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Abstract. This paper reviews the large spectrum of methods for gen-
erating robot motion proposed over the 50 years of robotics research
culminating in recent developments. It crosses the boundaries of method-
ologies, typically not surveyed together, from those that operate over ex-
plicit models to those that learn implicit ones. The paper discusses the
current state-of-the-art as well as properties of varying methodologies,
highlighting opportunities for integration.
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1 Introduction

The robotics community is grappling with a critical question. Will the emerging
set of data-driven methods for generating robot motion supersede the traditional
techniques as access to robot motion data increases?

In this context, this paper reviews methods for robot motion generation,
which are classified into those that operate given an explicit model vs. those
that implicitly learn one from data. Explicit models can correspond to analyti-
cal expressions for the world geometry and dynamics or an explainable, numer-
ical approximation in the form of a simulator. Motion generation given explicit
models is rather mature and methods are being deployed on real systems, such
as autonomous vehicles and industrial manipulators. At the same time, there is
increasing excitement for data-driven methods, which have been demonstrated
to perform complex tasks, such as dexterous manipulation and unstructured lo-
comotion. These methods often do not depend on explicit models. Instead, they
learn implicit representations, which are stored in the internal parameters of
machine learning models.

Given the challenge of comprehensively reviewing the vast amount of work
in this area across disciplinary boundaries, the focus is on breadth rather than
diving deeply into specific methodologies. Similarly, the focus is on principles
that are applicable across robotic platforms instead of techniques that are specific
to certain hardware configurations.

The paper concludes with a discussion regarding the properties of the vari-
ous robot motion generation methods. It argues that integrative approaches and
closer interactions between different sub-communities can help develop more ro-
bust, safe solutions that can be reliably deployed at reasonable costs and human
engineering effort.

2 Motion Generation given Explicit Models

Figure [1] classifies methods that operate over an explicit model. Motion plan-
ning methods generate safe nominal paths/trajectories to a goal given a fully-
observable world model. Task and motion planning extends the principle



2 Bekris et al.

to tasks that require sequencing multiple goals. Such solutions can be executed
open-loop if the underlying model is accurate. Robot models, however, are im-
perfect, resulting in failures upon execution. Given this challenge, planning
under uncertainty methods aim to compute robust policies to disturbances
that can be modeled. Alternatively, control and feedback-based planning
methods tightly integrate perception and motion generation so that the robot
dynamically reacts to deviations from desired behavior given observations.
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Fig. 1. Robot motion generation methods that operate over an explicit model.
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2.1 Motion Planning

Motion planning aims to identify a path with minimal cost, such as the shortest
path or the fastest trajectory that brings a robot to a desirable goal state, without
undesirable collisions, given a fully-observable world model.

Search-based Approaches: Uninformed search methods, such as Uniform
Cost Search (UCS) or Dijkstra’s algorithm [1], can compute optimal paths over
a discrete representation of the state space in the form of a grid or a graph given
a cost function. Informed alternatives, such as A* [2], utilize heuristic cost-to-go
estimates from each state to accelerate solution discovery and can still return the
optimum solution over the discrete representation for an admissible/consistent
heuristic. Due to the comprehensive nature of search and the discrete represen-
tation, search methods suffer from the curse of dimensionality, i.e., the possible
states to be explored grow exponentially with dimensions, rendering them com-
putationally infeasible for many robotics problems given naive discretizations.
There have been many successful applications of search methods in robotics,
however, such as planning for autonomous vehicles [3] and single or dual arm
planning [4].

Sampling-based Motion Planners (SBMPs): Sampling provides graph-
based representations for searching the collision-free subset of a robot’s state
space in a more scalable manner than grids. The Probabilistic Roadmap Method
(PRM) [5] samples collision-free configurations as nodes of a roadmap, and
collision-free local paths define the edges. The roadmap can then be used to
solve multiple queries via search. For specific queries, the Rapidly Exploring
Random Tree (RRT) [6] generates a tree data structure rooted in the robot’s
start state to quickly explore the free state space until it reaches the goal’s
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vicinity. RRT does not require a “steering function”, i.e., the ability to perfectly
connect two robot states, a primitive required by other methods, allowing it to
deal with dynamical systems where “steering functions” are unavailable. PRM
and RRT are provably suboptimal, and asymptotically optimal variants (PRM*,
RRT*) |7] guarantee that the discovered paths converge to optimal ones as sam-
pling progresses. Recent planners [§] [9] also achieve asymptotic optimality for
kinodynamic problems. SBMPs have been applied to autonomous driving [10]
and manipulation [11]. The Open Motion Planning Library (OMPL) provides
software implementations for most SBMPs [12].

Optimization-based Approaches: The above methods are comprehensive
and aim to explore the entire feasible state space, which can lead to increased
solution times. Moreover, their basic instances don’t utilize gradient information.
The alternative is to locally optimize paths or trajectories for robotic systems
given an objective function under physical or operational limits, such as collision
avoidance and control bounds. Covariant Hamiltonian Optimization for Motion
Planning (CHOMP) [13| demonstrated this principle by iteratively optimizing
paths by reducing collision and trajectory costs. TrajOpt [14] utilizes sequen-
tial convex optimization and progressively ensures that each iteration produces
feasible and collision-free trajectories. k-Order Markov Optimization (KOMO)
[15] treats trajectory optimization as a sparse nonlinear program and tries to
address high-dim. problems by leveraging sparsity in dynamics and constraints.
Factor graphs, a graphical optimization tool rooted in state estimation, and least-
squares optimization can be also used for trajectory optimization [16]. A recent
approach, the Graph of Convex Sets [17], combines optimization and SBMPs. It
builds a graphical structure where nodes are convex regions of the free space, and
optimization finds a trajectory over the set of nodes that connects the start with
the goal. When optimization techniques work, they tend to find high-quality so-
lutions fast. They can suffer, however, from local minima, which arise from the
nonlinear and non-convex nature of robotics problems.

Machine Learning (ML) for Planning: ML can be used to improve the
computational efficiency of planning [18]. Some approaches focus on planning
components, such as effective sampling [19], avoiding collisions |20], or distance
metrics [21]. ML can also determine which combination of methods is best suited
for a particular problem [22], or when a solution is not feasible [23]. Neural Mo-
tion Planning (NMP) |24] employs neural networks to approximate a planner’s
operation typically given data from a simulator. An encoder processes environ-
mental data, like point clouds, to create a compact latent space representation.
Then, a planning network predicts the robot’s next configuration based on its
current state, the goal state and the encoded environment.

2.2 Task and Motion Planning (TAMP)

TAMP methods target long-horizon and multi-step robotic tasks, which may
include moving through a sequence of goals or manipulating the environment
[25]. TAMP methods typically define low-level operators with motion constraints
and high-level logical relationships between the operators. Operators can contain
hybrid discrete and continuous parameters, motion constraints, preconditions,
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and effects, which make use of manually defined lifted variables. Planning is
then performed via search across these lifted states. Possible state transitions
are operators with satisfied preconditions, resulting in a sequence of operators
called a plan skeleton. The hybrid parameters in the plan skeleton (e.g., start
and goals) must be solved along with the low level operator trajectories. TAMP
techniques can be categorized by the order they sequence and satisfy operators
|25]: Sequencing first [26] defines a plan skeleton, i.e., a sequence of operators
without satisfying their preconditions; this can cause frequent infeasible plans
due to the lifted variables not being descriptive enough of underlying constraints.
Satisfying first trajectories for operators, then planning with them, can solve
this problem, but can spend time creating useless satisfied operators due to
not having a plan skeleton to direct search [27]. Interleaved sequencing and
satisfying methods can provide a mix of both by checking low-level information
for feasibility during task planning [28]. TAMP critically relies on engineering to
define preconditions and effects that properly characterize operator behavior and
expressive lifted variables. Basic TAMP approaches also struggle under partial
observability and uncertainty, which is the focus of recent efforts [29].

2.3 Belief Space Planning

The above methods assume a deterministic, perfect world model. Sensing noise
and inaccurate execution introduces uncertainty, however, and the need to gen-
erate robust motions to such disturbances. If these noise sources can be modeled
probabilistically, (Partially Observable) Markov Decision Processes (PO)MDPs
provide a formulation to reason about uncertainty. A Markov Decision Process
(MDP) consists of a set of states .S, set of actions A, transition probabilities be-
tween states T'(s¢41 | St,at), and a reward function R(sq,at, St41). (PO)MDPs
employ belief distributions for the problem representation, i.e., probability dis-
tribution over states given a set of observations O. They can be integrated with
Bayesian state estimation (e.g., Kalman or particle filters) that return such be-
liefs. Solutions to (PO)MDPs are not nominal paths but policies that map beliefs
to actions. Due to the consideration of uncertainty, computing an exact solution
to a (PO)MDP is often computationally intractable [30], especially given the
continuous state and action spaces of robotics.

This has motivated approximate solutions. The Successive Approximations
of the Reachable Space under Optimal Policies (SARSOP) [31] applies point-
based value iteration and offline sampling to focus on representative beliefs and
determine the best action given the sampled set. Determinized Sparse Partially
Observable Trees (DESPOT) [32] employ tree search online to compute the
optimal action. Online methods can also perform policy search by using a con-
troller in a limited search space, increasing scalability but not bounding solution
quality [33]. Heuristic rules or assumptions can reduce complexity by ignoring
long-term consequences and focus on immediate gains or most likely outcomes.
For instance, Pre-image Back Chaining constructs state-action sequences (pre-
images) leading backward from the goal [34]. Generalized Belief Space (GBS)
planning dynamically adapts to ongoing sensing updates [35].
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2.4 Control and Feedback-based Planning
Instead of explicitly modeling uncertainty, control tightly integrates state esti-
mation and motion generation in a closed-loop. Thus, it defines policies that are
reactive to different possible outcomes that may be observed upon execution.
Low-level Controllers: Proportional Integral Derivative (PID) control and
related tools are simple feedback strategies that are robust once tuned. They are
ubiquitous for tracking desirable robot controls from higher-level motion gener-
ation processes. Path Tracking Controllers dynamically select controls given the
latest state estimate to minimize path deviation. These controllers, however, are
myopic and typically neither reason about the desired goal or obstacles.
Potential Functions and Operational Space Control: Potential func-
tions |36] define attractive fields towards the goal and repulsive ones that push
away from obstacles. Moving along the negative gradient of the sum of these
fields provides the motion vector. Some engineering is needed to tune the pa-
rameters of the potentials. In complex environments, the corresponding potential
may have multiple minima and goal convergence is not guaranteed. Navigation
functions |37] are smooth and ensure a single minimum at the goal, but they
are more complicated to design and can only be constructed for specific envi-
ronments (i.e., sphere and star worlds). Such control policies do not have to be
defined directly in the robot’s state space. Operational Space Control |38] defines
such control laws in lower-dim. task spaces. For instance, if the task involves the
robot’s end-effector, a control law is defined to move it towards a desired goal
unencumbered by other robot constraints. Additional control laws can be de-
fined so that links avoid collisions. The corresponding motion vectors for the
individual links are then mapped and integrated to a state space motion for the
robot via the pseudo-inverses of the robot’s Jacobian matrix, which relates robot
joint velocities to link velocities through a linear transformation parameterized
by the joint states. This allows for multi-level hierarchical control [39], where a
hierarchy can be imposed over constraints, operational tasks, and soft objectives.
Then, lower priority objectives are solved in the null space of higher priority ones
once projected to the state space. These strategies rely on precise robot models
and high-quality sensing to provide accurate feedback on robot state.
Linearization and Feedback-based Planning: Principles of linear con-
trol can be applied for robot motion generation. The Linear Quadratic Regulator
(LQR) provides an optimal solution for linear time-invariant systems given a
quadratic cost function as a control law of the form u(t) = —K - z(t), where
x(t) and u(t) are respectively the system’s state and the control to be applied
at time t. Most robots, however, are nonlinear and time-varying, while tasks
involve complex, non-quadratic objectives. Feedback linearization locally trans-
forms nonlinear systems into equivalent linear ones so that linear control laws
can be applied. It can be used for tracking states x4 along a desired trajec-
tory by minimizing the error e = x(t) — z4(t). Given the linearization, these
solutions tend to work in the vicinity of the desired goal/trajectory. They can
be ineffective when the feedback-linearized system behaves very differently from
the original nonlinear system. To expand the set of initial conditions from which
the goal can be reached, sequential composition of such feedback policies [40] can
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give rise to hybrid controllers that sequentially switch between them. LQR-Trees
[41] apply sequential composition by combining linear control and SBMPs. They
use control verification to evaluate the region of attraction (RoA) of local LQR
controllers. They expand a tree backwards from the goal and sample controllers
that bring the robot to the RoAs of controllers that lead to the goal. They have
been applied on dynamic environments [42] and for systems with dynamics [43].

Model-Predictive Control (MPC) and Replanning: MPC is a simple
but powerful feedback strategy that aims to solve fast and repetitively finite
horizon optimization problems given the latest state observations [44]. MPC
executes the initial portion of the motion and then updates given the latest
observation. During each step, MPC uses the system’s model to predict future
behavior and makes control decisions that minimize a cost function at the end
of the finite horizon, while adhering to constraints, such as collision avoidance.
Initial MPC approaches used analytical methods to predict future states, and
Linear MPC [45] utilizes linear analytical models or approximations. Various
Non-Linear MPC (NMPC) variants have been proposed [46]. Shooting MPC is
a common NMPC approach that employs numerical methods, such as guessing
an initial set of controls and then locally optimizing to minimize the cost function
[47]. Tt is applicable across robotic systems for bridging the model gap. At the
same time, shooting MPC involves numerous parameters that require tuning to
achieve good performance [48]. It is also possible to replan using longer horizon
planners, where it is important to minimize computational costs so as to achieve
tight feedback. For instance, D* Lite [49], a replanning variant of A*, updates
the path it initially creates to adjust to changes in the workspace. Similarly,
replanning versions of SBMPs reuse prior computations to ensure the robot
reacts swiftly to changes while maintaining safety [50], including for systems
with dynamics [51].

3 Data-driven Motion Generation with Implicit Models

Figure [2] presents a classification of data-driven robot motion generation meth-
ods that implicitly learn a model. Learning from demonstration methods
employ supervision, where a robot is tasked to best replicate the demonstrated
behavior. Alternatively, reinforcement learning learns to make decisions by
experiencing rewards or penalties after interaction with the environment. Cross-
task learning transfers knowledge from an existing solution to a new task or
adapts it dynamically. Finally, large models, given access to significant data,
allow pre-trained ML models to be fine-tuned and deployed in diverse domains.

3.1 Learning from Demonstrations

Imitation learning mimics the decision-making process given demonstration data.

Behavior Cloning (BC) trains a model in a supervised manner given a
dataset of demonstrations to provide a motion policy. Successful applications of
BC have enabled robots to learn complex behaviors [52][53]. The process starts
with data collection, which includes capturing sensory inputs and corresponding
control actions for a target task. An appropriate ML model architecture (e.g.,
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Fig. 2. Robot motion generation methods that operate over an implicit model.

Convolutional Neural Networks (CNNs) for visual data or Recurrent Neural Net-
works (RNNs) for sequential data) is trained using supervision to minimize a loss
function, such as mean squared error. Gaps between the demonstration and the
execution setup, as well as noise and stochasticity, can cause a compounding
distributional shift between training and testing [54]. Noise modulates the per-
ception of the true state and can cause erroneous actions from the BC policy.
Stochastic state transitions can move the process from an in-distribution state
to an out-of-distribution (OOD) one. These effects can compound and make the
policy increasingly generate improper actions bringing the robot’s state further
OOD. Furthermore, BC is sensitive to engineering decisions, such as observation
space, hyperparameters, and recurrent information [55]. These shortcomings mo-
tivate more sophisticated approaches.

Incremental Corrections: The DAgger algorithm [56] focuses on decision
making in OOD states given the available demonstrations. A dataset of rollouts
is collected by executing the BC policy. Then, an expert, such as a human or a
planner, is queried to provide the proper actions at the states encountered in this
dataset, and the policy is retrained. This process is iterative, as new OOD states
will be encountered after each retraining. DAgger heavily relies on an expert to
provide the corrections. SafeDAgger provided a more query-efficient extension
[57]. Tt first uses a safety policy to predict the error of the learned policy. This
safety policy selects only a small subset of training examples to be collected.

Inverse Reinforcement Learning (IRL) focuses on extracting the prob-
lem’s underlying dense reward function given demonstrations to achieve im-
proved generalization relative to BC [58]. This reward function can then be used
to extract the policy provided an MDP problem formulation. Initial works [59]
modeled the reward as a linear combination of input features, and the weights
of this linear combination are obtained by solving an optimization problem. A
significant challenge of IRL, however, is the difficulty in scaling to high-dim.
systems, which recent approaches attempt to mitigate [60].

Diffusion Policies: Demonstrations commonly include multi-modal behav-
iors, which multi-layer perceptrons (MLP) may find difficult to express since
they are trained via mean squared error (MSE) that averages the demonstrated
actions resulting in erroneous choices [61]. In compuater vision, diffusion models
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have become popular for generating images by expressing multi-modal distribu-
tions [62]. This motivates diffusion processes as implicit models for BC, where
Diffusion Policy [63] has outperformed alternatives, such as LSTM-GMM [64] in
learning from demonstrations. Inference speed of diffusion policies is a challenge
for robot motion generations [65] and is an active area of research.

3.2 Reinforcement Learning (RL)

One area of robotics that has garnered interest [66] is Reinforcement Learning
(RL), where a machine learning model predicts the Q function of an MDP and
the corresponding policy. It has been applied across tasks, e.g., grasping [67],
locomotion [68], and assembly [69].

Model-free, On-Policy RL: Standard RL gathers data from interaction
with the environment, where Policy Gradient (PG) methods generate a batch
of full trajectory data, compute the gradient of each state transition, and scale
each gradient by the respective discounted return. PGs update the policy and re-
peat the process towards maximizing the expected cumulative reward. Proximal
Policy Optimization (PPO) [70] is a PG method that leverages a value function,
which is the average discounted return from a given state. These are on-policy
methods, i.e., they only use data collected from the most recent policy. Explo-
ration can be achieved through the periodic execution of random actions (epsilon
greedy), injecting Gaussian noise to policy outputs [71], or using a stochastic pol-
icy for entropy maximization [70].

RL faces multiple challenges in robotics: (i) sample inefficiency: Policies need
a lot of data to train and take significant training time. Real robot data, however,
can be slow, expensive, and unsafe to collect [72]. (ii) instability: Policies can be
inconsistent across training sessions due to poorly designed rewards, exploration
strategies, learning rate parameters or learning error from neural networks. (iii)
reward engineering: Simple rewards are sparse, i.e., they assign a 0 reward ev-
erywhere except at the goal. While desirable, sparse rewards often do not find
a successful behavior in reasonable time [72]. This motivates dense rewards to
guide exploration, which require manual engineering. While dense rewards can
improve training time and stability, they can also lead to wrong behaviors, if
they do not match the true task objective. (iv) long horizon tasks: The state
space to be explored for such tasks is even larger making the propagation of
rewards across subproblems difficult.

The above challenges have motivated multiple RL variations in robotics:

Simulation and Domain Randomization: Simulators, which are explicit
world models, are useful for addressing sample inefficiency by generating data
without real-world experiments. They suffer, however, from the model gap issue.
Even so, it may still be possible to create good policies via domain randomization
(DR) [73], which can partially compensate for imperfect models during sim-to-
real transfer. DR results in behaviors that have the highest expected reward
across a variety of underlying dynamics and perception errors.

Off-policy RL Sample inefficiency motivates data reuse. Off-policy RL stores
the expected discounted future reward of any in-distribution state-action tuple
on a Q function, which is used to train the policy 7. To update the parameters
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6 of the Q function for a given state transition (s, a,r,s’) (state, action, reward,
next state), the immediate reward r and future rewards Q(s’, my(s’)) are used
to define the loss function: L(8) = E(Qg(s,a) — r + v - Qa(s’, ms(s")))?. This
allows off-policy RL algorithms, such as TD3 [74] and SAC [75], to be more
sample efficient than online RL. Off-policy RL, however, is complicated by the
instability of neural network learning, especially because errors compound while
learning Q functions [76]. A way to mitigate instability is to use target Q func-
tions to query for future rewards [74]|75][76]. The target Q functions average
their weights slowly with the learned Q function’s weights. Given that the pol-
icy is defined as 7*(s) = arg max, Q(s,a), errors in Q function learning, which
overvalue actions, are propagated rapidly. This is called an overestimation bias
[74]. One way to mitigate overestimation bias to is use a clipped, double Q) func-
tion, an ensemble of two Q networks coupled with target Q networks, that take
the lower value of the two when queried for future rewards to underestimate Q
values when uncertain [74][75]. Hindsight Experience Replay (HER) [77] aims
for sample-efficiency in multi-goal problems given only sparse rewards. It rela-
bels the end or intermediate states of executed trajectories as the desired goal
allowing to train over all available experiences.

Offline RL Offline RL is a subcase of off-policy RL, which doesn’t interact
online with the environment to modulate the replay buffer. Instead it uses offline
data, focusing on sample efficiency. Offline RL aims to improve the optimality of
suboptimal demonstrations by patching together data towards the most optimal
solution rather than imitating the data [78]. Additionally, it can handle multi-
modal demonstrations as it can solve for the single most optimal action for
each state. The policy 7 used for updating the Q function is parameterized via
a function approximator. This can cause m to choose actions that are out-of-
distribution (OOD). The Q function queried with the OOD state-action pair
will output an untrained value, which can be an erroneous large reward that
can propagate and degrade performance [79]. In online RL, when an OOD state-
action pair is overvalued, m will favor the action and gather data on the OOD
state-action pair, which will remedy the error. IQL [80], which is an offline RL
method, mitigates distributional shift by using only state-action pairs from the
dataset. Instead, CQL [81] employs a conservative estimate on Q values.

Model-based RL learns a model of the environment, which is then used to
roll out the policy to generate training data offline. Relative to a simulator, the
learned model can operate over a more compact state representation, run faster,
and can be queried for any given state. The major drawback is that RL may
exploit errors in the learned model. MOPO [82] aims to mitigate these effects
by detecting when the query to the model is out of distribution.

Hierarchical RL (HRL) focuses on long horizon tasks, similar to TAMP
(Section . It temporally abstracts high-level actions that correspond to low-
level learned policy. The high-level actions can target exploration to better cover
the space and more easily assign rewards [83]. Using random actions to search is
not effective in long horizon tasks and guidance for their generation is critical.
Long horizon tasks remain rather challenging for RL approaches.
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3.3 Cross-task Learning

Demonstrations from related or earlier tasks can help bootstrap or guide RL.

Transfer Learning methods exhibit high variability. One approach boot-
straps RL by using an adaptively-weighted auxiliary term in the loss function
of PPO to increase action similarity for the learned policy against the demon-
strated one from a task with similar MDP [84]. It is also possible to pre-train
multiple tasks with offline RL given a single task-conditioned policy [85]. Online,
the approach fine-tunes both the conditioning parameter and policy to automati-
cally reset tasks for autonomous real-world training. For transferring information
across heterogeneous MDPs, researchers have mapped states and actions across
MDPs [86] and transfered useful representations across domains [87].

Multi-Task Learning trains many tasks in parallel while sharing informa-
tion across tasks to accelerate training and improve generalization [88]. Methods
focus on how to select parameters to sharing so as to effectively transfer learned
representations between tasks [89].

Lifelong Learning emphasizes learning a new task in a sequence by trans-
ferring information from previously learned ones without forgetting how to solve
them. Retaining previous task information can be done by mixing previous data
with new ones during retraining [90]. Functionally composed modular lightweight
networks have been proposed to learn a large variety of combinatorially related
tasks to solve novel combination tasks in a zero-shot manner [91].

3.4 Large Models

Large Language Models (LLMs) pretrained on internet-scale data have
opened new avenues for robot motion generation. LLMs are capable of semantic
reasoning and planning, making them candidates for extracting task specifica-
tions and creating action models for task planning [92]. LLMs have also been
used to improve existing action models to handle failure cases [93]. These meth-
ods often do not generate constraints for low level motion in the operators as in
TAMP. Furthermore, they have been used in conjunction with evolutionary op-
timization as code generators for defining rewards, which can be used to acquire
complex skills via reinforcement learning [94].

Vision Language Models (VLMs) integrate information from visual input
and language. Saycan [95] integrates a visual affordance model, which evalu-
ates possible robot actions, with a language model that interprets the user’s
commands and generates high-level action plans. VLMs have also been used for
autonomous generation of demonstration data over diverse tasks [96].

This lead to vision-language-action models (VLAs) or Robotics Founda-
tion Models, i.e., large pretrained models that map actions to sensing data and
language specifications. They can be fine-tuned for specific tasks to provide im-
provements in training time and generalization over trainingfrom scratch. Open-
VLA [97] is such a model trained on a large robotic manipulation dataset [98]
and utilizes large pretrained vision encoders and language models. It has been
argued that it performs well on in-distribution tasks and robotic embodiments,
while it can be fine-tuned for novel tasks and robotic embodiments.
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4 Perspectives on Robot Motion Generation Research

Promises and Pitfalls of the Explicit Model Approach: These methods
have a long history and can reliably solve various challenges today. For instance,
planning collision-free motions for industrial arms is reliably addressed today at
high speeds. Integration with state estimation allows mobile robots to execute
navigation in semi-structured domains reliably. Challenges arise where model
or state estimation reliability is low. Examples of such setups often involve the
presence of complex contacts and partial observability, such as the manipula-
tion of previously unknown objects in clutter, locomotion over uneven terrains,
navigation at high speeds or in dynamic, unstructured environments.

For long-horizon tasks, TAMP methods require an engineer to encode pos-
sible pathways and concepts before symbolic reasoning, which often involves
expensive combinatorial reasoning. These methods are limited to the variables
defined and cannot easily anticipate changes from what has been programmed.
While belief-space planning targets noise and partial observability, it requires
significant computation and access to accurate models of uncertainty, which are
not always available. At the same time, feedback-based solutions do find applica-
bility in real-world domains, either via MPC or hierarchical control strategies but
fully understanding the conditions under which a controller can solve a problem
is an active challenge.

Promises and Pitfalls of the Implicit Model Approach: The progress
in ML promises effective data-driven motion generation methods that can access
prior experience and do not require an engineered model or even accurate state
estimation. They have unblocked perception tasks, such as object detection and
estimation, which are often prerequisites for robust motion generation. Learn-
ing from demonstration, especially with diffusion processes that allow reflecting
multi-modal distributions, can achieve impressive results exactly in tasks that
the traditional, explicit model approaches face challenges with, such as dexterous
manipulation and locomotion. This is true, however, as long as the setup upon
execution resembles the demonstration setup, thus limiting generalization. The
various versions of reinforcement learning bring the promise of broader general-
ization, and there have been many successful demonstrations of learning skills
for robotic tasks via RL, though sample inefficiency still remains a bottleneck
for achieving highly accurate solutions across a wide set of initial conditions.

These limitations have motivated the robotics community to pursue the di-
rection of collecting more data for robotics problems in lab environments, which
may be diverse across embodiments and tasks [98], towards the objective of
mimicking the success of foundation models in language and vision challenges.
While this direction should be pursued, it is not clear that it is possible to collect
internet-scale demonstration data that will allow learning robust enough poli-
cies that cover the space of possible tasks that robots need to solve in novel,
unstructured, and human environments. Furthermore, predicting when the re-
sulting solutions will be successful is challenging, which is a significant concern,
as failures in robotics can cause physical harm.
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Integrative Directions: There is promise in the integration of solutions. For
instance, data-driven methods training can benefit from simulation, where the
explicit model approaches act as the demonstrators under full observability. The
data-driven methods can learn to map sensing data to the actions demonstrated
by the planners. This requires accurate enough models for the policies to be
transferable to real systems, as well as strategies that makes these policies robust
to varying conditions.

Upon deployment, data-driven methods must be part of architectures that
provide safety and verification, where they can benefit from explicit model meth-
ods. For instance, describing when a learned controller is successful, similar to
control verification, can allow safe deployment. It can also assist in controller
composition for long-horizon tasks, where high-level symbolic reasoning can be
beneficial. Such task planning needs to be adaptive and allow a robot to dynam-
ically define pre/postconditions, and discover new skills for its task. It should
also be accompanied by failure explanation to identify why a problem is not
solvable and guide data collection or reasoning for addressing similar challenges
in the future. For explainability, maintaining an internal world model or a sim-
ulation (e.g., a “cognitive, physical engine”) that is learned from data and first
principles can be useful. There are already successful instances of integrating ex-
plicit and implicit models. There is work on natural-langauge-task-specification
TAMP problems on large scenes where task plans from an LLM are verified
using a model and pose-level planning is performed by a classical planner [99).
Another integration approach queries a VLM to solve a TAMP problem on the
fly by creating 3D key points that resultin in a task plan as a sequence of path
and goal constraints that guide motion planning |100].

A gap towards integrative solutions is the lack of common interfaces, software
components and benchmarks that would allow to easily switch and experiment
with components from different methodologies. Most existing instances of soft-
ware infrastructure either support one set of methods or the other, requiring the
ad hoc tool composition for a novel integrative approach.
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