

Datasets. We validate our method on five different simulation datasets based on three different
mesh-based physics simulators. All task spaces are normalized to [−1, 1]3. These include a 2D
Deformable Plate (DP) task and a 3D Tissue Manipulation (TM) task (Linkerhägner et al., 2023) In
both datasets, the material property, Poisson’s ratio (Lim, 2015) was randomized. Deformable Plate
simulates different trapezoids that are deformed by a circular collider with constant velocity and
varying size and starting position. Each trajectory consists of a mesh with 81 nodes that is deformed
over 39 time steps. Tissue Manipulation considers a surgical robotics scenario where a piece of tissue
is deformed by a gripper. The gripper is attached to a fixed object position and moves in a random
direction with constant velocity. The mesh comprises 361 nodes and the simulation has 100 steps.

We further propose three additional 3D datasets. Planar Bending (PB) simulates the bending of a 2D
plane when two constant forces perpendicular to the plane are applied at different positions. As the
Young’s modulus is varied between sheets, this dataset constitutes a simplified stamp forming process,
as common in material engineering (Zimmerling et al., 2022). The simulations are generated with
Abaqus (Smith, 2009), comprising 50 time steps and a plate with 225 nodes. We test two different
data splits: The in-distribution (ID) split uses material properties in the test set that the model has
seen during training, while the out-of-distribution (OOD) split uses Young’s modulus values outside
the training domain for the test dataset.

The other two tasks place a randomly rotated deformable object at a specific height and let it fall to
and collide with the ground. Falling Teddy Bear (FTB) considers the titular teddy bear as its only
object, whereas six different objects are considered for Mixed Objects Falling (MOF). Each trajectory
assigns a random Poisson’s ratio and random Young’s modulus to the falling object, thus influencing
its deformation upon contact with the floor. Each trajectory consists of 200 time steps. The object
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Figure 5: Log-scale MSE over full rollouts for different methods under all tasks, including an
additional figure for Planar Bending task using an out-of-distribution (OOD) test dataset of material
properties. Overall, M3GN steadily improves its performance when provided with additional context
information and a later anchor time step. Our method generally improves over MGN, likely due
to the MP trajectory representation, and outperforms MGN (Oracle) when provided with sufficient
context information. Equivariant Graph Neural Operator (EGNO) generally performs unstable for
later anchor time steps and can only compete in the Planar Bending (ID) task.

meshes have up to 350 nodes and are shown in Figure 9 in the appendix. For simplicity, we only
consider the triangular surface meshes for the experimental setup. Further information about the
graph encoding are given in Appendix B.1, while we provide detailed information of the dataset sizes
and preprocessing steps in Appendix D.

Baselines and Ablations. We compare our method to MGN(Pfaff et al., 2021), evaluating its
performance both with and without additional material property information provided as a node
feature. When this oracle information is available, the simulation becomes deterministic with respect
to the initial system state. Importantly, we never supply this node feature to M3GN.

MGN generates the next mesh state by iteratively predicting the velocities for the current simulation
step. It is trained to minimize the 1-step MSE over node velocities, incorporating Gaussian input
noise during training (Brandstetter et al., 2022). This noise serves to mitigate error accumulation and
stabilize auto-regressive rollouts during inference. To ensure a fair comparison, we adopt the same
hyperparameters as our method and fine-tune the input noise level for each task, maximizing MGN’s
performance.

We also explore the effect of incorporating historical information, specifically previous velocities, as
node features for both MGN and M3GN. For MGN, using both the current and previous velocities
improves performance significantly on many tasks. For M3GN, including only the current velocity
yields similar benefits. The results of a hyperparameter optimization on the validation split are
presented in Figure 10 in the Appendix. Additionally, Table 1 summarizes the specific history
configurations used for each method and task, along with other relevant hyperparameters.

As an additional baseline, we compare our approach to the Equivariant Graph Neural Operator
(EGNO) method, which employs equivariant message-passing layers and predicts the remaining
simulation steps in a single pass, closely aligning with our setup. However, training EGNO proved
unstable with 15 message-passing steps, and the best results were achieved using only 5 steps. We
hypothesize that this instability may stem from the longer prediction horizon of up to 200 steps in our
experiments, as the baseline was originally evaluated on tasks with a much shorter prediction horizon
of only 8 steps. Further details on the implementation of these baselines can be found in Appendix C.

Additionally, we ablate different design choices of M3GN on Planar Bending and Deformable Plate.
To investigate the effect of the meta-learning approach, we train an MGN (MP) variant that uses
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Figure 6: Log-scale MSE over full rollouts for the Planar Bending (Left) and Deformable Plate
(Right) tasks for different meta-learning and MP variants. Using a ProDMP representation for MGN
improves performance. CNPs and NPs with a next-step prediction do not improve over standard MGN.
A NP instead of an CNP architecture for M3GN slightly reduces performance.

ProDMPs predictions, but omits a context aggregation and thus has no latent task description zv.
Similarly, we compare to M3GN (Step-based), which performs a next-step prediction of the dynamics
instead of predicting ProDMP parameters, but otherwise follows the CNP training scheme to learn a
latent task description. Finally, we compare the deterministic CNP approach to both MP and step-
based probabilistic Neural Process (NP) approaches. Here, we get diagonal Gaussian distributions
as the outputs of the context MPN, which we aggregate using Bayesian context aggregation (Volpp
et al., 2021). We further investigate if node aggregation of the latent task description is beneficial by
applying a maximum aggregation of the node features before the context aggregation. While standard
CNPs require a permutation-invariant context aggregation, our context has a temporal structure.
We thus experiment with a small transformer model with 4 transformer blocks, 4 attention heads,
temporal encoding and a latent dimension of 32 as an aggregator. The transformer takes the sequence
of outputs of the context MPN and predicts the aggregated node-level task description zv .

Results. Figure 4 visualizes exemplary final simulation steps for M3GN and MGN for all tasks.
M3GN aggregates context information that it uses to condition node-level ProDMP representations
of the simulated trajectory. This approach leads to accurate simulations, providing much better
alignment to the ground truth simulation than the step-based MGN on all tasks. Appendix E.3 shows
visualizations of full simulation rollouts for all tasks and methods.2

Figure 5 shows the full rollout MSE for M3GN, MGN and MGN (Oracle) on all tasks. In general, the
additional material information improves performance of MGN (Oracle) on both datasets compared
to MGN. A later anchor time step improves performance for all methods, presumably because the
remaining simulation is shorter. On Deformable Plate, M3GN surpasses MGN (Oracle) for a context
size of 10, likely because the additional context improves the latent task description. For the Planar
Bending task, M3GN significantly outperforms the step-based baselines across context sizes, likely
because the temporal smoothness of the ProDMP trajectory is a strong inductive bias for the gradual
bending of the simulated plane. Furthermore, M3GN generalizes well to the OOD task, while the
MGN methods fail to extrapolate to unseen material properties.

Next, in a more difficult task, such as Tissue Manipulation, increasing the context size greatly
improves performance for M3GN, whereas the step-based methods only slightly benefit from a later
anchor time step. On the last two tasks, i.e. Falling Teddy Bear and Mixed Objects Falling, the step-
based MGN methods fail to provide accurate long-term simulations. Here, the predicted trajectories
usually qualitatively deviate from the ground truth, either causing an object drift or a misalignment
of, e.g., teddy limbs, to the point that providing additional material information only yields marginal
improvements. For M3GN, the ProDMP’s temporally consistent movements combined with context
aggregation to provide consistent simulations alleviates these issues, significantly improving over
the baselines. The bottom of Figure 4 provides examples. Interestingly, providing more context
information does not improve performance for either of these two tasks. A likely reason for this
behavior is that most early context steps consist of a falling object, resulting in similar graph
representations, which may cause the GNN context encoders to overfit.

2Videos of these simulations are in the supplementary material.
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Figure 6 provides evaluations for various ablations, further supporting these results. Equipping MGN
with a ProDMP representation improves performance, especially for Planar Bending. Combining
NPs and ProDMPs uniquely leads to the strong performance of M3GN, suggesting that the latent task
description extracted from the context set is particularly well-suited for trajectory-level representations
of the simulations. Performance decreases slightly when using an NP instead of a CNP, indicating that
the latent distribution in NPs is not beneficial for our GNS setup. Additional ablations in Figure 11 of
the Appendix show similar performance for different aggregation schemes. Our node-level maximum
context aggregation is the simplest and works slightly better than the alternatives for Planar Bending.

To provide a more detailed understanding of our model’s performance, we include addi-
tional plots in Appendix E showing the Mean Squared Error (MSE) over time for the tra-
jectory, rather than just the final averaged MSE. These plots demonstrate the temporal pro-
gression of errors, offering insights into the model’s behavior throughout the simulation.

M3GN (Ours) MGN
Gth Simulators
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Figure 7: Runtime comparison
on four tasks between the learned
methods and the different ground
truth simulators. Note the log scale
on the y-axis.

We additionally report the 10-step MSE in Appendix E.2, find-
ing that the relative improvement of M3GN compared to the
baselines matches or exceeds that on the full rollout MSE for
all tasks. Furthermore, we present a visualization of the latent
space for M3GN in the Appendix, Figure 20, which reveals that
simulations with similar material properties are clustered to-
gether. This structure in the latent space highlights the model’s
ability to effectively differentiate between different material
behaviors while preserving the relationships between similar
properties. Finally, we compare the inference speed between
M3GN and MGN in Figure 7. The ProDMPs trajectory rep-
resentation of M3GN decreases the amount of required model
calls, resulting in an inference-time speedup of up to 32 times
compared to MGN, and up to 400 times compared to the ground
truth simulators (Gth Simulators). We encode the context set
for M3GN in parallel, resulting in a relatively minor cost for the
context computation and aggregation for all tasks. In addition,
our M3GN requires only one GNN forward pass via ProDMP
to compute the full trajectory, enabling much faster inference. While MGN does not perform any
context processing, its iterative rollout is inherently sequential and requires multiple forward passes.

5 CONCLUSION

We introduce Movement-Primitive Meta-MeshGraphNet (M3GN), a novel Graph Network Simulator
that combines movement primitives and trajectory-level meta-learning for efficient and accurate
long-term predictions in physical simulations. Our method dynamically adapts to provided context
information during inference, allowing for an accurate prediction of deformations under unknown
object properties. Additionally, it effectively addresses the issue of error accumulation while reducing
the number of required simulator function calls. To validate the effectiveness of M3GN, we propose
three novel deformation prediction tasks with uncertain material properties. Results on these tasks and
existing datasets show that our method consistently outperforms a strong Graph Network Simulators
baseline, even when providing the baseline with oracle information about the material property.

Limitations and Future Work. We currently consider each trajectory as a task, and require initial
states of this trajectory as a context set during inference. As generating such data is often impractical,
we plan to group simulations with the same system properties into the same task. This adaptation
will enable data-efficient generalization to unseen properties regardless of the underlying simulated
objects. We also plan to integrate online re-planning of trajectories, predicting trajectory segments
with every model forward pass. This process may increase coordination between simulated nodes
across segments, while maintaining the benefits of a compact multi-step trajectory representation.

Broader Impact Statement Our proposed Graph Network Simulator can positively impact various
fields relying on computational modeling and simulation by significantly reducing computational
cost compared to traditional simulators while providing accurate simulations. However, efficient and
accurate simulation of physical systems also comes with potential negative impacts, such as, e.g., the
development of advanced weapon models.
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A MATHEMATICAL FORMULATIONS OF MOVEMENT PRIMITIVES

We provide an overview of the probabilistic dynamic movement primitives (ProDMP) formulations
utilized in this paper, starting with the foundational methods: Dynamic Movement Primitives (DMPs)
and Probabilistic Movement Primitives (ProMPs).

A.1 DMPS

Schaal (2006) introduced Dynamic Movement Primitives (DMPs), which integrate a forcing term
into a dynamical system to generate smooth trajectories from given initial conditions3, such as a
robot’s position and velocity at a particular time. A DMP trajectory is governed by a second-order
linear ordinary differential equation (ODE) as follows:

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (7)

where y = y(t), ẏ = dy/dt, and ÿ = d2y/dt2 denote the position, velocity, and acceleration of the
system at a specific time t, respectively. Constants α and β are spring-damper parameters, g is the
goal attractor, and τ is a time constant modulating the speed of trajectory execution.

The functions φi(x) represent the basis functions for the forcing term, as shown in Fig. 8a, while the
phase variable x = x(t) ∈ [0, 1] captures the execution progress. The trajectory’s shape is determined
by the weight parameters wi ∈ w for i = 1, . . . , N and the goal term g. The trajectory [yt]t=0:T is
typically computed by numerically integrating the dynamical system from the start to the endpoint.
However, this numerical process is computationally expensive (Bahl et al., 2020; Li et al., 2023), as
its cost scales with the trajectory length and the resolution of the numerical integration.

A.2 PROMPS

Paraschos et al. (2013) introduced the Probabilistic Movement Primitives (ProMPs) framework
for modeling trajectory distributions, effectively capturing both temporal and inter-dimensional
correlations. Unlike DMPs, which rely on a forcing term, ProMPs directly model the desired
trajectory and its distribution using a linear basis function representation. Given a weight vector w
or a weight vector distribution p(w) ∼ N (w|µw,Σw), the corresponding trajectory or trajectory
distribution is computed as follows:

Compute Trajectory: [yt]t=0:T = Φ⊺w, (8)
Compute Distribution: p([yt]t=0:T ; µy,Σy) = N (Φ⊺µw, Φ⊺ΣwΦ ). (9)

Here, the matrix Φ contains the basis functions for each time step t ∈ [0, T ], shown in Fig. 8a. The
trajectory shape is determined by the weight parameters wi ∈ w through matrix-vector multiplication.
Despite their simplicity and computational efficiency, ProMPs lack an intrinsic dynamic system,
limiting their ability to specify a given initial condition for a trajectory or predict smooth transitions
between two ProMP trajectories with differing parameter vectors.

A.3 PRODMPS

Solving the ODE underlying DMPs Li et al. (2023) observed that the governing equation of
DMPs, as described in Eq. (7), admits an analytical solution. We re-express the original ODE from
Eq. (7) and its homogeneous counterpart in standard ODE forms as follows:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (10)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (11)

3In mathematics, an initial condition refers to the value of a function or its derivatives at a starting point,
which can be specified at any time, not necessarily at t = 0.
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Figure 8: Illustration of basis functions used in MP methods. (a) Normalized radial basis functions
used in DMPs in Eq.(7) and ProMPs in Eq.(8), respectively. (b) Positional basis functions of
ProDMPs’ weights w and (c) ProDMPs’ goal g in Eq.(17). In ProDMPs, g is concatenated with the
weights vector w and treated as one dimension of the resulting vector wg. Both weights and goal
basis functions are computed from solving the DMPs’ underlying ODE, following the procedure
from Eq.(12) to Eq.(16)

The solution to this ODE is essentially the position trajectory, and its time derivative yields the
velocity trajectory. They are formulated through several time-dependent function as:

y = [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
+ c1y1 + c2y2 (12)

ẏ = [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
+ c1ẏ1 + c2ẏ2. (13)

Here, the learnable parameters [w, g]T which control the shape of the trajectory, are separable from
the remaining time-dependent functions y1, y2,p1, p2, q1, q2. These functions are computed by
solving the ODE in Eq. (10), (11):

y1(t) = exp
(
− α

2τ
t
)
, y2(t) = t exp

(
− α

2τ
t
)
, (14)

p1(t) =
1

τ2

∫ t

0

t′ exp
( α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
( α

2τ
t′
)
x(t′)φ⊺

xdt
′, (15)

q1(t) =
( α

2τ
t− 1

)
exp

( α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

( α

2τ
t
)
− 1

]
. (16)

Here, the function y1, y2 are the complementary solutions to the homogeneous ODE presented in
Eq.(11), with ẏ1, ẏ2 their time derivatives respectively.

It’s worth noting that p1 and p2 cannot be derived analytically due to the complexity of the forcing
basis terms φx. Consequently, these terms must be computed numerically. However, isolating the
learnable parameters, namely w and g, enables the reuse of other time-dependent functions across all
generated trajectories.

ProDMPs identify these reusable terms as the position and velocity basis functions, denoted by Φ(t)

and Φ̇(t), respectively. Fig. 8b and Fig. 8c illustrate the resulting position basis functions for the
weights w and the goal g, respectively. These functions are pre-computed offline and treated as
constants during online learning. When w and g are combined into a concatenated vector, represented
as wg, the position and velocity trajectories can be expressed in a manner similar to that used by
ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (17)

Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (18)

In the main paper, for simplicity and notation convenience, we use w instead of wg to describe the
parameters and goal of ProDMPs.
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Trajectory’s Initial Condition The coefficients c1 and c2 are solutions to the initial value problem
defined by Eqs.(17)(18). Assuming the trajectory starts at time tb with position yb and velocity ẏb,
we denote the values of the complementary functions and their derivatives at the condition time tb
as y1b , y2b , ẏ1b and ẏ2b . Similarly, the values of the position and velocity basis functions at tb are
denoted as Φb and Φ̇b respectively. Using these notations, c1 and c2 are computed as:[

c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (19)

Set Goal Convergence Relative to Initial Condition The goal attractor g in the ProDMPs frame-
work represents an asymptotic convergence point for the dynamical system as t → ∞, typically
defined as an absolute coordinate. However, the goal term can also be modeled relative to the
initial position yb. In this approach, the relative goal grel is predicted, and its absolute counterpart
is computed as gabs = grel + yb. This approach is particularly useful for predicting the goal in
the coordinate system relative to a node’s starting position. Since we aim to achieve a translation-
equivariant approach (where absolute node positions are encoded as relative edge features between
nodes), predicting relative goal positions aligns well with this design principle.

B ARCHITECTURE AND METHOD DETAILS

This section offers detailed insights into our methodology and the architectural decisions guiding our
approach.

B.1 GRAPH ENCODINGS

In processing the initial graph G∗,T c , we create edges between the mesh and the collider based on
a radius graph. Specifically, we connect mesh and collider nodes for Deformable Plate and Tissue
Manipulation if their euclidean distance is smaller than 0.3. In the Tissue Manipulation task, the
collider is given as a single node which is connected to the tip of the tissue. It marks the grasping
point of a gripper. In the Planar Bending task, we add an additional node feature to the nodes which
get directly influenced by the external force. Therefore, no collider is used in this task. For the
Falling Teddy Bear and the Mixed Objects Falling task, we implicitly model the ground as a collider
by adding the current z position of every node to its node features (Sanchez-Gonzalez et al., 2018).
This quantity gets updated for the step-based methods.

B.2 PRODMP DETAILS

Initialization of ProDMPs necessitates node velocities for the anchor time step T c. We employ a
linear approximation, leveraging data from the previous time step T c − 1.

Similar to the relative encoding of node positions in the MPN, we employ a technique in ProDMP
to derive relative trajectories. Initially, we integrate a relative goal position as part of the node
weights wv . Utilizing this approach, trajectories commence from the origin and traverse towards their
respective relative goals. Subsequently, we adjust all positions by the initial position. This strategy
fosters model generalization across various nodes.

The parameter τ , as described in Equation 7, is learned globally across all tasks using a compact
MLP. The model’s final layer employs a scaled sigmoid function for parameter estimation.

C EXPERIMENTAL PROTOCOL

In order to promote reproducibility, we provide details of our experimental methodology. Table 1
presents the hyperparameters used in our experiments. For a comprehensive description of the
creation of all datasets, please refer to Appendix D.

The training took place on an NVIDIA A100 GPU, with each method given the same computation
budget of 48 hours, except for the Planar Bending task, where the computation budget was set to 24
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hours. Consequently, the number of epochs varied, as the batching differed significantly between the
trajectory-based method M3GN and the step-based MGN. We adapted the batchsize of the step-based
methods in order to use the GPU memory efficiently. M3GN is always trained on one full trajectory
per batch. Here, the whole context is processed in parallel and the remaining trajectory is predicted
and compared to the ground truth.

We conducted a multi-staged grid-based hyperparameter search for the learning rate, input noise, and
other hyperparameters as the latent task description dimension. In general, we optimized all methods
on all tasks separately, however, we noticed that over different tasks and methods some parameters
had the same best configuration. We did not use the test data for this, but tuned all hyperparameters
on a separate validation split. This split was also used to determine the best epoch checkpoint to
mitigate any overfitting effects.

In the end, all methods worked well with a learning rate of 5.0× 10−4 except in the Planar Bending
task. Here, our hyperparameter optimization indicated that the trajectory based methods benefit from
a smaller learning rate of 1.0× 10−5. For MGN, we experimented with different input noise scales.
Notably, for the Deformable Plate and the Planar Bending task, a smaller noise scale improved
performance significantly. In the falling objects tasks, we also explored second-order predictions,
such as node accelerations, instead of velocity predictions. Following the approach in Pfaff et al.
(2021), we adjusted the labels accordingly and conducted preliminary evaluations. However, since
direct velocity predictions yielded superior results, we opted for them as our final approach, as
presented in the main paper.

C.1 EGNO TRAINING

For the Equivariant Graph Neural Operator (EGNO) method, we used the original code from Xu et al.
(2024) for the model implementation. Since EGNO can only predict for a fixed next horizon, we
cut the remaining prediction when using a later anchor time step. This is done during training and
evaluation.

C.2 MGN TRAINING

We mainly follow Pfaff et al. (2021) for the training of the MGN baseline. The only difference is
the incorporation of current and historic velocity node features. Pfaff et al. (2021) consider this in
their experiments but they show in their experiment suite that it does not improve the results and can
lead to overfitting. This is different to our results. For us, on all tasks except Mixed Objects Falling,
adding the current and historic velocities of nodes improves the results. We follow the Gaussian
random walk noise injection for the velocity features from Sanchez-Gonzalez et al. (2020).

D DATASETS AND PREPROCESSING INFORMATION

In this section, we give detailed information about the datasets we used. We report a general overview
of all datasets in Table 2. Here each dataset is abbreviated for brevity as the following:

Table 2 lists in detail the datasets used in the paper. Each dataset is abbreviated for brevity and
explained as follows:

• PB.: Planar Bending
• DP.: Deformable Plate
• TM.: Tissue Manipulation
• FTB.: Falling Teddy Bear
• MOF.: Mixed Objects Falling

D.1 PLANAR BENDING

We select 9 different Young’s modulus ranging between 10 and 1000 from a very deformable to an
almost stiff sheet. Then, per material, we compute 100 simulations using Abaqus where the positions
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Table 1: Table listing the hyperparameters and configurations of the experiments

Parameter Value
Node feature dimension 128
Latent task description dimension 64
Decoder hidden dimension 128
Message passing blocks 15
Message passing blocks (EGNO) 5
GNN Aggregation function Mean
GNN Activation function Leaky ReLU
M3GN Context Aggregation method Max Aggr.
M3GN Latent Node Aggregation method No Aggr.
Learning rate 5.0× 10−4

Learning rate (Plan. Bend. MP-based methods) 1.0× 10−5

Number of ProDMP basis functions 30
ProDMP τ learned

range: [0.3,3.0]
ProDMP Relative start position True
MGN input mesh noise 0.01
MGN input mesh noise (Def. Plate) 0.001
MGN input mesh noise (Plan. Bend.) 0.0001
MGN history length (all tasks except Mixed Objects Fall 2
MGN history length (Mixed Objects Fall) 0
M3GN history length (all tasks except Tiss. Man. and Plan. Bend. (OOD)) 1
M3GN history length (Tiss. Man. and Plan. Bend. (OOD)) 0
Minimum/Maximum Train Context Size (Plan. Bend.) 2 / 15
Minimum/Maximum Train Context Size (Deformable Plate) 2 / 15
Minimum/Maximum Train Context Size (Tissue Manipulation) 2 / 40
Minimum/Maximum Train Context Size (Falling Teddy Bear) 10 / 50
Minimum/Maximum Train Context Size (Mixed Objects Fall) 10 / 50
Threshold to create collider-mesh edge 0.3

Table 2: Table listing the datasets and their configurations

Name Train/Val/Test Splits Number of steps Number of Nodes Collider interaction

PB. 630/135/135 50 225 External Force
DP. 675/135/135 39 81 Rigid Collider
TM. 600/120/120 100 361 Grasping point
FTB. 700/150/150 200 304 Boundary Condition
MOF. 1800/360/360 200 up to 350 Boundary Condition

of the two acting forces are randomized. The boundary nodes of the sheet are kept in place. From
every material configuration, we take 70 simulations for training and 15 simulations for validation
and testing respectively. For the out-of-distribution task, we only trained on Young’s modulus ranging
between 60 and 500, while testing on Young’s modulus values 10, 30, 750, and 1000.

D.2 DEFORMABLE PLATE

The original task was introduced in Linkerhägner et al. (2023), generated using Simulation Open
Framework Architecture (SOFA) (Faure et al., 2012). It uses 3 different Poisson’s ratios and 9
different trapezoidal meshes. We increase the difficulty of this dataset by introducing more complex
initial starting conditions. This is done by selecting a random Poisson’s ratio, simulating for 11 steps,
and then switching to another Poisson’s ratio. Then, the simulation continues for 39 steps. The first
11 steps are then discarded and step 12 is then the initial step for the dataset (and is referred to step 0
throughout the paper).
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Figure 9: Six objects used in the Mixed Objects Falling task. From left to right: Teddy Bear, Bunny,
Gummy Bear, Gummy Worm 1, Gummy Worm 2, and Traffic Cone.

D.3 TISSUE MANIPULATION

We use the original task introduced in Linkerhägner et al. (2023) without alterations. This dataset
was also generated using SOFA (Faure et al., 2012).

D.4 FALLING TEDDY BEAR

Each trajectory of the dataset was created by choosing an angle from [0◦, 360◦] for the first time step.
To vary the material properties, we randomly select one possible combination of the Young’s modulus
and Poisson’s ratio from the sets generated by np.linspace(1 × 105, 1 × 106, 1000) and
np.linspace(0.0, 0.499, 100), respectively. This dataset is generated using NVIDIA Isaac
Sim (NVIDIA, 2022a), which utilizes PhysX 5.0 (NVIDIA, 2022b) to simulate tetrahedral meshes
based on initial CAD models.

D.5 MIXED OBJECTS FALLING

The simulation uses the setup from Falling Teddy Bear. In addition to the Teddy, we include other
objects to encourage diversity. In total, there are six different objects presented in the dataset.
We report an image of their high-resolution meshes in Figure 9. From every object, we use 300
simulations for the training split and 60 simulations for the test and validation split respectively.
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Figure 10: Log-scale MSE over full rollouts on the validation split for M3GN and MGN comparing
history features. The better performing hyperparameter configuration was chosen for the final
evaluation on the test dataset.
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Figure 11: Log-scale MSE over full rollouts for the Planar Bending (Left) and Deformable Plate
(Right) tasks for different context and node aggregation methods. The node-level maximum context
aggregation of M3GN performs best for Planar Bending, while all methods work roughly equally
well on the Deformable Plate task.

E ADDITIONAL RESULTS

E.1 HYPERPARAMETER OPTIMIZATION

We observed that the history inclusion of previous velocities has a big impact on the result of
the simulation, depending on the task. To obtain optimal performance, we did an hyperparameter
optimization on the validation split comparing history features. The results for M3GN andMGN are
given in Figure 10.

E.2 EVALUATIONS.

Aggregation Figure 11 shows results for different context aggregation schemes, comparing global
and node-level aggregation, and a transformer-based aggregation over the context set to a simple
maximum operator. The node-level maximum context aggregation of M3GN works best for Planar
Bending. For Deformable Plate, there is no significant difference between node-level and global
contexts, or between maximum and transformer-based aggregations.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

M3GN (Ours) MGN MGN (Oracle, no history) EGNO

2 3 4 5 7 10 15
Anchor Time Step

0.1

1.0

10.0
10

 S
te

ps
 M

SE
1e 4 Deformable Plate

2 3 4 5 7 10 15
Anchor Time Step

0.0

0.1

1.0

10
 S

te
ps

 M
SE

1e 6 Planar Bending (ID)

2 3 4 5 7 10 15
Anchor Time Step

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

10
 S

te
ps

 M
SE

1e 6 Planar Bending (OOD)

Figure 12: Log-scale MSE over the first 10 steps after the anchor time step for the Deformable Plate
(Left) task, the Planar Bending (Center) task, and the Planar Bending task with out-of-distribution
material properties for the test trajectories. M3GN steadily improves its performance when provided
with additional context information and a later anchor time step. When evaluating this metric, we
also outperform MGN Oracle on the Deformable plate task.
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Figure 13: Log-scale MSE over the first 10 steps after the anchor time step for the Tissue Manipulation
(Left), Falling Teddy Bear (Middle) and Mixed Objects Falling (Right) tasks for different methods.
M3GN significantly outperforms all baselines on Tissue Manipulation when provided with a context
size larger than 3. For the other tasks, M3GN significantly improves over both MGN variants, but
does not benefit much from additional context information.

Figure 12 and Figure 13 show the performance of M3GN compared to the baselines evaluated on the
10 steps MSE. Here, instead of the whole trajectory, only the first 10 steps after the anchor time step
are used to evalute the MSE.

MSE over time To gain better insights into the rollout stability of the model predictions, we report
the Mean Squared Error (MSE) over timesteps in Figure 14, 15, 16, 17, 18, and Figure 19. Overall,
our model M3GN demonstrates great robustness against error accumulation, benefiting from the
inherent trajectory representation provided by the ProDMP method. MGN works well on the Tissue
Manipulation task, but fails to incorporate the correct context information on other tasks. EGNO
performs in general worse except on the Planar Bending tasks.

E.3 VISUALIZATIONS.

In Figure 20, we include a latent space visualization of the Planar Bending task, where simulations
with 9 different Young’s Modulus values are clustered according to their material properties. The
t-SNE projection of the 64-dimensional latent node vectors demonstrates clear clustering, indicating
that the model effectively captures and differentiates material characteristics based on learned task
representations.

We further provide additional visualizations for M3GN, MGN and MGN (Oracle) for exemplary
simulations of all tasks. Each visualization shows the same simulated trajectory for different time
steps (columns) and different methods (rows).

• Figure 21 shows a simulation of the Planar Bending task for a context set size of 5.

• Figure 22 visualizes the Deformable Plate task for a context set size of 6.
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Figure 14: MSE over timesteps for the Deformable Plate task.
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Figure 15: MSE over timesteps for the Planar Bending (ID) task.

• Figure 23 shows a Tissue Manipulation visualization for a context set size of 6.
• Figure 24 provides an examplary Teddy Bear Falling for a context set size of 20.
• Figure 25 and Figure 26 show two different simulated Mixed Objects Falling for a context

set size of 20.

Across tasks, M3GN provides accurate simulations, whereas MGN, especially when not provided
the additional material information as oracle knowledge, sometimes fails to respect the material
properties or predicts a drift in the solution for later time steps.
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Figure 16: MSE over timesteps for the Planar Bending (OOD) task.

M3GN (Ours) MGN MGN (Oracle, no history) EGNO

0 20 40 60 80 100
Time Step

0.0

0.5

1.0

1.5

2.0

M
SE

×10 4

(a) Context Size 3

0 20 40 60 80 100
Time Step

0.0

0.5

1.0

1.5

2.0

M
SE

×10 4

(b) Context Size 10

0 20 40 60 80 100
Time Step

0.0

0.5

1.0

1.5

2.0

M
SE

×10 4

(c) Context Size 20

Figure 17: MSE over timesteps for the Tissue Manipulation task.
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Figure 18: MSE over timesteps for the Falling Teddy Bear task.
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Figure 19: MSE over timesteps for the Mixed Objects Falling task.
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Figure 20: This figure shows a latent space visualization of the Planar Bending task for trajectories
with 9 different Young’s Modulus values, using a context size of 10. Each dot represents a 64-
dimensional latent node vector projected to 2D using the t-SNE algorithm (van der Maaten & Hinton,
2008). Dots of the same color correspond to latent node descriptions for the same task, each simulated
with a unique Young’s Modulus. The visualization reveals distinct clustering in the latent space, with
similar material properties grouped closer together, highlighting the relationship between material
characteristics and the learned task representations. To improve clarity, points corresponding to nodes
on the plate’s edge were excluded, as their constant boundary condition resulted in unvarying latent
descriptions.
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Figure 21: Simulation over time of an exemplary test trajectory from the Planar Bending task by
M3GN, MGN, and MGN with oracle information. The context set size is set to 5. All visualizations
show the colored predicted mesh, a collider or floor, and a wireframe of the ground-truth simulation.
M3GN can accurately predict the correct material properties, resulting in a highly accurate simulation.

t = 1 t = 6 t = 11 t = 16 t = 21 t = 26 t = 31 t = 36

t = 1 t = 6 t = 11 t = 16 t = 21 t = 26 t = 31 t = 36

t = 1 t = 6 t = 11 t = 16 t = 21 t = 26 t = 31 t = 36

Figure 22: Simulation over time of an exemplary test trajectory from the Deformable Plate task by
M3GN, MGN, and MGN with oracle information. The context set size is set to 6. All visualizations
show the colored predicted mesh, a collider or floor, and a wireframe of the ground-truth simulation.
M3GN can accurately predict the correct material properties, resulting in a highly accurate simulation.
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Figure 23: Simulation over time of an exemplary test trajectory from the Tissue Manipulation
task by M3GN, MGN, and MGN with oracle information. The context set size is set to 6. All
visualizations show the colored predicted mesh, a collider or floor, and a wireframe of the ground-
truth simulation. All methods can solve the task, however MGN is drifting a tiny bit to the left over
time.

t = 21 t = 41 t = 61 t = 81 t = 101 t = 121 t = 141 t = 181

t = 21 t = 41 t = 61 t = 81 t = 101 t = 121 t = 141 t = 181

t = 21 t = 41 t = 61 t = 81 t = 101 t = 121 t = 141 t = 181

Figure 24: Simulation over time of an exemplary test trajectory from the Falling Teddy Bear task by
M3GN, MGN, and MGN with oracle information. The context set size is set to 20. All visualizations
show the colored predicted mesh, a collider or floor, and a wireframe of the ground-truth simulation.
M3GN significantly outperforms both step-based baselines.
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Figure 25: Simulation over time of a bunny from the Mixed Objects Fall task by M3GN, MGN,
and MGN with oracle information. The context set size is set to 20. All visualizations show the
colored predicted mesh, a collider or floor, and a wireframe of the ground-truth simulation. M3GN
significantly outperforms both step-based baselines.
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Figure 26: Simulation over time of a pylon from the Mixed Objects Fall task by M3GN, MGN,
and MGN with oracle information. The context set size is set to 20. All visualizations show the
colored predicted mesh, a collider or floor, and a wireframe of the ground-truth simulation. M3GN
significantly outperforms both step-based baselines. The simulation generated by MGN is severly
affected by drift.
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