
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLOP: PRECISE LORA PLACEMENT FOR EFFICIENT
FINETUNING OF LARGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation is a widely used finetuning method for large models. Its
small memory footprint allows practitioners to adapt large models to specific tasks
at a fraction of the cost of full finetuning. Different modifications have been
proposed to enhance its efficiency by, for example, setting the learning rate, the
rank, and the initialization. Another improvement axis is adapter placement strat-
egy: when using LoRA, practitioners usually pick module types to adapt with
LoRA, such as Query and Key modules. Few works have studied the problem of
adapter placement, with nonconclusive results: original LoRA paper suggested
placing adapters in attention modules, while other works suggested placing them
in the MLP modules. Through an intuitive theoretical analysis, we introduce
PLoP (Precise LoRA Placement), a lightweight method that allows automatic
identification of module types where LoRA adapters should be placed, given a
pretrained model and a finetuning task. We demonstrate that PLoP consistently
outperforms, and in the worst case competes, with commonly used placement
strategies through comprehensive experiments on supervised finetuning and rein-
forcement learning for reasoning.

1 INTRODUCTION

Low-Rank Adaptation (LoRA, Hu et al. (2022)) is a widely used parameter-efficient fine-tuning
(PEFT) methods for large language and vision models. LoRA significantly reduces the computational
and memory requirements of finetuning by freezing the pretrained model weights and inserting
low-rank matrices into the model. This approach has enabled the adaptation of production-scale
models on limited hardware resources while achieving performance comparable to full finetuning.

LoRA improvements. Several works have considered improving LoRA performance by e.g. using
different learning rates for LoRA modules (Hayou et al., 2024a), using normalized updates (Liu et al.,
2024), setting adaptive LoRA rank (Kim et al., 2024; Lu et al., 2025), improving initialization (Hayou
et al., 2024b), and many other variants, e.g. (Zhang et al., 2023a; Dettmers et al., 2023; Kopiczko
et al., 2024; Zhang et al., 2023b; Tian et al., 2024; Jiang et al., 2024).

A critical aspect of LoRA is module selection - deciding which specific components of the model
should receive the low-rank adaptation. In practice, instead of selecting individual modules, one
selects module types such as “q_proj” (Query modules), “v_proj” (Value modules), etc. In Hu et al.
(2022), the authors suggested that inserting LoRA in attention modules (Query, Key, and Value)
generally yields the best performance among other possible placements. However, in a recent note
(Fomenko et al., 2024), the same authors further explained the difficulty encountered in LoRA adapter
placement, and mentioned that optimal placement depends on pretrained model and the finetuning
task. Another work He et al. (2021) found that for some models, placing LoRA adapters in MLP
modules gives better performance. Faced with this confusion, practitioners generally follow one of
these guidelines or insert LoRA adapters in all modules which comes at a higher finetuning cost.
Therefore, it is natural to ask:

Given a model and a task, how can we select target module types for LoRA at a reasonable cost?

Memory footprint of LoRA. In practice, LoRA is used to finetune large models with relatively
low cost. Consider Llama3.2-3B (Llama-Team, 2024), processing sequences of 2048 tokens with a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inputs
1) Model & module types

2) Subset from Task

Calculate
(module-task alignement score)

Low score indicates more potential for adaptation

Q K V U G DO

Rank & Insert

Insert Adapters in Low Scores
(U,G in this case)

Q K
V O

U G D

Figure 1: Mechanism of PLoP. We calculate alignment scores called NFN (Normalized Feature Norms), rank
them, and pick module types with the lowest alignment scores for LoRA insertion.

batch size of 8. With full finetuning, the memory requirements are substantial. The model parameters
require 12GB in float32, while the Adam optimizer states add another 24GB. The activations for
a single forward pass consume approximately 48GB of memory. This brings the total memory
requirement to approximately 84GB necessitating high-end GPUs. This becomes more problematic
with larger, production-scale models. With LoRA, the computational cost changes dramatically.
Using rank-16 adapters on query and value modules introduces only 10 million trainable parameters
(0.33% of the model). Notably, since gradients are only computed for the adapter weights, the
memory overhead for gradient computation is reduced by over 99%. This enables finetuning on a
single 24GB GPU with the same batch size and sequence length. These low memory footprint is
what makes LoRA attractive for finetuning.

Anatomy of a practical module selection method for LoRA finetuning. Based on the com-
putational constraints outlined above, any practical module selection method for LoRA adapter
placement must operate within these resource limitations. We identify three main pillars of a practical
method: (i) the method cannot require computing gradients with respect to the full model parame-
ters, as this would defeat the primary purpose of using LoRA, (ii) the selection process should not
necessitate multiple forward passes through different model configurations, as this would multiply
the already significant activation memory requirements by the number of candidate configurations
being evaluated, (iii) the method must avoid storing large intermediate computations or maintaining
extensive state across different module evaluations, which would further strain memory resources.
Only methods satisfying these stringent requirements can truly serve practitioners operating in the
resource-constrained environments where LoRA provides its greatest value.

In this paper, we introduce PLoP (Precise LoRA Placement), a lightweight module placement
method for LoRA based on a specific measure of module-data alignment that can be calculated
with few forward passes (no gradients, no extensive forward passes, and no storage of intermediate
calculations), and therefore, it checks all the three points above (see the compute cost paragraph
in Section 3 for more details). The mechanism of PLoP is described in Fig. 1. Specifically, our
contributions are as follows:

1. We develop a theoretical framework to study module-data alignment in large neural networks,
the core concept behind PLoP.

2. Based on our theoretical analysis of module-data alignment, we develop PLoP, which
identifies which module types should be used for LoRA finetuning.

3. We validate our results with extensive experiments showing the benefits of PLoP with
LoRA in three post-training scenarios: supervised finetuning for classification, supervised
finetuning for text generation, and reinforcement learning for mathematical reasoning.

The paper is structured as follows: In Section 2, we introduce the main theoretical intuition behind
our method. In Section 3, we present our method PLoP and provide a quantitative and qualitative
analysis of our method. In Section 4, we report empirical results showing the benefit of PLoP in two
post-training scenarios: supervised finetuning and reinforcement learning.

1.1 RELATED WORK

The effectiveness of LoRA critically depends on the placement of adapter modules. Initially, Hu
et al. (2022) studied the placement of adapters in attention modules, observing strong performance in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

various NLP tasks. He et al. (2021) showed that adapters placed in MLP modules can sometimes
outperform attention-based placements. Fomenko et al. (2024) mentioned that optimal adapter
placement varies significantly depending on the pretrained model architecture and the downstream
task. The authors recommended the following general strategy for adapter placement: start with
attention layers, then embeddings, then MLP blocks, and if further capacity is required, raise the
LoRA rank. In machine translation, Gheini et al. (2021) found that tuning exclusively cross-attention
parameters could achieve performance comparable to full-model tuning.

More adaptive approaches include sensitivity-based parameter selection methods. Zhang et al. (2024)
proposed a gradient-based scoring approach that ranks parameters according to their importance to the
task, tuning only the highest scoring subset. Similarly, He et al. (2023) developed a sensitivity-aware
fine-tuning technique for vision models that dynamically assigns tunable parameters to layers based
on local responsiveness. However, such methods require calculating and storing gradients of the full
model which is suboptimal for LoRA finetuning (see discussion above). Another variant of LoRA
Zhang et al. (2023a) introduces modifications to the adapter structure to adaptively distribute capacity
between modules. However, our focus in this paper is on module type selection for LoRA. In our
experiments, we compare with two baselines: Insertion in attention modules as recommended by Hu
et al. (2022), and Insertion in MLP modules as recommended by He et al. (2021).

Finally, our method is based on a module-data alignment score. Several alignment scores exist in the
literature. For instance, Baratin et al. (2021) introduced the centered tangent kernel alignment as a
measure of how well aligned each layer is with the task, and Lou et al. (2022) provided a theoretical
analysis of such alignment. He et al. (2024) studied the emergence of large feature norms in the
network as a result of different training configurations. Our work introduces a new alignment metric
based on feature norms.

2 FEATURE NORMS CAPTURE MODULE-DATA ALIGNMENT

We provide an intuitive theoretical analysis that shows how feature norms capture information about
module-data alignment. Consider a general neural network of the form

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Yin(x) =Winx,

Yl(x) = Fl(Wl, Yl−1(x)), l ∈ [L],
Yout(x) =WoutYL(x),

(1)

where x ∈ Rd is the input, L ≥ 1 is the network depth, (Fl)l∈[L] are mappings that define the layers,
Wl ∈ Rn×n are the hidden weights, where n is the network width, and Win,Wout are input and output
embedding weights.

Module-Data Alignment. Fix a training sample x. To understand how modules align with the the
training sample x, we track how hidden features change as we train the model on the singleton {x}.
For the sake of simplification, we consider the case where only a single module W is trained and
other modules are frozen. The trainable module has the form

zout =Wzin,

where zin ∈ Rn is the input, and zout ∈ Rn is the output that we call feature, both evaluated at the
training sample x.1 For Transformer models, the module can be for instance a single Query head, a
Projection module in some MLP, etc. The gradient of the loss with respect to the weight matrix W is
given by dW = dzout ⊗ zin, where dzout = ∇zoutℓ, the gradient of the loss ℓ with respect to feature
zout, evaluated for the sample x. The weights are updated with Adam (Kingma and Ba, 2017), which
normalizes gradients. Considering the momentum-less version of Adam,2 feature updates are given
by

Wt+1zin =Wtzin − α × S(dz
t
out ⊗ zin)zin

=Wtzin − α × ∥zin∥1 S(dz
t
out),

(2)

1Here we consider that zin and zout have the same dimension n. However, our analysis can be extended to
the case where they have different dimensions.

2This is also known as SignSGD Bernstein et al. (2018), a simplification of Adam used for theoretical
analysis. see Appendix for more details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where the superscript in ztout =Wtzin refers to update step t,3, and S refers to the sign function (+1
for positive, −1 for negative). In Eq. (5), we used the fact that sign function S(.) can be expanded
across outer product. This is one of the main observations behind the development of µP (Yang and
Hu, 2022), which sets scaling exponents for initialization and learning rate with respect to model
width n. We follow µP parametrization of the learning rate and set α = ηn−1 for some constant η > 0
(see Appendix B for more details about the mechanisms of µP). This yields

n−1∥Wt+1zin∥22 = n
−1
∥Wtzin∥

2
2 + η

2n−2∥zin∥21 − 2ηn
−1
∥zin∥1 × n

−1
⟨Wtzin,S(dz

t
out)⟩.

The term n−1⟨Wtzin,S(dz
t
out)⟩ measures the alignment between the features ztout = Wtzin and

the “signed” gradients S(dzout). When these two terms are uncorrelated (e.g. at the initial training
stages), we have

⟨Wtzin,S(dzout)⟩ ≈ O(n
1/2
), (3)

which yields

n−1∥Wt+1zin∥22 ≈ n
−1
∥Wtzin∥

2
2 + α

2n−2∥zin∥21 +O(n
−1/2
).

Since α2n−2∥zin∥21 is positive and does not vanish asymptotically (because ∥zin∥1 is of size n),
then the feature norm n−1∥Wtzin∥

2
2 increase as training progresses. An in-depth analysis of this

phenomenon is provided in Appendix A.

0 100 200 300

1

2

3

n
1

W
z i

n
2

Layer = 0
Layer = 1
Layer = 2

0 100 200 300
Steps

0.0

0.5

Tr
ai

n
Lo

ss

Figure 2: Evolution of feature
norms during training for the
linear network described in Ap-
pendix A.1. We train the model
for 300 steps with Adam. Feature
norms for different layers exhibit
differential growth patterns as we
train the model. We shifted the
curves corresponding to different
layers for better visualization.

The increase in feature norms indicate increased alignment be-
tween W and zin. To verify this phenomenon in a controlled set-
ting, we consider a three layers linear neural network given by
f(x) = W2W1W0x, where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and
W2 ∈ R1×n. The training data consist of N = 1000 datapoints
of dimension d generated from a linear model y = ω⊺x + ε with
ε ∼ N(0,0.025), ωi ∼ d

−1N(0,1), and x are generated randomly
as standard Gaussian random variables. We use n = d = 100 in our
experiments and train the model with Adam. See Appendix D for
more details and results.

Figure 8 shows the increasing alignment pattern as measured by
feature norms for the three layers as we train the model. We include
a baseline with no alignment (dashed lines) which shows the norms
∥Wz̃in∥ where z̃in is a random Gaussian vector with iid coordinates,
normalized such that ∥z̃in∥ = ∥zin∥. The baseline does not show
any significant growth over the course of the training which further
confirms that feature norms grow as a result of increasing alignment
between module weights and module inputs.

Different alignment levels for different modules. Although we
use the same learning rate for all modules, feature norms in the
second layer (n−1∥W2zin2∥

2) grow much more significantly than
those in the input layer (n−1∥W0zin0∥

2). This indicates different
alignment levels for each module. Such varying alignment patterns between layers has been discussed
in Nam et al. (2024) for a different alignment metric.

Different alignment levels for different inputs/tasks. In Fig. 8, we report feature norms during
training for the actual training inputs ∥Wzin∥. When evaluating feature norms ∥Wz′in∥ for an out-of-
distribution input x′, the resulting alignment depends on how similar is x′ to the training samples.
The extreme case where x′ is very different from the training samples should result in low to no
alignment, as in the random baseline ∥Wz̃in∥. We provide a more in-depth analysis of this behavior
in Appendix B.

This analysis suggest that feature norms can be used to measure module-data alignment in LLMs. In
the next section, we refine this notion of alignment and use it to create a method for module type
selection for LoRA finetuning.

3Note that we do not use such superscript for zin since it does not change when we update W .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

3.51 3.18 2.49 3.31 3.04 2.51 2.69 2.28 2.32 2.57 2.22 2.50 2.25 2.12 2.32 2.65

1.51 1.13 1.13 1.01 0.83 0.85 0.74 0.71 0.77 0.73 0.75 0.85 0.83 0.81 0.95 0.82

4.04 3.31 2.75 3.23 2.94 2.44 2.66 2.26 2.06 2.44 2.07 2.10 2.12 2.02 2.25 2.56

0.82 0.94 0.90 0.95 1.02 1.13 0.99 1.09 0.99 0.93 1.02 0.89 0.90 0.88 0.96 1.10

1.24 1.00 1.15 1.06 1.06 1.06 1.09 1.06 1.01 1.03 1.02 1.00 0.96 0.97 0.96 1.09

1.24 1.31 1.24 1.40 1.47 1.50 1.51 1.57 1.54 1.52 1.41 1.30 1.22 1.20 1.30 1.66

1.14 0.99 1.01 1.03 1.07 1.07 1.09 1.13 1.06 1.06 1.05 1.05 1.05 1.07 1.19 1.73

NFN-Map for Llama-3.2-1B-Instruct (Math)

1

2

3

4

Figure 3: NFN-map for LLama-3.2-1B-Instruct on Math dataset (GSM8K). See Appendix D for NFN-maps of
other models.

3 PLOP: FINETUNING MODULE TYPES WITH THE LOWEST ALIGNMENT

Given a pretrained model and a finetuning dataset D, we compute feature norms for all modules on
the task D by averaging across a subset of D. This captures module-data alignment as detailed in the
previous section. Our methodology in based on the following intuition: The modules with the lowest
alignment levels have more potential for adaptation, and therefore should be prioritized in finetuning.

We normalize feature norm by a baseline feature norm (with randomized inputs) and use that as
a metric for alignment. See the discussion after Definition 1 for an intuitive explanation of this
normalization.

Definition 1 (Normalized Feature Norm (NFN)). Given a pretrained model, a module with weight
W in this model, and an input x, we define the Normalized Feature Norm as

NFN(W,x) =
∥Wzin(x)∥

∥Wz̃in(x)∥
,

where z̃in(x) is a vector of the same dimension and norm of zin(x), with i.i.d coordinates distributed
as centered Gaussian random variables.

By incorporating the random baseline ∥Wz̃in(x)∥, NFN score removes the dependence on the norm
of zin and the matrix norm of W . The intuition is simple: with z̃in, we should not expect any
alignment with W , and therefore that should act as baseline score. For the NFN scores, when the
module is well aligned with the data, we expect to see scores NFN> 1, while the NFN score should
be ≈ 1 when alignment is not significant.

Under some assumptions on W and zin, we can prove that when the width is large enough, the
NFN score can be approximated by NFN(W,x) ≈ ∥ Wzin(x)

∥W ∥F ∥zin(x)∥∥ where ∥W ∥F =
√

∑ij W
2
ij is the

Frobenius norm of W . This approximation shows that dividing by ∥Wz̃in∥ essentially normalizes W
and zin.

From this analysis and the intuition above, we introduce PLoP, a method that leverages NFN scores
to identify which modules should be prioritized for LoRA finetuning. Our method is described below.

PLoP – Module Type Selection

Inputs: ModelM, Finetuning dataset D.
Step1 (Scores): For each model type T ∈ {Query, Key, Value, OutProj, GateProj, UpProj, DownProj},
compute average NFN score across W ∈ T and x ∈ D.
Step2 (Insertion): Insert LoRA in module types with the lowest NFN scores.

As stated above, PLoP is based on the hypothesis that modules with the lowest alignment have higher
potential for adaptation, and thus should be targeted in finetuning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

(a) Llama3.2-1B-Instruct

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

(b) Gemma3-1B-Instruct

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

2.5

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

(c) Llama3.2-3B-Instruct

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

(d) Qwen3-1.7B-Instruct

Figure 4: NFN scores aggregated by module type for different models. The scores are for different datasets
(math, code, history, and logic).

For ablation analysis, we also experiment with the reverse PLoP method where instead of choosing
module types with the lowest scores, we choose the ones with the highest scores. We call this method
PLoP−1 and we evaluate its performance in Section 4.

Figure 3 and Fig. 4 show NFN scores for for different models and 4 tasks: math (GSM8K, Cobbe
et al. (2021)), code (HumanEval, Chen et al. (2021)), history (MMLU high school european history,
Hendrycks et al. (2021)), and logic (MMLU logical fallacies). The NFN-map in Fig. 3 provides the
most granular level of scoring and shows the NFN scores by module. We can see that key and query
attention modules are most aligned with the task in this case, while MLP modules are less aligned,
suggesting the need for adaptation in those modules. To see this by module type, we aggregate by
averaging over all modules of the same type (step 2 in PLoP) and show the results in the Fig. 4 for
different models. We observe significant variability of NFN scores across models, module types,
and datasets. For Llama3.2-1B, module types with the highest scores (Query, Key) average around
2-3X the baseline (≈ 1), and the lowest scores (Value, Gate, Down, Up) hovering around the baseline
score of 1. In this case, PLoP indicates that adaptation should be focused on the (value, gate, down,
up) modules rather than the attention query and key matrices. Note that this coincides with the
recommendation of empirical work by He et al. (2021) for Llama models but is contradictory to the
recommendations of Hu et al. (2022) to finetune mainly attention modules.

Qwen3-1.7B shows high alignment in Query, Key, and Gate modules, with lower alignment for other
MLP modules, and a low alignment for the Value module (≈ 0.75). This indicates the Value modules
in Qwen3-1.7 are “negatively” aligned with all datasets, suggesting that inputs to the Value modules
are aligned with the smallest singular directions of the Value weight matrices. The same pattern can
be observed in Gemma3-1B, and we currently do not have an explanation for this phenomenon. In
Appendix D, we provide additional NFN scores for Qwen, Gemma, and Llama models.

NFN scores are task-sensitive. The alignment scores differ between tasks. For instance, model
weights show larger alignment with history compared to math, suggesting that their training data
consisted more of sequences similar to general natural language than math related tokens, which
is expected. However, note that all tasks share some “base” alignment level given by the general

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.5

1.0

1.5

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignment by Module Type for Math (GSM8K)
Qwen2.5-1.5B
Qwen2.5-Math-1.5B

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.5

1.0

1.5

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignment by Module Type for Code (HumanEval)
Qwen2.5-1.5B
Qwen2.5-Coder-1.5B

Figure 5: Module types NFN scores for general and specialized Qwen2.5 models. Specialized models (math,
code) are finetuned on task-specific data. Scores are higher with the specialized models.

magnitude of the NFN score for each module type. This is a more fundamental phenomenon that
is independent of the task, and is related to some basic level of feature learning that is required for
token processing. 4

NFN scores consistent across different model sizes. In Fig. 4 (a) and (c), we show NFN scores
for two model sizes of Llama3.2, 1B and 3B. The ranking of module types based on NFN scores
is roughly the same for both models, suggesting consistency of NFN scores across different model
sizes. Intuitively, having similar NFN score patterns suggests similar pretraining and post-training
processes for these models, which is expected for models of the same family (Llama3.2 in this case).

Specialized models show higher NFN scores. In Fig. 5, we compare NFN scores for instruction-
tuned and more specialized version of the same model Qwen2.5-1.5B for math/code tasks. As
expected, the specialized models show higher NFN scores overall which further confirms that NFN
scores, while cheap to calculate, can be a reliable metric for module-data alignment.

Compute cost of PLoP. To obtain the results in Fig. 3, we used a single forward pass with
batch size 200, with a maximum sequence length of 256. NFN scores are calculated using the
register_hook functionality of PyTorch. In summary, the computational cost of our method
is roughly the same as a single batch forward pass, which makes it especially relevant in resource-
constrained environments where LoRA is most useful.

In the next section, we run extensive experiments to show that PLoP consistently enhances final
performance at virtually no additional cost.

4 EXPERIMENTS

We consider three post-training scenarios: Supervised Finetuning for sentence classification, Super-
vised Finetuning for text generation, and Reinforcement Learning (GRPO, Shao et al. (2024)), all
with LoRA adapters. We report results with Llama (Llama-Team, 2024), Qwen (Qwen Team, 2025),
and Gemma (Team, 2025) models across different sizes. Our experiments are as follows:

1. SFT for classification: we finetune classifers on ANLI (Nie et al., 2020).
2. SFT for text generation: we train on MetaMathQA (Yu et al., 2023) and evaluate the results

on GSM8K (Cobbe et al., 2021).
3. RL: we RL-tune on MetaMathQA using GRPO and evaluate on GSM8K.

We investigate the effect of different module placement strategies: our method PLoP(placing LoRA
in module types with the lowest NFN scores), PLoP−1 (the inverse of our method, i.e. placing LoRA
modules types with the highest NFN scores), Attn (inserting LoRA only in attention modules), MLP
(inserting LoRA only in MLP modules), and ALL (inserting LoRA in all module types).

4The mechanisms of feature learning in deep neural networks are still largely misunderstood. Quantitative
approaches such as Nam et al. (2024) offer some insights, but are far from being comprehensive.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1000 2000 3000 4000 5000
Step

0.4

0.5

Te
st

 A
cc

Qwen2.5-0.5B

PLoP
MLP
Attn

0.525

0.550

Zoom

1000 2000 3000 4000 5000
Step

0.4

0.5

0.6

Te
st

 A
cc

LLama-3.2-1B

PLoP
MLP
Attn

0.58

0.60

0.62 Zoom

1000 2000 3000 4000 5000
Step

0.4

0.6

Te
st

 A
cc

Qwen3-Embedding-8B

PLoP
MLP
Attn

0.70

0.75

Zoom

Figure 6: LoRA finetuning on ANLI
for different models. We use LoRA
rank r = 8 for MLP strategy and adapt
r for PLoP and Attn to match number
of parameters for fair comparison. All
curves are smoothened with EMA(α =
0.8) for better visualization. See Ap-
pendix D.3 for more details about the
experimental setup.

Hereafter, we use the following letters to denote specific mod-
ules: Q (Query), K (Key), V (Value), O (Out projection), U (Up
projection), G (Gate projection), and D (Down projection). All
module type NFN scores and experimental details are provided
in Appendix D.

4.1 SUPERVISED FINETUNING FOR CLASSIFICATION

The Adversarial Natural Language Inference (ANLI) is a lan-
guage classification task that is more challenging compared
to similar tasks (e.g. MNLI). Using LoRA with different
placement strategies, we finetune pretrained models on ANLI
and report results in Fig. 6. For Qwen2.5-0.5B and Qwen3-
Embedding-8B, we observe a significant difference in perfor-
mance between PLoP and other strategies. For Llama3.2-1B,
PLoP and MLP yield roughly the same performance, while
Attn is significantly worse. Note that for the Llama model, the
MLP modules have small NFN scores, comparable to scores
of modules selected by PLoP(V-O-D, see Fig. 4), which could
explain why we obtain similar performance with both methods.

4.2 SUPERVISED FINETUNING FOR TEXT GENERATION

Supervised finetuning plays an important role in improving
model abilities such as mathematics, coding, and instruction
following. Often, finetuning data is high-quality and specifi-
cally curated to provide dense signal for the model to acquire
specific desirable skills. For challenging tasks such as math-
ematical reasoning, it is often used to “prime” the model for
subsequent RL-based finetuning.

We perform SFT on the MetaMathQA dataset Yu et al. (2023).
To evaluate the performance we measure the accuracy on the
GSM8k benchmark Cobbe et al. (2021). For a training configuration with LoRA rank r we set LoRA
α = 2r and optimize using Adam. For each adapter placement we sweep over the learning rate in
{1,2,3,4,5}×10−4 and report the results with the best accuracy. We provide additional experimental
details regarding the training and evaluation configuration in Appendix D.3.

MetaMathQA → GSM8k

Table 1: Qwen3-0.6B

Module Types #Params
(M)

Train
Loss

Eval Acc

PLoP(D–U–V) (r = 76) 21.8 0.118 63.8%
PLoP(D–U–V) (r = 64) 18.4 0.116 62.0%
PLoP−1(G–K–Q) (r = 64) 16.5 0.119 60.6%
MLP(D–G–U) (r = 64) 22.0 0.119 63.3%
Attn(K–Q–V) (r = 64) 12.8 0.130 58.6%
all (r = 64) 40.4 0.113 62.4%

Table 2: Qwen3-1.7B

Module Types #Params
(M)

Train
Loss

Eval Acc

PLoP(D–O–V) (r = 102) 43.9 0.109 75.4%
PLoP(D–O–V) (r = 64) 27.5 0.111 75.2%
PLoP−1(G–K–Q) (r = 64) 27.5 0.113 74.6%
MLP(D–G–U) (r = 64) 44.0 0.108 75.0%
Attn(K–Q–V) (r = 64) 18.4 0.119 69.5%
all (r = 64) 69.7 0.105 73.9%

We finetune Qwen3 models with 0.6B and 1.7B parameters. The results are shown in Tables 1 and 2
respectively. In both cases, the placement of adapters in only the attention layers is clearly suboptimal,
demonstrating that for challenging tasks such as mathematics, adapting only the attention layers has
limited effect. We see that the most competitive placements for both model sizes is to place adapters
according to PLoP or in the MLP layers, even outperforming the placement of adapters in all layers
which requires between 1.5-1.8× the number of trainable parameters. When adjusting for an equal
number of trainable parameters, PLoP produces the best results with a slight edge over the MLP
placement. For the 1.7B parameter model PLoP has a small edge over the MLP placement even with
about 60% the number of parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 REINFORCEMENT LEARNING FOR MATHEMATICAL REASONING

Reinforcement Learning has emerged as a promising approach for test-time scaling. Algorithms such
as GRPO incentivize the model to follow a pattern of “thinking” before providing the final answer.
This implicit approach to reasoning (versus the more explicit approaches such as MCTs (Xie et al.,
2024)) showed very promising results, especially with the impressive performance of DeepSeek-R1
(DeepSeek-AI, 2025). In this section, we experimented with “GRPO on a budget” using LoRA
adapters (instead of training the full weights) to enhance mathematical reasoning. We select 3 module
types for LoRA adapter placement using the strategies stated above. We compare both RL rewards
(columns Rwd/Format and Rwd/Answer) and Evals (GSM8K 8shots prompting Pass@1). Note that
because LoRA is a lightweight finetuning method, it would not be sufficient to induce reasoning in
base models with GRPO, especially with a small rank r. For this purpose, we apply GRPO with
LoRA to instruction-tuned models instead of base models. For more implementation details, see
Appendix D.

Table 3: GRPO results for Qwen3-1.7B trained on MetaMathQA.

Module Types #Params (M) Rwd/Format Rwd/Answer Eval/GSM8K

No RL – – – 65.50%
Attn(Q-K-V) (r = 16) 4.58 1.89 0.91 71.49%
Attn(Q-K-V) (r = 25) 7.17 1.97 0.98 72.13%
MLP(U-G-D) (r = 16) 11.01 2.57 1.28 73.61%
PLoP−1(Q-K-G) (r = 16) 6.88 1.71 0.86 71.41%
PLoP(V-O-D) (r = 16) 6.88 2.67 1.32 74.52%
PLoP(V-O-D) (r = 25) 10.75 2.75 1.32 75.03%

With GRPO, we define the think-then-answer pattern in similar way to DeepSeek-R1. The model is
rewarded for placing the thinking process in between <think> and </think>, and then giving
the answer in between <solution> and </solution>. This is encoded in the format reward
function (Rwd/Format). The correctness of the solution is rewarded as well (Rwd/Answer). We track
this reward as we train the model with GRPO and show the final results (at convergence).

Table 3 shows the results of GRPO with the Qwen3-1.7B trained on MetaMathQA. PLoP yields
better performance overall both in training rewards and evaluation (GSM8K). Compared to Attn,
PLoP performs better even when matching the number of trainable parameters (Attn(r = 25) vs
PLoP(r = 16)). Interestingly, PLoP performs better than MLP placement strategy even when using
the same rank r = 16, in which case we have 6.88M trainable parameters with PLoP and 11.01M
parameters with MLP. For the same number of parameters, the performance is further improved with
PLoP(r = 25).

We experimented with Gemma3-1B as well, and found that PLoP outperforms other alternatives,
although the score on GSM8K is low due the inherent limitations of Gemma3-1B in mathematical
reasoning. See Appendix D for more details.

5 DISCUSSION AND LIMITATIONS

We introduced PLoP, an intuitive module type selection method, designed specifically for LoRA
fine-tuning and based on NFN scores – a notion of module-data alignment supported by an intuitive
theoretical analysis. PLoP meets the computational criteria needed for efficient LoRA finetuning as
articulated in the introduction: PLoP’s lightweight nature makes it particularly valuable in resource-
constrained environments where LoRA is most beneficial. PLoP is based on the NFN-map, which
enables more granular selection beyond module types. However, we deliberately focused on module
type selection as it represents the most widely adopted aggregation approach among practitioners,
avoiding the additional implementation complexities of more fine-grained selection. While we
explored using PLoP for layer-level selection by inserting LoRA into target layers with low NFN
scores, we encountered inconsistent results and have reserved this question for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large
models. In Forty-first International Conference on Machine Learning, 2024a. URL https:
//openreview.net/forum?id=NEv8YqBROO.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In ICML,
2024. URL https://openreview.net/forum?id=3d5CIRG1n2.

Minsoo Kim, Sihwa Lee, Wonyong Sung, and Jungwook Choi. RA-LoRA: Rank-adaptive parameter-
efficient fine-tuning for accurate 2-bit quantized large language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics:
ACL 2024, pages 15773–15786, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.933. URL https://aclanthology.org/
2024.findings-acl.933/.

Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Adaptive
rank, reduced forgetting: Knowledge retention in continual learning vision-language models with
dynamic rank-selective lora, 2025. URL https://arxiv.org/abs/2412.01004.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora fine-
tuning dynamics. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Sys-
tems, volume 37, pages 117015–117040. Curran Associates, Inc., 2024b. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
d4387c37b3b06e55f86eccdb8cd1f829-Paper-Conference.pdf.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning, 2023a. URL https://arxiv.org/abs/2303.10512.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning, 2023b. URL https://arxiv.
org/abs/2308.03303.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning, 2024. URL https://arxiv.org/abs/2404.19245.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating for
parameter-efficient fine-tuning, 2024. URL https://arxiv.org/abs/2405.12130.

Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh, and Weizhu Chen. A note on lora. arXiv preprint
arXiv:2404.05086, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Llama-Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. Cross-attention is all you need: Adapting pretrained
transformers for machine translation. arXiv preprint arXiv:2104.08771, 2021.

10

https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=3d5CIRG1n2
https://aclanthology.org/2024.findings-acl.933/
https://aclanthology.org/2024.findings-acl.933/
https://arxiv.org/abs/2412.01004
https://proceedings.neurips.cc/paper_files/paper/2024/file/d4387c37b3b06e55f86eccdb8cd1f829-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d4387c37b3b06e55f86eccdb8cd1f829-Paper-Conference.pdf
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2404.19245
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and Shanghang
Zhang. Gradient-based parameter selection for efficient fine-tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 28566–28577, 2024.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11825–11835, 2023.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent,
and Simon Lacoste-Julien. Implicit regularization via neural feature alignment, 2021. URL
https://arxiv.org/abs/2008.00938.

Yizhang Lou, Chris E Mingard, and Soufiane Hayou. Feature learning and signal propagation in deep
neural networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 14248–14282. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/lou22a.html.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
and minimising outlier features in neural network training, 2024. URL https://arxiv.org/
abs/2405.19279.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems, 2018. URL https://arxiv.org/abs/
1802.04434.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks, 2022. URL
https://arxiv.org/abs/2011.14522.

Yoonsoo Nam, Chris Mingard, Seok Hyeong Lee, Soufiane Hayou, and Ard Louis. Visualising
feature learning in deep neural networks by diagonalizing the forward feature map, 2024. URL
https://arxiv.org/abs/2410.04264.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Qwen Team. Qwen3 technical report, April 2025. URL https://github.com/QwenLM/
Qwen3/blob/main/Qwen3_Technical_Report.pdf. Released April 29, 2025.

Gemma Team. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.
19786.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Ad-
versarial nli: A new benchmark for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for Computational
Linguistics, 2020.

11

https://arxiv.org/abs/2008.00938
https://proceedings.mlr.press/v162/lou22a.html
https://arxiv.org/abs/2405.19279
https://arxiv.org/abs/2405.19279
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2011.14522
https://arxiv.org/abs/2410.04264
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning, 2024.
URL https://arxiv.org/abs/2405.00451.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015. URL https://arxiv.org/abs/
1502.01852.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function
on deep neural networks training. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2672–2680. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/hayou19a.html.

G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

12

https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://proceedings.mlr.press/v97/hayou19a.html
https://proceedings.mlr.press/v97/hayou19a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF MODULE-DATA ALIGNMENT

Given a pretrained model and a finetuning task, our goal is to strategically place LoRA adapters
in modules that would contribute most significantly to performance. In practice, we usually select
module types instead of single weight matrices. For instance, for Llama3 models, we might choose
to insert LoRA in Query (“q_proj") and Key (“k_proj") modules.

As we discussed in Section 1, for such a method to be useful, it should first be a lightweight
method that operates efficiently in resource-constrained environments and ideally rely on existing
computation pipelines. Ideally, the method should rely exclusively on standard forward propagation,
as this computational pipeline is already necessary for inference and adds no significant overhead to
the existing workflow.

This section provide a more in-depth theoretical analysis, complementing that of Section 2.

0 100 200 300

0.5

1.0

F
ea

tu
re

 N
or

m

Feature Norm
Feature Norm at Init

0 100 200 300
Steps

0.0

0.5

Tr
ai

n
Lo

ss
Figure 7: Illustration of fea-
ture norm growth during train-
ing. This shows the feature norms
n−1∥Wzin∥

2 for a module W in
the model (W ∈ Rn×n). See Ap-
pendix A.1 for details about the
model and training.

Mechanisms behind the growth in feature norms. The reason
behind the growth in feature norms for certain modules is non-trivial.
The naive explanation to this phenomenon is that with training,
weight norms grow for some modules and remain constant constant
or decrease for others. However, as we will see in the next analysis,
the mechanisms behind this phenomenon are more subtle, and the
most important factor is a form of alignment that occurs between
module weight and its input.

Specifically, we show that this growth in feature norms in some
modules appears primarily as a result of two factors: 1) large-width
in neural networks (large embedding dimension), a condition that
is generally satisfied in practice, 5, and 2) progressive alignment of
modules weights with their respective inputs.

Consider a general neural network of the form

Yin(x) =Winx,

Yl(x) = Fl(Wl, Yl−1(x)), l ∈ [L],
Yout(x) =WoutYL(x),

(4)

where x ∈ Rd is the input, L ≥ 1 is the network depth, (Fl)l∈[L] are mappings that define the layers,
Wl ∈ Rn×n are the hidden weights, where n is the network width, and Win,Wout are input and output
embedding weights.

Model (4) is pretrained on some data mixture D to minimize some loss function ℓ – the next-token
prediction loss in the case of language models. We introduce some notation that will facilitate the
presentation of our analysis.

Notation. Hereafter, n will always denote model width. As n grows, given sequences cn ∈ R and
dn ∈ R+, we write cn = O(dn) to refer to cn < κdn for some constant κ > 0. We write cn = Θ(dn) if
we have κ1dn ≤ cn ≤ κ2dn for some κ1, κ2 > 0. For vector sequences cn = (cin)1≤i≤k ∈ Rk (for some
k > 0), we write cn = O(dn) when cin = O(d

i
n) for all i ∈ [k], and same holds for other asymptotic

notation. Finally, when the sequence cn is a vector of random variables, asymptotics are defined in
the sense of the second moment (L2 norm). For a vector z ∈ Rn, we will use the following norms:
∥z∥ = (∑

n
i=1 z

2
i)

1/2
(euclidean norm), and ∥z∥1 = ∑n

i=1 ∣zi∣ (ℓ1 norm).

Intuitive theoretical analysis. For the sake of tractability, we consider the case where a single
weight matrix (module) in the model is trained and other modules are frozen. 6 We further simplify

5From the literature on infinite-width theory, when we take the width to infinity, the training dynamics
converge with a rate of roughly O(n−1/2) (Yang and Hu, 2022). In practice, a width of n ⪆ 103 is generally
considered large enough for the theoretical predictions to be a good approximation of practice.

6While this is unrealistic, it provides the right intuition behind our methodology, and makes the analysis
more tractable.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the analysis by assuming that the model is trained in a single datapoint x. We later discuss the impact
of batch training. The trainable module has the form

zout =Wzin,

where zin ∈ Rn is the input, and zout ∈ Rn is the output that we call feature, both evaluated at the
training datapoint x.7 For Transformer models, the module can be for instance a single Query head, a
Projection module in some MLP, etc.

The gradient of the loss with respect to the weight matrix W is given by

dW = dzout ⊗ zin,

where dzout = ∇zoutℓ, the gradient of the loss with respect to feature zout.

In general, modern LLMs are trained with Adam (Kingma and Ba, 2017), which normalizes gradients.
In its momentum-less form, Adam becomes SignSGD (Bernstein et al., 2018), which is defined by
S(dWij) = +1 if dWij ≥ 0, otherwise −1. SignSGD is a nice simplification of Adam: it captures the
property of normalization and allows tractable the theoretical analysis as we will see below. With
SignSGD, feature updates8 are given by

Wt+1zin =Wtzin − α × S(dzout ⊗ zin)zin

=Wtzin − α × ∥zin∥1 S(dz
t
out),

(5)

where the superscript in ztout =Wtzin refers to update step t. Note that we do not use such superscript
for zin since it does not change when we update W .

The key trick used in Eq. (5) is that the sign function S(.) can be expanded across outer product.
This is one of the main observations behind the development of µP (Yang and Hu, 2022), which sets
scaling exponents for initialization and learning rate with respect to model width n. Under µP, all
weights in the model are initialized to have roughly 1/

√
n magnitude (or more precisely 1/

√
fan_in),

which implies that features zout and their inputs zin to have Θn(1) norm at initialization (i.e.
n−1∥zin∥1 = Θn(1)).

Eq. (5) describes the evolution of features zout as we update weights W . Ideally, we want both
stability (Wtzin does not grow in magnitude with n) and non-triviality (Wtzin does not converge to
0 with n). These conditions are both satisfied when Wt+1zin −Wtzin = Θn(1) element-wise, which
implies that the learning rate should scale as α = ηn−1 for some constant η > 0, to compensate the
growth in ∥zin∥1, which is exactly the µP scaling rule for the learning rate. See Appendix B below
for more details about the mechanisms of µP. With this parametrization of the learning rate, we obtain

∥Wt+1zin∥22 = ∥Wtzin∥
2
2 + η

2n−1∥zin∥21 − 2ηn
−1
∥zin∥1 × ⟨Wtzin,S(dz

t
out)⟩.

We can normalize by n so terms on both sides have Θn(1) magnitude in width n,

n−1∥Wt+1zin∥22 = n
−1
∥Wtzin∥

2
2 + η

2n−2∥zin∥21 − 2ηn
−1
∥zin∥1 × n

−1
⟨Wtzin,S(dz

t
out)⟩.

The term n−1⟨Wtzin,S(dz
t
out)⟩ measures the alignment between the features ztout =Wtzin and the

“signed” gradients S(dzout). Intuitively, at the initial training stages, these two terms are roughly
independent (as random variables) because of the randomness from the initialization weights. As a
result, in those initial training stages, we have

⟨Wtzin,S(dzout)⟩ ≈ O(n
1/2
), (6)

which yields

n−1∥Wt+1zin∥22 ≈ n
−1
∥Wtzin∥

2
2 + α

2n−2∥zin∥21 +O(n
−1/2
)

7Here we consider that zin and zout have the same dimension n. However, our analysis can be extended to
the case where they have different dimensions.

8Feature update is the change of the features zout after taking one training step.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Since α2n−2∥zin∥21 = Θn(1) is positive and asymptotically non-zero, if the width n is large enough,
we should expect the (normalized) feature norm n−1∥Wtzin∥

2
2 to grow initially during training. The

next results provides a rigorous description of this phenomenon for linear networks.

Theorem 1 (Feature Norm Growth in Linear Networks (Informal)). Assume that the neural network is
a linear MLP (see Appendix B for more details). Then, for any δ ∈ (0,1/2), under some assumptions
stated in Appendix C, there exists a universal constant λ > 0 such that for any T and η satisfying
T ≤ λη−1, the following holds with probability at least 1 − 2n−1+2δ

sup
1≤t≤T

∣n−1∥Wtzin∥
2
− Γt∣ ≤ Cn−δ, (7)

where Γt = Γ0 + β
2(1 + t(t − 1)), β = η n−1 ∥zin∥1, and Γ0 = n

−1∥W0zin∥
2. In other words, when

the width n is large enough, n−1∥Wtzin∥
2 exhibits quasi-quadratic growth at initial training stages.

Theorem 1 characterizes the growth in feature norms n−1∥Wtzin∥
2 as training progresses. The proof

is provided in Appendix C. In this case, n−1∥Wtzin∥
2 grows in a quasi-quadratic pattern, which

becomes perfectly quadratic when n → ∞. This is the most important takeway from this result:
this phenomenon is associated with large width. With more realistic models, we expect the growth
property to hold, but not necessarily with the quadratic form. See next section for empirical results.

A.1 EVOLUTION OF FEATURE NORMS

0 100 200 300

1

2

3

n
1

W
z i

n
2

Layer = 0
Layer = 1
Layer = 2

0 100 200 300
Steps

0.0

0.5

Tr
ai

n
Lo

ss

Figure 8: Evolution of feature
norms during training for the
linear network described in Ap-
pendix A.1. We train the model
for 300 steps with Adam. Feature
norms for different layers exhibit
differential growth patterns as we
train the model. We shifted the
curves corresponding to different
layers for better visualization.

Consider a three layers linear neural network given by f(x) =
W2W1W0x, where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and W2 ∈

R1×n. The training data consist of N = 1000 datapoints of dimension
d generated from a linear model y = ω⊺x + ε with ε ∼ N(0,0.025),
ωi ∼ d

−1N(0,1), and x are generated randomly as standard Gaus-
sian random variables. We use n = d = 100 in our experiments
and train the model with Adam. See Appendix D for results with
SignSGD and more details about the experimental setup.

Figure 8 shows the growth in feature norms for the three modules
(corresponding to the three layers in this case) as we train the model.
We include a baseline (dashed lines) which shows the norms ∥Wz̃in∥
where z̃in is a random Gaussian vector with iid coordinates, nor-
malized such that ∥z̃in∥ = ∥zin∥ (see next section for an intuitive
explanation of this baseline). The baseline does not show any signif-
icant growth over the course of the training which further confirms
that feature norms grow as a result of increasing alignment between
module weights and module inputs, and not simply as a result of an
increase in weight norms.

Most of the growth occurs early in training. Interestingly, most
of the growth in feature norms occurs in the first T = 200 steps,
which also correlates with the most significant drop in training loss.
After T = 200, feature norms remain roughly stable until convergence. This suggest that the norm
growth is associated with an initial phase where significant feature learning occurs, and remains
roughly unchanged after that initial growth phase. Intuitively, as we train the network, the dot product
between zout and S(dzout) (Eq. (6)) grows from O(n1/2) to roughly Θ1(n) (in absolute value) and
therefore the argument behind the feature norm growth as explained in the discussion above no longer
holds later in training. As a result, the growth plateaus after some number of steps T .

Different growth levels for different modules. Although we use the same learning rate for all
modules, the norm growth in the input layer (n−1∥W0zin0∥

2) is much less significant than that
observed in the second layer (n−1∥W2zin2∥

2). To understand this difference, we should take into
account that when training all modules (layers in this case), the inputs to W1 and W2 change with
training. The update in feature are given by

Wt+1zt+1in =Wtz
t
in − η n

−1
× ∥ztin∥1 S(dz

t
out) +Wt+1∆zt+1in ,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where ∆zt+1in = z
t+1
in −z

t
in is the input change after one step. Under µP scaling rule for the learning rate

(η n−1), the magnitude of ∥ztin∥1 remains Θn(1) for all t, however the constant in Θn(1) naturally
depends on the layer. Additionally, the term Wt+1∆zt+1in introduces more complex update dynamics,
and contribute in a non-trivial way to the change in the feature norms. See Nam et al. (2024) for a
more detailed discussion on how feature learning changes from one layer to another. Both of these
aspects lead to uneven growth in the feature norms for different layers.

Different growth levels for different inputs/tasks. In the setup of Theorem 1, we consid-
ered a batch size of 1, which results in feature updates of the form Wt+1zin = Wtzin − η ×
n−1∥zin∥1 S(dzout), and we saw that with 1/

√
n initialization, we have n−1∥zin∥1 = Θn(1). In the

realistic setting of batch training, feature updates for an input x′ ∈ Rd are given by

Wt+1zin(x′) =Wtzin(x
′
) − η n−1 × S (

1

∣B∣
∑
x∈B

dzout(x) ⊗ zin(x)) zin(x
′
),

Therefore, we can no longer directly expand the sign function and obtain the ∥zin∥1 term that leads to
the Θn(1) term. In this case, we need a strong correlation between S (1

∣B∣ ∑x∈B dzout(x) ⊗ zin(x))

and zin(x
′) to obtain the same effect. This translates to whether the datapoint x′ has some similarity

with the batch used for the update. As a result, we should expect to see higher scores for datapoints
that are similar to the training dataset, and lower scores for significantly different datapoints.

B ADDITIONAL THEORETICAL DETAILS

B.1 INFINITE-WIDTH ANALYSIS AND µP

Scaling remains the main paradigm to improve performance of language model (see e.g. Hoffmann
et al. (2022)). This includes model capacity which can be increased via width (embedding dimension)
or depth (number of layers) or both, training data, number of training steps etc. In our theoretical
analysis in Section 2, we mentioned the infinite-width n→∞ and how our results hold in this limit.
This is motivated by the fact that most state-of-the-art language and vision models have large width.

As the width n grows, most hyperparameters in the model such as the initialization and the learning
should be adapted to avoid numerical instabilities and ensure efficient learning. For instance, the
initialization variance should scale as 1/n to prevent arbitrarily large pre-activations as we increase
model width n (e.g. He init He et al. (2015)). To derive such scaling rules, a principled approach
consist of analyzing statistical properties of key quantities in the model (e.g. pre-activations) as
n grows and then adjust the initialization, the learning rate, and the architecture itself to achieve
desirable properties in the limit n→∞ Hayou et al. (2019); Yang (2019).

In this context, Yang and Hu (2022) introduces the Maximal Update Parameterization (or µP), a
set of scaling rules for the initialization scheme, the learning rate, and the network architecture
that ensure stability and maximal feature learning in the infinite width limit. Stability is defined by
Y i
l = Θ(1) for all l and i where the asymptotic notation ‘Θ(.)’ is with respect to width n (see next

paragraph for a formal definition), and feature learning is defined by ∆Yl = Θ(1), where ∆ refers to
the feature update after taking a gradient step. µP guarantees that these two conditions are satisfied at
any training step t. Roughly speaking, µP specifies that hidden weights should be initialized with
Θ(n−1/2) random weights, and weight updates should be of order Θ(n−1). Input weights should be
initialized Θ(1) and the weights update should be Θ(1) as well. While the output weights should be
initialized Θ(n−1) and updated with Θ(n−1). These rules ensure both stability and feature learning
in the infinite-width limit, in contrast to standard parameterization (exploding features if the learning
rate is well tuned), and kernel parameterizations (e.g. Neural Tangent Kernel parameterization where
∆Yl = Θ(n

−1/2), i.e. no feature learning in the limit).

C PROOF OF THEOREM 1

In this section, we provide the full proof for Theorem 1. Forst, we prove a result on the sign of the
derivative of the loss function with respect to zout, then proceed with the full proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.1 CONSTANT LOSS DERIVATIVE SIGN IN THE INITIAL TRAINING STAGE

Consider a linear network of the form

f(x) =WLWL−1 . . .W0x, x ∈ Rd, (8)

where L ≥ 1 is the network depth, Wℓ ∈ Rn×n for all ℓ ∈ {1,2, . . . , L−1} are hidden layers parameters,
WL ∈ R1×n is the projection layer weight, and W0 ∈ Rn×d is the input layer weight.

The network is trained with the setup described in Section 2, namely:

• Dataset: a single datapoint (x̂, ŷ) ×Rd ×R.

• Training algorithm: SignSGD with learning rate ηn−1.

• Single layer: only a single hidden layer that we denote W ∈ {Wℓ, ℓ = 1,2, . . . , L − 1} is
trained, and other layers weights are fixed to their values at initialization. Without loss of
generality, assume that the trainable layer is ℓ0, i.e. W =Wℓ0 .

• Training loss: quadratic loss given by L(W) = 2−1(fW (x̂) − ŷ)2.

In this setting, the linear network training dynamics become tractable and we can obtain closed-form
expressions in steps t and width n. Let us use the same notation as in Section 2 and denote the
input and output of the trainable layer zout =Wzin. More precisely, in this case, we can express the
network output as fW (x) = V ⊺zout = V ⊺Wzin, where zin =Mx, with M =Wℓ0−1 . . .W0 ∈ Rn×d
and V ⊺ =WL . . .Wℓ0+1 ∈ R1×n are both non-trainable random matrices. In this case, the gradient of
the loss with respect to zout is given by

dzout = (V
⊺Wzin − y)V.

From now on, we will abuse the notation and use the subscript to denote the training step as well for
the matrix W =Wℓ0 . When we use the notation Wt, it should interpreted as Wℓ0,t. Taking one step
with SignSGD yields

Wt+1 =Wt − η n
−1
∥zin∥1χtS(V),

where S(.) = sign(.) and χt = S(V
⊺Wtzin − ŷ).

Next, we prove a result that will be useful in the proof of Theorem 1. More precisely, we show that
under mild assumptions, there exists a first initial training phase in which the sign of the loss function
on the training datapoint does not change. The number of steps in this phase is bounded by η−1 up to
some constant factor. Naturally, since we initialize with random variables, it should be expected that
such result could only hold with high probability.

Theorem 2 (Constant loss derivative sign in the initial training phase). We assume that the weights
W0,W1, . . . ,WL are initialized such that the following holds:

• ∣ziin∣ ∈ [¯
Z, Z̄] for all i ∈ [1 ∶ n], where

¯
Z, Z̄ > 0 are constants independent of n.

• Mean-field Init: E[Vi] = 0 and Var(Vi) = n
−2 (e.g. uniform distribution on [−n−1, n−1]).

Further assume that y ∈ [
¯
Z, Z̄]. 9

Then, for any δ ∈ (0,1), and T ≤ η−1 (n−δ + Z̄

¯
Z2), we have with probability at least 1 − n−1+δ ,

∀t ≤ T,χt = χ0.

The assumption on the weight initialization is mild and is satisfied by some standard initialized
schemes, such as uniform init with n−1 variance for the hidden weights, d−1 variance for the input
weights, and n−2 variance for the projection weights. The proof of Theorem 2 relies on standard
concentration results.

9This can satisfied with a simple adjustment of the constants
¯
Z, Z̄.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Recall the definition of χt

χt = S(V
⊺Wtzin − ŷ).

We have the following from above,

Wtzin =Wt−1zin − ηn−1∥zin∥1χt−1 S(V),
and therefore,

V ⊺Wtzin = V
⊺Wt−1zin − ηn−1∥zin∥1∥V ∥1χt−1

which implies that

V ⊺Wtzin = V
⊺W0zin − ηn

−1
∥zin∥1∥V ∥1

⎡
⎢
⎢
⎢
⎣

t−1
∑
j=0

χj

⎤
⎥
⎥
⎥
⎦
.

Bounding V ⊺W0zin:

With Chebyshev’s inequality we have:

P (∣V ⊺W0zin∣ ≥ Z̄n−δ) <
Var(V ⊺W0zin)

(Z̄n−δ)2

where

Var(V ⊺W0zin) =
1

n
Var(W i

0
⊺zin) =

1

n
⋅
∥zin∥

2

n
≤ n−1Z̄2

As a result, we obtain:
P (∣V ⊺W0zin∣ ≥ Z̄n−δ) < n−1+2δ

If V ⊺W0zin − ŷ < 0, we have

V ⊺Wtzin − ŷ ≤ V
⊺W0zin − ŷ + ηn

−1
∥zin∥1T

≤ V ⊺W0zin − ŷ + ηZ̄T

With probability at least 1 − n−1+2δ , we have

V ⊺Wtzin − ŷ ≤ Z̄n−δ − ŷ + ηZ̄T

Therefore, we have

T ≤ η−1 (
ŷ

Z̄
− n−δ) ⇒ ∀t ≤ T, χt = χ0 = −1.

If V ⊺W0zin − ŷ > 0, asymptotically this implies that −ŷ > 0 (assuming ∣ŷ∣ = Θn(1)). Similarly, we
obtain with probability at least 1 − n−1+2δ ,

V ⊺Wtzin − ŷ ≥ V
⊺W0zin − ŷ − ηZ̄T,

≥ −Z̄n−δ − ŷ − ηZ̄T,

and therefore, we have that

T ≤ η−1 (
−ŷ

Z̄
− n−δ) ⇒ ∀t ≤ T, χt = χ0 = 1.

In summary, we have the following: Let δ ∈ (0,1). Then, with T ≤ η−1 (∣ŷ∣
Z̄
− n−δ), we have for all

t ≤ T , χt = χ0.

The assumptions in Theorem 2 can be alleviated to include more generalization initialization schemes,
such as non-clipped Gaussian initialization. However, this will require additional control on the
asymptotics of ∥zin∥, ∥zin∥1, and V . The result remains the same however.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM 1

Theorem 1 .[Feature Norm Growth in Linear Networks]
Assume that the neural network is linear. Then, for any δ ∈ (0,1/2), under the assumptions on the
initialization stated in Theorem 2, there exists a universal constant λ > 0 such that for any T and η
such that T ≤ λη−1, the following holds with probability at least 1 − 2n−1+2δ

sup
1≤t≤T

∣n−1∥Wtzin∥
2
− Γt∣ ≤ Cn−δ, (9)

where Γt = Γ0 + β2(1 + t(t − 1)), β = η n−1 ∥zin∥1, and Γ0 = n−1∥W0zin∥
2. In other words,

n−1∥Wtzin∥
2 exhibits quasi-quadratic growth at early training phase, when the width is sufficiently

large.

Proof. Recall the update with SignSGD

Wt+1 =Wt − η n
−1χt S(V) ⊗ zin,

where S(.) = sign(.) and χt = S(V
⊺Wtzin − ŷ).

Denoting αt = ⟨Wtzin,S(V)⟩, we obtain

αt+1 = αt − βχt × n = α0 − β n
t

∑
j=0

χt.

Therefore,

∥Wt+1zin∥22 = ∥Wtzin∥
2
2 + η

2n−2∥zin∥21 × n − 2ηn
−1
∥zin∥1χt × αt

= ∥Wtzin∥
2
2 + β

2
× n − 2βχt × αt.

Let δ ∈ (0,1/2). From Theorem 2, it is straightforward that there exists a constant λ > 0 such that for
any T > 1 and η such that T ≤ λη−1, with probability at least 1−n−1+δ , we have for all t ≤ T,χt = χ0.
In this case, for t ≤ T , we have χt × αt = χt × α0 − βn∑

t−1
j=0 χt × χj = χt × α0 − βn × t.

Therefore,
n−1∥Wt+1zin∥2 = n−1∥Wtzin∥

2
+ β2

+ 2β2t − 2βχtn
−1α0.

Using Chebyshev’s inequality, we can easily show that for any δ ∈ (0,1), with probability at least
1 − n−1+2δ , we have

∣χtn
−1α0∣ ≤ Z̄n−δ,

which yields that with at least the same probability we have

∣n−1∥Wtzin∥
2
− Γt∣ ≤ ∣n

−1
∥Wt−1zin∥2 − Γt−1∣ + 2βZ̄n−δ,

where we define the sequence Γt+1 = Γt + β
2(1 + 2t), with Γ0 = n

−1∥W0zin∥
2. Then, it is straight-

forward that for all t ≤ T
∣n−1∥Wtzin∥

2
− Γt∣ ≤ 2βZ̄Tn−δ.

With union bound, this occurs with probability at least 1 − 2n−1+δ .

Note that the probability bound can be significantly improved by considering sub-gaussian concentra-
tion bounds instead of Chebyshev’s inequality. Since our aim in this paper is mainly methodological,
we do not include it here.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP FOR THE LINEAR NETWORK

The linear network is given by

f(x) =W2W1W0x,

where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and W2 ∈ R1,n.

Dimensions. We use d = n = 100 in our experiments.

Training Data. We generate a random vector w ∈ Rd with iid coordinates wi ∼ d
−1/2N(0,1) and

fix it for the next step. Then, we generate N = 1000 samples from the following distribution:

• x ∼ Rd random vector with iid coordinates xi ∼ N(0,1)

• y = w⊺x + ϵ, where ϵ ∼ N(0,0.025)

Training. We use Adam algorithm for training, and train the model for T = 300 steps with full
batch.

D.2 EXPERIMENTAL SETUP FOR SFT (CLASSIFICATION)

For ANLI experiments, we use the following training configuration

• Training datasets: ANLI
• Training algorithm: AdamW, no warmup, linear schedule, dropout (0.1).
• Max sequence length 256.
• LoRA α = 2r

• Precision: bf16.

We use r = 8 for MLP placement stratgy, and adapt r to match param count for other placement
strategies. Specifically:

• Qwen3.5-0.5B: MLP (r = 8), Attn (r = 36), PLoP(r = 17)
• Llama3.2-1B: MLP (r = 8), Attn (r = 27), PLoP(r = 15)

D.3 EXPERIMENTAL SETUP FOR SFT (TEXT GENERATION)

For the SFT experiments we use the following training configuration

• Training dataset: MetaMathQA
• Training algorithm: Adam

– epochs: 2
– warmup: 0.1 fraction
– schedule: cosine
– no dropout

• Max sequence length 1024.
• LoRA α = 2r

• Precision: bf16.

For evaluation on GSM8k we use the script evaluate_chat_gsm8k.py in the official QwenLM
repo. We evaluate with 8-shot examples using the Qwen chat template. We apply a strict match for
evaluating the accuracy and allow 512 generation tokens.

20

https://github.com/QwenLM
https://github.com/QwenLM

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.4 EXPERIMENTAL SETUP FOR GRPO

For GRPO, we use the following config:

• Training Dataset: Subset of MetaMathQA (50k samples).

• Training Alg: AdamW with warmup (0.1) and weight decay (0.01) and cosine schedule. We
use LR 4e-6 for all training runs. We found this to be a good LR in our experiments. Unlike
exps in SFT, we could not run sweeps over LR for GRPO due to limited computational
resources and the high cost of GRPO runs, but we expect LR tuning to further improve the
results.

• Precision: bf16

• Number of generations: 8

• Maximum generation length: 512

• Batch size: 64 (16 with 4 steps for gradient accumulation)

• LoRA dropout: 0.05

• Rewards: A combination of reward functions (correctness, format)

• Hardware: 2xGH200 GPUs

We use custom eval script for GSM8K (using the chat template of each model).

D.5 ADDITIONAL EMPIRICAL RESULTS

D.6 GRPO RESULTS FOR GEMMA3

Table 4: GRPO results for Gemma3-1B trained on MetamathQA (Yu et al., 2023).

Module Types Rwd/Format Rwd/Answer Eval/GSM8K
No RL – – 29.10%
Attn (Q-K-V) (r = 16) 2.16 0.89 30.05%
MLP (U-D-G) (r = 16) 2.11 0.88 29.81%
PLoP−1 (O-G-D) (r = 16) 1.91 0.86 28.05%
PLoP(K-V-U) (r = 16) 2.36 0.92 30.52%

Interestingly, for Gemma3 1B, we found that most of the RL rewards was accumulated in forms of
format reward (placing the thinking process between <think> and </think> and the solution
between <answer> and </answer>). This is reflected in Table 4. However, for eval on GSM8K,
we found that accuracy after GRPO didn’t change significantly which is probably due the fact that
Gemma3-1B is weak on such tasks. In such cases, LoRA is probably not suitable, and full finetuning
is needed to enhance reasoning capabilities.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

1.51 2.16 1.70 1.28 1.44 1.43 1.38 1.43 1.53 1.34 1.42 1.30 1.41 1.42 1.37 1.22 1.17 1.27 1.15 1.26 1.16 1.08 1.07 1.17 1.25 1.24 1.17 1.41

1.34 1.12 1.26 1.11 0.88 1.01 1.08 0.94 0.93 0.88 0.86 0.89 0.77 0.72 0.81 0.84 0.79 0.71 0.98 0.88 1.07 0.90 0.88 0.93 1.09 1.18 1.06 1.11

1.59 1.65 1.59 1.73 1.45 1.44 1.62 1.45 1.59 1.53 1.41 1.40 1.35 1.31 1.20 1.26 1.19 1.19 1.20 1.26 1.23 1.13 1.12 1.19 1.30 1.31 1.11 1.36

0.97 0.79 0.78 0.87 0.89 0.82 0.88 0.88 1.06 0.81 0.87 0.77 0.98 0.87 0.85 0.71 0.67 0.58 0.64 0.67 0.64 0.63 0.64 0.63 0.66 0.66 0.68 0.70

1.19 1.12 0.96 0.87 0.98 1.01 0.97 0.96 0.95 0.94 1.08 0.96 0.90 0.91 0.90 0.88 0.97 0.90 0.93 0.89 0.91 0.96 0.97 1.00 0.98 1.04 0.89 0.93

1.87 3.05 2.51 2.29 2.33 1.55 1.81 1.76 1.69 1.58 1.46 1.38 1.39 1.34 1.33 1.34 1.36 1.33 1.42 1.49 1.52 1.63 1.65 1.67 1.55 1.43 1.27 1.43

1.05 0.58 0.55 0.65 0.78 0.89 0.91 0.91 0.94 1.01 1.05 1.02 1.00 1.02 1.04 1.06 1.11 1.13 1.19 1.26 1.19 1.09 1.00 0.98 0.96 0.99 1.04 1.33

NFN-Map for Qwen3-1.7B-Instruct (Math)

1

2

3

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

Figure 9: NFN scores for Qwen3-1.7B

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.7 ADDITIONAL NFN-MAPS

D.7.1 QWEN3-1.7B-INSTRUCT

D.7.2 QWEN2.5-3B-INSTRUCT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

1.03 2.21 2.11 1.65 1.80 1.46 1.55 1.65 1.44 1.35 1.37 1.42 1.44 1.22 1.43 1.38 1.50 1.27 1.51 1.26 1.24 1.31 1.34 1.19 1.36 1.34 1.28 1.34 1.30 1.20 1.25 1.21 1.23 1.17 1.49 1.38

1.40 1.43 1.19 0.91 1.08 1.06 0.99 1.00 1.04 0.99 0.93 0.87 0.87 0.88 0.86 0.88 0.93 0.98 0.99 0.94 0.79 1.16 0.95 0.92 1.01 0.93 0.95 1.14 1.07 1.00 0.89 1.01 0.85 0.80 0.89 0.82

1.54 1.90 1.75 1.35 1.27 1.15 1.16 1.26 1.28 1.29 1.33 1.26 1.28 1.13 1.20 1.18 1.25 1.11 1.24 1.15 1.11 1.13 1.10 1.08 1.20 1.09 1.13 1.78 1.10 1.06 1.00 0.95 0.89 1.02 1.25 1.27

0.96 1.10 1.03 1.24 0.94 0.80 0.93 0.96 0.79 0.74 0.78 0.87 0.89 0.97 0.95 1.09 0.89 0.98 1.06 1.13 1.16 0.95 0.89 1.01 0.90 0.94 0.97 0.88 0.84 0.84 0.91 1.06 1.44 1.41 0.81 1.02

1.22 3.61 2.42 1.63 1.47 0.85 0.97 1.11 0.97 1.02 1.02 1.07 1.09 1.08 1.08 1.12 1.14 1.18 1.18 1.09 1.19 1.13 1.09 1.05 1.04 1.05 1.10 1.03 1.05 1.02 1.07 1.14 1.13 1.02 0.97 1.49

1.88 2.67 6.24 5.65 5.42 3.39 3.09 3.38 2.79 2.71 2.49 1.94 2.08 1.43 1.46 1.47 1.47 1.35 1.50 1.33 1.46 1.40 1.36 1.32 1.31 1.30 1.31 1.29 1.35 1.39 1.38 1.46 1.34 1.25 1.30 1.78

1.20 4.26 1.54 1.06 0.91 0.57 0.62 0.74 0.70 0.70 0.68 0.83 0.86 0.94 0.95 0.99 0.99 1.04 1.04 1.03 1.02 0.98 0.96 0.98 0.98 0.98 0.97 0.96 0.96 0.97 0.98 1.02 0.98 0.98 1.06 1.20

NFN-Map for Qwen2.5-3B-Instruct (Math)

2

4

6

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

Figure 10: NFN scores for Qwen2.5-3B

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.7.3 QWEN2.5-1.5B-INSTRUCT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

0.97 1.67 1.43 1.47 1.29 1.38 1.31 1.45 1.36 1.29 1.38 1.32 1.19 1.35 1.08 1.28 1.32 1.37 1.27 1.27 1.38 1.28 1.31 1.20 1.21 1.25 1.12 1.17

1.11 0.92 1.00 1.03 1.00 0.95 0.95 0.92 0.89 0.90 0.86 1.07 0.90 0.97 0.82 1.00 1.06 0.85 0.88 0.94 1.11 0.95 0.93 0.88 0.84 0.72 0.87 0.84

3.09 1.67 1.32 1.43 1.25 1.36 1.45 1.32 1.23 1.17 1.26 1.24 1.14 1.26 1.05 2.04 1.13 1.23 1.19 1.13 1.11 1.15 1.09 0.98 1.06 0.85 0.96 1.01

0.79 1.00 0.90 0.71 0.69 0.76 0.79 0.92 0.90 0.95 1.01 0.92 1.04 1.02 0.99 0.94 0.92 0.92 0.95 0.93 0.80 0.75 0.86 0.85 0.94 1.33 1.17 1.24

1.13 0.86 0.93 0.86 1.02 1.05 1.09 1.09 1.10 1.09 1.11 1.10 1.10 1.09 1.13 1.14 1.08 1.06 1.03 1.07 1.05 1.02 1.16 1.06 1.05 0.98 0.97 1.58

1.89 2.41 2.39 2.49 2.16 2.31 1.54 1.38 1.39 1.32 1.37 1.47 1.43 1.34 1.33 1.35 1.36 1.35 1.27 1.34 1.33 1.56 1.53 1.45 1.37 1.27 1.24 1.55

1.00 1.04 0.61 0.60 0.72 0.70 0.84 0.89 0.89 0.93 0.94 0.98 1.00 1.01 1.00 1.00 0.98 0.96 0.98 0.97 0.95 0.98 0.97 0.94 0.94 0.95 1.00 1.19

NFN-Map for Qwen2.5-1.5B-Instruct (Math)

1

2

3

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

Figure 11: NFN scores for Qwen2.5-1.5B

D.7.4 QWEN2.5-1.5B-CODER-INSTRUCT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

1.03 2.00 1.68 1.70 1.49 1.54 1.46 1.62 1.74 1.63 1.76 1.67 1.48 1.61 1.34 1.49 1.54 1.56 1.49 1.56 1.58 1.46 1.53 1.50 1.46 1.45 1.29 1.25

1.26 1.08 1.03 1.04 1.00 0.94 0.99 0.97 0.87 0.89 0.78 0.93 0.80 0.89 0.74 0.88 0.80 0.77 0.77 0.93 0.87 1.01 0.94 0.96 1.00 0.95 1.02 0.97

2.72 2.23 1.59 1.62 1.39 1.50 1.68 1.51 1.36 1.38 1.36 1.41 1.24 1.40 1.24 2.71 1.14 1.27 1.30 1.25 1.13 1.15 1.16 1.04 1.07 0.89 0.95 0.87

0.81 1.05 0.96 0.79 0.74 0.75 0.72 0.89 0.89 0.91 0.92 0.91 0.98 1.07 0.98 0.91 1.00 0.96 0.98 0.91 0.79 0.76 0.92 0.94 1.03 1.50 1.23 1.28

1.22 1.05 0.97 0.94 1.03 1.02 1.09 1.11 1.11 1.10 1.09 1.09 1.10 1.10 1.10 1.10 1.08 1.09 1.02 1.06 1.05 1.02 1.06 1.05 1.05 1.01 0.94 1.00

1.94 2.24 2.64 2.73 2.58 2.81 1.54 1.42 1.48 1.46 1.47 1.64 1.55 1.44 1.46 1.44 1.49 1.55 1.43 1.46 1.39 1.59 1.51 1.44 1.34 1.30 1.41 2.10

1.09 0.76 0.66 0.62 0.74 0.72 0.90 0.95 0.94 0.97 0.98 1.02 1.03 1.05 1.04 1.06 1.04 1.01 1.03 1.02 1.01 1.03 1.02 0.98 0.99 1.01 1.11 1.32

NFN-Map for Qwen2.5-Coder-1.5B-Instruct (Code)

0.5

1.0

1.5

2.0

2.5

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

Figure 12: NFN scores for Qwen2.5-1.5B-Coder

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.7.5 GEMMA3-1B-INSTRUCT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Layer Index

attn.k_proj
attn.o_proj
attn.q_proj
attn.v_proj

mlp.down
mlp.gate

mlp.up

M
od

ul
e

Ty
pe

1.17 1.13 1.04 1.18 1.62 1.06 1.41 0.93 1.02 1.21 1.01 1.01 1.12 1.14 1.05 1.03 1.03 0.85 1.08 1.06 1.11 1.13 1.36 0.81 1.15 1.39

1.76 1.61 1.74 2.23 1.39 2.03 1.35 1.31 1.02 0.96 1.21 1.90 1.09 2.01 1.12 1.08 1.27 2.31 1.38 2.08 1.72 2.32 2.28 1.59 1.85 1.93

1.60 1.60 1.17 1.36 1.58 1.13 1.40 1.29 1.56 1.32 1.02 1.77 1.33 1.29 1.19 1.19 1.11 1.09 1.10 1.14 1.21 1.22 1.30 1.18 1.26 1.20

0.81 0.80 0.67 0.88 0.92 0.61 0.82 0.68 0.81 0.75 0.72 0.81 0.68 0.60 0.65 0.56 0.60 0.73 0.66 0.61 0.63 0.61 0.63 0.46 0.59 0.69

1.34 1.84 1.65 1.58 1.40 1.28 1.28 1.27 1.17 1.13 1.09 1.22 1.24 1.40 1.37 1.33 1.38 1.53 1.64 1.66 1.60 1.75 1.36 1.38 1.95 1.30

1.21 1.44 1.54 1.31 1.53 1.48 1.40 1.37 1.33 1.32 1.20 1.32 1.33 1.33 1.30 1.35 1.48 1.42 1.41 1.34 1.29 1.29 1.35 1.30 1.33 1.25

0.78 0.83 0.74 0.83 0.91 0.90 0.85 0.90 0.94 0.91 0.91 0.92 0.91 0.91 0.89 0.88 0.83 0.91 0.93 0.94 0.94 0.95 0.99 1.00 1.04 0.98

NFN-Map for Gemma-3-1B-Instruct (Math)

0.5

1.0

1.5

2.0

q_proj
k_proj

v_proj
o_proj

gate_proj

down_proj
up_proj

0.0

0.5

1.0

1.5

2.0

Al
ig

nm
en

t R
at

io
 (N

FN
)

Alignement by Module Type

random
math
logic
history
code

Figure 13: NFN scores for Gemma3-1B-Instruct

25

	Introduction
	Related Work

	Feature Norms capture Module-Data Alignment
	PLoP: Finetuning Module Types with the Lowest Alignment
	Experiments
	Supervised Finetuning for Classification
	Supervised Finetuning for Text Generation
	Reinforcement Learning for Mathematical Reasoning

	Discussion and Limitations
	Theoretical Analysis of Module-Data Alignment
	Evolution of Feature Norms

	Additional theoretical details
	Infinite-width analysis and muP

	Proof of Theorem 1
	Constant loss derivative sign in the initial training stage
	Proof of Theorem 1

	Additional Experimental Details
	Experimental Setup for the linear network
	Experimental Setup for SFT (Classification)
	Experimental Setup for SFT (Text Generation)
	Experimental Setup for GRPO
	Additional Empirical Results
	GRPO results for Gemma3
	Additional NFN-Maps
	Qwen3-1.7B-Instruct
	Qwen2.5-3B-Instruct
	Qwen2.5-1.5B-Instruct
	Qwen2.5-1.5B-Coder-Instruct
	Gemma3-1B-Instruct

