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ABSTRACT

We propose a simple yet effective method to aggregate the decisions based on
the soft-probability outputs of multiple trained detectors, possibly provided by a
third party. We formally derive a mathematically sound theoretical framework,
which is straightforward as it does not require further training of the given de-
tectors, and modular, allowing existing (and future) detectors to be merged into a
single one. As an application, we evaluate our framework by tackling the recently
proposed problem of simultaneous adversarial examples detection, i.e. when the
attacks at the evaluation time can be simultaneously crafted according to a variety
of algorithms and objective loss functions. While each single detector tends to
underperform or fail in the aforementioned attack scenario, our framework suc-
cessfully aggregates the knowledge of the available detectors to guarantee a more
reliable decision. We validate our AGgregatoR of dEtectors’ dEcisions (AGREE)
on popular datasets (e.g., CIFAR10 and SVHN) and we show that it consistently
outperforms the state-of-the-art when simultaneous adversarial attacks are present
at evaluation time.

1 INTRODUCTION

In recent years, the need for reliable deep models has sparked interest in the field of trustworthy
AI across several research areas, such as misclassification detection (Granese et al., 2021; Geif-
man & El-Yaniv, 2019; Gangrade et al., 2021), out-of-distribution (OOD) detection (Gomes et al.,
2022; Vyas et al., 2018; Sastry & Oore, 2020; Ovadia et al., 2019; Liu et al., 2020; Hendrycks &
Gimpel, 2017; Zhang et al., 2021; Lin et al., 2021), robustness (Madry et al., 2018; Zhang et al.,
2019; Alayrac et al., 2019; Picot et al., 2022; Robey et al., 2021; Engstrom et al., 2019), and ad-
versarial attacks detection (Aldahdooh et al., 2022; Kherchouche et al., 2020; Ma et al., 2018; Lee
et al., 2018; Meng & Chen, 2017; Xu et al., 2018; Feinman et al., 2017). One main difficulty all the
aforementioned areas come across is proposing a solution that is generally better then the previously
proposed ones in all scenarios. In particular, the community interested in adversarial attacks detec-
tion has invested a lot of effort in designing sophisticated defense strategies, which new attacks have
systematically circumvented. However, as stated in Tramèr et al. (2020), there exists an informal
“no-free-lunch-theorem”: For any proposed attack, it is possible to build a non-robust defence that
prevents that attack. Indeed, the question arises as to whether existing methods can be aggregated so
to collect their individual expertise and achieve improved detection. Recently, Granese et al. (2022)
pointed out a novel multi-armed framework, called MEAD, to assess the performances of the detec-
tors when several attack strategies are perpetrated at the same time. Interestingly, the authors show
that even without giving to the attacker the full knowledge on the underlying defence mechanism,
the state-of-the-art (SOTA) detectors tragically fail under this setting.

To address this problem, we suggest a simple but still effective way to aggregate multiple detection
methods building a “team of experts”. The requirements for using one method in combination
with others within our proposed framework are very flexible: in principle, as long as its output is
interpretable as a probability distribution over the two categories natural/adversarial, any existing (or
future) method, either supervised or unsupervised, can be combined with others using the framework
we propose in this work. Crucially, a modular aggregator allows pre-trained detectors to be reused,
virtually free of charge, without additional training or data.
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1.1 SUMMARY OF CONTRIBUTIONS

Our contributions are threefold:

• To the best of our knowledge, this work is the first one that proposes an aggregation frame-
work to combine the expertise of different adversarial examples detectors and address the
problem raised in Granese et al. (2022). Our proposed method can aggregate detectors off
the shelf, with no further training required.

• From a theoretical perspective, we revisit the simultaneous attack detection problem
in Granese et al. (2022) and we formalize it as a minimax cross-entropy risk. Based on
this formulation, we derive a surrogate loss from which we characterize our optimal soft-
detector in Eq. (10) that leads to AGREE (cf. Definition 1). (Sec. 3).

• We empirically evaluate AGREE on popular datasets (e.g., CIFAR10 and SVHN). In par-
ticular we test it over simple detectors which individually perform much worse than SOTA.
We show that AGREE, through their aggregation, leads to higher and more consistent per-
formance w.r.t. SOTA (cf. Sec. 4) over the simultaneous attack setup.

1.2 RELATED WORKS

Detection mechanisms. Methods to defend deep models against adversarial attacks can be
grouped into two main families: methods that are designed to increase the targeted model’s ro-
bustness by re-training it Goodfellow et al. (2015); Madry et al. (2018); Picot et al. (2022); Xie et al.
(2020); Tramèr et al. (2018), and methods engineered to detect adversarial examples at evaluation
time Kherchouche et al. (2020); Ma et al. (2018); Feinman et al. (2017); Xu et al. (2018); Meng &
Chen (2017); Lee et al. (2018). The work in Aldahdooh et al. (2022) provides a recent and thorough
survey about the state-of-the-art detection methods, which fall under two main categories: super-
vised and unsupervised. Detectors within the former category extract features either directly from
the targeted network’s layer Kherchouche et al. (2020); Feinman et al. (2017) or by using statistical
tools Ma et al. (2018); Lee et al. (2018). To do so, both natural and adversarial examples are neces-
sary. Generally, the adversarial samples are created according to a single fixed algorithm and a given
loss function, which are then also used to create the examples at evaluation time. Methods falling
under the unsupervised category only rely on the features of natural samples that can be extracted
using different techniques (e.g., feature squeezing Xu et al. (2018)) or can be based on autoencoders
training procedures with the scope of minimizing the reconstruction error Meng & Chen (2017).

Attack algorithms. Since Szegedy et al. (2014) first shed light on the problem, several machine
learning models, including state-of-the-art neural networks, have been found to be vulnerable to
adversarial examples. Over the years, a plethora of algorithms to generate adversarial samples has
been proposed and, overall, we can group them into two main categories: whitebox and blackbox
attacks. We talk about white-box attacks when the adversary knows everything about the target
model (its architecture and weights). Gradient-based attacks belong to this category. They rely on
finding the perturbation direction, i.e., the sign of gradient at each pixel of the input, that maximizes
the attacker’s objective value. Examples of gradient-based attacks are the Fast Gradient Sign Method
(FGSM) Goodfellow et al. (2015), the Basic Iterative Method (BIM) Kurakin et al. and the Projected
Gradient Descent method (PGD) Madry et al. (2018). BIM and PGD can be seen as iterative versions
of FGSM (one-step perturbation). Unlike BIM, PGD attacks start from a random perturbation in Lp-
ball around the input sample. Another powerful attack is the Carlini-Wagner attack (CW) Carlini
& Wagner (2017c), which directly minimizes the additive noise constrained by a function which
assure the misclassification of the perturbed sample. We conclude the list of white-box attacks by
mentioning the DeepFool attack (DF) Moosavi-Dezfooli et al. (2016), which is an iterative method
based on a local linearization of the targeted classifier, and the resolution of the resulting simplified
adversarial problem. In the case of black-box attacks, the adversary has no access to the internals
of the target model, hence it creates attacks by querying the model and monitoring outputs of the
model to attack. Examples of black-box attacks are the Square Attack (SA) Andriushchenko et al.
(2020), which iteratively searches for a random perturbation, and checks if it increases the attacker’s
objective at each step; the Hop Skip Jump attack (HOP) Chen et al. (2020) which estimates the
gradient direction to perturb, and the Spatial Transformation Attack (STA) Engstrom et al. (2019)
which transforms the original samples by applying small translations and rotations to them. It is
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worth to mention that there also exists gray-box attacks, i.e. when the adversary knows the training
data but not the internals of the model. These attacks rely on the transferability property of the
adversarial examples: to create attacks these methods build a substitute model that performs the
same task as the target model. A special class of attacks are the so-called adaptive attacks (Athalye
et al., 2018; Tramèr et al., 2020; Carlini & Wagner, 2017c; Yao et al., 2021) where attacks are
specifically designed to target a given defence. In this scenario, the attacker is supposed to have full
knowledge of both the targeted classifier and the underlying defence.

We refer to the survey in Aldahdooh et al. (2022) and references therein for a comprehensive dis-
cussion of these topics.

2 MAIN DEFINITIONS AND PRELIMINARIES

2.1 TARGET CLASSIFIER

Let X ⊆ Rd be the input space and let Y = {1, . . . , C} be the label space related to a classification
task. We denote by PXY the unknown data distribution over X × Y . Throughout the paper, we
refer to the classifier with pŶ |X(y|x; θ), i.e. the parametric soft-probability model, where y ∈ Y ,
and θ ∈ Θ are the learnt parameters. The function hθ : X → R|Y| outputs the logits vector of the
classifier given an input sample. The induced hard decision of the classifier is defined as gθ : X → Y
s.t. gθ(x) =

∆ argmaxy∈Y pŶ |X(y|x; θ).

2.2 ADVERSARIAL PROBLEM

Let us consider a natural sample x ∈ X together with its true label y ∈ Y . An attacker targets the
model gθ by crafting a sample x′

ℓ ∈ Rd according to an objective loss function ℓ(x,x′
ℓ; θ) which

is denoted by ℓ, perturbation magnitude ε, and norm constraint Lp, p ∈ {1, 2,∞}. The goal of
the attack is to obtain an x′

ℓ such that gθ(x′
ℓ) ̸= gθ(x), in order to force the target model to make

a prediction error. As thoroughly investigated in Szegedy et al. (2014), the adversarial generation
problem is difficult to tackle and it is commonly relaxed as follows

xℓ
′ ≡ xℓ

′(x) = argmax
xℓ

′∈Rd : ∥xℓ
′−x∥p<ε

ℓ(x,xℓ
′; θ), (1)

where x′
ℓ is updated iteration by iteration starting from an initial given value. The objective function

ℓ traditionally used is the Adversarial Cross-Entropy (ACE) Szegedy et al. (2014); Madry et al.
(2018):

ℓACE(x,xℓ
′; θ) = EY |x

[
− log pŶ |X(Y |x′

ℓ; θ)
]
, (2)

where the expectation is understood to be over the ground true conditional distribution of Y given x.
Inspired by recent development in the fields of robustness and misclassification detection (Granese
et al., 2021; Picot et al., 2022; Zhang et al., 2019), Granese et al. (2022) have included in their study
recently proposed objective functions which generate diversified adversarial examples and that we
briefly recall below.

• The Kullback-Leibler divergence (KL):

ℓKL (x,xℓ
′; θ) = EŶ |x;θ

[
log

(
pŶ |X(Ŷ |x; θ)

pŶ |X(Ŷ |x′
ℓ; θ)

)]
. (3)

• The Fisher-Rao objective (FR) Picot et al. (2022):

ℓFR(x,xℓ
′; θ) = 2 arccos

∑
y∈Y

√
pŶ |X(y|x; θ)pŶ |X(y|x′

ℓ; θ)

 . (4)

• The Gini Impurity score (Gini) Granese et al. (2021):

ℓGini(·,xℓ
′; θ) = 1−

√∑
y∈Y

p2
Ŷ |X

(y|x′
ℓ; θ). (5)
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3 FORMALIZATION OF THE PROBLEM OF DETECTING SIMULTANEOUS
ATTACKS

3.1 STATISTICAL MODEL

Let K be the countable set of indexes corresponding to each possible attack, e.g., based on various
attack algorithms and loss functions, as described in Sec. 2.2. Let M =

{
P

(k)
XZ : k ∈ K

}
be the set

of joint probability distributions on X ×Z which are indexed with k, ∀k ∈ K, where X is the input
(feature) space and Z = {0, 1} indicates a binary space label for the adversarial example detection
task. At the evaluation time, the attacker selects an arbitrary strategy k ∈ K and then samples an
input according to p(k)X|Z(x|z = 1) which corresponds to the probability density function induced by

the chosen attack k where p(k)X|Z(x|z = 0) = pX(x) almost surely corresponding to the probability
distribution of the natural samples. The learner is given a set of soft-detectors models:

Q =
{
q
(k)

Ẑ|u
: U 7→ [0, 1]2

}
k∈K

,

which have possibly been trained to detect attacks according to each strategy k ∈ K, e.g.,
q
(k)

Ẑ|u
≡ pẐ|U (z|u;ψk) with parameters ψk and u ∈ U = {hθ(x) | x ∈ Rd} denotes the space

of logits. The set of possible detectors Q is available to the defender. However, the specific attack
chosen by the attacker at the test time is unknown. In the remainder of this section, we formally
devise an optimal detector that exploits full knowledge of the set Q.

3.2 A NOVEL OBJECTIVE FOR DETECTION UNDER SIMULTANEOUS ATTACKS

Consider a fixed input sample x0 and let u0 = hθ(x0). Clearly, the problem at hand consists in
finding an optimal soft-detector q⋆

Ẑ|u0
that performs well simultaneously over all possible attacks in

K. This can be formalized as the solution to the following minimax problem:

L(Q,x0) = min
qẐ|u0

max
k∈K

E
q
(k)

Ẑ|u0

[
− log qẐ|u0

]
, (6)

which requires to solve equation 6 for Q and for each given input sample x0. Unfortunately, this
objective is not tractable computationally. To overcome this issue, we derive a surrogate (an upper
bound) that can be computationally optimized. For any arbitrary choice of qẐ|u0

, we have

max
k∈K

E
q
(k)

Ẑ|u0

[
− log qẐ|u0

]
≤ max

k∈K
E
q
(k)

Ẑ|u0

[
− log q

(k)

Ẑ|u0

]
︸ ︷︷ ︸

=constant term

+max
k∈K

E
q
(k)

Ẑ|u0

log
q(k)Ẑ|u0

qẐ|u0

 . (7)

Observe that the first term in equation 7 of the upper bound is constant w.r.t. the choice of qẐ|u0

and the second term is well-known as being equivalent to the average worst-case regret Barron et al.
(1998). This upper bound provides a surrogate to our intractable objective in equation 6 that can be
minimized over all qẐ|u0

. We can formally state our problem as follows:

L̃(Q,x0) = min
qẐ|u0

max
k∈K

E
q
(k)

Ẑ|u0

log
q(k)Ẑ|u0

qẐ|u0

 = min
qẐ|u0

max
PΩ

EΩ

[
DKL

(
q
(Ω)

Ẑ|u0

∥∥qẐ|u0

)]
, (8)

where the min is taken over all the possible distributions qẐ|u0
; and Ω ∈ K is a discrete random

variable with PΩ denoting a generic probability distribution whose probabilities are (ω1, . . . , ω|K|),
i.e., PΩ(k) = ωk; and DKL(·∥·) is the Kullback–Leibler divergence, representing the expected value
of regret of qẐ|U w.r.t. the worst-case distribution in the class Q. The convexity of the KL-divergence
allows us to rewrite Eq. (8) as follows:

min
qẐ|u0

max
PΩ

EΩ

[
DKL

(
q
(Ω)

Ẑ|u0

∥∥qẐ|u0

)]
= max

PΩ

min
q̂Ẑ|u0

EΩ

[
DKL

(
q
(Ω)

Ẑ|u0

∥∥qẐ|u0

)]
. (9)
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The solution Eq. (9) provides the optimal distribution P ⋆
Ω, i.e. the collection of weights {w⋆

k}, which
leads to our soft-detector Barron et al. (1998):

q̂ ⋆
Ẑ|u0

=
∑
k∈K

w⋆
k · q(k)

Ẑ|u0
, with P ⋆

Ω = argmax
{ωk}

Iu0(Ω; Ẑ), (10)

where Iu0(·; ·) denotes the Shannon mutual information between the random variable Ω, distributed
according to {ωk}, and the binary soft-prediction variable Ẑ, distributed according to q(k)

Ẑ|u0
and

conditioned on the particular test example u0. Further details are provided in Appendix A.

From theory to our practical detector. According to our derivation in Eq. (10), the optimal de-
tector turns out to be given by a mixture of the |K| detectors belonging to the class Q, with weights
carefully optimized to maximize the mutual information between K and the predicted variable Ẑ
for each detector in the class Q. Using this key ingredient, it is straightforward to devise our optimal
detector.

Definition 1 (AGREE) For any 0 ≤ γ ≤ 1 and a given x0 ∈ X , let us define the following detector:

AGREE(x0) =
∆
1
[
q ⋆
Ẑ|u0

(ẑ = 1|hθ(x0)) > γ
]
, (11)

where 1 [·] is the indicator function.

4 EXPERIMENTAL RESULTS

Table 1: MEAD. Each cell corresponds to attacks simul-
taneously executed on the targeted classifier. Attacks cre-
ated using all the losses in Sec. 2.2 are marked with ⋆. At-
tacks such as SA and DF are not dependent on the choice
for the loss. Empty cells correspond to combinations of
perturbation magnitude and norm constraint that have not
been considered.

L1 L2 L∞ No norm

ε = 0.01 - CW2 - -

ε = 0.03125 - - PGDi⋆,FGSM⋆,BIM⋆ -

ε = 0.0625 - - PGDi⋆,FGSM⋆,BIM⋆ -

ε = 0.1 - HOP - -

ε = 0.125 - PGD2⋆ PGDi⋆,FGSM⋆,BIM⋆,SA -

ε = 0.25 - PGD2⋆ PGDi⋆,FGSM⋆,BIM⋆ -

ε = 0.3125 - PGD2⋆ PGDi⋆,FGSM⋆,BIM⋆,CWi -

ε = 0.5 - PGD2⋆ PGDi⋆,FGSM⋆,BIM⋆ -

ε = 1 - PGD2⋆ - -

ε = 1.5 - PGD2⋆ - -

ε = 2 - PGD2⋆ - -

ε = 5 PGD1⋆ - - -

ε = 10 PGD1⋆ - - -

ε = 15 PGD1⋆ - - -

ε = 20 PGD1⋆ - - -

ε = 25 PGD1⋆ - - -

ε = 30 PGD1⋆ - - -

ε = 40 PGD1⋆ - - -

No ε - DF - -

max. rotation = 30

max. translation = 8
- - - STA

We evaluate our proposed framework
AGREE deploying it against the attacks
in MEAD, i.e., the simultaneous attacks
scenario introduced in Granese et al.
(2022). The goal of AGREE is to de-
tect at evaluation time the attacks that
can be simultaneously crafted according
to a variety of algorithms and objective
loss functions. To reproduce our results,
we provide our source code in the Sup-
plementary Material.

In our empirical evaluation, we suppose
a third party provides us four simple
supervised detectors. Each of them is
trained to detect only a specific kind of
attack. Note that this is a reasonable as-
sumption, as many methods in the liter-
ature are good at detecting one type of
attacks and fail at detecting others. In
addition, to emphasize the role played
by the proposed method, these detectors
are shallow networks (fully-connected,
3 layers of 256 nodes each), which are
only allowed to observe the logits of the
target classifier to distinguish between
natural and adversarial samples. Each of
these detectors is designed to success-
fully recognize only one specific kind
of attack. Therefore, they are bound to
perform very poorly (much worse than
the SOTA) against attacks they have not
been trained on.
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4.1 EVALUATION FRAMEWORK

Evaluation setup: MEAD. According to the simultaneous attacks framework of MEAD (Granese
et al., 2022), we consider all the attack algorithms mentioned in Sec. 1.2, and we group them w.r.t.
the corresponding norm and the perturbation magnitude. For each natural sample and for each
gradient-based attack algorithm (i.e., FGSM, PGD or BIM), we create four adversarial counterparts,
each corresponding to one of the loss functions described in Sec. 2.2. In order to clearly explain
how the evaluation is carried on, let us take a look at Tab. 1. Each cell corresponds to a group of
attacks: each of them has been created according to the algorithm within the cell, the associated
norm (i.e., the column label) and perturbation magnitude (i.e., the row label) and one of the four loss
functions. Thus for example, when we consider L∞ norm and ε = 0.125, the detector is evaluated
on 4 + 4 + 4 + 1 = 13 simultaneous attacks. Note that we discard the perturbed examples that do
not fool the classifier as, by definition, they are neither natural nor adversarial.

Evaluation metrics. Following the evaluation setup described above, and w.r.t. each cell of Tab. 1,
throughout the paper we consider a detection successful if and only if all the attacks within the
considered cell are detected. Hence, we say that a group of attacks corresponding to a cell counts as
a true positive if and only if all the corresponding adversarial examples are detected as adversarial,
as a false negative otherwise. We stress the fact that, to the best of our knowledge, this evaluation
is stricter and more realistic than the ones considered so far in the literature. We use the classical
definitions of true negative and false positive for the detection of natural samples. This means that
a true negative is a natural sample detected as natural, a false positive is a natural sample detected
as adversarial. We measure the performance of the detectors in terms of: i) AUROC↑% (Davis &
Goadrich, 2006) (the Area Under the Receiver Operating Characteristic curve) which represents the
ability of the detector to discriminate between adversarial and natural examples (higher is better);
ii) FPR at 95 % TPR (FPR↓95%%), i.e., the percentage of natural examples detected as adversarial
when 95 % of the adversarial examples are detected (lower is better).

Datasets and pre-trained classifiers. We run our experiments on CIFAR10 (Krizhevsky, 2009)
and SVHN (Netzer et al., 2011) image datasets. For both of them, we consider as pre-trained classi-
fier ResNet-18 models that have been trained for 100 epochs, using SGD optimizer with a learning
rate of 0.1, weight decay of 10−5, and momentum of 0.9. The accuracy achieved by the classifiers
on the original clean data are 99% for CIFAR10 and 100% for SVHN at training time; 93.3% for
CIFAR10 and 95.5% for SVHN at testing time.

Detectors. AGREE aggregates four simple pre-trained detectors. The detectors are four fully-
connected neural networks, composed of 3 layers of 256 nodes each. All the detectors are trained
for 100 epochs, using SGD optimizer with learning rate of 0.01 and weight decay 0.0005. They
are trained to distinguish between natural and adversarial examples created according to the PGD
algorithm, under L∞ norm constraint and perturbation magnitude ε = 0.125 for CIFAR10 and
ε = 0.25 for SVHN. Each detector is trained on natural and adversarial examples generated using
one of the loss functions mentioned in Sec. 2.2 (i.e., ACE Eq. (2), KL Eq. (3), FR Eq. (4), or
Gini Eq. (5)) to craft its training adversarial samples. We would like to point out that the purpose
of this paper is not creating a new supervised detector, but rather showing a method to aggregate
a set of detectors, either supervised or unsupervised, and already trained. We further expand on
the selection of the ε parameter of the adversarial examples used at training time in Appendix B.3
(c.f. Tabs. 5 and 7).

NSS (Kherchouche et al., 2020). We compare AGREE with NSS, which turns out to be the best
among the SOTA methods under simultaneous attacks (c.f. (Granese et al., 2022)). NSS character-
izes the adversarial perturbations through the use of natural scene statistics, i.e. statistical proper-
ties that can be altered by the presence of adversarial perturbations. NSS is trained once by using
PGD algorithm, L∞ norm constraint and perturbation magnitude ε = 0.03125 for CIFAR10 and
ε = 0.0625 for SVHN. We further expand on the selection of the ε parameter of the adversarial
examples used at training time in Appendix B.3 (c.f. Tabs. 4 and 6).

On the optimization of Eq. (10) For the optimization of Eq. (10), we rely on the SciPy (Vir-
tanen et al., 2020) library, package optimize, function minimize which uses the Sequential
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 AGREE 

(a) Detectors on PGD-
L1-40-FR

 AGREE 

(b) Detectors on FGSM-
L∞-0.5-FR

(c) AGREE on PGD-L1-
40-FR

(d) NSS on PGD-L1-40-
FR

Figure 1: Discrimination performances. In Fig. 1a and Fig. 1b, the accuracies of the detectors on
natural and adversarial examples; in Fig. 1c and Fig. 1d we show how AGREE and NSS split the
data samples. In pink the results for the adversarial examples and in blue the ones for the naturals.
Under each plot the tested attack configuration parameters: algorithm-Lp-ε-loss.

Least Squares Programming (SLSQP) algorithm to find the optimum. Further details can be found
in Appendix A.2.

4.2 NUMERICAL RESULTS

We graphically present the intuition behind the way AGREE works, then we move on to present and
discuss a collection of experimental results. We relegate to Appendix B the further discussions on
the experiments that for space constraints have not been included in this section.

4.2.1 THE shallow DETECTORS IN AGREE

Figure 1 provides a graphical interpretation of the detection performance when ResNet18, trained
on CIFAR10, is the target classifier (c.f. Sec. 4.1). In Figs. 1a and 1b the single detectors are referred
to as loss used to create the adversarial examples on which each detector was trained (along with the
natural samples), i.e ACE, FR, KL, Gini along the horizontal axis.

In Figure 1a, and Figure 1b, we report the accuracy for the adversarial detection task on the natural
examples in blue, and on the adversarial examples in pink. We consider each individual detector,
along with NSS and AGREE. In Figure 1a, the attacks have been created according to the PGD
algorithm, the FR loss, ε = 40, and norm constraint L1. In Figure 1b the attacks have been created
according to the FGSM algorithm, FR loss, ε = 0.5, and L∞ norm. As we can observe the individual
detectors, i.e. ACE, FR, KL and Gini exhibit different behaviours according to the current attack. In
fact, in Fig. 1a the Gini detector drastically fails at detecting the attack as its accuracy plummets to
0% on the adversarial examples. In the same way, FR, KL but mostly ACE perform poorly against
FGSM (c.f. Fig. 1b). On the contrary, AGREE, benefiting from the aggregation, obtains favorable
results in both cases.

One main takeaway of this paper is that, if we are provided with generally mediocre detectors,
whose performance is good only on a limited amount of cases, we can successfully aggregate
them through AGREE in order to obtain a more consistent detection.

Further insight into the way AGREE works is provided by figures Fig. 1c and Fig. 1d. The histograms
show how AGREE and NSS separate natural (blue) and adversarial examples (pink). The values
along the horizontal axis represent the probability of being classified as adversarial. In each plot,
and according to the corresponding discrimination method, the bins’ heights represent the frequency
of the samples whose associated probability of being adversarial falls within that bin. The detec-
tion error is proportional to the area of overlap between the blue and the pink histograms. Fig. 1c
and Fig. 1d suggest that AGREE achieves lower detection error on the considered attack, as it is
confirmed by Tab. 2 where we found NSS with 76.1 AUROC↑% and AGREE with 92.1 AUROC↑%.
Additional plots are provided in Appendix B.5.

Indeed, AGREE’s performance over the simultaneous attacks are consistent over the majority of the
considered attacks (c.f. Tab. 2).
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Table 2: Comparison between AGREE and NSS on CIFAR10 and SVHN. The ⋆ symbol means
the perturbation mechanism is executed in parallel four times starting from the same original clean
sample, each time using one of the objective losses between ACE Eq. (2), KL Eq. (3), FR Eq. (4),
Gini Eq. (5).

CIFAR10 SVHN

NSS AGREE NSS AGREE

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1⋆

ε = 5 48.5 94.2 62.1 87.1 40.2 91.3 76.9 79.0
ε = 10 54.0 90.3 56.8 90.6 36.9 91.3 73.0 82.5
ε = 15 58.8 86.8 69.3 84.4 35.6 91.3 78.9 72.5
ε = 20 63.5 82.3 78.7 73.1 36.1 91.3 83.6 60.7
ε = 25 67.7 77.2 87.1 50.8 37.8 91.3 87.0 48.6
ε = 30 71.4 73.4 90.3 35.4 39.8 91.3 89.3 37.2
ε = 40 76.1 67.3 92.1 26.4 43.1 91.3 92.6 20.0

Norm L2

PGD2⋆

ε = 0.125 48.3 94.3 63.9 85.4 40.8 91.3 80.2 74.5
ε = 0.25 53.2 91.2 57.1 90.5 37.2 91.3 74.0 81.7

ε = 0.3125 55.8 89.2 61.0 88.9 36.1 91.3 75.2 79.4
ε = 0.5 63.3 82.6 79.4 73.2 35.9 91.3 82.5 64.4
ε = 1 76.4 67.5 91.4 26.4 42.5 91.3 92.3 24.7

ε = 1.5 81.0 63.0 91.9 24.2 46.3 91.3 94.1 7.5
ε = 2 82.6 62.3 91.9 24.1 49.8 91.3 94.9 5.3

DeepFool
No ε 57.0 91.7 81.9 54.8 41.3 91.3 94.9 12.0
CW2

ε = 0.01 56.4 90.8 53.4 92.2 41.0 91.3 54.2 92.0
HOP

ε = 0.1 66.1 87.0 86.1 49.1 67.6 84.2 96.0 10.2

Norm L∞

PGDi⋆, FGSM⋆, BIM⋆

ε = 0.03125 83.0 55.3 82.3 59.7 86.3 46.9 81.4 64.9
ε = 0.0625 96.0 17.2 92.0 29.6 88.9 0.7 89.1 33.3
ε = 0.25 97.3 0.6 95.9 8.8 51.6 88.9 92.3 16.4
ε = 0.5 82.5 100.0 94.6 9.7 46.7 86.7 92.9 14.4

PGDi⋆, FGSM⋆, BIM⋆, SA
ε = 0.125 9.4 99.9 88.9 40.8 32.9 91.3 89.2 29.1

PGDi⋆, FGSM⋆, BIM⋆, CWi
ε = 0.3125 63.2 99.1 80.0 61.1 41.3 91.3 88.2 33.1

No norm
STA
No ε 88.5 38.8 82.7 52.4 91.2 0.2 90.2 23.2

Table 3: Comparison between AGREE and AGREE+competitor (NSS (a) and FS (b)) on CIFAR10.
The ⋆ symbol means the perturbation mechanism is executed in parallel four times starting from
the same original clean sample, each time using one of the objective losses between ACE Eq. (2),
KL Eq. (3), FR Eq. (4), Gini Eq. (5). We focus only in the cases in which AGREE is outperformed
from the corresponding competitors.

CIFAR10

AGREE AGREE+NSS

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L2

CW2
ε = 0.01 53.4 92.2 54.1 91.3

Norm L∞
PGDi⋆, FGSM⋆, BIM⋆

ε = 0.03125 82.3 59.7 89.9 34.4
ε = 0.0625 92.0 29.6 96.4 9.0
ε = 0.25 95.9 8.8 96.7 3.5
No norm

STA
No ε 82.7 52.4 87.3 35.4

(a) AGREE+NSS (supervised)

CIFAR10

AGREE AGREE+FS

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1⋆
ε = 5 62.1 87.1 69.4 74.5
ε = 10 56.8 90.6 76.8 64.5
ε = 15 69.3 84.4 77.6 60.3

Norm L2

PGD2⋆
ε = 0.125 63.9 85.4 67.9 76.4
ε = 0.25 57.1 90.5 76.0 64.7

ε = 0.3125 61.0 88.9 77.2 62.9
CW2

ε = 0.01 53.4 92.2 86.4 46.8

(b) AGREE+FS (unsupervised)

4.2.2 AGREE IN THE MEAD SCENARIO

AGREE turns out to be more general than NSS at recognizing simultaneous attacks on all the con-
sidered datasets. On CIFAR10, AGREE’s maximum AUROC improvement w.r.t. NSS is 79.5 per-
centage points and happens for attacks under L∞-norm constraint, ε = 0.125 and PGD⋆, FGSM⋆,
BIM⋆, SA, i.e., when as many as 13 different simultaneous attacks are mounted. Similarly, AGREE’s
maximum FPR at 95% of TPR improvement w.r.t. NSS is 90.3 percentage points and happens for
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attacks under L∞-norm constraint, ε = 0.5 and PGD⋆, FGSM⋆, BIM⋆, i.e., when as many as 12
different simultaneous attacks are mounted. AGREE outperforms NSS in the case of the attacks
with L1 and L2 norm, regardless of the algorithm or the perturbation magnitude, and in the case of
L∞ norm with large perturbations. However, for the attacks with L∞ norm and small ε, although
AGREE’s performance is comparable to that of NSS, we notice a slight degradation. To shed a light
on this, we remind that individual detectors aggregated by AGREE are based on the classifier’s logits;
NSS, on the other hand, extracts natural scene statistics from the inputs (see Sec. 4.1). This more
sophisticated technique leads NSS to perform well when tested on attacks made with similar ε and
same norm as the ones seen at training time. Similar conclusions can be drawn for the results on
SVHN (c.f. Tab. 2).

Tab. 3 shows the modularity of AGREE when NSS (a) and FS (b) are plugged in as a fifth detector.
We test AGREE+competitor on the attacks on which AGREE was outperformed by the competitors.
In all the cases, AGREE+competitor outperforms AGREE either in terms of AUROC and FPR. Also,
in most of the cases, AGREE+competitor is also better than the individual competitor. In particu-
lar, remarkable is the case of CW2 attack, where the performance of AGREE+FS improves of 33
percentage points in terms of AUROC and 45.4 percentage points in terms of FPR.

4.3 ADDITIONAL RESULTS CONSIDERING ADAPTIVE ATTACKS AND THE
NON-SIMULTANEOUS SETTING

Due to the relevance of adaptive attacks in the field of adversarial attacks detection, we have tested
out aggregation method against such threats. An adversary which is able to adapt its attack strat-
egy to the very same detectors aggregated by AGREE is also able to lower the performance of our
proposed method. It is important to note that AGREE aggregates the provided detectors, and
that making them more robust is not part of its design. Keeping this in mind, we reference Ap-
pendix B.3.1 for further details and the related experimental results. Due to space constraint we
relegate to Appendix B.3.2 the results showing that AGREE is able to improve the detection perfor-
mance against specific individual attacks, and is valuable in this scenario as well as in the MEAD
scenario.

5 CONCLUDING REMARKS AND LIMITATIONS

We introduced AGREE, a framework to tackle adversarial detection in the presence of simultaneous
attacks. The proposed method goes beyond current SOTA methods and provides a formal way to
aggregate multiple existent (or future) detectors, possibly provided by a third party.

We formalized the simultaneous attacks detection setup as a minimax cross-entropy risk, and we
derived a surrogate loss from which we formally characterized our optimal soft-detector leading
to AGREE. Overall, we have empirically shown that, in the simultaneous attacks scenario, aggre-
gating simple detectors through AGREE provides better results than using the best SOTA method
individually. AGREE presents two key ingredients: it is modular, as it allows existing (and possible
future) methods to be merged into a single one; and it is general, as it can simultaneously recognize
adversarial examples created according to various attacks algorithms and loss functions.

While recent work has attempted to bridge the gap between the field of robustness and the field of
adversarial detection Tramèr (2021), via a reduction that is computationally inefficient, our work is
motivated by the idea of reusing already published methods within a sound aggregation framework.

Moreover, we draw the attention to the fact that AGREE can potentially be extended to aggregate
both SOTA supervised and unsupervised adversarial detection methods. Finally, from a theoretical
perspective a limitation of AGREE derives from Eq. (10), since it requires to solve one optimization
problem with |K| unknowns for each sample at evaluation time.

AGREE relies on a collection of detectors whose expertise is combined to obtain a more robust
adversarial detection. Such models could be potentially poisoned by a malicious actor, drastically
reducing AGREE’s reliability. We think this constitutes a limitation with potential severe societal
impact if AGREE happened to be deployed with no additional checks on the quality of the available
detectors.
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Supplementary Material

A SUPPLEMENTARY DETAILS ON SEC. 3

A.1 PROOFS

Proof of Eq. (7)
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Proof of Eq. (8) The equality hold by noticing that
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and moreover,
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by choosing the random variable Ω̄ with uniform probability over the set of maximizers: K =

argmaxk∈K E
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qẐ|u0

)]
and zero otherwise. The above inequalities show the equality.

Proof of Eq. (9) We consider a zero-sum game with a concave-convex mapping defined on a prod-
uct of convex sets. The sets of all probability distributions qẐ|u0

and PΩ are two nonempty convex

sets, bounded and finite dimensional. On the other hand,
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∥∥qẐ|u0

)]
is a concave-convex mapping, i.e., PΩ → EΩ

[
DKL

(
q
(Ω)
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Proof of Eq. (10) It is enough to show that
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for every random variable Ω distributed according to an arbitrary probability distribution PΩ and
each distribution q(Ω)
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. We begin by showing that

EΩ

[
DKL

(
q
(Ω)
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for any arbitrary distributions PΩ and q(Ω)
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. To this end, we use the following identities:
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PẐ
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(
PẐ∥qẐ|u0

)
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= Iu0(Ω; Ẑ) +DKL

(
PẐ∥qẐ|u0

)
(21)

≥ Iu0(Ω; Ẑ), (22)

where PẐ denotes the marginal distribution of q(Ω)

Ẑ|u0
w.r.t. PΩ and the last inequality follows since

the KL divergence is positive. Finally, it is easy to check that by selecting qẐ|u0
= PẐ the lower

bound in equation 22 is achieved which proves the identity in expression equation 17. By taking
the maximum over all probability distributions PΩ at both sides of expression equation 17 the claim
follows.

A.2 ON THE OPTIMIZATION OF EQ. (10)

The maximization problem in Eq. (10) is well-posed given that the mutual information is a concave
function of ω ∈ Ω. Although, from the theoretical point of view, Eq. (10) guarantees the optimal
solution for the average regret minimization problem, in practice, we have to deal with some tech-
nical limitations. For the optimization of Eq. (10), we rely on the SciPy Virtanen et al. (2020)
library, package optimize, function minimize1 which uses the Sequential Least Squares Pro-
gramming (SLSQP) algorithm to find the optimum. This algorithm relies on local optimization,
and is particularly straightforward when dealing with non-linear equations and both equality and
inequality constraints, as in our case. Overall, we obtained the satisfactory results provided in
the paper by assigning default values to all the parameters, and by setting a uniform distribution
[ω1, ω2, ω3, ω4] = [.25, .25, .25, .25] as initial point in the space of the solutions.

Although these results are satisfactory and confirm the mathematical intuition behind our proposed
framework, we are aware that, in some cases, as in Fig. 1a, the aggregation of AGREE, slightly
underperforms in terms of accuracy w.r.t. the best detector in the set of allowed detectors. In this
regard we would like to raise a couple of points which are interesting for practitioners and possible
future research:

1. For each input sample we solve one different optimization problem: although the algorithm
above always reaches the end with a success state, given the finite amount of iterations and
the tolerance which decides the stopping criterion, further sample-by-sample parameter
optimization may be required. At this time we have not delved into the problem, and we
leave this for future research.

2. The hard decisions made by the single detectors only depend on the argmax of their soft-
probabilities. On the contrary, the optimization in Eq. (10) considers the complete soft-
probability distributions output by each single detector. Indeed, although the hard decision
on two randomly considered samples can be right for both, often the confidence on these
decisions can be very different (i.e. two correctly classified samples may have utterly dif-
ferent associated soft probabilities). Further research on how differently accurate detectors
influence the optimization in Eq. (10) is left for future work.

B SUPPLEMENTARY RESULTS OF SECTION 4

In the following, we provide further discussions on the experiments in Sec. 4 that for space con-
straints have not been included in the main paper.

1Therefore we invert the sign of the objective function.
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(a) Analysis AUROC↑% (b) Analysis FPR↓95%%

Figure 2: SOTA’s performances under MEAD grouped by norm. The plots reflects the results of Tabs.
5-8 in (Granese et al., 2022). We focus on the best supervised method (i.e., NSS (Kherchouche et al.,
2020)) and the best unsupervised method (i.e., FS (Xu et al., 2018)).

B.1 EXPERIMENTAL ENVIRONMENT

We run each experiment on a machine equipped with an Intel(R) Xeon(R) Gold 6226 CPU, 2.70GHz
clock frequency, and a Tesla V100-SXM2-32GB GPU.

B.1.1 TIME MEASUREMENTS

Training 1 single detector in AGREE 1h45m10s
Evaluating AGREE optimization 1m35s (for one attack)

Training NSS 3m30s
Evaluating NSS 20s (for one attack)

On the largest set of simultaneous attacks (13 attacks):
AGREE 1m35s * 13 ∼ 21m

NSS 20s * 13 ∼ 4m

B.2 ON THE MEAD FRAMEWORK

B.2.1 STATE-OF-THE-ART (SOTA) DETECTORS

Granese et al. (2022) suggests NSS (Kherchouche et al., 2020) and FS (Xu et al., 2018) as the most
robust methods in the simultaneous attacks detection scheme (i.e., MEAD). We remind that NSS
is a supervised method which extracts the natural scene statistics of the natural and adversarial
examples to train a SVM. On the contrary, FS is an unsupervised method that uses feature squeezing
to compare the model’s predictions.

In particular, we choose NSS as method to compare with for multiple reasons:

1. NSS achieves the best overall score in terms of AUROC↑% and FPR↓95%% among the
SOTA against simultaneous attacks (c.f. Tab. 3 (Granese et al., 2022)).

2. NSS achieves the best score in terms of AUROC↑% and FPR↓95%% under the L∞ norm
where the biggest group of simultaneous attack are evaluated (see Tab. 1). This is stressed
in the plots in Fig. 2. Moreover, FS turns out to reach better performance w.r.t. AGREE
only with PGD1 and PGD2 when the perturbation magnitude is small and in CW2.

3. The case study for AGREE in the experimental section is based on supervised detectors as
consequence the comparison with a supervised detector was a natural choice.

For the sake of completeness, the performances of NSS and FS under MEAD are given in Fig. 2.
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B.2.2 ATTACKS

We believe that it is important to stress that, differently from literature, we are the first to consider a
defence mechanism against the simultaneous attack setting in which we detect attacks based on four
different losses. More specifically, for each ’clean dataset’ (in our case CIFAR10 and SVHN):

• No. of adversarial examples generated with:
– L1 norm: 7 (no. of ε) * 1 (PGD algorithm) * 4 (no. of losses) = 28 (’adversarial

datasets’)
– L2 norm: 7 (no. of ε) * 1 (PGD algorithm) * 4 (no. of losses) + 3 (CW2, HOP,

DeepFool) = 31 (’adversarial datasets’)
– L∞ norm: 6 (no. of ε) * 3 (PGD, FGSM, BIM algorithms) * 4 (no. of losses) + 2 =

74 (’adversarial datasets’)
– No norm: 1 (’adversarial dataset’)

=> For a total of 28 + 31 + 74 + 1 = 134 ’adversarial datasets’ for each ’clean
dataset’.

Moreover, it is interesting to notice that the experiments on CIFAR10 and SVHN represent a satisfy-
ing choice to show that state-of-the-art detection mechanisms struggle to maintain good performance
when they are faced with the framework of simultaneous attacks. That said, we leave the evaluation
of larger datasets as future work.

B.3 SIMULATIONS ACCORDING TO DIFFERENT ε

As previously discussed in Sec. 4, both NSS and AGREE are trained on natural and adversarial
examples created with PGD algorithm and L∞ norm constraint. We show in Tabs. 4 to 7 the results
of the two methods according to ε ∈ {.03125, .0625, .125, .25, .3125, .5}.

Table 4: Simultaneous attacks detection: NSS on CIFAR10. We train NSS on natural and adversarial
examples created with PGD algorithm and L∞ norm constraint. The perturbation magnitude ε is
shown in the columns. We indicate in bold the best result.

NSS
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1
ε = 5 48.5 94.2 47.7 94.7 46.6 95.6 46.8 95.5 47.0 95.4 46.5 95.6
ε = 10 54.0 90.3 53.4 90.8 51.6 94.3 50.4 94.9 50.4 94.9 50.9 94.7
ε = 15 58.8 86.8 58.1 87.4 55.8 92.8 53.8 94.2 53.2 94.4 54.5 93.7
ε = 20 63.5 82.3 62.7 82.7 60.1 90.7 57.4 93.2 56.7 93.6 58.2 92.3
ε = 25 67.7 77.2 66.8 78.4 64.0 87.8 61.0 92.0 60.1 92.6 61.9 90.6
ε = 30 71.4 73.4 70.5 73.5 67.6 83.7 64.4 90.4 63.4 91.4 65.4 88.2
ε = 40 76.1 67.3 75.3 68.0 72.6 75.4 69.4 87.2 68.5 88.9 70.4 83.4

Norm L2

PGD2
ε = 0.125 48.3 94.3 47.5 94.8 46.6 95.6 46.7 95.5 47.1 95.4 46.5 95.6
ε = 0.25 53.2 91.2 52.6 91.6 50.9 94.6 50.0 95.0 50.0 95.0 50.3 94.8

ε = 0.3125 55.8 89.2 55.2 89.9 53.3 93.7 51.7 94.6 51.5 94.7 52.3 94.3
ε = 0.5 63.3 82.6 62.6 83.0 60.0 90.7 57.4 93.2 56.7 93.5 58.2 92.4
ε = 1 76.4 67.5 75.7 67.8 73.1 75.0 70.1 86.7 69.2 88.5 71.0 83.0

ε = 1.5 81.0 63.0 80.5 62.7 78.5 63.5 76.2 80.7 75.6 83.2 76.9 74.4
ε = 2 82.6 62.3 82.1 61.6 80.6 62.5 78.6 78.5 78.1 81.2 79.1 72.1

DeepFool
No ε 57.0 91.7 56.7 91.7 55.6 93.6 54.6 94.1 54.2 94.3 54.7 94.0
CW2

ε = 0.01 56.4 90.8 55.9 90.9 54.5 93.7 53.4 94.3 53.0 94.5 53.6 94.1
HOP

ε = 0.1 66.1 87.0 65.1 88.2 63.0 91.3 61.2 92.6 60.8 92.9 61.6 92.1

Norm L∞
PGDi, FGSM, BIM

ε = 0.03125 83.0 55.3 82.1 55.2 80.3 57.8 77.4 77.0 76.8 81.3 78.3 65.4
ε = 0.0625 96.0 17.2 94.6 17.4 94.9 19.2 94.3 21.6 94.4 21.1 94.4 21.1
ε = 0.25 97.3 0.6 94.7 5.9 96.5 2.5 96.9 1.7 97.2 1.1 96.7 2.1
ε = 0.5 82.5 100.0 80.4 100.0 81.9 100.0 82.2 100.0 82.4 100.0 82.0 100.0

PGDi, FGSM, BIM, SA
ε = 0.125 9.4 99.9 10.4 100.0 26.2 99.9 30.9 100.0 33.8 100.0 27.3 100.0

PGDi, FGSM, BIM, CWi
ε = 0.3125 63.2 99.1 62.7 99.0 61.9 99.3 60.9 99.5 60.5 99.5 61.2 99.4

No norm
STA
No ε 88.5 38.8 92.0 25.1 92.1 22.4 93.3 18.3 92.7 19.6 92.7 19.7
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Table 5: Simultaneous attacks detection: AGREE on CIFAR10. We train NSS on natural and adver-
sarial examples created with PGD algorithm and L∞ norm constraint. The perturbation magnitude
ε is shown in the columns. We indicate in bold the best result.

AGREE

0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1
ε = 5 69.7 82.5 65.5 81.5 62.1 87.1 56.3 93.8 53.2 94.8 48.5 95.5
ε = 10 62.3 83.3 62.7 86.3 56.8 90.6 52.1 94.7 52.9 94.6 50.9 95.0
ε = 15 66.6 72.7 73.9 77.9 69.3 84.4 65.5 89.0 64.3 91.0 60.4 93.1
ε = 20 72.8 58.0 83.7 59.3 78.7 73.1 73.8 82.5 73.5 85.4 69.2 90.3
ε = 25 76.8 42.4 89.4 35.9 87.1 50.8 81.3 68.6 79.3 78.0 74.8 87.2
ε = 30 79.1 31.1 91.7 21.4 90.3 35.4 84.3 61.2 81.9 73.5 77.5 85.3
ε = 40 80.8 22.2 93.0 15.0 92.1 26.4 85.9 56.8 83.1 71.4 78.8 84.5

Norm L2

PGD2
ε = 0.125 71.3 80.8 67.0 80.2 63.9 85.4 56.2 93.8 53.8 94.7 48.6 95.5
ε = 0.25 63.1 83.4 62.8 86.7 57.1 90.5 52.3 94.6 52.6 94.7 49.9 95.2

ε = 0.3125 64.1 79.3 67.3 83.1 61.0 88.9 58.0 92.8 57.7 93.3 54.5 94.4
ε = 0.5 72.9 58.9 83.7 60.7 79.4 73.2 74.6 81.4 73.4 85.4 68.8 90.5
ε = 1 81.0 21.7 92.9 15.5 91.4 26.4 85.5 57.2 82.9 72.2 78.7 84.7

ε = 1.5 81.5 19.2 93.2 14.2 91.9 24.2 85.9 56.3 83.2 71.9 79.2 84.4
ε = 2 81.6 19.0 93.2 14.1 91.9 24.1 85.9 56.3 83.3 71.8 79.2 84.4

DeepFool
No ε 91.1 22.0 87.4 33.9 81.9 54.8 70.0 84.4 64.2 91.5 56.3 94.4
CW2

ε = 0.01 52.9 90.5 50.7 90.6 53.4 92.2 53.1 94.4 52.0 94.8 50.9 95.0
HOP

ε = 0.1 91.3 20.9 89.0 31.0 86.1 49.1 77.0 80.7 72.4 88.1 64.3 92.8

Norm L∞
PGDi, FGSM, BIM

ε = 0.03125 67.2 77.3 77.8 65.2 82.3 59.7 78.0 72.1 73.7 83.8 64.1 92.2
ε = 0.0625 69.0 83.6 85.3 47.4 92.0 29.6 90.7 35.7 88.0 45.6 81.3 78.3
ε = 0.25 72.0 67.4 91.8 23.2 95.9 8.8 94.1 15.4 92.6 19.5 91.6 26.5
ε = 0.5 58.3 84.8 84.2 44.1 94.6 9.7 91.2 16.5 90.5 18.8 91.3 22.3

PGDi, FGSM, BIM, SA
ε = 0.125 69.0 79.1 84.1 41.9 88.9 40.8 86.6 52.3 85.4 60.4 80.7 79.0

PGDi, FGSM, BIM, CWi
ε = 0.3125 66.6 75.0 80.6 51.5 80.0 61.1 72.0 84.0 67.2 90.0 60.0 93.6

No norm
STA
No ε 84.8 33.8 85.0 41.5 82.7 52.4 72.9 77.7 70.2 81.7 63.1 92.1

Table 6: Simultaneous attacks detection: NSS on SVHN. We train NSS on natural and adversarial
examples created with PGD algorithm and L∞ norm constraint. The perturbation magnitude ε is
shown in the columns. We indicate in bold the best result.

NSS
0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1
ε = 5 37.9 89.3 40.2 91.3 37.2 89.2 4.9 35.5 0.3 8.5 0.0 3.1
ε = 10 33.7 89.3 36.9 91.3 34.6 89.2 6.0 35.5 0.4 8.5 0.0 3.1
ε = 15 31.9 89.3 35.6 91.3 34.4 89.2 7.6 35.5 0.5 8.5 0.1 3.1
ε = 20 31.5 89.3 36.1 91.3 35.7 89.2 9.5 35.5 0.6 8.5 0.1 3.1
ε = 25 32.8 89.3 37.8 91.3 38.2 89.2 11.7 35.5 0.9 8.5 0.1 3.1
ε = 30 34.5 89.3 39.8 91.3 40.6 89.2 14.1 35.5 1.2 8.5 0.1 3.1
ε = 40 37.9 89.3 43.1 91.3 43.4 89.0 16.4 35.5 2.2 8.5 0.3 3.1

Norm L2

PGD2
ε = 0.125 38.7 89.3 40.8 91.3 37.6 89.2 4.7 35.5 0.3 8.5 0.0 3.1
ε = 0.25 34.0 89.3 37.2 91.3 34.6 89.2 5.4 35.5 0.3 8.5 0.0 3.1

ε = 0.3125 32.6 89.3 36.1 91.3 34.1 89.2 6.1 35.5 0.4 8.5 0.0 3.1
ε = 0.5 31.4 89.3 35.9 91.3 35.4 89.2 8.9 35.5 0.5 8.5 0.1 3.1
ε = 1 37.4 89.3 42.5 91.3 42.9 89.2 16.0 35.5 2.1 8.5 0.3 3.1

ε = 1.5 40.0 89.3 46.3 91.3 46.5 88.4 17.2 35.5 2.8 8.5 0.6 3.1
ε = 2 42.1 89.3 49.8 91.3 50.5 88.0 18.7 35.5 3.2 8.5 0.8 3.1

DeepFool
No ε 38.1 89.3 41.3 91.3 39.7 89.2 9.2 35.5 0.8 8.5 0.1 3.1
CW2

ε = 0.01 37.9 89.3 41.0 91.3 39.5 89.2 9.3 35.5 0.8 8.5 0.1 3.1
HOP

ε = 0.1 66.8 82.3 67.6 84.2 60.3 84.6 16.4 35.5 2.7 8.5 0.7 3.1

Norm L∞
PGDi, FGSM, BIM

ε = 0.03125 84.1 49.7 86.3 46.9 77.5 72.1 22.2 33.2 4.3 8.5 1.2 3.1
ε = 0.0625 87.4 0.2 88.9 0.7 87.5 0.6 33.7 16.8 7.4 6.8 2.5 2.7
ε = 0.25 16.7 89.3 51.6 88.9 52.0 85.1 35.4 0.1 8.4 0.1 3.0 0.1
ε = 0.5 4.1 89.3 46.7 86.7 46.0 84.6 35.4 0.1 8.4 0.1 3.0 0.1

PGDi, FGSM, BIM, SA
ε = 0.125 22.8 89.3 32.9 91.3 43.6 89.2 30.3 32.7 7.1 8.5 2.5 3.1

PGDi, FGSM, BIM, CWi
ε = 0.3125 4.7 89.3 41.3 91.3 40.8 89.2 12.7 35.5 1.7 8.5 0.4 3.1

No norm
STA
No ε 89.3 0.0 91.2 0.2 85.9 23.4 19.9 33.5 4.2 8.3 1.4 3.1
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Table 7: Simultaneous attacks detection: AGREE on SVHN. We train NSS on natural and adversarial
examples created with PGD algorithm and L∞ norm constraint. The perturbation magnitude ε is
shown in the columns. We indicate in bold the best result.

AGREE

0.03125 0.0625 0.125 0.25 0.3125 0.5

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1
ε = 5 79.3 65.2 77.4 73.4 76.9 78.9 76.9 79.0 76.7 79.5 74.0 84.4
ε = 10 74.4 65.1 72.8 73.1 71.9 81.6 73.0 82.5 71.9 84.2 66.9 89.4
ε = 15 76.0 57.0 75.7 64.6 75.8 73.1 78.9 72.5 77.3 74.7 71.9 84.9
ε = 20 77.3 48.1 77.9 54.9 79.2 61.9 83.6 60.7 82.2 64.3 77.4 76.9
ε = 25 78.2 40.9 79.4 44.4 81.4 49.4 87.0 48.6 85.7 52.5 81.4 66.7
ε = 30 78.8 34.4 80.4 35.3 83.0 36.6 89.3 37.2 88.1 41.6 84.4 53.8
ε = 40 79.7 23.4 81.6 22.4 84.7 20.2 92.6 20.0 91.1 23.0 87.8 30.5

Norm L2

PGD2
ε = 0.125 82.2 61.7 80.6 68.4 80.3 72.4 80.2 74.5 80.1 73.5 79.7 75.5
ε = 0.25 75.7 63.6 74.0 71.7 73.3 80.3 74.0 81.7 72.6 82.8 67.8 89.0

ε = 0.3125 75.5 61.6 74.3 70.1 73.9 78.4 75.2 79.4 73.9 81.7 70.6 86.7
ε = 0.5 77.2 50.6 77.6 57.4 78.6 64.1 82.5 64.4 81.2 67.1 76.3 79.5
ε = 1 79.5 25.8 81.3 24.8 84.3 24.1 92.3 24.7 90.7 27.7 87.1 36.4

ε = 1.5 80.2 19.5 82.2 17.6 85.6 14.3 94.1 7.5 92.9 8.6 89.9 11.8
ε = 2 80.5 19.4 82.5 17.5 85.9 14.1 94.9 5.3 94.5 6.8 90.7 9.5

DeepFool
No ε 96.3 8.6 95.9 10.5 95.0 12.9 94.9 12.0 95.3 12.1 95.5 12.6
CW2

ε = 0.01 59.7 76.3 57.2 80.1 53.4 89.9 54.2 92.0 51.1 93.5 44.3 96.1
HOP

ε = 0.1 96.1 7.9 95.6 9.8 95.9 11.7 96.0 10.2 95.9 9.9 96.1 10.0

Norm L∞
PGDi, FGSM, BIM

ε = 0.03125 74.3 60.0 75.8 60.3 77.8 62.6 81.4 64.9 80.1 67.1 76.7 75.5
ε = 0.0625 78.4 36.0 80.3 34.1 83.2 33.8 89.1 33.3 87.9 34.4 85.7 37.4
ε = 0.25 80.1 19.4 82.1 17.5 85.2 15.8 92.3 16.4 92.1 16.8 89.6 17.0
ε = 0.5 80.3 19.4 82.3 17.5 85.5 14.1 92.9 14.4 91.7 15.2 90.1 14.8

PGDi, FGSM, BIM, SA
ε = 0.125 78.9 29.0 80.8 28.1 83.8 28.7 89.2 29.1 88.4 28.9 86.8 28.4

PGDi, FGSM, BIM, CWi
ε = 0.3125 78.7 33.4 80.5 31.9 83.1 34.0 88.2 33.1 88.1 31.7 86.7 31.2

No norm
STA
No ε 94.7 14.5 93.3 16.8 89.9 23.1 90.2 23.2 91.0 22.4 91.1 22.4
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(a) Analysis AUROC↑% (b) Analysis FPR↓95%%

Figure 3: AGREE against the adaptive-attacks under MEAD. We consider the worst case scenario
in Tab. 11, i.e., when α = 0.1.

B.3.1 AGREE AGAINST THE ADAPTIVE-ATTACKS IN THE MEAD SCENARIO

We present a new experimental setting to address the case in which also the detectors are attacked at
the same time as the target classifier, taking the cue from Bryniarski et al. (2021); Carlini & Wagner
(2017a); Tramèr et al. (2020); Carlini & Wagner (2017b). It is important to note that, in the spirit of
the MEAD framework, we are not simply considering a scenario in which a single adaptive attack
is perpetrated on the classifier and detectors, but rather multiple adaptive attacks are concurrently
occurring. Up to our knowledge, this scenario has not yet been considered in Granese et al. (2022)
and hence we are the first to deal with such a setting. We extend AGREE to include two main cases:
(i) for attacks on the classifier and the single detectors individually; (ii) for attacks on the classifier
and all the detectors simultaneously.

The tables with the complete results are Tabs. 11 and 12 in Appendix C.2, where α is the co-
efficient that controls the gradient’s speed of the attack against the detectors. We try many dif-
ferent values α = {.1, 1, 5, 10}. The case where α is equal to 0 is added for completeness and
it corresponds to the case where only the target classifier is attacked. We report in Fig. 3 the
comparison of the results between case (i) and case (ii) on CIFAR10 and α = 0.1, as this cor-
responds to the case with the worst performances. As can be seen, the performances of AGREE
improve when the detectors are attacked singularly. This is particularly interesting for the set-
ting we are dealing with. Indeed, AGREE is not a new supervised adversarial detection method,
but a framework to aggregate detectors, in this case applied to the adversarial detection problem.
Hence, it does not propose to solve the problem of finding a new robust method to adaptive-
attacks but rather creating a mixture of experts based on the proposed sound mathematical frame-
work. Thus, an attacker in order to successfully fool AGREE needs to have the complete access
to all the underlying detectors and also an up to the date knowledge of the detectors employed
as the defender can always includes a new detection mechanism to the pool of the detectors.

Table 8: Comparison between AGREE the single de-
tectors (stronger version) against the adaptive-attacks.
Norm L∞ and ε = 0.25 (i.e., attacks PGDi⋆, FGSM⋆,
BIM⋆).

CIFAR10 AGREE ACE KL FR Gini

AUROC↑% 54.6 35.7 30.6 26.3 36.2
FPR↓95%% 73.0 96.5 97.0 97.4 99.6

In order to give more insights on AGREE
under this setting, we train a stronger
version of the four shallow detectors
where the detectors at training time have
seen the corresponding adaptive attacks
generated through the PGD algorithm.
We report the results in Tab. 8 where
we focus on the group of simultaneous
attacks with L∞ norm and ε = 0.25
as this represents the worst result of
AGREE in Tab. 12. If AGREE was only
good as the best among the detectors, we
should expect similar results in Tab. 8.
In this case, the only solution would be to train a better detector. However, the strength of AGREE
is not just mimicking the performance of its parts but rather creating a mixture of experts
based on the proposed sound mathematical framework. Therefore we should expect better per-
formances. Indeed, this consistently holds as AGREE performs much better than the best detector.
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B.3.2 AGREE IN THE THE NON-SIMULTANEOUS SETTING

In these experiments, we move from the simultaneous attack scenario to one where the different
detectors are aggregated in order to detect one single attack at a time, as usually done in the literature.
We report the complete results in Appendix C.1, Tab. 10. Crucially, these experiments show that
the ensemble detectors can also improve the performance for a specific attack. In particular, we
would like to draw the attention on the fact that we outperform NSS in the vast majority of the cases.
Moreover, we achieve a maximum gain of 82.8 percentage points in terms of AUROC↑% (c.f. SA
attack) and 97.6 percentage points in terms of FPR↓95%% (c.f. FGSM with ε = 0.5 attack). On
the other side, the competitor outperforms our proposed method only in a few cases, achieving a
maximum gain of 5.9 percentage points in terms of AUROC↑% and 27.4 percentage points in terms
of FPR↓95%% (c.f. FGSM with ε=0.03125 attack in both the cases), and these gains are much lower
than those obtained through AGREE.

B.4 AUTOATTACK

Table 9: AGREE on AutoAttack
(MEAD setting). The attacks are
APGD-CE, APGD-DLR, FAB, SA.

CIFAR10

AGREE

AUROC↑% FPR↓95%%

Norm L1

ε = 5 57.1 88.4
ε = 10 67.1 75.7
ε = 15 72.2 66.7
ε = 20 72.7 65.2
ε = 25 72.8 65.6
ε = 30 73.4 64.0
ε = 40 73.6 64.0

Norm L2

ε = 0.125 67.4 81.0
ε = 0.25 58.0 89.0

ε = 0.3125 58.1 88.8
ε = 0.5 69.4 74.7
ε = 1 75.1 61.6

ε = 1.5 76.1 60.7
ε = 2 76.1 60.5

Norm L∞

ε = 0.03125 75.7 61.0
ε = 0.0625 76.0 60.7
ε = 0.125 76.8 60.3
ε = 0.25 76.8 60.0

ε = 0.3125 78.6 57.6
ε = 0.5 76.1 60.3

We present an application of AutoAttack Croce & Hein
(2020), a state-of-the-art evaluation tool for robustness, re-
designed for adversarial detection evaluation and adapted to
our simultaneous attacks framework. In its original version,
AutoAttack evaluates the accuracy of robust classifiers. In
so doing, Croce & Hein (2020) proposes a multiple attacks
framework to make sure that at least one attack succeeds in
producing an adversarial example for each natural one. In
their context, it does not matter which attack will succeed
since any successful attack would undermine the accuracy of
the target classifier in the same way. In our case the number
of different successful attacks for each natural sample will af-
fect the quality of the detection since a detector is successful
only if it can detect all of them. Because of the differences
underlined above, it is not possible to deploy it directly in our
framework without any modifications. A modified version of
AutoAttack, adapted to the evaluation of our proposed method
has been implemented and the results are presented below.
While AutoAttack suggests to use different attack strategies,
in our case we combine different attack strategies matched
with different losses, in order to make the pool of attacks more
strong and diversified.

As future work, it would be interesting to use the work in Zim-
mermann et al. (2022) to asses the strength of the various at-
tacks strategies before evaluating defenses on them.

B.5 ADDITIONAL PLOTS

(a) PGD-L1-40-ACE (b) PGD-L1-40-KL (c) PGD-L1-40-FR (d) PGD-L1-40-Gini

Figure 4: In pink the results for the adversarial examples and in blue the ones for the naturals. In
this simulation, we consider a subset of the available detectors (ACE, KL, FR). Under each plot, we
indicate the tested attack configuration parameters: algorithm-Lp-ε-loss.

The specific shape in the histograms depends on the set of considered detectors. In order to shed
a light on this fact, we include the plots in Fig. 4 in which we consider a subset of the available
detectors (ACE, KL, FR). These plots should be compared with the ones in Fig. 1.
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C ADDITIONAL RESULTS

C.1 AGREE UNDER THE NON-SIMULTANEOUS SETTING: TABLE OF THE RESULTS

Table 10: AGREE and NSS in the non-simultaneous setting. The column names ACE, KL, FR and
Gini denote the loss function used to craft the attacks. Note that, HOP, DeepFool, CW2 and STA
attacks have already been considered individually in Tab. 2.

CIFAR10
AGREE AUROC↑% (FPR↓95%%) – NSS AUROC↑% (FPR↓95%%)

ACE KL FR Gini
PGD1
ε = 5 66.2 (83.6) – 49.9 (93.5) 64.2 (85.7) – 49.6 (93.0) 63.0 (87.1) – 49.9 (93.3) 80.7 (58.4) – 50.3 (93.2)
ε = 10 62.6 (87.5) – 56.9 (88.4) 62.3 (88.2) – 56.6 (88.3) 63.1 (86.5) – 57.0 (88.1) 86.9 (46.0) – 57.1 (88.8)
ε = 15 74.2 (81.4) – 63.1 (83.0) 75.2 (80.6) – 62.8 (83.1) 75.3 (79.4) – 63.2 (82.5) 90.0 (31.1) – 63.5 (84.0)
ε = 20 86.8 (65.3) – 68.5 (77.1) 87.5 (63.1) – 68.1 (77.3) 86.9 (63.3) – 68.7 (76.4) 91.7 (31.2) – 69.9 (77.6)
ε = 25 93.9 (38.4) – 73.1 (71.1) 94.3 (36.2) – 72.7 (71.8) 93.7 (41.1) – 73.4 (70.9) 92.3 (28.9) – 75.0 (71.4)
ε = 30 97.1 (12.3) – 77.1 (64.5) 97.2 (12.6) – 76.8 (65.1) 96.8 (15.9) – 77.4 (65.2) 92.6 (27.9) – 78.6 (67.3)
ε = 40 98.9 (1.0) – 83.5 (52.7) 99.0 (1.0) – 83.3 (53.5) 98.8 (1.0) – 83.6 (52.7) 92.7 (27.4) – 80.1 (64.9)

PGD2
ε = .125 67.9 (81.1) – 49.5 (93.8) 65.4 (84.3) – 49.1 (93.5) 63.9 (86.6) – 49.6 (93.5) 80.6 (58.4) – 49.5 (94.3)
ε = .25 62.3 (87.5) – 55.9 (89.1) 62.1 (88.0) – 55.6 (89.2) 62.6 (87.6) – 55.8 (89.4) 86.7 (46.5) – 55.9 (89.8)

ε = .3125 66.5 (86.1) – 59.4 (86.5) 67.0 (85.9) – 59.0 (86.6) 67.8 (84.8) – 59.3 (86.6) 88.4 (42.2) – 59.3 (87.7)
ε = .5 86.4 (67.1) – 68.3 (77.4) 87.2 (64.5) – 68.0 (77.4) 86.7 (64.0) – 68.4 (77.2) 91.4 (31.4) – 69.0 (78.7)
ε = 1 98.9 (0.9) – 84.4 (50.6) 98.9 (0.9) – 84.3 (50.5) 98.8 (0.9) – 84.7 (50.7) 92.5 (27.2) – 79.3 (66.8)

ε = 1.5 99.2 (0.9) – 92.8 (28.7) 99.3 (0.9) – 92.7 (28.9) 99.3 (0.7) – 93.0 (27.3) 92.5 (27.2) – 79.5 (66.5)
ε = 2 99.3 (0.8) – 96.8 (13.9) 99.3 (0.8) – 96.9 (13.1) 99.3 (0.9) – 95.9 (17.2) 92.5 (27.2) – 79.5 (66.5)

PGDi
ε = .03125 99.1 (0.9) – 92.3 (31.0) 99.1 (0.9) – 92.1 (31.9) 99.0 (0.9) – 92.2 (30.7) 94.8 (21.5) – 89.0 (44.0)
ε = .0625 99.3 (0.8) – 99.1 (3.3) 99.3 (0.8) – 99.1 (3.3) 99.3 (0.8) – 99.1 (3.6) 97.4 (8.0) – 98.1 (8.1)
ε = .125 99.3 (0.7) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.6 (0.6) 97.3 (7.3) – 99.6 (0.6)
ε = .25 99.3 (0.7) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.3) – 99.6 (0.6)

ε = .3125 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.4) – 99.7 (0.6)
ε = .5 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.1 (7.3) – 99.6 (0.6)

FGSM
ε = .03125 89.2 (47.5) – 94.1 (26.7) 91.3 (40.6) – 94.0 (27.0) 92.6 (34.1) – 96.8 (15.0) 90.7 (42.7) – 96.6 (15.3)
ε = .0625 96.4 (18.5) – 99.4 (1.3) 96.2 (18.7) – 99.4 (1.4) 97.6 (10.3) – 99.6 (0.6) 97.4 (11.9) – 99.6 (0.6)
ε = .125 99.3 (3.4) – 99.7 (0.6) 99.1 (4.3) – 99.7 (0.6) 99.3 (2.5) – 99.5 (0.6) 99.3 (2.4) – 99.5 (0.6)
ε = .25 99.8 (0.6) – 99.7 (0.6) 99.7 (0.8) – 99.7 (0.6) 99.6 (1.1) – 97.9 (0.6) 99.6 (1.1) – 97.7 (0.6)

ε = .3125 99.7 (0.9) – 99.7 (0.6) 99.7 (0.9) – 99.7 (0.6) 99.5 (1.5) – 95.8 (0.6) 99.5 (1.5) – 95.6 (0.6)
ε = .5 99.0 (4.9) – 99.7 (0.6) 99.2 (2.7) – 99.7 (0.6) 99.2 (2.4) – 84.9 (100.0) 99.2 (2.4) – 84.8 (100.0)

BIM
ε = .03125 98.3 (4.6) – 90.3 (37.7) 98.3 (4.4) – 90.2 (38.1) 97.8 (7.2) – 90.5 (37.0) 92.2 (32.6) – 88.2 (45.1)
ε = .0625 99.4 (0.8) – 98.2 (7.5) 99.4 (0.9) – 98.2 (7.5) 99.4 (0.8) – 98.3 (7.3) 96.6 (13.1) – 97.3 (12.9)
ε = .125 99.3 (0.9) – 99.6 (0.7) 99.3 (0.9) – 99.7 (0.7) 99.3 (0.8) – 99.6 (0.7) 97.8 (6.9) – 99.3 (1.9)
ε = .25 99.3 (0.8) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 97.4 (7.2) – 99.6 (0.6)

ε = .3125 99.3 (0.9) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.9) – 99.7 (0.6) 97.1 (7.4) – 99.7 (0.6)
ε = .5 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 99.3 (0.8) – 99.7 (0.6) 96.3 (7.3) – 99.7 (0.6)

SA
ε = .125 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9) 91.2 (39.6) – 9.4 (99.9)

CWi
ε = .3125 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8) 80.7 (60.8) – 64.6 (89.8)
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C.2 AGREE AGAINST THE ADAPTIVE-ATTACKS UNDER MEAD: TABLE OF THE RESULTS

Table 11: AGREE against the adaptive-attacks under MEAD. In the following setting we attack each
detector and the classifier once at the time. α is the parameter to control the losses.

CIFAR10

α = 0 α = .1 α = 1 α = 5 α = 10

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1⋆

ε = 5 62.1 87.1 61.3 88.6 61.2 89.3 63.1 89.2 62.6 91.3
ε = 10 56.8 90.6 53.1 94.5 54.4 93.9 60.0 91.0 60.6 91.9
ε = 15 69.3 84.4 51.5 96.5 54.7 94.6 64.1 88.1 65.7 87.7
ε = 20 78.7 73.1 53.4 96.8 55.9 94.9 66.7 84.1 69.4 82.7
ε = 25 87.1 50.8 54.0 97.2 56.7 94.6 67.8 82.7 71.1 79.0
ε = 30 90.3 35.4 54.5 97.1 56.6 94.4 68.9 81.1 71.9 78.4
ε = 40 92.1 22.7 54.4 97.0 57.7 93.6 69.4 79.7 72.9 74.2

Norm L2

PGD2⋆

ε = 0.125 63.9 85.4 61.4 88.0 62.4 88.8 63.7 88.5 63.9 89.9
ε = 0.25 57.1 90.5 52.9 94.2 55.0 93.6 60.6 89.7 61.5 90.3

ε = 0.3125 61.0 88.9 51.6 95.7 54.1 94.7 62.2 87.8 63.7 87.9
ε = 0.5 79.4 73.2 52.8 96.8 55.3 94.3 66.2 84.6 68.8 81.5
ε = 1 91.4 26.4 52.7 96.8 57.3 93.4 69.0 78.3 72.1 74.4

ε = 1.5 91.9 24.2 53.9 96.1 57.9 91.4 70.5 73.7 74.1 68.1
ε = 2 91.9 24.1 54.6 94.6 59.3 88.5 72.3 67.8 75.6 62.7

Norm L∞

PGDi⋆, FGSM⋆, BIM⋆

ε = 0.03125 82.3 59.7 45.3 96.2 46.0 96.4 54.5 91.4 57.4 89.3
ε = 0.0625 92.0 29.6 44.3 96.2 49.8 93.8 59.7 82.4 64.3 76.4

ε = 0.5 94.6 9.7 62.1 81.3 54.9 81.9 66.1 60.8 68.9 57.9
PGDi⋆, FGSM⋆, BIM⋆, SA

ε = 0.125 88.9 40.8 48.6 90.7 54.9 85.0 61.9 73.1 66.3 67.5
PGDi⋆, FGSM⋆, BIM⋆, CWi

ε = 0.3125 80.0 61.1 56.6 82.0 56.3 79.6 66.1 66.1 69.2 64.4

Table 12: AGREE against the adaptive-attacks under MEAD. In the following setting we attack all
the detector and the classifier together at the time. α is the parameter to control the losses.

CIFAR10

α = 0 α = .1 α = 1 α = 5 α = 10

AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%% AUROC↑% FPR↓95%%

Norm L1

PGD1⋆

ε = 5 62.1 87.1 61.2 90.4 63.6 86.8 65.8 83.9 66.3 83.2
ε = 10 56.8 90.6 50.5 96.4 55.9 91.6 60.1 88.1 61.1 87.2
ε = 15 69.3 84.4 47.3 97.6 53.8 92.3 62.0 84.9 63.7 83.7
ε = 20 78.7 73.1 47.1 97.9 54.2 92.5 64.2 82.8 66.8 79.1
ε = 25 87.1 50.8 47.8 98.0 55.0 92.1 66.5 79.5 68.8 77.2
ε = 30 90.3 35.4 48.8 98.0 55.8 91.3 67.4 78.5 70.4 75.0
ε = 40 92.1 22.7 49.1 98.0 56.8 90.5 68.6 77.4 72.5 71.6

Norm L2

PGD2⋆

ε = 0.125 63.9 85.4 62.4 88.5 65.0 86.2 66.9 82.9 67.2 81.1
ε = 0.25 57.1 90.5 51.2 96.0 56.3 91.7 60.6 87.2 61.6 86.8

ε = 0.3125 61.0 88.9 56.0 94.6 57.9 93.6 65.3 86.4 66.7 86.6
ε = 0.5 79.4 73.2 46.8 97.8 54.6 91.3 64.5 82.4 66.8 79.5
ε = 1 91.4 26.4 47.2 98.0 57.8 89.4 69.9 73.8 73.1 71.7

ε = 1.5 91.9 24.2 47.5 97.6 59.9 86.9 73.2 68.7 76.5 63.1
ε = 2 91.9 24.1 49.0 97.0 62.8 83.3 75.6 63.7 79.5 56.6

Norm L∞

PGDi⋆, FGSM⋆, BIM⋆

ε = 0.03125 82.3 59.7 40.2 98.0 47.6 95.5 60.6 86.2 65.0 81.8
ε = 0.0625 92.0 29.6 37.9 98.0 47.0 95.9 61.9 82.1 65.8 77.1
ε = 0.25 95.9 8.8 36.5 96.4 47.4 97.7 62.5 92.6 65.4 90.8
ε = 0.5 94.6 9.7 36.7 96.2 46.0 97.7 61.6 96.1 66.0 94.8

PGDi⋆, FGSM⋆, BIM⋆, SA
ε = 0.125 88.9 40.8 38.5 95.9 46.8 95.4 60.1 85.0 61.9 83.2

PGDi⋆, FGSM⋆, BIM⋆, CWi
ε = 0.3125 80.0 61.1 37.2 95.3 46.7 97.4 60.9 92.4 64.1 90.1
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