
Under review as a conference paper at ICLR 2023

RECONCILING ADVERSARIAL ROBUSTNESS WITH
ACCURACY VIA RANDOMIZED WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have seen a rapid growth of research on building more robust deep
neural networks against adversarial examples. Among them, adversarial training
has been shown to be one of the most effective approaches. To balance the ro-
bustness of adversarial examples and the accuracy of clean examples, a series of
works design enhanced adversarial training methods to strike a trade-off between
them with deterministic model parameters (i.e., weights). Noting that clean and
adversarial examples are highly entangled with the network weights, we propose
to study such a trade-off from another perspective, by treating weights as random
variables in order to harvest the insights yielded from statistical learning theory.
Inspired by recent advances of information-theoretic generalization error bound,
we found that adversarial training over the randomized weight space can poten-
tially narrow the generalization bound of both clean and adversarial data, and
improve both adversarial robustness and clean accuracy simultaneously. Building
upon such insights, we propose a novel adversarial training method via Taylor ex-
pansion in the hypothesis space of the randomized weights. With PGD, CW, and
Auto Attacks, an extensive set of experiments demonstrate that our method further
enhances adversarial training, boosting both robustness and clean accuracy.

1 INTRODUCTION

Recent works have studied the trade-off between adversarial robustness and clean accuracy (Schmidt
et al., 2018; Su et al., 2018; Zhang et al., 2019), and this trade-off demonstrably exists in some
cases (Tsipras et al., 2019; Raghunathan et al., 2020; Javanmard et al., 2020; Yu et al., 2021). A
number of techniques have been adopted to alleviate the loss of clean accuracy when improving ro-
bustness, including TRADES (Zhang et al., 2019), data augmentation (Alayrac et al., 2019; Carmon
et al., 2019; Hendrycks et al., 2019), early-stopping (Rice et al., 2020; Zhang et al., 2020), instance
reweighting (Balaji et al., 2019; Zhang et al., 2021a) and other various adversarial training meth-
ods (Wu et al., 2020; Lee et al., 2020; Cui et al., 2021; Jin et al., 2022). Furthermore, we present
more related works and discussions in Appendix A.

Adversarial training is believed to be the most effective defense method against adversarial attacks,
which is usually formulated as a minimax optimization problem where the network weights are
assumed deterministic in each alternating iteration. Given the fact that both clean and adversar-
ial examples are drawn from unknown distributions interact with one another through the network
weights, it is probably unnecessary to restrict ourselves within the deterministic models. That is, a
randomized model which is optimized in multi directions of a small area may be more robust against
new clean/adversarial examples (Fig. 1).

Building upon such intuition, this paper takes a drastically different view to balance robustness and
clean accuracy in adversarial training, by modeling neural network weights as random variables.
Whilst this perspective is not new in statistical learning theory, where the random weights frame-
work has been frequently used in many previous works e.g., generalization analysis (Dziugaite and
Roy, 2017; Neyshabur et al., 2017; Xu and Raginsky, 2017), we hope to advance the understand-
ing of the robustness-accuracy trade-off problem in adversarial training by leveraging the rich tool
sets in statistical learning. Remarkably, it turns out adversarial training with the optimization over
randomized weights can further improve both the adversarial robustness and clean accuracy.

1

Under review as a conference paper at ICLR 2023

Figure 1: A conceptual illustration of decision boundaries learned via (a) adversarial training of
TRADES and (b) our method. (a) shows that TRADES considers a deterministic model and opti-
mizes the distance of adversarial data and boundary only through one direction. Our method in (b)
takes into account randomized weights (perturbed boundaries) and optimizes the distance of adver-
sarial data and boundary via multi directions in a small area. The boundary learned by our method
can be more robust against new data.

By modeling network weights as random variables with an artificially injected weight perturbation,
we start with bridging adversarial training to robustness and generalization error bound in statistical
learning. In particular, we present such a connection from the information-theoretic perspective (Xu
and Raginsky, 2017; Russo and Zou, 2019) in Sec. 3 where we try to answer the question why ran-
domized weights should be considered in adversarial training. We show that optimizing over
weight hypothesis space is a potential way to tighten the information-theoretic bound of generaliza-
tion gap over both clean and adversarial data.

Inspired by the above theoretical analyses, we show how to optimize with randomized weights
during adversarial training in Sec. 4. We propose a novel adversarial training method that recon-
ciles adversarial robustness with clean accuracy, by closing the gap between clean latent space and
adversarial latent space over randomized weights. Specifically, we utilize Taylor series to expand
the objective function over weights, in such a way that we can deconstruct the function into Taylor
series (e.g., zeroth term, first term, second term, etc). From an algorithmic viewpoint, these Taylor
terms can thus replace the objective function effectively and time-efficiently. As Fig. 1 shows, our
method takes randomized models into consideration during training and makes the learned boundary
more robust in a small perturbed area.

In Sec. 5, we validate the effectiveness of our optimization method with the first derivative term
and the second derivative term of Taylor series. In consideration of complexity and performance, we
omit the third and higher derivative terms. Through extensive experiments and comparison with the
state-of-the-art on various data sets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, SVHN (Net-
zer et al., 2011)) and model architectures (ResNet (He et al., 2016), WideResNet (Zagoruyko and
Komodakis, 2016), VGG (Simonyan and Zisserman, 2015), MobileNetV2 (Sandler et al., 2018)), we
find that our method can further enhance adversarial training consistently with improved adversarial
robustness and clean accuracy.

Overall, this paper makes the following contributions. 1. We inspect the trade-off between adversar-
ial robustness and clean accuracy under a stochastic framework with randomized weights, extending
from previous works (Xu and Raginsky, 2017; Russo and Zou, 2019) (Sec. 3), and offer new in-
sights to adversarial training algorithm designs in achieving enhanced trade-off. 2. Building upon
the above insights, we propose a novel adversarial training method under a randomized model. The
key enabler is the Taylor series expansion (in Sec. 4) of the robustness loss function over the ran-
domized weight space, so that the optimization can be simultaneously done over the zeroth, first,
and second orders of Taylor series. In doing so, the proposed method can effectively enhance ad-
versarial robustness without sacrificing a lot of clean accuracy. 3. An extensive set of empirical
results is provided to demonstrate that our method can improve both robustness and clean accuracy
consistently over different datasets and different network architectures (Sec. 5).

2 PRELIMINARIES

Basic Notation. Consider the classification task with the training set S = {s1, ..., sm} where m
samples are drawn from the data distribution D in the input space X . For notational convenience,
we omit the label y of sample s. The adversarial sample s′ is generally not in the natural data
distribution D, and we thus let S ′ and D′ be the adversarial set and distribution for a specific model,

2

Under review as a conference paper at ICLR 2023

respectively, such that ||s′ − s|| ≤ ε where || · || is by default the `2-norm. L(fw(s), y) is the cross-
entropy loss between fw(s) and y with normalization. Define L(fw(S),Y) := Es∈S [L(fw(s), y)].

From Deterministic to Randomized Weights. Let W be the collection of model parameters and
w ∈ Rd×1 be the vectorization ofW . w includes both weights and bias of all layers, where the latter
can be seen as the weight with input 1. To make a clear distinction, let w be the randomized version
of w, random weights, modeled as a multivariate random variable or random vector in hypothesis
space W. We consider w is generated by normal training with clean data set S, w + u is generated
by adversarial training where the noise u is brought by adversarial data set S ′.

Assumption 1 For simplicity, we consider an additive randomization model, where w is a Gaus-
sian, u is another Gausian and w + u is still a Gaussian. Following previous works (Neyshabur
et al., 2017; 2018; Jiang et al., 2020; Dziugaite et al., 2020) of randomized weights, let w + u be
generated by injecting small Gaussian noise into deterministic w, so that w + u can be seen as a
multivariate Gaussian that scatters around the deterministic vector w in hypothesis space W (i.e.,
the probability space around the mean value w), i.e., w +u = w+u′, where u′ ∼ N (0, σ2Id) is a
small zero mean spherical Gaussian which satisfies L(fw+u′(s), y) ≈ L(fw(s), y).

Adversarial Training. Adversarial training can be formulated as a robust optimization prob-
lem (Madry et al., 2018)

min
w

{
E

s∼D

[
max

s′:||s′−s||≤ε
L(fw(s′), y)

]}
, (1)

where s′ is an adversarial example causing the largest loss within an ε-ball centered at a clean
example s with respect to a norm distance, fw(·) is the neural network function parameterized by w.

3 THEORETICAL PERSPECTIVE

This section explores theoretical implication of the use of randomized weights on robustness. Specif-
ically, we discuss how randomized weights affect the information-theoretic generalization bound of
both clean and adversarial data. We clarify the theoretical motivation of this work and demon-
strate how our method of adversarial training in Sec. 4 narrows the generalization bound over
both clean and adversarial data.

Under the information-theoretic context, a learning algorithm can be taken as a randomized map-
ping, where training data set is input and hypothesis is output. With that, Xu and Raginsky
(2017); Russo and Zou (2019) considered a generalization bound based on the information con-
tained in weights I(ΛW(S);w), where ΛW(S) :=

(
L
(
fw(S),Y

))
w∈W is the collection of empir-

ical losses of the hypotheses in W. Let P(L(fw1
(S),Y), w2) = 0 where w1 6= w2, we can use

I(L(fw(S),Y);w) to approximate I(ΛW(S);w) where w is the randomized weight distributed in
W, then get the following theory.

Theorem 3.1 (Russo and Zou, 2019). Suppose L(fw(s), y) is σ∗-sub-Gaussian,D is the clean data
distribution and S is the training data set with m samples, then

Ew

(
L
(
fw(D),Y

)
− L

(
fw(S),Y

))
≤
√

2σ2
∗

m
I
(
L
(
fw(S),Y

)
;w|S

)
. (2)

Thm. 3.1 provides the upper bound on the expected generalization error of randomized weights.
Building upon the above bound, we consider generalization errors of both clean and adversarial data
based on discrete distribution, then obtain the following proposition.

Proposition 3.2 Let L(fw+u(s), y) and L(fw+u(s′), y) be σ∗-sub-Gaussian. We suppose the
adversarial trained model contains information of S ∨ S ′, where S ∨ S ′ is the joint set and
the training samples are chosen at random from S and S ′ with probabilities q and 1 − q, i.e.,
L(fw+u(S ∨ S ′),Y) = qL(fw+u(S),Y) + (1 − q)L(fw+u(S ′),Y). We let q ∈ (0, 0.5), since S ′
occupies a large proportion in adversarial training, then

Ew+u

(
L
(
fw+u(D ∨D′),Y

)
− L

(
fw+u(S ∨ S ′),Y

))
≤
√

2σ2
∗

m
I
(
L
(
fw+u(S ∨ S ′),Y

)
;w + u|S ∨ S ′

)
≤
√

2σ2
∗

m
I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w + u|S ∨ S ′

)
.

(3)

3

Under review as a conference paper at ICLR 2023

Remark 3.2 We now make several observations about Prop. 3.2. First, it is obvious that more
training data (larger m) helps adversarial training to get a high-performance model. Second, take
into account both generalization errors of clean and adversarial data with coefficient q, a lower
mutual information between

(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

))
and w + u is essential to get a

better performance of robustness and clean accuracy.

The above mutual information is a statistic over high-dimensional space, thus we are almost impos-
sible to directly estimate and optimize it during training. Nevertheless, we can reduce it implicitly
through the following lemmas.

Lemma 3.3 I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w+u

)
is lower bounded by I

(
L
(
fw+u(S),Y

)
;

w + u
)

and upper bounded by I
(
L
(
fw+u(S),Y

)
;w + u

)
+ I
(
L
(
fw+u(S ′),Y

)
;w + u

)
, i.e.,

I
(
L
(
fw+u(S),Y

)
;w + u

)
≤ I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w + u

)
≤ I
(
L
(
fw+u(S),Y

)
;w + u

)
+ I
(
L
(
fw+u(S ′),Y

)
;w + u

)
.

(4)

Remark 3.3 We provide the details of proof in Appendix B. Lem. 3.3 gives us an upper
bound and a lower bound. The upper bound represents the worst case of adversarial trained
model where L

(
fw+u(S),Y

)
and L

(
fw+u(S ′),Y

)
are radically different (uncorrelated). To

some extent, it means the trained model is failed to extract common features of clean data
and adversarial data, thus needs to use more parameters to recognize clean and adversar-
ial examples respectively. Lem. 3.3 also charts a realizable optimization direction for the
model, the lower bound I

(
L
(
fw+u(S),Y

)
;w + u

)
is the optimal case of adversarial train-

ing for I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w + u

)
. In this situation, L

(
fw+u(S),Y

)
and

L
(
fw+u(S ′),Y

)
are completely correlated, that is, the optimal adversarial trained model is suc-

cessful at extracting common features of clean data and adversarial data.

It is obvious that I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w + u

)
is still difficult to be es-

timated in a high-dimensional space. Fortunately, Lem. 3.3 allows us to optimize it
via narrowing the distance between L

(
fw+u(S),Y

)
and L

(
fw+u(S ′),Y

)
, which makes

I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w+u

)
close to the lower bound I

(
L
(
fw+u(S),Y

)
;w+u

)
.

Lemma 3.4 In this lemma, we consider the case of binary response y ∈ {0, 1}, then the gap be-
tween L

(
fw+u(s), y

)
and L

(
fw+u(s′), y

)
is positive correlated with the KL divergence between

fw+u(s) and fw+u(s′), i.e.,

|L
(
fw+u(s), y

)
− L

(
fw+u(s′), y

)
| ∝ KL

(
fw+u(s)||fw+u(s′)

)
, (5)

where we let ∝ represent positive correlation.

Remark 3.4 The proof is provided in Appendix C. Lem. 3.4 demonstrates |L(fw+u(s), y) −
L(fw+u(s′), y)| is positive correlated with KL(fw+u(s)||fw+u(s′)) in a binary case, this can also
approximately hold in a multi-class case. Thus, it allows us to optimize the mutual information uti-
lizing a simplified term of KL(fw+u(s)||fw+u(s′)). Although we are still difficult to directly deal
with this KL term during training, it can be decomposed by our method in Sec. 4 with Taylor series.

4 ALGORITHMIC DESIGN

Motivated by TRADES (Zhang et al., 2019) and the discussion of generalization bound of both clean
data and adversarial data in Sec. 3, we propose that the robust optimization problem of adversarial
training can be further enhanced by

min Ew+u

[
Es(L(fw+u(s), y)) + Es max

s′:||s′−s||≤ε
KL(fw+u(s)||fw+u(s′))/λ

]
, (6)

where the first term contributes to clean accuracy, and the second term with hyperparameter λ can
be seen as a regularization for adversarial robustness with randomized weights w + u.

Algorithmically, following Assumption 1 and Zhang et al. (2019), we extend Eq. (6) by replacing
KL(·||·) with a multi-class calibrated loss L(·, ·):

min
w

Eu′

[
Es(L(fw(s), y)) + Es max

s′:||s′−s||≤ε
L(fw+u′(s), fw+u′(s′))/λ

]
. (7)

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Adversarial training with randomized weights
Input: minibatch {si}ni=1, network architecture parametrized by w, learning rate ηl, step size ηs,

hyper-parameters η, λ, zero mean Gaussian u′, number of iterations K in inner optimization.
Output: Robust network fw
Randomly initialize network fw, or initialize network with pre-trained configuration
repeat
I Generate adversarial examples:

Sample u′ from u′

for i = 1 to n do
s′i ← si + 0.001 · N (0, I)
for k = 1 to K do

s′i ← Π(ηssign(∇s′i
L(fw+u′(si), fw+u′(s′i))) + s′i), subject to ||si − s′i|| ≤ ε,

where Π is the projection operator.
end for

end for
I Optimization: w ← w − ηl 1n

∑n
i=1∇w

[
L(fw(si), yi)

(zeroth term) +L(gsi(w), gs′i(w))/λ

(first term) +ηEu′
(
L(g′si(w)Tu′, g′s′i

(w)Tu′)
)

(second term) +η
2Eu′

(
L(u′

T
g′′si(w)u′,u′

T
g′′s′i

(w)u′)
)]

,
where various optimization methods can be applied: zeroth term optimization (TRADES),
zeroth + first terms optimization and zeroth + first + second terms optimization. The first
term and second term are optimized through Eqs. (13), (14) respectively.

until training converged

As the minimax optimization is entangled with expectation of randomized weights, it is challeng-
ing to solve such optimization problem directly. Instead, we propose to solve this problem in an
alternating manner between the inner maximization and outer minimization.

For the inner maximization, with a given model weight w, we solve it by adopting the commonly
used gradient-based approach (e.g., PGD) to generate the adversarial perturbation. That is, at the
t-th iteration, the adversarial perturbation is produced iteratively by letting

s′t+1 ← Π
(
s′t + ηssign

(
∇s′t
L(fw+u′(s), fw+u′(s′t))

))
(8)

until the maximum allowed iterations are reached, where Π is the projection operator, ηs is the
step size and u′ is a sample of u′. To reduce complexity, we only use one sample u′ to generate
adversarial example for each minibatch. Nevertheless, sufficient samples of u′ can still be produced
in one epoch as there are many minibatches. As Fig. 1 shows, the adversarial example is generated
by one model (boundary), then the optimization with randomized weights in multiple directions can
be executed through the following minimization method.

For the outer minimization, when the optimal perturbed sample s′ is generated by the inner maxi-
mization, we solve the following problem

min
w

Es

[
L(fw(s), y) + Eu′L(fw+u′(s), fw+u′(s′))/λ

]
. (9)

This optimization problem is challenging due to the entanglement between the deterministic weight
w and the random perturbation u′, which makes gradient updating much involved.

To resolve this issue, we decompose the two components in such a way that gradient updating and
model averaging can be done separately. Let fw+u′(s) = gs(w + u′), by Taylor expansion of
gs(w + u′) at w, we have

gs(w + u′) = gs(w) + g′s(w)Tu′ + u′
T g′′s (w)

2!
u′ +Os(||u′||2), (10)

where g′s(w) = ∂gs(w)
∂w ∈ Rd×1 and g′′s (w) = ∂2gs(w)

∂w∂w ∈ Rd×d are the first and second derivative of
the function gs(w) versus the weight w, respectively, and Os(||u′||2) tends to be zero with respect

5

Under review as a conference paper at ICLR 2023

to ||u′||2. By such approximation, the gradient computation will be solely done on the deterministic
part w, and model smoothing with averaged random variable u′ is done independently.

The intuition behind is the following. For the randomized model w + u′ with a specific input s, the
Taylor approximation explicitly takes into account the deterministic model gs(w), the projection of
its gradient onto the random direction g′s(w)Tu′, and the projection of its curvature onto the sub-
space spanned by u′

T g′′s (w)
2! u′, capturing higher-order information of the loss function with respect

to u′.

To further simplify the computation, we minimize an upper bound of Eq. (9) instead. Due to the
local convexity of loss landscape, by Jensen’s inequality, we conclude that

L
(∑

i

xi,
∑
i

yi
)
≤
∑
i

L(xi, yi). (11)

Therefore, the second term in Eq. (9) can be upper bounded by

Eu′L(fw+u′(s), fw+u′(s′)) ≤ L(gs(w), gs′(w)) + Eu′
(
L(g′s(w)Tu′, g′s′(w)Tu′)

)
+

1

2
Eu′
(
L(u′

T
g′′s (w)u′,u′

T
g′′s′(w)u′)

)
, (12)

where the terms on the right-hand side are referred to as the zeroth, first, and second order Taylor
expressions. Instead of minimizing Eq. (9) directly, we minimize the upper bound in Eq. (12), which
is easier to compute in practical models. We notice that minimizing Eu′(L(g′s(w)Tu′, g′s′(w)Tu′)),
Eu′(L(u′

T
g′′s (w)u′,u′

T
g′′s′(w)u′)) is almost equal to reducing the distance between g′s(w) and

g′s′(w), g′′s (w) and g′′s′(w), respectively. To further reduce complexity, we apply the first and second
terms optimization by reducing the distance of g′s(w) and g′s′(w), g′′s (w) and g′′s′(w) only on the final
(L-th) layer through minimizing

1

2
L
(
gs′(w),

[∑
i

∂(gs(w)− gs′(w))
∂WL(1,i)

, ...,
∑
i

∂(gs(w)− gs′(w))
∂WL(NL,i)

]T)
+

1

2
L
(
gs(w),

[∑
i

∂(gs′(w)− gs(w))
∂WL(1,i)

, ...,
∑
i

∂(gs′(w)− gs(w))
∂WL(NL,i)

]T)
,

(13)

1

2
L
(
gs′(w),

[∑
i

∑
j

∑
k

∂2gs(w)− ∂2gs′(w)

∂WL(1,i)∂WL(j,k)

, ...,
∑
i

∑
j

∑
k

∂2gs(w)− ∂2gs′(w)

∂WL(NL,i)∂WL(j,k)

]T)
+

1

2
L
(
gs(w),

[∑
i

∑
j

∑
k

∂2gs′(w)− ∂2gs(w)

∂WL(1,i)∂WL(j,k)

, ...,
∑
i

∑
j

∑
k

∂2gs′(w)− ∂2gs(w)

∂WL(NL,i)∂WL(j,k)

]T)
,

(14)

whereWL(j,k) is the element of j-th row, k-th column ofWL on L-th (final) layer,NL is the number
of neurons (units) on L-th layer. More discussions about the above replacement optimization are
given in Appendix D.

The pseudo-code of the proposed adversarial training method is presented in Algorithm 1. Note that
the zeroth term optimization in Algorithm 1 is almost the same as TRADES (Zhang et al., 2019),
thus we use TRADES and AWP-TRADES (Wu et al., 2020) as (zeroth term optimization) baselines
in our experiments in Sec. 5, and verify how much first and second terms optimization can improve.

For all of our experiments, we limit the noise variance of u′ to be very small, e.g., σ2 = 0.0001.
For the zeroth term hyper-parameter 1/λ in Algorithm 1, we set 1/λ = 6 for all of our experiments,
which is a widely-used setting for TRADES (Zhang et al., 2019; Wu et al., 2020; Pang et al., 2022).
The number of inner optimization iterations K is set to 10 as usual. To make our method more
flexible, we set η and η

2 as the first term and second term hyper-parameters, respectively, and analyze
the sensitivity of η in Sec. 5.1.

The main novelty of our proposed method is two-fold: (1) Instead of considering a single model
with a deterministic weight w, we consider a model ensemble with randomized weights w+u′ that
possesses the same generalization ability. By averaging these models during adversarial training, we
come up with a robust model with smoothing classification boundary tolerant to potential adversar-
ial weight perturbation that may resulted from adversarial examples. (2) When averaging over the
ensemble of randomized models during training, we disentangle gradient from random weight per-
turbation so that the gradient updating can be computed efficiently. In particular, we apply Taylor

6

Under review as a conference paper at ICLR 2023

Table 1: First and Second Derivative terms optimization on CIFAR-10 with `∞ threat model for
PreAct ResNet18. Classification accuracy (%) on clean images and under PGD-20 attack, CW-20
attack and Auto Attack with different hyper-parameters η = 0.05, 0.1, 0.2, 0.3, 0.4. We highlight
the best results in bold.

Method Clean PGD-20 CW-20 AA Method Clean PGD-20 CW-20 AA
1st (0.05) 83.19 53.98 52.12 48.2 1st+2nd (0.05) 83.25 54.07 51.93 48.4
1st (0.1) 82.86 54.29 52.24 49.3 1st+2nd (0.1) 83.47 54.42 52.28 49.7
1st (0.2) 83.55 54.86 52.65 48.8 1st+2nd (0.2) 84.13 55.13 52.53 50.8
1st (0.3) 83.96 55.05 52.54 49.7 1st+2nd (0.3) 84.27 54.36 51.80 48.9
1st (0.4) 83.93 54.65 52.23 48.6 1st+2nd (0.4) 84.14 54.38 51.56 49.6

expansion at the mean weight w (i.e., the deterministic component) and approximate the cross-
entropy loss function with the zeroth, first, and second Taylor terms. In doing so, the deterministic
and statistical components of w + u can be decomposed and then computed independently.

5 EMPIRICAL RESULTS

In this section, we first discuss the hyper-parameter sensitivity of our method, and then evaluate the
robustness on benchmark data sets against various white-box, black-box attacks and Auto Attack
with `2 and `∞ threat models.

Adversarial Training Setting. We train PreAct ResNet-18 (He et al., 2016) for `∞ and `2 threat
models on CIFAR-10/100 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011). In addition, we
also train WideResNet-34-10 (Zagoruyko and Komodakis, 2016) for CIFAR-10/100, VGG16 and
MobileNetV2 for CIFAR-10, with `∞ threat model. We adopt the widely used adversarial training
setting (Rice et al., 2020): for the `∞ threat model, ε = 8/255 and step size 2/255; for the `2 threat
model, ε = 128/255 and step size 15/255. For normal adversarial training, the training examples
are generated with 10 steps. All models (except SVHN) are trained for 200 epochs using SGD with
momentum 0.9, batchsize 128, weight decay 5 × 10−4, and an initial learning rate of 0.1 that is
divided by 10 at the 100th and 150th epochs. Except for setting the starting learning rate to 0.01
for SVHN, we utilize the same other settings. Simple data augmentations are used, such as 32× 32
random crop with 4-pixel padding and random horizontal flip. We report the highest robustness that
ever achieved at different checkpoints for each data set and report the clean accuracy on the model
which gets the highest PGD-20 accuracy. We omit the standard deviations of 3 runs as they are very
small (< 0.40%) and implement all models on NVIDIA A100.

Evaluation Setting. We evaluate the robustness with wihte-box attacks, black-box attacks and auto
attack. For white-box attacks, we adopt PGD-20 (Madry et al., 2018) and CW-20 (Carlini and
Wagner, 2017) (the `∞ version of CW loss optimized by PGD-20) to evaluate trained models. For
black-box attacks, we generate adversarial perturbations by attacking a surrogate normal adver-
sarial training model (with same setting) (Papernot et al., 2017), and then apply these adversarial
examples to the defense model and evaluate the performances. The attacking methods for black-box
attacks we have used are PGD-20 and CW-20. For Auto Attack (AA) (Croce and Hein, 2020b), one
of the strongest attack methods, we adopt it through a mixture of different parameter-free attacks
which include three white-box attacks (APGD-CE (Croce and Hein, 2020b), APGD-DLR (Croce
and Hein, 2020b), and FAB (Croce and Hein, 2020a)) and one black-box attack (Square Attack (An-
driushchenko et al., 2020)). We provide more details about the experimental setups in Appendix E.

5.1 SENSITIVITY OF HYPER-PARAMETER

In our proposed algorithm, the regularization hyper-parameter η is crucial. We use numerical ex-
periments on CIFAR-10 with PreAct ResNet-18 to illustrate how the regularization hyper-parameter
influences the performance of our robust classifiers. To develop robust classifiers for multi-class
tasks, we use the gradient descent update formula in Algorithm 1, with L as the cross-entropy loss.
Note that, for the zeroth term hyper-parameter 1/λ in Algorithm 1, we set 1/λ = 6 for all of our
experiments, which is a widely used setting for TRADES. We train the models with η = 0.05, 0.1,
0.2, 0.3, 0.4 respectively. All models are trained with 200 epochs and 128 batchsize.

In Tab. 1, we observe that as the regularization parameter η increases, the clean accuracy and robust
accuracy almost both go up first and then down. In particular, the accuracy under Auto Attack is

7

Under review as a conference paper at ICLR 2023

Table 2: First and Second Derivative terms optimization on CIFAR-10/CIFAR-100 with `∞ threat
model for WideResNet, compared with current state-of-the-art. Classification accuracy (%) on clean
images and under PGD-20 attack, CW-20 attack and Auto Attack. The results of our methods are in
bold. Note that ∗ is under PGD-40 attack and ∗∗ is under PGD-10 attack.

Data Set Method Architecture Clean PGD-20 CW-20 AA

CIFAR-10
(`∞, ε = 8/255)

Lee et al. (2020) WRN-34-10 92.56 59.75 54.53 39.70
Wang et al. (2020) WRN-34-10 83.51 58.31 54.33 51.10
Rice et al. (2020) WRN-34-20 85.34 - - 53.42
Zhang et al. (2020) WRN-34-10 84.52 - - 53.51
Pang et al. (2021) WRN-34-20 86.43 57.91∗∗ - 54.39
Gowal et al. (2020) WRN-70-16 85.29 58.22∗ - 57.20
Zhang et al. (2019) (0th) WRN-34-10 84.65 56.68 54.49 53.0

+ Ours (1st) WRN-34-10 85.51 58.72 56.06 54.0
+ Ours (1st+2nd) WRN-34-10 85.98 58.84 56.13 54.2

Wu et al. (2020) (0th) WRN-34-10 85.17 59.64 57.33 56.2
+ Ours (1st) WRN-34-10 86.10 61.47 58.09 57.1
+ Ours (1st+2nd) WRN-34-10 86.12 61.45 58.22 57.4

CIFAR-100
(`∞, ε = 8/255)

Cui et al. (2021) WRN-34-10 60.43 35.50 31.50 29.34
Gowal et al. (2020) WRN-70-16 60.86 31.47∗ - 30.03
Zhang et al. (2019) (0th) WRN-34-10 60.22 32.11 28.93 26.9

+ Ours (1st) WRN-34-10 63.01 33.26 29.44 28.1
+ Ours (1st+2nd) WRN-34-10 62.93 33.65 29.61 27.9

Wu et al. (2020) (0th) WRN-34-10 60.38 34.09 30.78 28.6
+ Ours (1st) WRN-34-10 63.98 35.36 31.63 29.8
+ Ours (1st+2nd) WRN-34-10 64.71 35.73 31.41 30.2

Table 3: Adversarial training across data sets on PreAct ResNet18 with `2 threat model. Classifica-
tion accuracy (%) on clean images and under PGD-20 attack and Auto Attack. The results of our
methods are in bold.

Method CIFAR-10 CIFAR-100 SVHN
Clean PGD AA Clean PGD AA Clean PGD AA

Wu et al. (2020)(0th) 87.05 72.08 71.6 62.87 45.11 41.8 92.86 72.45 63.8
+ Ours (1st+2nd) 88.41 72.85 72.0 65.59 46.88 42.4 93.98 73.07 64.5

sensitive to the regularization hyper-parameter η. Considering both robustness accuracy and clean
accuracy, it is not difficult to find that η = 0.3 is the best for first term optimization and η = 0.2 is
the best for first + second terms optimization. Thus in the following experiments, we set η = 0.3 for
first term optimization and η = 0.2 for first + second terms optimization as default.

5.2 COMPARISON WITH STATE-OF-THE-ART ON WIDERESNET

In Tab. 2, we compare our method with state-of-the-art on WideResNet with CIFAR-10 and CIFAR-
100. For zeroth term optimization, we use TRADES (Zhang et al., 2019) and AWP-TRADES (Wu
et al., 2020) as baselines with 1/λ = 6. We also report other state-of-the-art, include AVMixup (Lee
et al., 2020), MART (Wang et al., 2020), Rice et al. (2020), Zhang et al. (2020), Pang et al. (2021),
TRADES+LBGAT (Cui et al., 2021) and Gowal et al. (2020).

The results in Tab. 2 demonstrate that our method can both improve clean accuracy and robustness
accuracy consistently over different datasets and models. Especially for Auto Attack, our method
can get 57.4% on CIFAR-10 and 30.2% on CIFAR-100 with WRN-34-10, even surpass the perfor-
mance of WRN-70-16 from Gowal et al. (2020).

5.3 OTHER EMPIRICAL RESULTS

Adversarial training with `2 threat model. For the experiments with `2 threat model on CIFAR-
10, CIFAR-100 and SVHN in Tab. 3, the results still support that our method can enhance the
performance under clean data, PGD-20 attack and Auto Attack. For CIFAR-100, it can even increase
about 3% on clean accuracy.

8

Under review as a conference paper at ICLR 2023

Table 4: Adversarial training across data sets on PreAct ResNet18 with `∞ threat model. Classi-
fication accuracy (%) on clean images and black-box attacks. Black-box adversarial examples are
generated by a surrogate normal adversarial training model (of same setting) with PGD-20 attack
and CW-20 attack. The results of our methods are in bold.

Method CIFAR-10 CIFAR-100 SVHN
Clean PGD CW Clean PGD CW Clean PGD CW

Wu et al. (2020)(0th) 82.78 61.79 59.42 58.33 38.55 36.70 93.77 63.80 59.54
+ Ours (1st+2nd) 84.27 62.56 60.58 61.08 39.82 37.84 95.11 66.16 63.59

Table 5: Adversarial training across VGG16, MobileNetV2 on CIFAR-10 with `∞ threat model.
Classification accuracy (%) on clean images and under PGD-20 attack, CW-20 attack and Auto
Attack. The results of our methods are in bold.

Method VGG16 MobileNetV2
Clean PGD-20 CW-20 AA Clean PGD-20 CW-20 AA

Zhang et al. (2019) (0th) 79.78 49.88 46.95 44.3 79.73 51.41 48.43 46.4
+ Ours (1st+2nd) 80.99 50.13 47.09 44.4 81.86 53.34 49.93 47.8

Wu et al. (2020) (0th) 78.46 51.19 47.41 46.3 79.86 53.56 50.11 47.7
+ Ours (1st+2nd) 80.31 52.71 48.38 46.5 81.95 55.37 51.55 49.4

Table 6: Time consumption and GPU memory usage for WideResNet on CIFAR-10 with `∞ threat
model. We deploy each model on a single NVIDIA A100 with batchsize 128. The results of our
methods are in bold.

Method WideResNet-34-10
Time/Epoch GPU Memory

Zhang et al. (2019) (0th) 1666s 12875MB
+ Ours (1st) 2161s 20629MB
+ Ours (1st+2nd) 2362s 26409MB

Robustness under black-box attacks. We train PreAct ResNet18 for `∞ threat model on CIFAR-
10, CIFAR-100 and SVHN. The black-box adversarial examples are generated by a surrogate normal
adversarial training model (of same setting) with PGD-20 attack and CW-20 attack. Tab. 4 shows
our method is also effective under black-box attacks. For SVHN, ours can even obtain a significant
improvement over the existing ones.

Robustness on other architectures. We train VGG16 and MobileNetV2 for `∞ threat model on
CIFAR-10. Our results in Tab. 5 show a comprehensive improvement under clean data and robust-
ness accuracy. Particularly, for MobileNetV2, ours can achieve an improvement greater than 1%
and 2% under Auto Attack and clean data, respectively.

We also discuss different types of noise u′ in adversarial training in Appendix F.1 and the empirical
results of adversarial examples generated by Expectation Over Transformation (EOT) method (Atha-
lye et al., 2018) with u′ in Appendix F.2.

6 LIMITATIONS AND FUTURE WORK

We use some approximation methods, e.g., Eqs. (13), (14), to reduce the complexity of our adver-
sarial training method. The results in Tab. 6 show that though our method with WideResNet-34-10
can work on a single NVIDIA A100, the growth of training time and GPU memory still cannot be
ignored. In the future work, we plan to further reduce the complexity of our algorithm and apply the
first and second terms optimization on more layers.

7 CONCLUSION

This work studied the trade-off between robustness and clean accuracy over the randomized weights.
Through theoretical study of information-theoretic bound over both clean and adversarial data, algo-
rithmic design (via Taylor expansion), and extensive experiments, we demonstrated that optimizing
over randomized weights can further improve the performance of adversarial training methods.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alayrac, J., Uesato, J., Huang, P., Fawzi, A., Stanforth, R., and Kohli, P. (2019). Are labels required
for improving adversarial robustness? In NeurIPS.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. (2020). Square attack: a query-
efficient black-box adversarial attack via random search. In ECCV.

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. (2018). Synthesizing robust adversarial exam-
ples. In International conference on machine learning, pages 284–293. PMLR.

Balaji, Y., Goldstein, T., and Hoffman, J. (2019). Instance adaptive adversarial training: Improved
accuracy tradeoffs in neural nets. CoRR.

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pages 39–57. IEEE.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. (2019). Unlabeled data
improves adversarial robustness. In NeurIPS.

Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. (2020). Robust overfitting may be mitigated
by properly learned smoothening. In ICLR.

Croce, F. and Hein, M. (2020a). Minimally distorted adversarial examples with a fast adaptive
boundary attack. In ICML.

Croce, F. and Hein, M. (2020b). Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks. In ICML.

Cui, J., Liu, S., Wang, L., and Jia, J. (2021). Learnable boundary guided adversarial training. In
ICCV.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552.

Ding, G. W., Sharma, Y., Lui, K. Y. C., and Huang, R. (2020). Mma training: Direct input space
margin maximization through adversarial training. In ICLR.

Dong, Y., Deng, Z., Pang, T., Zhu, J., and Su, H. (2020a). Adversarial distributional training for
robust deep learning. In NeurIPS.

Dong, Y., Fu, Q., Yang, X., Pang, T., Su, H., Xiao, Z., and Zhu, J. (2020b). Benchmarking adver-
sarial robustness on image classification. In CVPR.

Dziugaite, G. K., Drouin, A., Neal, B., Rajkumar, N., Caballero, E., Wang, L., Mitliagkas, I., and
Roy, D. M. (2020). In search of robust measures of generalization. In NeurIPS.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In UAI.

Engstrom, L., Ilyas, A., and Athalye, A. (2018). Evaluating and understanding the robustness of
adversarial logit pairing. arXiv preprint arXiv:1807.10272.

Farnia, F., Zhang, J. M., and Tse, D. (2019). Generalizable adversarial training via spectral normal-
ization. In ICLR.

Goldfeld, Z., van den Berg, E., Greenewald, K. H., Melnyk, I., Nguyen, N., Kingsbury, B., and
Polyanskiy, Y. (2019). Estimating information flow in deep neural networks. In ICML.

Gowal, S., Qin, C., Uesato, J., Mann, T. A., and Kohli, P. (2020). Uncovering the limits of adversarial
training against norm-bounded adversarial examples. CoRR.

Gowal, S., Rebuffi, S., Wiles, O., Stimberg, F., Calian, D. A., and Mann, T. A. (2021). Improving
robustness using generated data. In NeurIPS.

10

Under review as a conference paper at ICLR 2023

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
CVPR.

Hendrycks, D., Lee, K., and Mazeika, M. (2019). Using pre-training can improve model robustness
and uncertainty. In ICML.

Javanmard, A., Soltanolkotabi, M., and Hassani, H. (2020). Precise tradeoffs in adversarial training
for linear regression. In COLT.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fantastic generalization
measures and where to find them. In ICLR.

Jin, G., Yi, X., Huang, W., Schewe, S., and Huang, X. (2022). Enhancing adversarial training with
second-order statistics of weights. In CVPR.

Jin, G., Yi, X., Zhang, L., Zhang, L., Schewe, S., and Huang, X. (2020). How does weight correlation
affect generalisation ability of deep neural networks? In NeurIPS.

Kannan, H., Kurakin, A., and Goodfellow, I. (2018). Adversarial logit pairing. arXiv preprint
arXiv:1803.06373.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Langford, J. and Shawe-Taylor, J. (2002). Pac-bayes & margins. In NeurIPS.

Lee, S., Lee, H., and Yoon, S. (2020). Adversarial vertex mixup: Toward better adversarially robust
generalization. In CVPR.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning
models resistant to adversarial attacks. In ICLR.

Mao, C., Zhong, Z., Yang, J., Vondrick, C., and Ray, B. (2019). Metric learning for adversarial
robustness. In NeurIPS.

McAllester, D. A. (1999). Pac-bayesian model averaging. In COLT.

Müller, R., Kornblith, S., and Hinton, G. (2019). When does label smoothing help? In NeurIPS.

Negrea, J., Haghifam, M., Dziugaite, G. K., Khisti, A., and Roy, D. M. (2019). Information-theoretic
generalization bounds for sgld via data-dependent estimates. In NeurIPS.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in
natural images with unsupervised feature learning.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring generalization in
deep learning. In NeurIPS.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. (2018). A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. In ICLR.

Pang, T., Lin, M., Yang, X., Zhu, J., and Yan, S. (2022). Robustness and accuracy could be recon-
cilable by (proper) definition. CoRR.

Pang, T., Yang, X., Dong, Y., Su, H., and Zhu, J. (2021). Bag of tricks for adversarial training. In
ICLR.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A. (2017). Practical
black-box attacks against machine learning. In AsiaCCS.

Parrado-Hernández, E., Ambroladze, A., Shawe-Taylor, J., and Sun, S. (2012). Pac-bayes bounds
with data dependent priors. J. Mach. Learn. Res.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and Liang, P. (2020). Understanding and
mitigating the tradeoff between robustness and accuracy. In ICML.

11

Under review as a conference paper at ICLR 2023

Rebuffi, S., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann, T. A. (2021). Fixing data
augmentation to improve adversarial robustness. CoRR.

Rice, L., Wong, E., and Kolter, J. Z. (2020). Overfitting in adversarially robust deep learning. In
ICML.

Russo, D. and Zou, J. (2019). How much does your data exploration overfit? controlling bias via
information usage. IEEE Transactions on Information Theory, 66(1):302–323.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. (2018). Adversarially robust
generalization requires more data. In NeurIPS.

Seeger, M. W. (2002). Pac-bayesian generalisation error bounds for gaussian process classification.
J. Mach. Learn. Res.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In ICLR.

Staib, M. and Jegelka, S. (2017). Distributionally robust deep learning as a generalization of adver-
sarial training. NIPS workshop on Machine Learning and Computer Security.

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P., and Gao, Y. (2018). Is robustness the cost of accuracy?
- A comprehensive study on the robustness of 18 deep image classification models. In ECCV.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. In CVPR.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2019). Robustness may be at
odds with accuracy. In ICLR.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. (2020). Improving adversarial robustness
requires revisiting misclassified examples. In ICLR.

Wu, D., Xia, S., and Wang, Y. (2020). Adversarial weight perturbation helps robust generalization.
In NeurIPS.

Xu, A. and Raginsky, M. (2017). Information-theoretic analysis of generalization capability of
learning algorithms. In NeurIPS.

Yu, Y., Yang, Z., Dobriban, E., Steinhardt, J., and Ma, Y. (2021). Understanding generalization in
adversarial training via the bias-variance decomposition. CoRR.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In BMVC.

Zhang, H. and Wang, J. (2019). Defense against adversarial attacks using feature scattering-based
adversarial training. In NeurIPS.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. (2019). Theoretically principled
trade-off between robustness and accuracy. In ICML.

Zhang, J., Xu, X., Han, B., Niu, G., Cui, L., Sugiyama, M., and Kankanhalli, M. S. (2020). Attacks
which do not kill training make adversarial learning stronger. In ICML.

Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., and Kankanhalli, M. S. (2021a). Geometry-
aware instance-reweighted adversarial training. In ICLR.

Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., and Zou, J. (2021b). How does mixup help with
robustness and generalization? In ICLR.

Zheng, T., Chen, C., and Ren, K. (2019). Distributionally adversarial attack. In AAAI.

12

Under review as a conference paper at ICLR 2023

A MORE RELATED WORKS

A.1 ADVERSARIAL TRAINING

Adversarial training methods can generally be divided into three groups. In the first group, Eq. (1)
is translated into an equivalent, (or approximate, expression), which is mainly used to narrow the
distance between fw(s) and fw(s′). For example, ALP (Engstrom et al., 2018; Kannan et al., 2018)
estimates the similarity between fw(s) and fw(s′), and maximizes this similarity in the objective
function. MMA (Ding et al., 2020) proposes each correctly classified instance s to leave sufficiently
the decision boundary, through making the size of shortest successful perturbation as large as pos-
sible. TRADES (Zhang et al., 2019) looks for the adversarial example s′ which can obtain the
largest KL divergence between fw(s) and fw(s′), then trains with these adversarial examples. Be-
sides, Zheng et al. (2019) adopts the similarity between local distributions of natural and adversarial
example, Staib and Jegelka (2017) measures the similarity of local distributions with Wasserstein
distance, and Mao et al. (2019); Dong et al. (2020a;b); Pang et al. (2021) try to optimize with the
distribution over a series of adversarial examples for a single input.

In the second group, adversarial examples are pre-processed before being used for training rather
than being directly generated by attack algorithms. For example, label smoothing (Szegedy et al.,
2016; Chen et al., 2020) replaces the hard label y with the soft label ỹ, where ỹ is a combination
of the hard label y and uniform distribution. A further empirical exploration with of how label
smoothing works is provided in Müller et al. (2019). AVMixup (Zhang et al., 2021b; Lee et al., 2020)
defines a virtual sample in the adversarial direction based on these. Through linear interpolation of
the virtual sample and the clean sample, it extends the training distribution with soft labels. Instead
of smoothing labels, Zhang and Wang (2019) perturbs the local neighborhoods with an unsupervised
way to produce adversarial examples. In addition, data augmentation (Rebuffi et al., 2021; Gowal
et al., 2021) is also shown to be an invaluable aid for adversarial training.

The above two groups merely adjust the component parts of the min-max formalism. With AWP (Wu
et al., 2020), one more maximization is performed to find a weight perturbation based on the gen-
erated adversarial examples. The altered weights (DeVries and Taylor, 2017) are then used in the
outer minimization function to reduce the loss caused by the adversarial cases.

Different from previous work, this paper optimizes the distance between fw+u′(s) and fw+u′(s′)
through randomized weights, and therefore, effectively, it considers the optimization problem where
the decision boundary are smoothed by these randomized models.

A.2 RANDOMIZED WEIGHTS

In the previous work to study generalization or robustness, modeling neural network weights as ran-
dom variables has been frequently used. For example, Xu and Raginsky (2017); Negrea et al. (2019)
estimate the mutual information between random weights and data set, provide the expected general-
ization bound over weight distribution. Another example of random weights is on the PAC-Bayesian
framework, a well-known theoretical tool to bound the generalization error of machine learning
models (McAllester, 1999; Seeger, 2002; Langford and Shawe-Taylor, 2002; Parrado-Hernández
et al., 2012). In the recent years, PAC-Bayes is also developed to bound the generalization error
or robustness error of DNNs (Dziugaite and Roy, 2017; Neyshabur et al., 2017; Farnia et al., 2019;
Jiang et al., 2020; Jin et al., 2020). In addition, Goldfeld et al. (2019) draws random noise into de-
terministic weights, to measure the mutual information between input data set and activations under
information bottleneck theory.

While we also consider randomized weights, a major difference from previous theoretical works
is that randomized weights are applied to robustness bound, from which we find an insight to de-
sign a novel adversarial training method which decomposes objective function (parameterized with
randomized weights) with Taylor series.

13

Under review as a conference paper at ICLR 2023

B PROOF OF LEMMA 3.3

Proof 3.3 We suppose the adversarial trained model contains information of S ∨ S ′, where S ∨ S ′
is the joint set with L(fw+u(S ∨ S ′),Y) = qL(fw+u(S),Y) + (1 − q)L(fw+u(S ′),Y). We let
q ∈ (0, 0.5) because S ′ occupies a large proportion in adversarial training. Randomized weight w
is generated by normal training with data set S and w+u is generated by adversarial training with
joint set S ∨ S ′, then

I
(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w + u

)
= H

(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

))
−H

(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)∣∣∣w + u
)

= H
(
L
(
fw+u(S),Y

))
+H

(
L
(
fw+u(S ′),Y

)∣∣∣L(fw+u(S),Y
))

−H
(
L
(
fw+u(S),Y

)∣∣∣w + u
)
−H

(
L
(
fw+u(S ′),Y

)∣∣∣L(fw+u(S),Y
)
,w + u

)
= H

(
L
(
fw+u(S),Y

))
+H

(
L
(
fw+u(S ′),Y

))
− I
(
L
(
fw+u(S),Y

)
;L
(
fw+u(S ′),Y

))
−H

(
L
(
fw+u(S),Y

)∣∣∣w + u
)
−H

(
L
(
fw+u(S ′),Y

)∣∣∣w + u
)

+ I
(
L
(
fw+u(S),Y

)
;L
(
fw+u(S ′),Y

)∣∣∣w + u
)

= I
(
L
(
fw+u(S),Y

)
;w + u

)
+ I
(
L
(
fw+u(S ′),Y

)
;w + u

)
− I
(
L
(
fw+u(S),Y

)
;L
(
fw+u(S ′),Y

)
;w + u

)
.

(15)

Note that I
(
L
(
fw+u(S),Y

)
;w + u

)
≤ I

(
L
(
fw+u(S ′),Y

)
;w + u

)
holds, due to the data pro-

cessing inequality and S − S ∨ S ′ − w + u forms a Markov chain under adversarial train-
ing where S ′ occupies a larger proportion in S ∨ S ′. As I

(
L
(
fw+u(S ′),Y

)
;w + u

)
≥

I
(
L
(
fw+u(S),Y

)
;L
(
fw+u(S ′),Y

)
;w + u

)
, we can easily get Lem. 3.3.

C PROOF OF LEMMA 3.4

Proof 3.4 Let fw+u(s)true be the normalized output of fw+u(s) for true label and we consider the
case of binary response y ∈ {0, 1} in Lem. 3.4. Then,

|L
(
fw+u(s), y

)
− L

(
fw+u(s′), y

)
|

=
∣∣∣ log

fw+u(s)true
fw+u(s′)true

∣∣∣
∝ fw+u(s)true log

fw+u(s)true
fw+u(s′)true

+ (1− fw+u(s)true) log
1− fw+u(s)true
1− fw+u(s′)true

= KL
(
fw+u(s)||fw+u(s′)

)
,

(16)

where we let ∝ represent positive correlation.

The above proof demonstrates |L(fw+u(s), y) − L(fw+u(s′), y)| is positive correlated with
KL(fw+u(s)||fw+u(s′)) in a binary case, this can also approximately hold in a multi-class case.
Thus, it allows us to optimize the mutual information of I

(
L
(
fw+u(S),Y

)
,L
(
fw+u(S ′),Y

)
;w +

u
)

utilizing a simplified term of KL(fw+u(s)||fw+u(s′)).

14

Under review as a conference paper at ICLR 2023

D DISCUSSION OF EQUATIONS (13), (14)

It is easy to see that minimizing Eu′(L(g′s(w)Tu′, g′s′(w)Tu′)), Eu′(L(u′
T
g′′s (w)u′,u′

T
g′′s′(w)u′))

equals reducing the distance between g′s(w) and g′s′(w), g′′s (w) and g′′s′(w), respectively. As a first
step, we consider to reduce this distance and only optimize it on the final (L-th) layer to further
reduce the complexity of our method. Normally, the `2 distance between vectors g′s(w) and g′s′(w)
can be defined as ∣∣∣∣∣∣∂gs(w)

∂wL
− ∂gs′(w)

∂wL

∣∣∣∣∣∣2
2

=

NL∑
j=1

∑
i

[∂(gs(w)− gs′(w))

∂WL(j,i)

]2
. (17)

We extend Eq. (17) by considering the sum of each row vector of ∂(gs(w)−gs′ (w))
∂WL

and define the

distance between ∂gs(w)
∂wL

and ∂gs′ (w)
∂wL

as

NL∑
j=1

[∑
i

∂(gs(w)− gs′(w))

∂WL(j,i)

]2
. (18)

We notice that, according to chain rule,
[∑

i
∂(gs(w)−gs′ (w))

∂WL(j,i)

]2
corresponds to gs(w)j and gs′(w)j ,

where gs(w)j and gs′(w)j are the j-th output of gs(w) and gs′(w) respectively. We can increase
gs′(w)j to reduce

∑
i
∂(gs(w)−gs′ (w))

∂WL(j,i)
when

∑
i
∂(gs(w)−gs′ (w))

∂WL(j,i)
is large. In contrast, we can increase

gs(w)j to reduce
∑
i
∂(gs′ (w)−gs(w))

∂WL(j,i)
when

∑
i
∂(gs′ (w)−gs(w))

∂WL(j,i)
is large. Thus, we can approximately

optimize Eu′(L(g′s(w)Tu′, g′s′(w)Tu′)) through minimizing

1

2
L
(
gs′(w),

[∑
i

∂(gs(w)− gs′(w))
∂WL(1,i)

, ...,
∑
i

∂(gs(w)− gs′(w))
∂WL(NL,i)

]T)
+

1

2
L
(
gs(w),

[∑
i

∂(gs′(w)− gs(w))
∂WL(1,i)

, ...,
∑
i

∂(gs′(w)− gs(w))
∂WL(NL,i)

]T)
.

(19)

Similarly, we define the distance between ∂2gs(w)
∂wL∂wL

and ∂2gs′ (w)
∂wL∂wL

as

NL∑
l=1

[∑
i

∑
j

∑
k

∂2gs(w)− ∂2gs′(w)

∂WL(l,i)∂WL(j,k)

]2
. (20)

We also notice that, according to chain rule,
[∑

i

∑
j

∑
k
∂2gs(w)−∂2gs′ (w)
∂WL(l,i)∂WL(j,k)

]2
corresponds

to gs(w)l and gs′(w)l. We can increase gs′(w)l to reduce
∑
i

∑
j

∑
k
∂2gs(w)−∂2gs′ (w)
∂WL(l,i)∂WL(j,k)

when
∑
i

∑
j

∑
k
∂2gs(w)−∂2gs′ (w)
∂WL(l,i)∂WL(j,k)

is large. In contrast, we can increase gs(w)l to reduce∑
i

∑
j

∑
k
∂2gs′ (w)−∂2gs(w)
∂WL(l,i)∂WL(j,k)

when
∑
i

∑
j

∑
k
∂2gs′ (w)−∂2gs(w)
∂WL(l,i)∂WL(j,k)

is large. Thus, we can approxi-

mately optimize Eu′(L(u′
T
g′′s (w)u′,u′

T
g′′s′(w)u′)) through minimizing

1

2
L
(
gs′(w),

[∑
i

∑
j

∑
k

∂2gs(w)− ∂2gs′(w)

∂WL(1,i)∂WL(j,k)

, ...,
∑
i

∑
j

∑
k

∂2gs(w)− ∂2gs′(w)

∂WL(NL,i)∂WL(j,k)

]T)
+

1

2
L
(
gs(w),

[∑
i

∑
j

∑
k

∂2gs′(w)− ∂2gs(w)

∂WL(1,i)∂WL(j,k)

, ...,
∑
i

∑
j

∑
k

∂2gs′(w)− ∂2gs(w)

∂WL(NL,i)∂WL(j,k)

]T)
.

(21)

15

Under review as a conference paper at ICLR 2023

Table 7: Adversarial training for PreAct ResNet18 on CIFAR-10 with `∞ threat model,
[−0.0001, 0.0001] uniform noise u′. Classification accuracy (%) on clean images and under PGD-
20 attack, CW-20 attack and Auto Attack. The results of our methods are in bold. η = 0.3 for first
term optimization and η = 0.2 for first + second terms optimization.

Method CIFAR-10
Clean PGD-20 CW-20 AA

Zhang et al. (2019) (0th) 82.89 53.81 51.83 48.6
+ Ours (1st) 83.78 55.01 52.69 49.5
+ Ours (1st+2nd) 84.21 55.34 52.69 50.7

Table 8: Adversarial training for PreAct ResNet18 on CIFAR-10 with `∞ threat model. Clas-
sification accuracy (%) on clean images and under PGD-20 attack, CW-20 attack and Auto At-
tack. All adversarial examples are generated by Expectation over Transformation method (EoT)
method, i.e., the adversarial example is the average of 5 adversarial examples generated by w + u′,
u′ ∼ N (0, 0.0001 · I). The results of our methods are in bold. η = 0.3 for first term optimization
and η = 0.2 for first + second terms optimization.

Method CIFAR-10
Clean PGD-20 CW-20 AA

Zhang et al. (2019) (0th) 82.89 54.05 51.89 48.7
+ Ours (1st) 83.96 55.12 52.49 49.7
+ Ours (1st+2nd) 84.13 55.19 52.61 50.8

E DETAILS OF THE EXPERIMENTS

E.1 NETWORK ARCHITECTURE

For all of our experiments in Sec. 5, we use 4 network architectures as ResNet, WideResNet, VGG
and MobileNetV2. We present the details in the following.

• ResNet/WideResNet: Architectures used are PreAct ResNet. All convolutional layers (ex-
cept downsampling convolutional layers) have kernel size 3 × 3 with stride 1. Downsam-
pling convolutions have stride 2. All the ResNets have five stages (0-4) where each stage
has multiple residual/downsampling blocks. These stages are followed by a max-pooling
layer and a final linear layer. We study the PreAct ResNet 18 and WideResNet-34-10.

• VGG: Architecture consists of multiple convolutional layers, followed by multiple fully
connected layers and a final classifier layer (with output dimension 10 or 100). We study
the VGG networks with 16 layers.

• MobileNetV2: Architecture is built on an inverted residual structure, with residual connec-
tions between bottleneck layers. As a source of non-linearity, the intermediate expansion
layer filters features with lightweight depthwise convolutions. As a whole, the architec-
ture of MobileNetV2 includes a fully convolutional layer with three filters, followed by 19
residual bottleneck layers.

E.2 CHECKPOINTS

We set checkpoints for each epoch between 100−110 and 150−160, each 5 epoch between 110−150
and 160− 200. All best performances are got from these checkpoints.

F SUPPLEMENTARY EXPERIMENT

F.1 DIFFERENT NOISES OF u′

In our method, the core is bringing in randomness and using Tylor expansion to optimize the model
in multi directions. The type of small perturbation u′ is relatively unimportant. As Tab. 7 shows,
the empirical results of small uniform perturbation are similar with the results of small Gaussian
perturbation in Tab. 1.

16

Under review as a conference paper at ICLR 2023

F.2 EOT METHOD TO GENERATE ADVERSARIAL EXAMPLES

The results in Tab. 8 show that our method can still improve the performance of both robustness and
clean accuracy, where the adversarial examples are generated by Expectation over Transformation
method (EoT).

17

	Introduction
	Preliminaries
	Theoretical perspective
	Algorithmic design
	Empirical results
	Sensitivity of hyper-parameter
	Comparison with state-of-the-art on WideResNet
	Other empirical results

	Limitations and future work
	Conclusion
	More Related Works
	Adversarial training
	Randomized weights

	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Discussion of Equations (13), (14)
	Details of the experiments
	Network Architecture
	Checkpoints

	Supplementary experiment
	Different noises of u'
	EOT method to generate adversarial examples

