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ABSTRACT

Low-Rank Adaptation is a widely used finetuning method for large models. Its
small memory footprint allows practitioners to adapt large models to specific tasks
at a fraction of the cost of full finetuning. Different modifications have been
proposed to enhance its efficiency by, for example, setting the learning rate, the
rank, and the initialization. Another improvement axis is adapter placement strat-
egy: when using LoRA, practitioners usually pick module types to adapt with
LoRA, such as Query and Key modules. Few works have studied the problem of
adapter placement, with nonconclusive results: original LoRA paper suggested
placing adapters in attention modules, while other works suggested placing them
in the MLP modules. Through an intuitive theoretical analysis, we introduce
PLoP (Precise LoRA Placement), a lightweight method that allows automatic
identification of module types where LoRA adapters should be placed, given a
pretrained model and a finetuning task. We demonstrate that PLoP consistently
outperforms, and in the worst case competes, with commonly used placement
strategies through comprehensive experiments on supervised finetuning and rein-
forcement learning for reasoning.

1 INTRODUCTION

Low-Rank Adaptation (LoRA, Hu et al. (2022)) is a widely used parameter-efficient fine-tuning
(PEFT) methods for large language and vision models. LoRA significantly reduces the computational
and memory requirements of finetuning by freezing the pretrained model weights and inserting
low-rank matrices into the model. This approach has enabled the adaptation of production-scale
models on limited hardware resources while achieving performance comparable to full finetuning.

LoRA improvements. Several works have considered improving LoRA performance by e.g. using
different learning rates for LoRA modules (Hayou et al., 2024a), using normalized updates (Liu et al.,
2024), setting adaptive LoRA rank (Kim et al., 2024; Lu et al., 2025), improving initialization (Hayou
et al., 2024b), and many other variants, e.g. (Zhang et al., 2023a; Dettmers et al., 2023; Kopiczko
et al., 2024; Zhang et al., 2023b; Tian et al., 2024; Jiang et al., 2024).

A critical aspect of LoRA is module selection - deciding which specific components of the model
should receive the low-rank adaptation. In practice, instead of selecting individual modules, one
selects module types such as “q_proj” (Query modules), “v_proj” (Value modules), etc. In Hu et al.
(2022), the authors suggested that inserting LoRA in attention modules (Query, Key, and Value)
generally yields the best performance among other possible placements. However, in a recent note
(Fomenko et al., 2024), the same authors further explained the difficulty encountered in LoRA adapter
placement, and mentioned that optimal placement depends on pretrained model and the finetuning
task. Another work He et al. (2021) found that for some models, placing LoRA adapters in MLP
modules gives better performance. Faced with this confusion, practitioners generally follow one of
these guidelines or insert LoRA adapters in all modules which comes at a higher finetuning cost.
Therefore, it is natural to ask:

Given a model and a task, how can we select target module types for LoRA at a reasonable cost?

Memory footprint of LoRA. In practice, LoRA is used to finetune large models with relatively
low cost. Consider Llama3.2-3B (Llama-Team, 2024), processing sequences of 2048 tokens with a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inputs
1) Model & module types 

 

2) Subset from Task

Calculate  
(module-task alignement score)

Low score indicates more potential for adaptation

Q K V U G DO

Rank & Insert  

Insert Adapters in Low Scores
(U,G in this case)

Q K
V O

U G D

Figure 1: Mechanism of PLoP. We calculate alignment scores called NFN (Normalized Feature Norms), rank
them, and pick module types with the lowest alignment scores for LoRA insertion.

batch size of 8. With full finetuning, the memory requirements are substantial. The model parameters
require 12GB in float32, while the Adam optimizer states add another 24GB. The activations for
a single forward pass consume approximately 48GB of memory. This brings the total memory
requirement to approximately 84GB necessitating high-end GPUs. This becomes more problematic
with larger, production-scale models. With LoRA, the computational cost changes dramatically.
Using rank-16 adapters on query and value modules introduces only 10 million trainable parameters
(0.33% of the model). Notably, since gradients are only computed for the adapter weights, the
memory overhead for gradient computation is reduced by over 99%. This enables finetuning on a
single 24GB GPU with the same batch size and sequence length. These low memory footprint is
what makes LoRA attractive for finetuning.

Anatomy of a practical module selection method for LoRA finetuning. Based on the com-
putational constraints outlined above, any practical module selection method for LoRA adapter
placement must operate within these resource limitations. We identify three main pillars of a practical
method: (i) the method cannot require computing gradients with respect to the full model parame-
ters, as this would defeat the primary purpose of using LoRA, (ii) the selection process should not
necessitate multiple forward passes through different model configurations, as this would multiply
the already significant activation memory requirements by the number of candidate configurations
being evaluated, (iii) the method must avoid storing large intermediate computations or maintaining
extensive state across different module evaluations, which would further strain memory resources.
Only methods satisfying these stringent requirements can truly serve practitioners operating in the
resource-constrained environments where LoRA provides its greatest value.

In this paper, we introduce PLoP (Precise LoRA Placement), a lightweight module placement
method for LoRA based on a specific measure of module-data alignment that can be calculated
with few forward passes (no gradients, no extensive forward passes, and no storage of intermediate
calculations), and therefore, it checks all the three points above (see the compute cost paragraph
in Section 3 for more details). The mechanism of PLoP is described in Fig. 1. Specifically, our
contributions are as follows:

1. We develop a theoretical framework to study module-data alignment in large neural networks,
the core concept behind PLoP.

2. Based on our theoretical analysis of module-data alignment, we develop PLoP, which
identifies which module types should be used for LoRA finetuning.

3. We validate our results with extensive experiments showing the benefits of PLoP with
LoRA in three post-training scenarios: supervised finetuning for classification, supervised
finetuning for text generation, and reinforcement learning for mathematical reasoning.

The paper is structured as follows: In Section 2, we introduce the main theoretical intuition behind
our method. In Section 3, we present our method PLoP and provide a quantitative and qualitative
analysis of our method. In Section 4, we report empirical results showing the benefit of PLoP in two
post-training scenarios: supervised finetuning and reinforcement learning.

1.1 RELATED WORK

The effectiveness of LoRA critically depends on the placement of adapter modules. Initially, Hu
et al. (2022) studied the placement of adapters in attention modules, observing strong performance in
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various NLP tasks. He et al. (2021) showed that adapters placed in MLP modules can sometimes
outperform attention-based placements. Fomenko et al. (2024) mentioned that optimal adapter
placement varies significantly depending on the pretrained model architecture and the downstream
task. The authors recommended the following general strategy for adapter placement: start with
attention layers, then embeddings, then MLP blocks, and if further capacity is required, raise the
LoRA rank. In machine translation, Gheini et al. (2021) found that tuning exclusively cross-attention
parameters could achieve performance comparable to full-model tuning.

More adaptive approaches include sensitivity-based parameter selection methods. Zhang et al. (2024)
proposed a gradient-based scoring approach that ranks parameters according to their importance to the
task, tuning only the highest scoring subset. Similarly, He et al. (2023) developed a sensitivity-aware
fine-tuning technique for vision models that dynamically assigns tunable parameters to layers based
on local responsiveness. However, such methods require calculating and storing gradients of the full
model which is suboptimal for LoRA finetuning (see discussion above). Another variant of LoRA
Zhang et al. (2023a) introduces modifications to the adapter structure to adaptively distribute capacity
between modules. However, our focus in this paper is on module type selection for LoRA. In our
experiments, we compare with two baselines: Insertion in attention modules as recommended by Hu
et al. (2022), and Insertion in MLP modules as recommended by He et al. (2021).

Finally, our method is based on a module-data alignment score. Several alignment scores exist in the
literature. For instance, Baratin et al. (2021) introduced the centered tangent kernel alignment as a
measure of how well aligned each layer is with the task, and Lou et al. (2022) provided a theoretical
analysis of such alignment. He et al. (2024) studied the emergence of large feature norms in the
network as a result of different training configurations. Our work introduces a new alignment metric
based on feature norms.

2 FEATURE NORMS CAPTURE MODULE-DATA ALIGNMENT

We provide an intuitive theoretical analysis that shows how feature norms capture information about
module-data alignment. Consider a general neural network of the form

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Yin(x) =Winx,

Yl(x) = Fl(Wl, Yl−1(x)), l ∈ [L],
Yout(x) =WoutYL(x),

(1)

where x ∈ Rd is the input, L ≥ 1 is the network depth, (Fl)l∈[L] are mappings that define the layers,
Wl ∈ Rn×n are the hidden weights, where n is the network width, and Win,Wout are input and output
embedding weights.

Module-Data Alignment. Fix a training sample x. To understand how modules align with the the
training sample x, we track how hidden features change as we train the model on the singleton {x}.
For the sake of simplification, we consider the case where only a single module W is trained and
other modules are frozen. The trainable module has the form

zout =Wzin,

where zin ∈ Rn is the input, and zout ∈ Rn is the output that we call feature, both evaluated at the
training sample x.1 For Transformer models, the module can be for instance a single Query head, a
Projection module in some MLP, etc. The gradient of the loss with respect to the weight matrix W is
given by dW = dzout ⊗ zin, where dzout = ∇zoutℓ, the gradient of the loss ℓ with respect to feature
zout, evaluated for the sample x. The weights are updated with Adam (Kingma and Ba, 2017), which
normalizes gradients. Considering the momentum-less version of Adam,2 feature updates are given
by

Wt+1zin =Wtzin − α × S(dz
t
out ⊗ zin)zin

=Wtzin − α × ∥zin∥1 S(dz
t
out),

(2)

1Here we consider that zin and zout have the same dimension n. However, our analysis can be extended to
the case where they have different dimensions.

2This is also known as SignSGD Bernstein et al. (2018), a simplification of Adam used for theoretical
analysis. see Appendix for more details.
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where the superscript in ztout =Wtzin refers to update step t,3, and S refers to the sign function (+1
for positive, −1 for negative). In Eq. (5), we used the fact that sign function S(.) can be expanded
across outer product. This is one of the main observations behind the development of µP (Yang and
Hu, 2022), which sets scaling exponents for initialization and learning rate with respect to model
width n. We follow µP parametrization of the learning rate and set α = ηn−1 for some constant η > 0
(see Appendix B for more details about the mechanisms of µP). This yields

n−1∥Wt+1zin∥22 = n
−1
∥Wtzin∥

2
2 + η

2n−2∥zin∥21 − 2ηn
−1
∥zin∥1 × n

−1
⟨Wtzin,S(dz

t
out)⟩.

The term n−1⟨Wtzin,S(dz
t
out)⟩ measures the alignment between the features ztout = Wtzin and

the “signed” gradients S(dzout). When these two terms are uncorrelated (e.g. at the initial training
stages), we have

⟨Wtzin,S(dzout)⟩ ≈ O(n
1/2
), (3)

which yields

n−1∥Wt+1zin∥22 ≈ n
−1
∥Wtzin∥

2
2 + α

2n−2∥zin∥21 +O(n
−1/2
).

Since α2n−2∥zin∥21 is positive and does not vanish asymptotically (because ∥zin∥1 is of size n),
then the feature norm n−1∥Wtzin∥

2
2 increase as training progresses. An in-depth analysis of this

phenomenon is provided in Appendix A.
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Figure 2: Evolution of feature
norms during training for the
linear network described in Ap-
pendix A.1. We train the model
for 300 steps with Adam. Feature
norms for different layers exhibit
differential growth patterns as we
train the model. We shifted the
curves corresponding to different
layers for better visualization.

The increase in feature norms indicate increased alignment be-
tween W and zin. To verify this phenomenon in a controlled set-
ting, we consider a three layers linear neural network given by
f(x) = W2W1W0x, where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and
W2 ∈ R1×n. The training data consist of N = 1000 datapoints
of dimension d generated from a linear model y = ω⊺x + ε with
ε ∼ N(0,0.025), ωi ∼ d

−1N(0,1), and x are generated randomly
as standard Gaussian random variables. We use n = d = 100 in our
experiments and train the model with Adam. See Appendix D for
more details and results.

Figure 8 shows the increasing alignment pattern as measured by
feature norms for the three layers as we train the model. We include
a baseline with no alignment (dashed lines) which shows the norms
∥Wz̃in∥ where z̃in is a random Gaussian vector with iid coordinates,
normalized such that ∥z̃in∥ = ∥zin∥. The baseline does not show
any significant growth over the course of the training which further
confirms that feature norms grow as a result of increasing alignment
between module weights and module inputs.

Different alignment levels for different modules. Although we
use the same learning rate for all modules, feature norms in the
second layer (n−1∥W2zin2∥

2) grow much more significantly than
those in the input layer (n−1∥W0zin0∥

2). This indicates different
alignment levels for each module. Such varying alignment patterns between layers has been discussed
in Nam et al. (2024) for a different alignment metric.

Different alignment levels for different inputs/tasks. In Fig. 8, we report feature norms during
training for the actual training inputs ∥Wzin∥. When evaluating feature norms ∥Wz′in∥ for an out-of-
distribution input x′, the resulting alignment depends on how similar is x′ to the training samples.
The extreme case where x′ is very different from the training samples should result in low to no
alignment, as in the random baseline ∥Wz̃in∥. We provide a more in-depth analysis of this behavior
in Appendix B.

This analysis suggest that feature norms can be used to measure module-data alignment in LLMs. In
the next section, we refine this notion of alignment and use it to create a method for module type
selection for LoRA finetuning.

3Note that we do not use such superscript for zin since it does not change when we update W .
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Figure 3: NFN-map for LLama-3.2-1B-Instruct on Math dataset (GSM8K). See Appendix D for NFN-maps of
other models.

3 PLOP: FINETUNING MODULE TYPES WITH THE LOWEST ALIGNMENT

Given a pretrained model and a finetuning dataset D, we compute feature norms for all modules on
the task D by averaging across a subset of D. This captures module-data alignment as detailed in the
previous section. Our methodology in based on the following intuition: The modules with the lowest
alignment levels have more potential for adaptation, and therefore should be prioritized in finetuning.

We normalize feature norm by a baseline feature norm (with randomized inputs) and use that as
a metric for alignment. See the discussion after Definition 1 for an intuitive explanation of this
normalization.

Definition 1 (Normalized Feature Norm (NFN)). Given a pretrained model, a module with weight
W in this model, and an input x, we define the Normalized Feature Norm as

NFN(W,x) =
∥Wzin(x)∥

∥Wz̃in(x)∥
,

where z̃in(x) is a vector of the same dimension and norm of zin(x), with i.i.d coordinates distributed
as centered Gaussian random variables.

By incorporating the random baseline ∥Wz̃in(x)∥, NFN score removes the dependence on the norm
of zin and the matrix norm of W . The intuition is simple: with z̃in, we should not expect any
alignment with W , and therefore that should act as baseline score. For the NFN scores, when the
module is well aligned with the data, we expect to see scores NFN> 1, while the NFN score should
be ≈ 1 when alignment is not significant.

Under some assumptions on W and zin, we can prove that when the width is large enough, the
NFN score can be approximated by NFN(W,x) ≈ ∥ Wzin(x)

∥W ∥F ∥zin(x)∥∥ where ∥W ∥F =
√

∑ij W
2
ij is the

Frobenius norm of W . This approximation shows that dividing by ∥Wz̃in∥ essentially normalizes W
and zin.

From this analysis and the intuition above, we introduce PLoP, a method that leverages NFN scores
to identify which modules should be prioritized for LoRA finetuning. Our method is described below.

PLoP – Module Type Selection

Inputs: ModelM, Finetuning dataset D.
Step1 (Scores): For each model type T ∈ {Query, Key, Value, OutProj, GateProj, UpProj, DownProj},
compute average NFN score across W ∈ T and x ∈ D.
Step2 (Insertion): Insert LoRA in module types with the lowest NFN scores.

As stated above, PLoP is based on the hypothesis that modules with the lowest alignment have higher
potential for adaptation, and thus should be targeted in finetuning.

5
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(c) Llama3.2-3B-Instruct
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Figure 4: NFN scores aggregated by module type for different models. The scores are for different datasets
(math, code, history, and logic).

For ablation analysis, we also experiment with the reverse PLoP method where instead of choosing
module types with the lowest scores, we choose the ones with the highest scores. We call this method
PLoP−1 and we evaluate its performance in Section 4.

Figure 3 and Fig. 4 show NFN scores for for different models and 4 tasks: math (GSM8K, Cobbe
et al. (2021)), code (HumanEval, Chen et al. (2021)), history (MMLU high school european history,
Hendrycks et al. (2021)), and logic (MMLU logical fallacies). The NFN-map in Fig. 3 provides the
most granular level of scoring and shows the NFN scores by module. We can see that key and query
attention modules are most aligned with the task in this case, while MLP modules are less aligned,
suggesting the need for adaptation in those modules. To see this by module type, we aggregate by
averaging over all modules of the same type (step 2 in PLoP) and show the results in the Fig. 4 for
different models. We observe significant variability of NFN scores across models, module types,
and datasets. For Llama3.2-1B, module types with the highest scores (Query, Key) average around
2-3X the baseline (≈ 1), and the lowest scores (Value, Gate, Down, Up) hovering around the baseline
score of 1. In this case, PLoP indicates that adaptation should be focused on the (value, gate, down,
up) modules rather than the attention query and key matrices. Note that this coincides with the
recommendation of empirical work by He et al. (2021) for Llama models but is contradictory to the
recommendations of Hu et al. (2022) to finetune mainly attention modules.

Qwen3-1.7B shows high alignment in Query, Key, and Gate modules, with lower alignment for other
MLP modules, and a low alignment for the Value module (≈ 0.75). This indicates the Value modules
in Qwen3-1.7 are “negatively” aligned with all datasets, suggesting that inputs to the Value modules
are aligned with the smallest singular directions of the Value weight matrices. The same pattern can
be observed in Gemma3-1B, and we currently do not have an explanation for this phenomenon. In
Appendix D, we provide additional NFN scores for Qwen, Gemma, and Llama models.

NFN scores are task-sensitive. The alignment scores differ between tasks. For instance, model
weights show larger alignment with history compared to math, suggesting that their training data
consisted more of sequences similar to general natural language than math related tokens, which
is expected. However, note that all tasks share some “base” alignment level given by the general

6
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Figure 5: Module types NFN scores for general and specialized Qwen2.5 models. Specialized models (math,
code) are finetuned on task-specific data. Scores are higher with the specialized models.

magnitude of the NFN score for each module type. This is a more fundamental phenomenon that
is independent of the task, and is related to some basic level of feature learning that is required for
token processing. 4

NFN scores consistent across different model sizes. In Fig. 4 (a) and (c), we show NFN scores
for two model sizes of Llama3.2, 1B and 3B. The ranking of module types based on NFN scores
is roughly the same for both models, suggesting consistency of NFN scores across different model
sizes. Intuitively, having similar NFN score patterns suggests similar pretraining and post-training
processes for these models, which is expected for models of the same family (Llama3.2 in this case).

Specialized models show higher NFN scores. In Fig. 5, we compare NFN scores for instruction-
tuned and more specialized version of the same model Qwen2.5-1.5B for math/code tasks. As
expected, the specialized models show higher NFN scores overall which further confirms that NFN
scores, while cheap to calculate, can be a reliable metric for module-data alignment.

Compute cost of PLoP. To obtain the results in Fig. 3, we used a single forward pass with
batch size 200, with a maximum sequence length of 256. NFN scores are calculated using the
register_hook functionality of PyTorch. In summary, the computational cost of our method
is roughly the same as a single batch forward pass, which makes it especially relevant in resource-
constrained environments where LoRA is most useful.

In the next section, we run extensive experiments to show that PLoP consistently enhances final
performance at virtually no additional cost.

4 EXPERIMENTS

We consider three post-training scenarios: Supervised Finetuning for sentence classification, Super-
vised Finetuning for text generation, and Reinforcement Learning (GRPO, Shao et al. (2024)), all
with LoRA adapters. We report results with Llama (Llama-Team, 2024), Qwen (Qwen Team, 2025),
and Gemma (Team, 2025) models across different sizes. Our experiments are as follows:

1. SFT for classification: we finetune classifers on ANLI (Nie et al., 2020).
2. SFT for text generation: we train on MetaMathQA (Yu et al., 2023) and evaluate the results

on GSM8K (Cobbe et al., 2021).
3. RL: we RL-tune on MetaMathQA using GRPO and evaluate on GSM8K.

We investigate the effect of different module placement strategies: our method PLoP(placing LoRA
in module types with the lowest NFN scores), PLoP−1 (the inverse of our method, i.e. placing LoRA
modules types with the highest NFN scores), Attn (inserting LoRA only in attention modules), MLP
(inserting LoRA only in MLP modules), and ALL (inserting LoRA in all module types).

4The mechanisms of feature learning in deep neural networks are still largely misunderstood. Quantitative
approaches such as Nam et al. (2024) offer some insights, but are far from being comprehensive.
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Figure 6: LoRA finetuning on ANLI
for different models. We use LoRA
rank r = 8 for MLP strategy and adapt
r for PLoP and Attn to match number
of parameters for fair comparison. All
curves are smoothened with EMA(α =
0.8) for better visualization. See Ap-
pendix D.3 for more details about the
experimental setup.

Hereafter, we use the following letters to denote specific mod-
ules: Q (Query), K (Key), V (Value), O (Out projection), U (Up
projection), G (Gate projection), and D (Down projection). All
module type NFN scores and experimental details are provided
in Appendix D.

4.1 SUPERVISED FINETUNING FOR CLASSIFICATION

The Adversarial Natural Language Inference (ANLI) is a lan-
guage classification task that is more challenging compared
to similar tasks (e.g. MNLI). Using LoRA with different
placement strategies, we finetune pretrained models on ANLI
and report results in Fig. 6. For Qwen2.5-0.5B and Qwen3-
Embedding-8B, we observe a significant difference in perfor-
mance between PLoP and other strategies. For Llama3.2-1B,
PLoP and MLP yield roughly the same performance, while
Attn is significantly worse. Note that for the Llama model, the
MLP modules have small NFN scores, comparable to scores
of modules selected by PLoP(V-O-D, see Fig. 4), which could
explain why we obtain similar performance with both methods.

4.2 SUPERVISED FINETUNING FOR TEXT GENERATION

Supervised finetuning plays an important role in improving
model abilities such as mathematics, coding, and instruction
following. Often, finetuning data is high-quality and specifi-
cally curated to provide dense signal for the model to acquire
specific desirable skills. For challenging tasks such as math-
ematical reasoning, it is often used to “prime” the model for
subsequent RL-based finetuning.

We perform SFT on the MetaMathQA dataset Yu et al. (2023).
To evaluate the performance we measure the accuracy on the
GSM8k benchmark Cobbe et al. (2021). For a training configuration with LoRA rank r we set LoRA
α = 2r and optimize using Adam. For each adapter placement we sweep over the learning rate in
{1,2,3,4,5}×10−4 and report the results with the best accuracy. We provide additional experimental
details regarding the training and evaluation configuration in Appendix D.3.

MetaMathQA → GSM8k

Table 1: Qwen3-0.6B

Module Types #Params
(M)

Train
Loss

Eval Acc

PLoP(D–U–V) (r = 76) 21.8 0.118 63.8%
PLoP(D–U–V) (r = 64) 18.4 0.116 62.0%
PLoP−1(G–K–Q) (r = 64) 16.5 0.119 60.6%
MLP(D–G–U) (r = 64) 22.0 0.119 63.3%
Attn(K–Q–V) (r = 64) 12.8 0.130 58.6%
all (r = 64) 40.4 0.113 62.4%

Table 2: Qwen3-1.7B

Module Types #Params
(M)

Train
Loss

Eval Acc

PLoP(D–O–V) (r = 102) 43.9 0.109 75.4%
PLoP(D–O–V) (r = 64) 27.5 0.111 75.2%
PLoP−1(G–K–Q) (r = 64) 27.5 0.113 74.6%
MLP(D–G–U) (r = 64) 44.0 0.108 75.0%
Attn(K–Q–V) (r = 64) 18.4 0.119 69.5%
all (r = 64) 69.7 0.105 73.9%

We finetune Qwen3 models with 0.6B and 1.7B parameters. The results are shown in Tables 1 and 2
respectively. In both cases, the placement of adapters in only the attention layers is clearly suboptimal,
demonstrating that for challenging tasks such as mathematics, adapting only the attention layers has
limited effect. We see that the most competitive placements for both model sizes is to place adapters
according to PLoP or in the MLP layers, even outperforming the placement of adapters in all layers
which requires between 1.5-1.8× the number of trainable parameters. When adjusting for an equal
number of trainable parameters, PLoP produces the best results with a slight edge over the MLP
placement. For the 1.7B parameter model PLoP has a small edge over the MLP placement even with
about 60% the number of parameters.
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4.3 REINFORCEMENT LEARNING FOR MATHEMATICAL REASONING

Reinforcement Learning has emerged as a promising approach for test-time scaling. Algorithms such
as GRPO incentivize the model to follow a pattern of “thinking” before providing the final answer.
This implicit approach to reasoning (versus the more explicit approaches such as MCTs (Xie et al.,
2024)) showed very promising results, especially with the impressive performance of DeepSeek-R1
(DeepSeek-AI, 2025). In this section, we experimented with “GRPO on a budget” using LoRA
adapters (instead of training the full weights) to enhance mathematical reasoning. We select 3 module
types for LoRA adapter placement using the strategies stated above. We compare both RL rewards
(columns Rwd/Format and Rwd/Answer) and Evals (GSM8K 8shots prompting Pass@1). Note that
because LoRA is a lightweight finetuning method, it would not be sufficient to induce reasoning in
base models with GRPO, especially with a small rank r. For this purpose, we apply GRPO with
LoRA to instruction-tuned models instead of base models. For more implementation details, see
Appendix D.

Table 3: GRPO results for Qwen3-1.7B trained on MetaMathQA.

Module Types #Params (M) Rwd/Format Rwd/Answer Eval/GSM8K

No RL – – – 65.50%
Attn(Q-K-V) (r = 16) 4.58 1.89 0.91 71.49%
Attn(Q-K-V) (r = 25) 7.17 1.97 0.98 72.13%
MLP(U-G-D) (r = 16) 11.01 2.57 1.28 73.61%
PLoP−1(Q-K-G) (r = 16) 6.88 1.71 0.86 71.41%
PLoP(V-O-D) (r = 16) 6.88 2.67 1.32 74.52%
PLoP(V-O-D) (r = 25) 10.75 2.75 1.32 75.03%

With GRPO, we define the think-then-answer pattern in similar way to DeepSeek-R1. The model is
rewarded for placing the thinking process in between <think> and </think>, and then giving
the answer in between <solution> and </solution>. This is encoded in the format reward
function (Rwd/Format). The correctness of the solution is rewarded as well (Rwd/Answer). We track
this reward as we train the model with GRPO and show the final results (at convergence).

Table 3 shows the results of GRPO with the Qwen3-1.7B trained on MetaMathQA. PLoP yields
better performance overall both in training rewards and evaluation (GSM8K). Compared to Attn,
PLoP performs better even when matching the number of trainable parameters (Attn(r = 25) vs
PLoP(r = 16)). Interestingly, PLoP performs better than MLP placement strategy even when using
the same rank r = 16, in which case we have 6.88M trainable parameters with PLoP and 11.01M
parameters with MLP. For the same number of parameters, the performance is further improved with
PLoP(r = 25).

We experimented with Gemma3-1B as well, and found that PLoP outperforms other alternatives,
although the score on GSM8K is low due the inherent limitations of Gemma3-1B in mathematical
reasoning. See Appendix D for more details.

5 DISCUSSION AND LIMITATIONS

We introduced PLoP, an intuitive module type selection method, designed specifically for LoRA
fine-tuning and based on NFN scores – a notion of module-data alignment supported by an intuitive
theoretical analysis. PLoP meets the computational criteria needed for efficient LoRA finetuning as
articulated in the introduction: PLoP’s lightweight nature makes it particularly valuable in resource-
constrained environments where LoRA is most beneficial. PLoP is based on the NFN-map, which
enables more granular selection beyond module types. However, we deliberately focused on module
type selection as it represents the most widely adopted aggregation approach among practitioners,
avoiding the additional implementation complexities of more fine-grained selection. While we
explored using PLoP for layer-level selection by inserting LoRA into target layers with low NFN
scores, we encountered inconsistent results and have reserved this question for future research.
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A THEORETICAL ANALYSIS OF MODULE-DATA ALIGNMENT

Given a pretrained model and a finetuning task, our goal is to strategically place LoRA adapters
in modules that would contribute most significantly to performance. In practice, we usually select
module types instead of single weight matrices. For instance, for Llama3 models, we might choose
to insert LoRA in Query (“q_proj") and Key (“k_proj") modules.

As we discussed in Section 1, for such a method to be useful, it should first be a lightweight
method that operates efficiently in resource-constrained environments and ideally rely on existing
computation pipelines. Ideally, the method should rely exclusively on standard forward propagation,
as this computational pipeline is already necessary for inference and adds no significant overhead to
the existing workflow.

This section provide a more in-depth theoretical analysis, complementing that of Section 2.
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model and training.

Mechanisms behind the growth in feature norms. The reason
behind the growth in feature norms for certain modules is non-trivial.
The naive explanation to this phenomenon is that with training,
weight norms grow for some modules and remain constant constant
or decrease for others. However, as we will see in the next analysis,
the mechanisms behind this phenomenon are more subtle, and the
most important factor is a form of alignment that occurs between
module weight and its input.

Specifically, we show that this growth in feature norms in some
modules appears primarily as a result of two factors: 1) large-width
in neural networks (large embedding dimension), a condition that
is generally satisfied in practice, 5, and 2) progressive alignment of
modules weights with their respective inputs.

Consider a general neural network of the form

Yin(x) =Winx,

Yl(x) = Fl(Wl, Yl−1(x)), l ∈ [L],
Yout(x) =WoutYL(x),

(4)

where x ∈ Rd is the input, L ≥ 1 is the network depth, (Fl)l∈[L] are mappings that define the layers,
Wl ∈ Rn×n are the hidden weights, where n is the network width, and Win,Wout are input and output
embedding weights.

Model (4) is pretrained on some data mixture D to minimize some loss function ℓ – the next-token
prediction loss in the case of language models. We introduce some notation that will facilitate the
presentation of our analysis.

Notation. Hereafter, n will always denote model width. As n grows, given sequences cn ∈ R and
dn ∈ R+, we write cn = O(dn) to refer to cn < κdn for some constant κ > 0. We write cn = Θ(dn) if
we have κ1dn ≤ cn ≤ κ2dn for some κ1, κ2 > 0. For vector sequences cn = (cin)1≤i≤k ∈ Rk (for some
k > 0), we write cn = O(dn) when cin = O(d

i
n) for all i ∈ [k], and same holds for other asymptotic

notation. Finally, when the sequence cn is a vector of random variables, asymptotics are defined in
the sense of the second moment (L2 norm). For a vector z ∈ Rn, we will use the following norms:
∥z∥ = (∑

n
i=1 z

2
i )

1/2
(euclidean norm), and ∥z∥1 = ∑n

i=1 ∣zi∣ (ℓ1 norm).

Intuitive theoretical analysis. For the sake of tractability, we consider the case where a single
weight matrix (module) in the model is trained and other modules are frozen. 6 We further simplify

5From the literature on infinite-width theory, when we take the width to infinity, the training dynamics
converge with a rate of roughly O(n−1/2) (Yang and Hu, 2022). In practice, a width of n ⪆ 103 is generally
considered large enough for the theoretical predictions to be a good approximation of practice.

6While this is unrealistic, it provides the right intuition behind our methodology, and makes the analysis
more tractable.
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the analysis by assuming that the model is trained in a single datapoint x. We later discuss the impact
of batch training. The trainable module has the form

zout =Wzin,

where zin ∈ Rn is the input, and zout ∈ Rn is the output that we call feature, both evaluated at the
training datapoint x.7 For Transformer models, the module can be for instance a single Query head, a
Projection module in some MLP, etc.

The gradient of the loss with respect to the weight matrix W is given by

dW = dzout ⊗ zin,

where dzout = ∇zoutℓ, the gradient of the loss with respect to feature zout.

In general, modern LLMs are trained with Adam (Kingma and Ba, 2017), which normalizes gradients.
In its momentum-less form, Adam becomes SignSGD (Bernstein et al., 2018), which is defined by
S(dWij) = +1 if dWij ≥ 0, otherwise −1. SignSGD is a nice simplification of Adam: it captures the
property of normalization and allows tractable the theoretical analysis as we will see below. With
SignSGD, feature updates8 are given by

Wt+1zin =Wtzin − α × S(dzout ⊗ zin)zin

=Wtzin − α × ∥zin∥1 S(dz
t
out),

(5)

where the superscript in ztout =Wtzin refers to update step t. Note that we do not use such superscript
for zin since it does not change when we update W .

The key trick used in Eq. (5) is that the sign function S(.) can be expanded across outer product.
This is one of the main observations behind the development of µP (Yang and Hu, 2022), which sets
scaling exponents for initialization and learning rate with respect to model width n. Under µP, all
weights in the model are initialized to have roughly 1/

√
n magnitude (or more precisely 1/

√
fan_in),

which implies that features zout and their inputs zin to have Θn(1) norm at initialization (i.e.
n−1∥zin∥1 = Θn(1)).

Eq. (5) describes the evolution of features zout as we update weights W . Ideally, we want both
stability (Wtzin does not grow in magnitude with n) and non-triviality (Wtzin does not converge to
0 with n). These conditions are both satisfied when Wt+1zin −Wtzin = Θn(1) element-wise, which
implies that the learning rate should scale as α = ηn−1 for some constant η > 0, to compensate the
growth in ∥zin∥1, which is exactly the µP scaling rule for the learning rate. See Appendix B below
for more details about the mechanisms of µP. With this parametrization of the learning rate, we obtain

∥Wt+1zin∥22 = ∥Wtzin∥
2
2 + η

2n−1∥zin∥21 − 2ηn
−1
∥zin∥1 × ⟨Wtzin,S(dz

t
out)⟩.

We can normalize by n so terms on both sides have Θn(1) magnitude in width n,

n−1∥Wt+1zin∥22 = n
−1
∥Wtzin∥

2
2 + η

2n−2∥zin∥21 − 2ηn
−1
∥zin∥1 × n

−1
⟨Wtzin,S(dz

t
out)⟩.

The term n−1⟨Wtzin,S(dz
t
out)⟩ measures the alignment between the features ztout =Wtzin and the

“signed” gradients S(dzout). Intuitively, at the initial training stages, these two terms are roughly
independent (as random variables) because of the randomness from the initialization weights. As a
result, in those initial training stages, we have

⟨Wtzin,S(dzout)⟩ ≈ O(n
1/2
), (6)

which yields

n−1∥Wt+1zin∥22 ≈ n
−1
∥Wtzin∥

2
2 + α

2n−2∥zin∥21 +O(n
−1/2
)

7Here we consider that zin and zout have the same dimension n. However, our analysis can be extended to
the case where they have different dimensions.

8Feature update is the change of the features zout after taking one training step.
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Since α2n−2∥zin∥21 = Θn(1) is positive and asymptotically non-zero, if the width n is large enough,
we should expect the (normalized) feature norm n−1∥Wtzin∥

2
2 to grow initially during training. The

next results provides a rigorous description of this phenomenon for linear networks.

Theorem 1 (Feature Norm Growth in Linear Networks (Informal)). Assume that the neural network is
a linear MLP (see Appendix B for more details). Then, for any δ ∈ (0,1/2), under some assumptions
stated in Appendix C, there exists a universal constant λ > 0 such that for any T and η satisfying
T ≤ λη−1, the following holds with probability at least 1 − 2n−1+2δ

sup
1≤t≤T

∣n−1∥Wtzin∥
2
− Γt∣ ≤ Cn−δ, (7)

where Γt = Γ0 + β
2(1 + t(t − 1)), β = η n−1 ∥zin∥1, and Γ0 = n

−1∥W0zin∥
2. In other words, when

the width n is large enough, n−1∥Wtzin∥
2 exhibits quasi-quadratic growth at initial training stages.

Theorem 1 characterizes the growth in feature norms n−1∥Wtzin∥
2 as training progresses. The proof

is provided in Appendix C. In this case, n−1∥Wtzin∥
2 grows in a quasi-quadratic pattern, which

becomes perfectly quadratic when n → ∞. This is the most important takeway from this result:
this phenomenon is associated with large width. With more realistic models, we expect the growth
property to hold, but not necessarily with the quadratic form. See next section for empirical results.

A.1 EVOLUTION OF FEATURE NORMS
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Figure 8: Evolution of feature
norms during training for the
linear network described in Ap-
pendix A.1. We train the model
for 300 steps with Adam. Feature
norms for different layers exhibit
differential growth patterns as we
train the model. We shifted the
curves corresponding to different
layers for better visualization.

Consider a three layers linear neural network given by f(x) =
W2W1W0x, where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and W2 ∈

R1×n. The training data consist of N = 1000 datapoints of dimension
d generated from a linear model y = ω⊺x + ε with ε ∼ N(0,0.025),
ωi ∼ d

−1N(0,1), and x are generated randomly as standard Gaus-
sian random variables. We use n = d = 100 in our experiments
and train the model with Adam. See Appendix D for results with
SignSGD and more details about the experimental setup.

Figure 8 shows the growth in feature norms for the three modules
(corresponding to the three layers in this case) as we train the model.
We include a baseline (dashed lines) which shows the norms ∥Wz̃in∥
where z̃in is a random Gaussian vector with iid coordinates, nor-
malized such that ∥z̃in∥ = ∥zin∥ (see next section for an intuitive
explanation of this baseline). The baseline does not show any signif-
icant growth over the course of the training which further confirms
that feature norms grow as a result of increasing alignment between
module weights and module inputs, and not simply as a result of an
increase in weight norms.

Most of the growth occurs early in training. Interestingly, most
of the growth in feature norms occurs in the first T = 200 steps,
which also correlates with the most significant drop in training loss.
After T = 200, feature norms remain roughly stable until convergence. This suggest that the norm
growth is associated with an initial phase where significant feature learning occurs, and remains
roughly unchanged after that initial growth phase. Intuitively, as we train the network, the dot product
between zout and S(dzout) (Eq. (6)) grows from O(n1/2) to roughly Θ1(n) (in absolute value) and
therefore the argument behind the feature norm growth as explained in the discussion above no longer
holds later in training. As a result, the growth plateaus after some number of steps T .

Different growth levels for different modules. Although we use the same learning rate for all
modules, the norm growth in the input layer (n−1∥W0zin0∥

2) is much less significant than that
observed in the second layer (n−1∥W2zin2∥

2). To understand this difference, we should take into
account that when training all modules (layers in this case), the inputs to W1 and W2 change with
training. The update in feature are given by

Wt+1zt+1in =Wtz
t
in − η n

−1
× ∥ztin∥1 S(dz

t
out) +Wt+1∆zt+1in ,
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where ∆zt+1in = z
t+1
in −z

t
in is the input change after one step. Under µP scaling rule for the learning rate

(η n−1), the magnitude of ∥ztin∥1 remains Θn(1) for all t, however the constant in Θn(1) naturally
depends on the layer. Additionally, the term Wt+1∆zt+1in introduces more complex update dynamics,
and contribute in a non-trivial way to the change in the feature norms. See Nam et al. (2024) for a
more detailed discussion on how feature learning changes from one layer to another. Both of these
aspects lead to uneven growth in the feature norms for different layers.

Different growth levels for different inputs/tasks. In the setup of Theorem 1, we consid-
ered a batch size of 1, which results in feature updates of the form Wt+1zin = Wtzin − η ×
n−1∥zin∥1 S(dzout), and we saw that with 1/

√
n initialization, we have n−1∥zin∥1 = Θn(1). In the

realistic setting of batch training, feature updates for an input x′ ∈ Rd are given by

Wt+1zin(x′) =Wtzin(x
′
) − η n−1 × S (

1

∣B∣
∑
x∈B

dzout(x) ⊗ zin(x)) zin(x
′
),

Therefore, we can no longer directly expand the sign function and obtain the ∥zin∥1 term that leads to
the Θn(1) term. In this case, we need a strong correlation between S ( 1

∣B∣ ∑x∈B dzout(x) ⊗ zin(x))

and zin(x
′) to obtain the same effect. This translates to whether the datapoint x′ has some similarity

with the batch used for the update. As a result, we should expect to see higher scores for datapoints
that are similar to the training dataset, and lower scores for significantly different datapoints.

B ADDITIONAL THEORETICAL DETAILS

B.1 INFINITE-WIDTH ANALYSIS AND µP

Scaling remains the main paradigm to improve performance of language model (see e.g. Hoffmann
et al. (2022)). This includes model capacity which can be increased via width (embedding dimension)
or depth (number of layers) or both, training data, number of training steps etc. In our theoretical
analysis in Section 2, we mentioned the infinite-width n→∞ and how our results hold in this limit.
This is motivated by the fact that most state-of-the-art language and vision models have large width.

As the width n grows, most hyperparameters in the model such as the initialization and the learning
should be adapted to avoid numerical instabilities and ensure efficient learning. For instance, the
initialization variance should scale as 1/n to prevent arbitrarily large pre-activations as we increase
model width n (e.g. He init He et al. (2015)). To derive such scaling rules, a principled approach
consist of analyzing statistical properties of key quantities in the model (e.g. pre-activations) as
n grows and then adjust the initialization, the learning rate, and the architecture itself to achieve
desirable properties in the limit n→∞ Hayou et al. (2019); Yang (2019).

In this context, Yang and Hu (2022) introduces the Maximal Update Parameterization (or µP), a
set of scaling rules for the initialization scheme, the learning rate, and the network architecture
that ensure stability and maximal feature learning in the infinite width limit. Stability is defined by
Y i
l = Θ(1) for all l and i where the asymptotic notation ‘Θ(.)’ is with respect to width n (see next

paragraph for a formal definition), and feature learning is defined by ∆Yl = Θ(1), where ∆ refers to
the feature update after taking a gradient step. µP guarantees that these two conditions are satisfied at
any training step t. Roughly speaking, µP specifies that hidden weights should be initialized with
Θ(n−1/2) random weights, and weight updates should be of order Θ(n−1). Input weights should be
initialized Θ(1) and the weights update should be Θ(1) as well. While the output weights should be
initialized Θ(n−1) and updated with Θ(n−1). These rules ensure both stability and feature learning
in the infinite-width limit, in contrast to standard parameterization (exploding features if the learning
rate is well tuned), and kernel parameterizations (e.g. Neural Tangent Kernel parameterization where
∆Yl = Θ(n

−1/2), i.e. no feature learning in the limit).

C PROOF OF THEOREM 1

In this section, we provide the full proof for Theorem 1. Forst, we prove a result on the sign of the
derivative of the loss function with respect to zout, then proceed with the full proof.
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C.1 CONSTANT LOSS DERIVATIVE SIGN IN THE INITIAL TRAINING STAGE

Consider a linear network of the form

f(x) =WLWL−1 . . .W0x, x ∈ Rd, (8)

where L ≥ 1 is the network depth, Wℓ ∈ Rn×n for all ℓ ∈ {1,2, . . . , L−1} are hidden layers parameters,
WL ∈ R1×n is the projection layer weight, and W0 ∈ Rn×d is the input layer weight.

The network is trained with the setup described in Section 2, namely:

• Dataset: a single datapoint (x̂, ŷ) ×Rd ×R.

• Training algorithm: SignSGD with learning rate ηn−1.

• Single layer: only a single hidden layer that we denote W ∈ {Wℓ, ℓ = 1,2, . . . , L − 1} is
trained, and other layers weights are fixed to their values at initialization. Without loss of
generality, assume that the trainable layer is ℓ0, i.e. W =Wℓ0 .

• Training loss: quadratic loss given by L(W ) = 2−1(fW (x̂) − ŷ)2.

In this setting, the linear network training dynamics become tractable and we can obtain closed-form
expressions in steps t and width n. Let us use the same notation as in Section 2 and denote the
input and output of the trainable layer zout =Wzin. More precisely, in this case, we can express the
network output as fW (x) = V ⊺zout = V ⊺Wzin, where zin =Mx, with M =Wℓ0−1 . . .W0 ∈ Rn×d
and V ⊺ =WL . . .Wℓ0+1 ∈ R1×n are both non-trainable random matrices. In this case, the gradient of
the loss with respect to zout is given by

dzout = (V
⊺Wzin − y)V.

From now on, we will abuse the notation and use the subscript to denote the training step as well for
the matrix W =Wℓ0 . When we use the notation Wt, it should interpreted as Wℓ0,t. Taking one step
with SignSGD yields

Wt+1 =Wt − η n
−1
∥zin∥1χtS(V ),

where S(.) = sign(.) and χt = S(V
⊺Wtzin − ŷ).

Next, we prove a result that will be useful in the proof of Theorem 1. More precisely, we show that
under mild assumptions, there exists a first initial training phase in which the sign of the loss function
on the training datapoint does not change. The number of steps in this phase is bounded by η−1 up to
some constant factor. Naturally, since we initialize with random variables, it should be expected that
such result could only hold with high probability.

Theorem 2 (Constant loss derivative sign in the initial training phase). We assume that the weights
W0,W1, . . . ,WL are initialized such that the following holds:

• ∣ziin∣ ∈ [¯
Z, Z̄] for all i ∈ [1 ∶ n], where

¯
Z, Z̄ > 0 are constants independent of n.

• Mean-field Init: E[Vi] = 0 and Var(Vi) = n
−2 (e.g. uniform distribution on [−n−1, n−1]).

Further assume that y ∈ [
¯
Z, Z̄]. 9

Then, for any δ ∈ (0,1), and T ≤ η−1 (n−δ + Z̄

¯
Z2 ), we have with probability at least 1 − n−1+δ ,

∀t ≤ T,χt = χ0.

The assumption on the weight initialization is mild and is satisfied by some standard initialized
schemes, such as uniform init with n−1 variance for the hidden weights, d−1 variance for the input
weights, and n−2 variance for the projection weights. The proof of Theorem 2 relies on standard
concentration results.

9This can satisfied with a simple adjustment of the constants
¯
Z, Z̄.
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Proof. Recall the definition of χt

χt = S(V
⊺Wtzin − ŷ).

We have the following from above,

Wtzin =Wt−1zin − ηn−1∥zin∥1χt−1 S(V ),
and therefore,

V ⊺Wtzin = V
⊺Wt−1zin − ηn−1∥zin∥1∥V ∥1χt−1

which implies that

V ⊺Wtzin = V
⊺W0zin − ηn

−1
∥zin∥1∥V ∥1

⎡
⎢
⎢
⎢
⎣

t−1
∑
j=0

χj

⎤
⎥
⎥
⎥
⎦
.

Bounding V ⊺W0zin:

With Chebyshev’s inequality we have:

P (∣V ⊺W0zin∣ ≥ Z̄n−δ) <
Var(V ⊺W0zin)

(Z̄n−δ)2

where

Var(V ⊺W0zin) =
1

n
Var(W i

0
⊺zin) =

1

n
⋅
∥zin∥

2

n
≤ n−1Z̄2

As a result, we obtain:
P (∣V ⊺W0zin∣ ≥ Z̄n−δ) < n−1+2δ

If V ⊺W0zin − ŷ < 0, we have

V ⊺Wtzin − ŷ ≤ V
⊺W0zin − ŷ + ηn

−1
∥zin∥1T

≤ V ⊺W0zin − ŷ + ηZ̄T

With probability at least 1 − n−1+2δ , we have

V ⊺Wtzin − ŷ ≤ Z̄n−δ − ŷ + ηZ̄T

Therefore, we have

T ≤ η−1 (
ŷ

Z̄
− n−δ) ⇒ ∀t ≤ T, χt = χ0 = −1.

If V ⊺W0zin − ŷ > 0, asymptotically this implies that −ŷ > 0 (assuming ∣ŷ∣ = Θn(1)). Similarly, we
obtain with probability at least 1 − n−1+2δ ,

V ⊺Wtzin − ŷ ≥ V
⊺W0zin − ŷ − ηZ̄T,

≥ −Z̄n−δ − ŷ − ηZ̄T,

and therefore, we have that

T ≤ η−1 (
−ŷ

Z̄
− n−δ) ⇒ ∀t ≤ T, χt = χ0 = 1.

In summary, we have the following: Let δ ∈ (0,1). Then, with T ≤ η−1 ( ∣ŷ∣
Z̄
− n−δ), we have for all

t ≤ T , χt = χ0.

The assumptions in Theorem 2 can be alleviated to include more generalization initialization schemes,
such as non-clipped Gaussian initialization. However, this will require additional control on the
asymptotics of ∥zin∥, ∥zin∥1, and V . The result remains the same however.
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C.2 PROOF OF THEOREM 1

Theorem 1 .[Feature Norm Growth in Linear Networks]
Assume that the neural network is linear. Then, for any δ ∈ (0,1/2), under the assumptions on the
initialization stated in Theorem 2, there exists a universal constant λ > 0 such that for any T and η
such that T ≤ λη−1, the following holds with probability at least 1 − 2n−1+2δ

sup
1≤t≤T

∣n−1∥Wtzin∥
2
− Γt∣ ≤ Cn−δ, (9)

where Γt = Γ0 + β2(1 + t(t − 1)), β = η n−1 ∥zin∥1, and Γ0 = n−1∥W0zin∥
2. In other words,

n−1∥Wtzin∥
2 exhibits quasi-quadratic growth at early training phase, when the width is sufficiently

large.

Proof. Recall the update with SignSGD

Wt+1 =Wt − η n
−1χt S(V ) ⊗ zin,

where S(.) = sign(.) and χt = S(V
⊺Wtzin − ŷ).

Denoting αt = ⟨Wtzin,S(V )⟩, we obtain

αt+1 = αt − βχt × n = α0 − β n
t

∑
j=0

χt.

Therefore,

∥Wt+1zin∥22 = ∥Wtzin∥
2
2 + η

2n−2∥zin∥21 × n − 2ηn
−1
∥zin∥1χt × αt

= ∥Wtzin∥
2
2 + β

2
× n − 2βχt × αt.

Let δ ∈ (0,1/2). From Theorem 2, it is straightforward that there exists a constant λ > 0 such that for
any T > 1 and η such that T ≤ λη−1, with probability at least 1−n−1+δ , we have for all t ≤ T,χt = χ0.
In this case, for t ≤ T , we have χt × αt = χt × α0 − βn∑

t−1
j=0 χt × χj = χt × α0 − βn × t.

Therefore,
n−1∥Wt+1zin∥2 = n−1∥Wtzin∥

2
+ β2

+ 2β2t − 2βχtn
−1α0.

Using Chebyshev’s inequality, we can easily show that for any δ ∈ (0,1), with probability at least
1 − n−1+2δ , we have

∣χtn
−1α0∣ ≤ Z̄n−δ,

which yields that with at least the same probability we have

∣n−1∥Wtzin∥
2
− Γt∣ ≤ ∣n

−1
∥Wt−1zin∥2 − Γt−1∣ + 2βZ̄n−δ,

where we define the sequence Γt+1 = Γt + β
2(1 + 2t), with Γ0 = n

−1∥W0zin∥
2. Then, it is straight-

forward that for all t ≤ T
∣n−1∥Wtzin∥

2
− Γt∣ ≤ 2βZ̄Tn−δ.

With union bound, this occurs with probability at least 1 − 2n−1+δ .

Note that the probability bound can be significantly improved by considering sub-gaussian concentra-
tion bounds instead of Chebyshev’s inequality. Since our aim in this paper is mainly methodological,
we do not include it here.
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D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP FOR THE LINEAR NETWORK

The linear network is given by

f(x) =W2W1W0x,

where x ∈ Rd, W0 ∈ Rn×d, W1 ∈ Rn×n, and W2 ∈ R1,n.

Dimensions. We use d = n = 100 in our experiments.

Training Data. We generate a random vector w ∈ Rd with iid coordinates wi ∼ d
−1/2N(0,1) and

fix it for the next step. Then, we generate N = 1000 samples from the following distribution:

• x ∼ Rd random vector with iid coordinates xi ∼ N(0,1)

• y = w⊺x + ϵ, where ϵ ∼ N(0,0.025)

Training. We use Adam algorithm for training, and train the model for T = 300 steps with full
batch.

D.2 EXPERIMENTAL SETUP FOR SFT (CLASSIFICATION)

For ANLI experiments, we use the following training configuration

• Training datasets: ANLI
• Training algorithm: AdamW, no warmup, linear schedule, dropout (0.1).
• Max sequence length 256.
• LoRA α = 2r

• Precision: bf16.

We use r = 8 for MLP placement stratgy, and adapt r to match param count for other placement
strategies. Specifically:

• Qwen3.5-0.5B: MLP (r = 8), Attn (r = 36), PLoP(r = 17)
• Llama3.2-1B: MLP (r = 8), Attn (r = 27), PLoP(r = 15)

D.3 EXPERIMENTAL SETUP FOR SFT (TEXT GENERATION)

For the SFT experiments we use the following training configuration

• Training dataset: MetaMathQA
• Training algorithm: Adam

– epochs: 2
– warmup: 0.1 fraction
– schedule: cosine
– no dropout

• Max sequence length 1024.
• LoRA α = 2r

• Precision: bf16.

For evaluation on GSM8k we use the script evaluate_chat_gsm8k.py in the official QwenLM
repo. We evaluate with 8-shot examples using the Qwen chat template. We apply a strict match for
evaluating the accuracy and allow 512 generation tokens.
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D.4 EXPERIMENTAL SETUP FOR GRPO

For GRPO, we use the following config:

• Training Dataset: Subset of MetaMathQA (50k samples).

• Training Alg: AdamW with warmup (0.1) and weight decay (0.01) and cosine schedule. We
use LR 4e-6 for all training runs. We found this to be a good LR in our experiments. Unlike
exps in SFT, we could not run sweeps over LR for GRPO due to limited computational
resources and the high cost of GRPO runs, but we expect LR tuning to further improve the
results.

• Precision: bf16

• Number of generations: 8

• Maximum generation length: 512

• Batch size: 64 (16 with 4 steps for gradient accumulation)

• LoRA dropout: 0.05

• Rewards: A combination of reward functions (correctness, format)

• Hardware: 2xGH200 GPUs

We use custom eval script for GSM8K (using the chat template of each model).

D.5 ADDITIONAL EMPIRICAL RESULTS

D.6 GRPO RESULTS FOR GEMMA3

Table 4: GRPO results for Gemma3-1B trained on MetamathQA (Yu et al., 2023).

Module Types Rwd/Format Rwd/Answer Eval/GSM8K
No RL – – 29.10%
Attn (Q-K-V) (r = 16) 2.16 0.89 30.05%
MLP (U-D-G) (r = 16) 2.11 0.88 29.81%
PLoP−1 (O-G-D) (r = 16) 1.91 0.86 28.05%
PLoP(K-V-U) (r = 16) 2.36 0.92 30.52%

Interestingly, for Gemma3 1B, we found that most of the RL rewards was accumulated in forms of
format reward (placing the thinking process between <think> and </think> and the solution
between <answer> and </answer>). This is reflected in Table 4. However, for eval on GSM8K,
we found that accuracy after GRPO didn’t change significantly which is probably due the fact that
Gemma3-1B is weak on such tasks. In such cases, LoRA is probably not suitable, and full finetuning
is needed to enhance reasoning capabilities.
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Figure 9: NFN scores for Qwen3-1.7B
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D.7 ADDITIONAL NFN-MAPS

D.7.1 QWEN3-1.7B-INSTRUCT

D.7.2 QWEN2.5-3B-INSTRUCT
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Figure 10: NFN scores for Qwen2.5-3B
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D.7.3 QWEN2.5-1.5B-INSTRUCT
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Figure 11: NFN scores for Qwen2.5-1.5B

D.7.4 QWEN2.5-1.5B-CODER-INSTRUCT
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Figure 12: NFN scores for Qwen2.5-1.5B-Coder
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D.7.5 GEMMA3-1B-INSTRUCT
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Figure 13: NFN scores for Gemma3-1B-Instruct
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