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ABSTRACT

World modelling is essential for understanding and predicting the dynamics of
complex systems by learning both spatial and temporal dependencies. However,
current frameworks, such as Transformers and selective state-space models like
Mambas, exhibit limitations in efficiently encoding spatial and temporal struc-
tures, particularly in scenarios requiring long-term high-dimensional sequence
modelling. To address these issues, we propose a novel recurrent framework, the
FACTored State-space (FACTS) model, for spatial-temporal world modelling.
The FACTS framework constructs a graph-structured memory with a routing
mechanism that learns permutable memory representations, ensuring invariance to
input permutations while adapting through selective state-space propagation. Fur-
thermore, FACTS supports parallel computation of high-dimensional sequences.
We empirically evaluate FACTS across diverse tasks, including multivariate time
series forecasting and object-centric world modelling, demonstrating that it con-
sistently outperforms or matches specialised state-of-the-art models, despite its
general-purpose world modelling design.

1 INTRODUCTION

World modelling (Schmidhuber, 1990b; 2015; Ha & Schmidhuber, 2018) aims to create an internal
representation of the environment for an AI system, enabling it to represent (Hafner et al., 2019;
2023), understand (Schrittwieser et al., 2020; Hafner et al., 2020), and predict (Ha & Schmidhuber,
2018; Micheli et al., 2022) the dynamics of complex environments. This capability is crucial for
various domains, including autonomous systems, robotics, and financial forecasting, where accurate
predictions depend on effectively capturing both spatial and temporal dependencies (Hafner et al.,
2019; Ha & Schmidhuber, 2018). Consequently, spatial-temporal learning (Liu et al., 2024; Hochre-
iter & Schmidhuber, 1997; Wu et al., 2023a; Oreshkin et al., 2019) emerges as a key challenge in
world modelling, as approaches must balance the complexities of modelling high-dimensional se-
quential data while maintaining robust long-term predictive power.

Despite significant advancements, current spatial-temporal learning frameworks, used in world mod-
elling, based on Transformers (Vaswani et al., 2017; Schlag et al., 2021) and RNNs (Schmidhuber,
2015; Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020) backbones, face limitations in fully
capturing the complexities of high-dimensional spatial-temporal data. Transformer, though pow-
erful (Chen et al., 2022; Robine et al., 2023; Micheli et al., 2022), are inefficient for long-term
tasks due to their quadratic scaling and limited context windows (Zhang et al., 2022). On the other
hand, RNNs provide a more structured approach to sequential data. However, their efficacy is hin-
dered by the vanishing gradients (Hochreiter, 1991; Pascanu et al., 2013). The primary challenges in
spatial-temporal learning arise from the high dimensionality of the data and the necessity to preserve
long-term dependencies (Hochreiter et al., 2001; Tallec & Ollivier, 2018).

Recently, there has been a growing interest in Structured State-Space Models (SSMs) for world
modelling (Gu & Dao, 2023; Hafner et al., 2023; Samsami et al., 2024) using latent state-space
representations. These representations allow for the modelling of underlying dynamics, where latent
states evolve over time according to governing equations (Wang et al., 2024b). However, while
SSM frameworks have demonstrated improved capacity for capturing temporal dynamics (Gu &
Dao, 2023; Wang et al., 2024b; Baron et al., 2023), they often lack efficient mechanisms to handle
high-dimensional spatial data. To address this limitation, recent SSMs often impose rigid structural
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Figure 1: Overview of FACTored State-space (FACTS) Architecture. The FACTS framework
constructs a factored state-space memory, allowing for flexible representations (e.g. graphs and
sets). Sequential inputs (e.g. Xt) are processed through a selective memory-input interaction mech-
anism (denoted by the circular icon⟳), which determines how the inputs interact with and update
factored memory. The different coloured pathways represent distinct latent factors, whose dynam-
ics evolve over time based on these interactions. The design ensures that the memory update is
permutation-invariant with respect to the input features, enabling FACTS to capture and track mean-
ingful algorithmic regularities for accurate future predictions.

constraints on their state spaces, such as diagonal (Gu & Dao, 2023; Gupta et al., 2022a;b) or block-
diagonal structures (Dao & Gu, 2024), to capture invariant components throughout the sequence.
This assumption, that specific dimensions of the state space correspond to consistent patterns over
time, can be restrictive in world modelling scenarios where the relationship between state-space
dimensions and input features evolves dynamically.

For example, in a dynamic system involving multiple agents (e.g. robots or sensors), where the
positions of the agents change over time, to capture this dynamism, current SSMs require learn-
ing distinct representations for essentially identical scenarios at each time step as the agent loca-
tions change. This redundancy leads to an inefficient use of model capacity and data, ultimately
limiting the model’s ability to effectively capture the dynamics of the interactions between inputs
and states. Therefore, there is a need for a consistent dynamic mapping between inputs and latent
states to enhance spatial-temporal modelling capabilities and enable more efficient history compres-
sion (Schmidhuber, 1992a; 2003), which is essential for robust long-term prediction power. Another
limitation of current SSM approaches is their inability to capture redundancy in the input space it-
self. In many cases, each agent’s state (e.g., position, speed, direction) may contributes to the world’s
overall understanding, but the identity or order of the agents do not matter, i.e., only their interac-
tions are crucial for making accurate predictions. In such instances, swapping agents should not
alter the predictions and the world understanding. However, current SSM methods, typically based
on linear transformations, fail to account for this and can perceive identical scenarios as different
based on input order, hindering its ability to capture regularities and making them unsuitable for
sequential modelling in various applications.

To address these challenges, in this paper, we propose the FACTS model, a novel recurrent frame-
work for spatial-temporal world modelling. The FACTS model conceptualise the input as a set of
nodes and introduces a permutable memory that can incorporate complex structures. Through selec-
tive memory-input routing, input features are dynamically assigned to distinct state-space factors,
i.e., explanatory latent representations, that capture the underlying dynamics of the system. This
formulation ensures input permutation invariance in the state-space memory, allowing the model to
learn consistent factor representations over time, even when the spatial or temporal relationships be-
tween input features and factors change as illustrated in Figure 1. Additionally, by treating inputs as
a set of nodes, FACTS: i) can incorporate a wider range of input structures, e.g., images or graphs or
sets. ii) maintains consistent representations of inputs (e.g., agents), regardless of their order. This
allows the model to capture regularities in both spatial/local modalities and temporal dependencies,
enhancing its memory efficiency and long-term prediction capabilities through more efficient his-
tory compression (Schmidhuber, 1992a; 2003). To validate our proposed world modelling approach,
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we conduct an extensive empirical analysis across multiple tasks such as multivariate time series
forecasting, and object-centric world modelling demonstrating that FACTS consistently matches or
exceeds the performance of specialised state-of-the-art models. This confirms its robustness and
versatility in addressing complex high-dimensional sequential tasks.

To sum up, our main contributions are as follows:

• We introduce FACTored State-space (FACTS), a novel recurrent framework that incorporates
a permutable memory structure, enabling flexible and efficient modelling of complex spatial-
temporal dependencies.

• FACTS dynamically assigns input features to distinct latent state-space factors, ensuring effective
history compression and enhancing long-term prediction power.

• We formally and empirically show that FACTS achieves consistent factor representations over
time, regardless of changes in the spatial order of input features over time, providing robustness
in dynamically evolving environments.

• We validate the robustness and predictive power of FACTS through extensive world modeling ex-
periments, demonstrating its superior or competitive performance across multivariate time-series
forecasting and object-centric world modeling tasks.

2 PRELIMINARIES

Structured-state space Models (SSMs) have their roots in the classic Kalman filter (Kalman, 1960),
where they process a m-dimensional input signal x(t) ∈ Rm into a d-dimensional latent state z(t) ∈
Rd, which is then projected onto an output signal y(t) ∈ Rn. The general form of an SSM is
expressed as follows:

ż(t) =A(t)z(t) +B(t)x(t) (1)
y(t) = C(t)z(t) +D(t)x(t), (2)

where ż(t) = d
dt
z(t) indicates the time derivative of the state. The matrices A(t) ∈ Rd×d, B(t) ∈

Rd×m, C(t) ∈ Rn×d, and D(t) ∈ Rn×m present the state, input, output, and feed-forward matrices,
respectively. In systems without direct feedthrough, D(t) becomes a zero matrix. Furthermore,
since the original system operates in a continuous domain, discretisation is often used (Wang et al.,
2024b; Smith et al., 2023), resulting in the general discrete-time formulation of SSM:

zt =Atzt−1 +Btxt (3)
yt = Ctzt (4)

with At, Bt, and Ct govern the dynamics driven by the input sequence x≤t, with different construc-
tions (Wang et al., 2024b; Gu & Dao, 2023; Dao & Gu, 2024) influencing the expressiveness and
efficiency of the model. If we denote the state vector with h, we can see that equation 3-equation 4
form is equivalent to the RNN dynamics. Hence, similarly to RNNs, the system, in equation 3-4, is
inherently sequential, which inhibits parallel processing.

Parallelisation and the selective mechanism As shown in Blelloch (1990); Smith et al. (2023) if
B̄t constructed independently of zt−1, the linear recurrence in equation 3 can be expanded as equa-
tion 5:

zt =
t

∑
s=0

Ā×t∶sB̄sxs, (5)

where Ā×t∶s ∶= Āt+1...Ās+2Ās+1; Āt+1 = I; B̄0x0 = z0 with respect to some initialisation. This
expansion not only allows for parallel computation of the linear terms, but also reveals the direct
connection established between distant inputs/observations along the sequential dimension, e.g. x0

and xt with t ≫ 0, thereby facilitating the capture of long-term dependencies. Furthermore, inte-
grating a selective mechanism (Gu & Dao, 2023) by constructing Āt and B̄t as functions of each
input leads to the following formulation:

zt = Ā(xt)zt−1 + B̄(xt)xt (6)

=
t

∑
s=0

Ā×(xt∶s)B̄(xs)xs (7)

yt = C(xt)zt (8)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This formulation enables content-aware compression of the historical information, addressing the
issue of memory decay in long-sequence modelling. Such selective mechanism is foundational to
the effectiveness of modern state-space models (Gu & Dao, 2023; Dao & Gu, 2024). Additionally,
as indicated in Eq. equation 6, SSMs can support parallel computation, since the term B̄(xt)xt
remains independent of the preceding state zt−1.

3 PROPOSED FRAMEWORK: FACTS

In this section, we introduce our proposed framework: FACTS (FACTored State-space) model, a
novel class of recurrent neural networks designed with a structured state-space memory. FACTS
is characterised by two key features: permutable state-space memory, which allows for flexible
representation of system dynamics with more complex structures and invariant recurrence with
respect to permutations of the input features, ensuring consistent modelling of underlying factors in
the world across different time steps.

One key intuition behind the “permutable state-space memory” in FACTS is the principle of history
compression (Schmidhuber, 1992a; 2003), which emphasises the need to eliminate redundant infor-
mation in sequence modelling while uncovering algorithmic regularities. This principle is essential
for effective long-sequence modelling with high-dimensional data, as it improves generalisation by
reducing the accumulation of unnecessary information. Existing SSMs often address this challenge
by imposing fixed structural constraints on their state spaces, such as diagonal or block-diagonal
structures, to capture invariant components that persist throughout the sequence (Gu & Dao, 2023;
Gupta et al., 2022a;b; Dao & Gu, 2024). However, these fixed structural priors assume that spe-
cific dimensions of the state space correspond to consistent and specific factors over time. This
assumption can be limiting in world-modeling scenarios where the relationship between state-space
dimensions and input features evolves dynamically. For instance, in video sequence modeling, fac-
tors may correspond to moving objects, and the spatial location of these objects (i.e., pixel positions)
changes from frame to frame. In such cases, the model needs to adapt to these changes, but current
SSMs formulations struggle to maintain consistent factor representations due to their rigid structural
constraints, i.e., in equation 7 the matrices B̄(xt) must not only select relevant information for
modelling sequence dynamics but also account for the changing relative orders between subspaces
of zt−1 and xt, which can evolve over time. This introduces additional complexity, leading to noise
and redundancy that can hinder effective history compression.

3.1 FACTS FORMULATION

The FACTS framework is formalised as a class of structured state-space model, which can capture
the dynamic interactions between the latent factors and the input features. To facilitate this dynamic
factorisation, i.e., the process of identifying and disentangling meaningful factors from the input
data over time, at each time step t, we conceptualise the hidden state Zt as a graph and hence, the
state-space memory is represented as a set of nodes that correspond to the latent factors. The input
features Xt are also treated as another set of nodes. Formally, let

Zt = {z1
t ,z

2
t , . . . ,z

k
t } Xt = {x1

t ,x
2
t , . . . ,x

m
t } (9)

where Zt denote the set of k latent factors at time step t and m is the number of input features. By
formulating both sets as nodes, FACTS is inherently invariant to permutations of both input features
and factors. Then, to efficiently learn the optimal connections between these two sets, we propose
a graph-based routing mechanism that can effectively match input features with the corresponding
factors .i.e., learn edges between nodes in Zt and Xt, reflecting the strength of each correspondence
between each input feature and each latent factor.

Dynamic selective state-space updates In analogy with the standard SSM dynamics equation 3-
equation 4, the evolution of the latent factors of FACTS is governed by the following modified
state-space dynamics:

Zt = Āt ⊙Zt−1 + B̄t ⊙Ut (10)
yt =Dec(Ct ⊙Zt) (11)

Here, Zt represents the state-space memory at time t, which stores the latent factors. The terms Āt,
B̄t, and C̄t are selective state-space model parameters responsible for controlling the information
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flow between the previous memory Zt−1 and the input features Xt. The symbol ⊙ denotes element-
wise multiplication, while Dec is a permutation-invariant decoder applied to the latent factors.

Compared to the standard SSM dynamics, i.e., equation 3-equation 4, we note two key differences:
(i) FACTS relies on element-wise multiplication, instead of matrix multiplication, to conserve the
invariance properties. (ii) xt in equation 3 is replaced with Ut = (Zt−1,Xt), which is a key element
in FACTS that models the interactions between the memory Zt−1 and the input features Xt.

The attention-based router: Before diving into the details of the different parts of equation 10
and equation 11, we first introduce the routing mechanism used in this work. To maintain the
recurrent permutability of equation 10, the routing mechanism between memory and inputs must
dynamically assign input features to consistent factors. This can be done using an attention-based
routing mechanism defined as follows:

Zt−1⟳ϕ,ψ,φ Xt = softmax(ϕ(Zt−1)ψ
T (Xt)√
d

)φ(Xt) (12)

where the operator ⟳ learns the relationships between the memory Zt−1 and input features Xt,
dynamically determining which features correspond to which latent factors. The functions ϕ, ψ,
and φ represent the query, key, and value mappings, respectively, and are applied row-wise to the
memory and input features.

Factorisation process The term Ut = U(Zt−1,Xt) in equation 10 is crucial for capturing the inter-
actions between the memory and the input features. Note that in prior works (Gu & Dao, 2023; Dao
& Gu, 2024) Ut is typically constructed as function of the current input Xt only. In this paper, we
argue that, similar to the gating in RNNs vs LSTMs (Hochreiter & Schmidhuber, 1997), it is more
effective use bothXt and Zt−1 to conserve long term dependencies. This interaction plays a key role
in factorisation, which refers to the process of binding the input features to specific memory items,
effectively uncovering the underlying factors. In the FACTS framework, the memory at the previous
time step Zt−1 serves as the prior over the latent factors, and Ut is the factor momentum that guides
the evolution of these factors across time. This factor momentum is computed as:

Ut = Zt−1⟳ϕU ,ψU ,φU
Xt (13)

where ϕU , ψU , and φU are its corresponding query, key, and value mappings.

Selectivity through memory-input routing The selective state-space model parameters Āt, B̄t,
and C̄t are constructed through interactions between the memory and the input features, ensuring
that both the memory and the inputs jointly decide which information should be retained or updated.
These parameters are computed as follows:

∆t = Zt−1⟳ϕ∆,ψ∆,φ∆
Xt Āt = exp(α∆t) (14)

B̄t =∆t ⊙ (Zt−1⟳ϕB ,ψB ,φB
Xt) C̄t = Zt−1⟳ϕC ,ψC ,φC

Xt (15)

Here, ∆t is a step size introduced for discretisation, and the functions ϕ∆, ψ∆, and φ∆ (as well
as their counterparts for B̄t and C̄t) are responsible for mapping the memory and inputs to their
respective selective parameters. The exponential function exp ensures that the selective parameters
are non-negative, while α is a trainable scalar controlling the influence of ∆t. By employing this
selective mechanism, FACTS is capable of compressing long sequences in its state-space memory
while maintaining the key properties of latent permutation equivariance and row-wise permutation
invariance. Hence, FACTS can efficiently capture meaningful factors, e.g., objects in video frames
or independent sources in a signal, even as their relationships with input features change over time.

Linearisation Although the framework presented so far in equation 10 has a permutable state-space
memory and equivariant through the memory-input routing, which we formally show in Section 3.2,
the routing between Zt−1 and Xt introduces dependencies of B̄(Zt−1,Xt) and U(Zt−1,Xt) on
Zt−1. This results in a non-linear recurrence between Zt−1 and Zt in equation 10, which limits
parallelisation and hinders training efficiency. To overcome this, we substitute Zt−1 with Z0, i.e. the
initial memory or state, within the information routing processes. This leads to the final formulation

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of FACTS:

Zt = FACTS(Zt−1, Z0,Xt) (16)

= Ā(Z0,Xt) ⊙Zt−1 + B̄(Z0,Xt) ⊙U(Z0,Xt) (17)

= Ā(Z0,Xt) ⊙FACTS(Zt−2, Z0,Xt−1) + B̄(Z0,Xt) ⊙U(Z0,Xt) (18)

=
t

∑
s=0

Ā×(Z0,Xt∶s) ⊙ B̄(Z0,Xs) ⊙U(Z0,Xs), (19)

= FACTS(Z0,X1∶t) (20)

where Ā×(Z0,Xt∶s) = Āt+1 ⊙ Āt ⊙ Āt−1...⊙ Ās+1 and Āt+1 is filled with “1”; the initial state Z0

can either be provided a priori or sampled from unbiased distributions. This formulation in equa-
tion 17 linearise the recurrence in equation 10 by breaking the non-linear dependency between Zt
and Zt−1. That is, as shown in equation 20, the inputs interact only with the initial memory, enabling
fast computation of Zt using equation 19, i.e., without recurrence. This significantly improves com-
putational efficiency. Note that while Z0 is denoted as the “initial state”, it needs not represent the
sequence’s true start; long sequences can be segmented for parallel computation within segments
while maintaining sequential dependencies across the original sequence.

3.2 THEORETICAL ANALYSIS OF FACTS

Here, we formally proof the permutation equivariance and invariance properties of FACTS. We first
formally define the two fundamental properties, namely left permutation equivariant (L.P.E.) and
right permutation invariant (R.P.I.) in Definitions 1 and 2, respectively.

Definition 1. Let f ∶ Rn1×n2×Rt×n3×n4 → Rn1×n5 be a bivariate function with n1, n2, n3, n4, n5, t ∈
N. f is permutation equivariant (L.P.E.) if for all σ ∈ Sn1 ,M1 ∈ Rn1×n2 , and M2 ∈ Rt×n3×n4 ,

f(σM1,M2) = σf(M1,M2),

where Sk denotes the set of permutation matrices of size Rk×k.

Definition 2. Let Rn1×n2 × Rt×n3×n4 → Rn1×n5 be a bivariate function with n1, n2, n3, n4, n5, t ∈
N. f is right permutation invariant (R.P.I.) if for all σ1, σ2, . . . , σt ∈ Sn3 ,M1 ∈ Rn1×n2 , and
M1

2 ,M
2
2 , . . . ,M

t
2 ∈ Rn3×n4 ,

f(M1, [σ1M1
2 , σ2M

2
2 , . . . , σtM

t
2]) = f(M1, [M1

2 ,M
2
2 , . . . ,M

t
2]).

These L.P.E. and R.P.I. properties, which formally describe the two fundamental aspects of FACTS:
permutable memory and permutation-invariant recurrence (w.r.t. the features) — with memory
Zt−1 and Xt serving as the left and right arguments of FACTS. They are thus essential not only for
constructing the routing mechanism but also for the overall design of FACTS.

Using Definitions 1 and 2, that by taking memory Zt and features Xt as the left and right arguments
in FACTS (equation 20), we can show the following result:

Theorem 1. FACTS as defined in equation 20 is L.P.E. and R.P.I.

The proof of Theorem 1 is available in Appendix B. Theorem 1 proves our main claim that FACTS:
i) is invariant to input features permutation. ii) learns permutable state-space memory. Furthermore,
it is possible to extend our results in Theorem 1 to the more general case, where Ā, B̄,U are L.P.E.
and R.P.I. functions of Zt−1 and Xt. The main result is presented in Theorem 2.

Theorem 2. if Ā, B̄,U are L.P.E. and R.P.I. functions of Zt−1 and Xt, any dynamics governed
by equation 10 is L.P.E. and R.P.I.

The proof of Theorem 2 is available in Appendix B. Theorem 2 highlights the main condition on
the variables Ā, B̄,U to ensure that the model is invariant to input features and has an equivariant
memory. This can spark future research to develop SSM models based on equation 10 that are
efficient history compressors and are suitable to dynamic world modelling scenarios.
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4 EXPERIMENTS

We design experiments to evaluate the effectiveness of FACTS in world modelling. We frame world
modelling as a prediction task, where the model must predict future events in complex environ-
ments based on observed history, and evaluate a model’s performance by its prediction accuracy.
We conduct experiments on two environments: the multivariate time series (MTS) benchmark for
forecasting and synthetic multi-object videos (Yi et al., 2020; Greff et al., 2022; Lin et al., 2020).
Furthermore, in Appendix D, we provide an extensive ablation study that highlights the robustness
of FACTS.

4.1 LONG TERM FORECASTING

In many real-world applications, such as climate prediction, traffic flow management, or autonomous
systems, predicting future states over long horizons is crucial for effective decision-making. World
modeling, in these domains, often involves high-dimensional multivariate inputs—such as interact-
ing agents, variables, or environmental factors—requiring the system to account for their complex
dependencies and interactions across time. Long-term forecasting in this context is challenging as
it demands accurate representation of temporal dynamics over extended periods. Additionally, in-
put features may lack a predefined order, or this order could change dynamically. For example, a
system may receive data from sensors (e.g., temperature and pressure) without knowing which is
which during testing. The world modeler must provide reliable long-term predictions even if the
input order changes unexpectedly, and generalize to unseen configurations, without learning every
possible permutation of input features during training.

Benchmark We use the open-source Time Series Library (TSLib)1, a widely-used benchmark for
training and evaluating time-series models. TSLib provides standardized settings and a leader-
board of top-performing models, ensuring fair and consistent comparisons. Our focus is on long-
term multivariate time-series forecasting (MSTF) tasks, using 9 diverse real-world datasets: 4 ETT
datasets, Electricity, Weather, Exchange, Traffic, and Solar-Energy. Our approach FACTS is com-
pared against 8 baseline models, including state-of-the-art MSTF approaches that top the TSLib
leaderboard (Wang et al., 2024c; Liu et al., 2024; Wu et al., 2023a; Nie et al., 2023; Zeng et al.,
2023; Zhang & Yan, 2023; Zhou et al., 2022; Wu et al., 2021). Following the setup of iTransformer
and S-Mamba, we fix the input sequence length to 96 and evaluate the models on prediction lengths
of 96, 192, 336, 720. The datasets and experimental protocols are widely used in MSTF literature,
providing a robust evaluation framework. Prediction accuracy is measured using mean-squared error
(MSE) and mean-absolute error (MAE) as the primary metrics.

4.1.1 FORECASTING WITH PREDEFINED ORDER (SCENARIO 1)
We use the exact same setup to Wang et al. (2024c); Liu et al. (2024); Wu et al. (2023a), with the
exception of the pre- and post-processing modules (referred to as the “embedders” and “projectors”
in TSLib). In our implementation, we replace these with set functions to accommodate the output
structure of FACTS (c.f. Appendix C for more details). Note that in the standard setup of TSLib, the
arrangement of the input features in the test is not changed and is the identical to the arrangement
to the one seen during the training. The average results over the different prediction windows of our
proposed approach along with all competing methods are presented in Table 1 and the full results
are available in Table 8 in Appendix E.

Table 1 highlights the strong performance of FACTS, which achieves competitive results in both
metrics, compared to the competing state-of-the-art specialized MSTF models. For instance, in
terms of MAE, FACTS achieves the highest scores on 6 out of 9 datasets and is always in the top 2
in 7 out of 9 them. Even where it is not the top performer, FACTS remains highly competitive (3rd
place) as seen in Traffic and Solar-Energy underscoring its robustness and ability to adapt to differ-
ent scenarios. FACTS ability to capture long-term dependencies efficiently can be attributed to its
structured state-space memory, which it encourages better learning statistical independence factors
whose interactions can explain the spatial-temporal correlations of the multivariate observations.

Parallel vs Recurrent FACTS The parallelisation design outlined in our equation 17-20 not only en-
hances computational efficiency but also provides flexibility for recurrent applications of the FACTS

1Time Series Library benchmark: https://github.com/thuml/Time-Series-Library.git
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ETTm1 ETTm2 ETTh1 ETTh2 Electricity Exchange Traffic Weather Solar-Energy

Autoformer (2021) MSE 0.588 0.327 0.496 0.450 0.227 0.613 0.628 0.338 0.885
MAE 0.617 0.371 0.487 0.459 0.338 0.539 0.379 0.382 0.711

FEDformer (2022) MSE 0.448 0.305 0.440 0.437 0.214 0.519 0.610 0.309 0.291
MAE 0.452 0.349 0.460 0.449 0.327 0.429 0.376 0.360 0.381

TimesNet (2023a) MSE 0.400 0.291 0.458 0.414 0.192 0.416 0.620 0.259 0.301
MAE 0.406 0.333 0.450 0.427 0.295 0.443 0.336 0.287 0.319

PatchTST (2023) MSE 0.387 0.281 0.469 0.387 0.205 0.367 0.481 0.259 0.270
MAE 0.400 0.326 0.454 0.407 0.290 0.404 0.304 0.281 0.307

DLinear (2023) MSE 0.403 0.350 0.456 0.559 0.212 0.354 0.625 0.265 0.330
MAE 0.407 0.401 0.452 0.515 0.300 0.414 0.383 0.317 0.401

Crossformer (2023) MSE 0.513 0.757 0.529 0.942 0.244 0.940 0.550 0.259 0.641
MAE 0.496 0.610 0.522 0.684 0.334 0.707 0.304 0.315 0.639

iTransformer (2024) MSE 0.407 0.288 0.454 0.383 0.178 0.360 0.428 0.258 0.233
MAE 0.410 0.332 0.447 0.407 0.270 0.403 0.282 0.278 0.262

S-Mamba (2024c) MSE 0.398 0.288 0.455 0.381 0.170 0.367 0.414 0.251 0.240
MAE 0.405 0.332 0.450 0.405 0.265 0.408 0.276 0.276 0.273

FACTS (Ours) MSE 0.393 0.281 0.441 0.376 0.168 0.355 0.470 0.250 0.256
MAE 0.399 0.325 0.428 0.399 0.264 0.398 0.298 0.277 0.274

Table 1: average MSE and MAE errors of the different approaches on the multivariate time series
forecasting tasks. For each metric and each dataset, the top performance and the second best are
highlighted in red and blue, respectively.
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Figure 2: Model Robustness to Input Permutations on 4 datasets from MTSF. Magenta bars represent
original performance, salmon bars show performance using our/TSLib implementation, and yellow
bars represent results under input permutation. Results are averaged over five random seeds, with
error bars showing ±2× standard deviation

core operations. As mentioned, Long sequences can be segmented for parallel computation within
segments while preserving sequential dependencies across the entire sequence. To clarify further,
we analyzed FACTS’ long-term forecasting performance by comparing its fully sequential mode
to its fully parallel mode, adjusted by segment window size, on the MTS Electricity dataset (c.f.
Figure 3). Each window size represents a different update frequency for Z0: for example, a window
size of 1 corresponds to fully recurrent FACTS, while a window size of 96 (the sequence length) cor-
responds to fully parallel FACTS. As shown in Figure 3, the models consistently maintained strong
performance across various segment window sizes.

4.1.2 FORECASTING WITH UNKNOWN ORDER (SCENARIO 2)
To evaluate robustness under dynamic scenarios, we randomly permute the input features during
the test phase to simulate environments where the arrangement of agents or entities (e.g., robots,
sensors) changes unpredictably. This mirrors real-world scenarios where input configurations vary,
challenging world models to adapt to unseen input orderings. We focus on top pretrained models
from the first scenario (Table 1), i.e., FACTS, iTransformer, and S-Mamba. For the datasets, we use
the challenging ones from the first scenario and permute the feature embeddings five times during
testing, reporting the average performance and two standard deviations.

The main results are presented in Figure 2. While other models, iTransformer and S-Mamba, ex-
perience significant degradation in performance when the input features order is shuffled, we note
that FACTS consistently maintains its prediction performance across the different tasks. These find-
ings corroborate the theoretical results of Section 3.2. For example, on the Traffic dataset, the MSE
errors of S-mamba, which is the model with the top performance in the standard setting (Table 1), in-
creases more than threefold, and the error for iTransformer doubles. In contrast, FACTS, leveraging
its selective memory routing which consistently assigns input features to the latent factors, preserves
low error rates despite the permutation. This highlights FACTS’ ability to handle dynamic and un-
ordered environments. This adaptability further emphasizes the generalization strength of FACTS,
particularly in world modeling scenarios where input orders may be inconsistent or unknown.
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LPIPS ↓
Method OBJ3D CLEVRER

PredRNN (2017) 0.17 0.12
VQFormer (2019) 0.18 0.11
G-SWM (2020) 0.16 0.10
SlotFormer (2023b) 0.11 0.08
SAVi-dyn (2023) 0.19 0.12

FACTS (Ours) 0.09 0.07

Method ARI ↑ FG-ARI ↑ FG-mIoU ↑
G-SWM (2020) 57.14 49.61 24.44
SlotFormer (2023b) 63.45 63.00 29.81
SAVi-dyn (2023) 8.64 64.32 18.25

FACTS (Ours) 58.25 62.34 48.11

Table 2: Quantitative results of object dynamics prediction. Left: visual quality of the predicted
future frames, measured by LPIPS (lower is better). Right: segmentation of predicted future frames
using ARI, FG-ARI, and FG-mIoU (higher is better).

4.2 OBJECT-CENTRIC WORLD MODELLING

Visual object-centric representation learning (OCRL) (Burgess et al., 2019; Greff et al., 2019; Nanbo
et al., 2020) tackles the challenge of binding visual information to consistent factors, even as object
features dynamically permute with movement across pixels in videos (Kipf et al., 2023). This aligns
with FACTS’ objective of identifying regularities in dynamic environments for history compres-
sion and future-event prediction, making OCRL an ideal evaluation benchmark. To evaluate how
FACTS 1) leverages object information for future predictions and 2) aligns its discovered factors
with objects, we conduct two OCRL experiments, slot dynamics prediction and unsupervised object
discovery, set on widely-used OCRL datasets (Yi et al., 2020; Lin et al., 2020; Greff et al., 2022).

Slot dynamics prediction The task involves having a world model capture object-centric dynamics
in latent space: given the latent object representations of observed events (“burn-in”), the model
predicts the future latent codes of the objects (“roll-out”). We conducted this experiment following
the setup of our major baseline, SlotFormer (Wu et al., 2023b). We evaluate the performance of the
model by assessing 1) the visual quality of the predicted future frames and 2) the precision of future
segmentation map rendered from the predicted latents. We quantify visual quality using the LPIPS
metric, which provides stronger alignment with human perception than other commonly used metics
such as PSNR and SSIM (Wu et al., 2023b; Sara et al., 2019), and segmentation accuracy using the
commonly used Mean Intersection over Union (mIoU) and Adjusted Rand Index (ARI), with and/or
without the foreground focus.
Results The results presented in Table 2 highlight the strengths of the FACTS model in terms of both
visual quality and segmentation accuracy for object dynamics prediction on the CLEVRER dataset.
FACTS achieves the lowest LPIPS score of 0.09, indicating superior visual quality in the predicted
frames. Additionally, it demonstrates competitive performance in segmentation accuracy, attain-
ing a leading FG-mIoU of 48.11, which highlights its effectiveness in predicting object positions
and interactions in future frames. We attribute these results to FACTS’ selective history compres-
sion mechanism. In contrast to SlotFormer, which predicts the next state by attending to all past
inputs—resulting in inefficiency and noisy predictions—FACTS effectively compresses and retains
only the most relevant information in memory, thereby filtering out noise and yielding more accurate
dynamics modelling and future predictions.

Unsupervised object discovery In contrast to the slot dynamics task, where object slots or factors
are given as input, this experiment requires FACTS to automatically discover relevant factors for
future predictions in multi-object videos. This process enables us to understand the regularities that
FACTS identifies as significant for forecasting future events. We utilised a CNN encoder to convert
the input image into a feature set, from which FACTS learns the object factors. These factors are
employed to predict future object slots and are subsequently decoded back into video frames using
a spatial-broadcast decoder. Note that, in this experiment, we adoped the fully-unsupervised setup
of SAVi and jointly train all the modules (including the CNN encoder and spatial-broadcast de-
coder) end-to-end from scratch by minimising the reconstruction MSE and future prediction MSE.
This approach highlights a key distinction from models like SAVi, which primarily focus on object
identification for reconstructing observations, whereas FACTS aims to discover the regularities or
modularities that enhance future predictions. Consequently, FACTS and SAVi conceptualise “fac-
tors” differently. Nonetheless, to ensure a comprehensive evaluation, we compared FACTS with
SAVi on object discovery under the video reconstruction setting using the MOVi-A dataset.
Results We visualise the discovered factors by independently rendering each factor’s dynamics back
into videos. In the “discovery for prediction” task, FACTS primarily identifies moving objects -
considered “useful” for future predictions - while treating static objects as background. In con-
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Method RMSE↓ MAE↓ MAPE↓
HA 2018 12.16 5.92 15.17%
LSTNet 2018 9.22 5.11 12.56%
STGCN 2018 7.92 3.87 10.05%
DCRNN 2018 7.87 3.85 10.01%
GWN 2019 7.66 3.54 9.98%
ASTGCN 2019 7.99 3.94 10.12%
GMA 2020 8.32 4.06 10.91%
MTGNN 2020 8.16 3.99 10.28%
AGCRN 2020 8.22 4.02 10.53%
DGCRN 2023 7.19 3.44 9.73%
STGM 2023 7.10 3.23 9.39%
MegaCRN 2023 7.23 3.38 9.72%
TESTAM 2024 7.09 3.36 9.67%

FACTS (Ours) 6.97 3.11 9.08%

Table 3: RMSE, MAE, and MAPE
of different approaches on long-term
Traffic Prediction task with 1 hour
(i.e., 12 steps) ahead forecasting us-
ing METR-LA dataset.

Figure 3: Parallel vs Recurrent FACTS on
MTS (Electricity): MSE and MAE for dif-
ferent window sizes.

trast, for the “discovery for reconstruction” task, FACTS identifies also static objects as explanatory
factors (see Figure 8). We attribute this behaviour to the residual design of the FACTS predictor,
which is muted during reconstruction. Our quantitative results in Table 7 demonstrate that FACTS
outperforms SAVi in unsupervised object discovery (for reconstruction), highlighting its superior
performance despite being a more general framework. Additional visual results of our object-centric
world modelling are available in the Appendix E and our accompanying video demo.

4.3 LONG TERM PREDICTION WITH GRAPH DATA

To demonstrate FACTS’ flexibility as a powerful general framework able to handle different in-
put types/modalities and efficiently solve diverse forecasting-based tasks, we also apply FACTS to
dynamic-graph input data evaluated on node prediction task (long-term prediction (12-step MAE))
with the commonly used METR-LA dataset (Li et al., 2018) and we compare against existing state-
of-the-art approaches on this task. We refer to Appendix C.4 for more experimental details.

As can be seen in Table 3. FACTS, leveraging its graph-structured memory, also outperforms all
existing methods on this task, even those specialized for this task. For instance, TESTAM (Lee
& Ko, 2024) yields an MAPE of 9.67% whereas FACTS yields 9.08%. This further corroborated
our main claim that FACTS is indeed a versatile world model framework with consistent strong
performance in several diverse forecasting tasks.

5 DISCUSSIONS & CONCLUSION
In this work, we introduced FACTS, a novel recurrent framework designed for spatial-temporal
world modelling. FACTS is constructed permutable state-space memory, which offers the flex-
ibility needed to capture complex dependencies across time and space. By employing selective
memory-input routing, FACTS is able to dynamically assign input features to distinct latent factors,
enabling more efficient history compression and long-term prediction accuracy. Furthermore, we
formally showed that FACTS: i) is invariant to input features permutation. ii) learns permutable
state-space memory, maintaining consistent factor representations regardless of changes in the input
order. Furthermore, through comprehensive empirical evaluations, FACTS demonstrated superior
performance on a variety of real-world datasets, consistently matching or outperforming specialized
state-of-the-art models in diverse tasks. Notably, FACTS maintained its predictive powers even in
challenging settings where the order of input features was shuffled, highlighting its robustness and
adaptability. These results underscore the model’s potential for a wide range of applications, partic-
ularly in world modeling scenarios where input configurations are variable or uncertain. For future
work, we plan to extend FACTS to larger-scale experiments, exploring its scalability and potential
in even more complex world modeling tasks.
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A RELATED WORKS

From a historical perspective, “world models” or using models to learn environmental dynamics
and leveraging them in policy training has an extensive literature, with early foundations laid in the
1980s using feed-forward neural networks (FNNs) (Werbos, 1987; Munro, 1987; Werbos, 1989;
Robinson & Fallside, 1989; Nguyen & Widrow, 1990) and in the 1990s with RNNs (Schmid-
huber, 1990b;a; 1991b;a). Notably, PILCO (Deisenroth & Rasmussen, 2011; McAllister & Ras-
mussen, 2016) has emerged as a key probabilistic model-based method, using Gaussian processes
(GPs) (MacKay et al., 1998) to learn system dynamics from limited data and train controllers for
tasks like pendulum swing-up and unicycle balancing. While GPs perform well with small, low-
dimensional datasets, their computational complexity limits scalability in high-dimensional scenar-
ios. To address this, later works (Gal et al., 2016; Depeweg et al., 2016) have adopted Bayesian
neural networks (Kononenko, 1989), which have demonstrated success in control tasks with well-
defined states (Hein et al., 2017). However, these methods remain limited when modeling high-
dimensional environments, such as sequences of raw pixel frames. In the context of reinforcement
learning, using recurrent models to learn system dynamics from compressed latent spaces has sig-
nificantly improved data efficiency (Schmeckpeper et al., 2020; Finn et al., 2016). While the de-
velopment of internal models for reasoning about future states using RNNs dates back to the early
1990s, subsequent works, such as “Learning to Think” (Schmidhuber, 2015) and “World Models”
(Ha & Schmidhuber, 2018), have extended this by introducing RNN-based frameworks that model
environments and reason about future outcomes. These RNN-based models have been applied to
future frame generation (Chiappa et al., 2017; Oh et al., 2015; Denton et al., 2017) and reasoning
about future outcomes (Silver et al., 2017; Watters et al., 2017). However, as RNNs suffer from
the vanishing gradients problem (Hochreiter, 1991; Pascanu et al., 2013), recently there has been a
growing interest in using Transformers (Chen et al., 2022; Robine et al., 2023; Micheli et al., 2022)
and SSM-based appraoches (Gu & Dao, 2023; Hafner et al., 2023; Samsami et al., 2024) for world
modeling.

As world modelling is fundamentally intertwined with sequence modelling (Schmidhuber, 1990b),
it often carries temporal implications that align with the principle of history compression (Schmid-
huber, 1992a; 2003). Temporal selectivity is essential in these models, with Recurrent Neural Net-
works (RNNs), particularly those with gating mechanisms like LSTMs (Hochreiter & Schmidhuber,
1997), GRUs (Cho, 2014), and xLSTMs (Beck et al., 2024), being well-suited for this task. However,
learning from high-dimensional sequential data complicates the problem, posing a core challenge
in spatial-temporal learning. This challenge is exacerbated by the quadratic computation scaling
in transformers, despite their success. Approaches like dimensionality reduction (Hotelling, 1933;
Tipping & Bishop, 1999; Kingma, 2013) and predictability minimisation (Schmidhuber, 1992b;
Ghahramani, 1994) must adhere to the principle of history compression along the temporal axis,
rather than compressing spatial information at each time step independently. From the perspective
of information bottleneck principle (Tishby et al., 2000), the goal is to selectively extract the “bottle-
neck” from high-dimensional sequences that is most useful for world modelling tasks like predicting
future events.

Recently, the emergence of Mamba (Gu & Dao, 2023) and other SSM-based frameworks (Gu et al.,
2021; Dao & Gu, 2024; Wang et al., 2024b) has garnered widespread attention for their strong
performance in efficient sequence modelling. Mamba structure is similar to LSTM (Hochreiter &
Schmidhuber, 1997), in the sense that it utilises a forget gate, an input gate, and an output gate.
The key difference is that these gates depend only on the previous input (not on the hidden state
representing the history of inputs so far). While this hinders their representation power (e.g., cannot
solve the parity problem (Hochreiter & Schmidhuber, 1996; Schmidhuber et al., 2007; Srivastava
et al., 2015)), this formulation enables parallel computation of selective history compression via
sub-linear sequential attention (Dao & Gu, 2024), constructing dependencies between distant data
points within the sequence. This sparks their successful applications across various tasks including
language modelling (Mehta et al., 2022; Grazzi et al., 2024; He et al., 2024), deep noise suppres-
sion (Du et al., 2024b), and clinical note understanding (Yang et al., 2024b). Additionally, many
SSM-based vision models have been proposed for tasks such as classification (Du et al., 2024a;
Shi et al., 2024; Baron et al., 2023; Huang et al., 2024; Smith et al., 2023; Nguyen et al., 2022),
detection (Chen et al., 2024), segmentation (Yang et al., 2024a; Ma et al., 2024), generation (Yan
et al., 2024; Fei et al., 2024), and video understanding (Islam & Bertasius, 2022; Wang et al., 2023).
Despite their success, existing SSMs often lack efficient mechanisms for handling high-dimensional
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spatial data, relying primarily on linear and rigid structural biases (Gu et al., 2021; Dao & Gu, 2024),
particularly when dealing with permutable spatial structures.

Multivariate time-series forecasting (MTSF) and object-centric representation learning (OCRL) both
involve working with noisy, high-dimensional sequential data, making them critical benchmarks for
evaluating world models with significant real-world impact. We chose to assess our models on
these tasks because they exemplify the primary challenge of spatial-temporal learning. Existing
MTSF methods either struggle to effectively model long-term temporal dependencies (Salinas et al.,
2020; Zhang & Yan, 2023; Nie et al., 2023) or fail to effectively leverage the cross-variate reg-
ularities in high-dimensional inputs (Wu et al., 2021; Zhou et al., 2022; Wu et al., 2023a; Zeng
et al., 2023; Wang et al., 2024a), resulting in inaccuracies in future-state forecasting. Two notable
models in the field, iTransformer (Liu et al., 2024) and S-Mamba (Wang et al., 2024c), also have
limitations. iTransformer suffers from the quadratic scaling of transformers, making it difficult to
capture long-term dependencies, while S-Mamba struggles with handling the spatial structures of
the data. Object-centric representations, or “slots”, are designed to capture “objects”, i.e. solving
the binding problem (Greff et al., 2020). Our goal is to capture modularities, or “factors”, that re-
main invariant across sequences, framing the discovery of spatial regularities in history compression
as another instance of the binding problem. Although a philosophical discussion on whether these
“factors” should align with common-sense “objects” is beyond the scope of this paper, OCRL is
closely related and serves as a good demonstration of our approach. OCRL originated from the
vision-as-inverse-Bayes framework (Yuille & Kersten, 2006), initially applied to images (Burgess
et al., 2019; Greff et al., 2019; Locatello et al., 2020), later extended to videos (Nanbo et al., 2020;
Kipf et al., 2023), and developed into object-centric world models (Lin et al., 2020; Kipf et al.,
2019; Wu et al., 2023b; Stanić et al., 2023). Recent OCRL works heavily rely on the Slot Attention
(SA) mechanism (Locatello et al., 2020) for object discovery, which is closely related to our rout-
ing modules. We view the SA, which also satisfies the LPE and RPI properties, as a suitable but
computationally expensive alternative to equation 12.

It is worth-mentioning Goyal et al. (2020) and Goyal et al. (2022), which propose latent state factor-
ization and equivariance in attention-augmented LSTM/GRU-based frameworks. However, unlike
these works, FACTS employs a structured state-space memory, enabling dynamic input-to-factor
assignments with explicit permutation invariance and efficient training. Recently SlotSSMs (Jiang
et al., 2024) has been proposed to incorporate factorization into SSMs. However, while SlotSSM
adapts Mamba for modular slot-based data with added task-specific modules, FACTS provides a
fundamentally different formulation of SSMs, focusing on sequential modelling, designed to handle
evolving input relationships intrinsically with a broader adaptability allowing it to achieve strong
performance on multiple tasks. Furthermore, unlike SlotSSM’s selective routing based solely on
inputs, FACTS incorporates both input and memory through the attention-augmented memory-input
routing mechanism.

B PROOFS

Theorem (Restatement of Theorem 1). FACTS as defined in equation 20 is L.P.E. and R.P.I.

Proof. Let σZ ∈ Sk, σ1
X , σ

2
X , . . . , σ

t
X ∈ Sm, Z0, Zt ∈ Rk×d, X1,X2, . . . ,Xt ∈ Rm×d . By equa-

tion 17, equation 18 equation 19, and equation 20, it is sufficient to show

σZ FACTS(Zk, Z0,Xk) = FACTS(σZZk, σZZ0, σ
t
XXk).

for all k ∈ N, k ∈ [1, t].

σZ FACTS(Zk, Z0,Xk)
=σZ(Ā(Z0,Xk) ⊙Zk−1 + B̄(Z0,Xk) ⊙U(Z0,Xk))
=σZĀ(Z0,Xk) ⊙ σZZk−1 + σZB̄(Z0,Xk) ⊙ σZU(Z0,Xk).
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Algorithm 1 FACTS Encoder: an Implementation

1: Input: X1∶t ∈ Rt×m×d ▷ t-sequential axis, m-spatial axis
2: Output: Z1∶t ∈ Rt×k×d
3: Init: Z0 ∈ Rk×d ∼ N(0,I)
4: Param: A = α ∈ R
5:
6: X1∶t ← Conv2D(Rearrange(X1∶t, [d, t,m]);kernel=(1, 1)) ▷ Input projection
7: (X1∶t,∆1∶t) ← Conv2D(X1∶t;kernel=(dconv, 1)).split(axis=1) ▷ Conv. along the t-axis
8: (X1∶t,B1∶t,C1∶t) ← Silu(Conv2D(X1∶t;kernel = (1,1))).split(axis=1)
9: U1∶t ← Rout(Z0,X1∶t) ▷ Routing for factorisation

10: (∆1∶t,B1∶t,C1∶t) ← Rout(Z0, (X1∶t,∆1∶t,B1∶t,C1∶t)) ▷ Routing for the SSM Params
11: ∆1∶t = Softplus(∆1∶t)
12: (Ā1∶t, B̄1∶t) ← Discretisation(∆1∶t,A1∶t,B1∶t)
13: Z1∶t ← StateSpacePropagation(Z0,U1∶t, Ā1∶t, B̄1∶t) ▷ Z1∶t ∈ Rt×k×d, c.f. equation 17-19
14: Ẑ1∶t ← C1∶t ⊙Z1∶t ▷ Ẑ1∶t ∈ Rt×k×d for selective output, e.g. Dec(Ẑ1∶t)
15:
16: Return: Ẑ1∶t, Z1∶t ▷ Ẑ1∶t: the output; Z1∶t: the state representation

Since Ā, B̄,U are L.P.E. and R.P.I.,

σZ FACTS(Zk, Z0,Xk)
=σZĀ(Z0,Xk) ⊙ σZZk−1 + σZB̄(Z0,Xk) ⊙ σZU(Z0,Xk)
=Ā(σZZ0, σ

k
XXk) ⊙ σZZk−1 + B̄(σZZ0, σ

k
XXk) ⊙U(σZZ0, σ

k
XXk)

=FACTS(σZZk, σZZ0, σ
t
XXk).

Theorem (Restatement of Theorem 2). if Ā, B̄,U are L.P.E. and R.P.I. functions of Zt−1 and Xt,
any dynamics governed by equation 10 is L.P.E. and R.P.I.

Proof. Let Zt−1 ∈ Rk×d,Xt ∈ Rm×d, σZ ∈ Sk, and σX ∈ Sm be matrices. Assume Ā, B̄,U are
L.P.E. and R.P.I. functions of Zt−1 and Xt. By expanding equation 10,

Āt(σZZt−1, σXXt) ⊙ σZZt−1 + B̄t(σZZt−1, σXXt) ⊙Ut(σZZt−1, σXXt) (21)

=σZĀt(Zt−1,Xt) ⊙ σZZt−1 + σZB̄t(Zt−1,Xt) ⊙ σZUt(Zt−1,Xt) (22)

=σZ(Āt(Zt−1,Xt) ⊙Zt−1 + B̄t(Zt−1,Xt) ⊙Zt−1 ⊙Ut(Zt−1,Xt)) (23)
=σZZt (24)

C IMPLEMENTATION DETAILS

C.1 FACTS ARCHITECTURE

We provide an implementation of FACTS-based encoder in Algorithm 1, which is used in all our
experiments.

C.2 LONG-TERM FORECASTING

Datasets We use a collection of 9 widely-adopted public datasets, specifically designed for multi-
variate time series forecasting (MTSF) tasks, as presented in Table 4. These datasets span various
domains, including traffic monitoring, electricity consumption, weather forecasting, and solar en-
ergy production, offering a diverse range of variates and time granularities. Notable datasets include
the traffic data, electricity and solar energy for energy-related forecasting, and the ETT datasets
for electric power and transformer temperature forecasting. The temporal resolutions of the datasets
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Table 4: The datasets for MTSF evaluation.

Datasets Variates Timesteps Granularity
ETTm1 & ETTm2 7 17,420 15min
ETTh1 & ETTh2 7 69,680 1hour
Electricity 321 26,304 1hour
Traffic 862 17,544 1hour
Exchange 8 7,588 1day
Weather 21 52,696 10min
Solar-Energy 137 52,560 10min

range from minutes to days, making them ideal for evaluating the performance of forecasting models
over both short-term and long-term horizons.

Baselines

• S-Mamba (Wang et al., 2024c): This baseline adapts Mamba models for MTS data by utilising
a bidirectional scan on variates, achieving superior results compared to the previous leading
method, iTransformer.

• iTransformer (Liu et al., 2024): An inverted transformer architecture that captures univari-
ate history and cross-variate dependencies within a look-back window, though limited by the
quadratic scaling of transformers. iTransformer has been leading the long-term forecasting task

• TimesNet (Wu et al., 2023a): Specialises in modelling multi-periodicity and interactions among
periodic signals in MTS data.

• CrossFormer (Zhang & Yan, 2023): The emphasis is on modelling cross-dimension (spatial)
interactions within MTS data.

• PatchTST (Nie et al., 2023): Uses patching techniques to segment sub-time sequences and
model channel-wise transitions, improving temporal modelling.

FACTS for MTSF Due to the noisy nature of raw input data, a single time step (represented as a
multivariate vector) often carries limited meaningful information. A common approach to handle
this is to introduce feature encoders to pre-process the data, e.g. encoding, adding temporal and po-
sitional embeddings-as used in the baselines. We employ a set encoder to map the input multivariate
sequences of size t×m into t×m×d, augmenting the tensor with an additional dimension that allows
each time step to be represented as a set of m features, each of d-dimensional size. This resulting
tensor, t ×m × d, serves as the direct input to the FACTS model. For prediction, we adhere to the
standard practice in the TimeLib benchmark, which treats time-series models as encoders designed
for single-step predictions, rather than auto-regressive forecasting. We show the MTSF process of
FACTS in Algorithm 2. Note that our decoder, namely “factor-graph decoder”, is crucially designed

Algorithm 2 FACTS for Multivariate Time Series Forecasting

1: Input: x1∶t ∈ Rt×m
2: Output: xt+1∶t+f ∈ Rf×m
3:
4: X1∶t ← SetEncoder(x1∶t) ▷ X1∶t ∈ Rt×m×d, pre-processing for FACTS
5: Z1∶t ← FACTS(X1∶t) ▷ Z1∶t ∈ Rt×k×d, see Algorithm 1 for FACTS()
6: Zt+1∶t+f ← Predictor(Z1∶t) ▷ Zt+1∶t+f ∈ Rf×k×d, where f is the prediction length
7: xt+1∶t+f ← FactorGraphDecoder(Zt+1∶t+f) ▷ xt+1∶t+f ∈ Rf×m
8: xt+1∶t+f ← PostProcessing(xt+1∶t+f)
9:

10: Return: xt+1∶t+f

to be invariant to the permutation of factors and processes the latent factors in parallel. Each factor
independently makes predictions without relying on others. Specifically, the decoder aggregates the
individual predictions of each factor by applying a softmax-weighted sum, ensuring that the final
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prediction effectively combines the contributions of all factors while maintaining permutation in-
variance. We details the aforementioned modules, i.e. the three embedders and the factor-graph
decoder in the following list:

• Discrete-Fourier Transform (DFT) decomposer: this embedder applies the Fast Fourier
Transform to each variate and decompose it into multiple spectral components. The top-k
low-frequency signals are treated as the “trend component”, while the high frequency signals
represent the “seasonal component”. By concatenating the “trend” and “seasonal” components,
we embed each univariate signal at each time point into a 2D (or k + 1 dimensional, if the top-k
frequencies are not combined) vector representation, resulting in a set output that is compatible
with FACTS.

• Conv2d embedder: this embedder applies a convolution along the temporal axis of the input
data to aggregate information from nearby time points (i.e., “local context”, with the look-
back window controlling the kernel size. We implement this using PyTorch’s standard Conv2d
module, setting the kernel size to [lookback,1] and padding with zeros at the initial time steps.
Although such embedders learn the input-feature mapping directly from data, making them
flexible in capturing different relationships in different datasets, the choice of look-back window
size is often intuitive.

• Multi-scale Conv2d (MS-Conv2d) Embedder: this embedder retains the learning flexibility
of a Conv2d embedder while extending the single look-back window to multiple scales. By
combining different scales, it captures features at varying granularities, making it the most ro-
bust among the three embedders and consistently delivering strong results (as shown in Table 5).

• Factor Graph Decoder (FGD): this decoder takes in the a set of predicted latents Zf =
{zif}i=1∶k (c.f. Algorithm 2 for its definition) and first project each zif ∈ Rd (can run paral-
lel) to α̃if ∈ Rm (the logits) and x̃if ∈ Rm (the prediction of the i-th factor). Then the k logits,
which correspond to the k factor predictions, will be processed to k categorical probabilities
by a soft-max function: αif = softmax(α̃if ,{α̃

j
f}j≠i). The output prediction is the weighted

sum of the factor predictions w.r.t. their corresponding probabilities as: xf = ∑ki αif ⊙ x̃if ,
similar to the processes of spatial mixing and alpha blending in the vision and graphics com-
munities (Porter & Duff, 1984; Williams & Titsias, 2004; Greff et al., 2017). In vision tasks, the
Spatial Broadcast Decoder (SBD, Watters et al. (2019)), which shares similar properties with
FGD but is more computationally expensive, is a more commonly used option.

C.3 OBJECT-CENTRIC WORLD MODELLING

Benchmark We conducted both the slot dynamics prediction on the CLEVRER (Yi et al., 2020) and
OBJ3D (Lin et al., 2020) datasets, and the unsupervised object discovery experiments on both the
CLEVRER (Yi et al., 2020) and MOVi-A (Greff et al., 2022) datasets. These datasets all consist of
synthetic vision data and are used as standard benchmark for OCRL research.

Slot-dynamics prediction For the slot dynamics prediction task, we follow the setup in (Wu et al.,
2023b), filtering out video clips with new objects entering the scene during the rollout period to
ensure a consistent evaluation setting. The input to FACTS is the latent object representations ex-
tracted using a pre-trained object-slot encoder (SAVi, Kipf et al. (2023)) from video frames. That is,
we consider the output of the pre-trained SAVi our data in such task – same as (Wu et al., 2023b).
We extract the input latent object representations using a pre-trained object-slot encoder (SAVi Kipf
et al. (2023)) from video frames, and train an auto-regressive roll-outer with a single FACTS layer
to predict the latent representations for the next 10 frames, based on the latent codes from 6 ob-
served frames. During testing, to ensure a fair comparison with SlotFormer, we burn-in the first 6
frames and roll out (predict) 48 frames. The predicted object representations are visualised using
a pre-trained, frozen SAVi decoder (a spatial broadcast decoder, Wu et al. (2023b)) to render video
frames.

Unsupervised object discovery For unsupervised object discovery, we follow the fully-
unconditional setting of SAVi, using unbiased slot initialisation and relying solely on RGB video
frames as input, with no additional information. The primary modification is replacing SAVi’s recur-
rent slot attention modules with FACTS. Importantly, all of the used modules (CNN vision encoders,
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Pred.Len MS-Conv2d Emb. Conv2d Emb. DFT Emb. Avg±Std.Err.

96 0.143 0.144 0.147 0.145±0.002
192 0.158 0.159 0.161 0.159±0.001
336 0.171 0.170 0.171 0.171±0.000
720 0.198 0.228 0.236 0.219±0.015

Table 5: Ablation: MSTF Performance of FACTS vs. different embedders (MSE↓).
k \d 1 128 512 Avg.±Std.Err.

1 0.349 0.330 0.328 0.336±0.007
3 0.349 0.337 0.326 0.337±0.007
5 0.349 0.331 0.349 0.343±0.006
7 0.349 0.331 0.330 0.337±0.006
9 0.349 0.332 0.352 0.344±0.006

Avg.±Std.Err. 0.349±0.000 0.332±0.001 0.336±0.006 —–

Table 6: Ablation: MSTF Performance of FACTS vs. (#factors k, #dimensions d) (MSE↓).

FACTS, and decoders) end-to-end in a single run without any supervision. We evaluated object dis-
covery under two settings, i.e. video reconstruction and future-frame prediction. For both setting,
the input number of frames are set to 6, while for prediction FACTS is asked to predict, in addition
to the observed 6 frames, future 10 frames. The prediction setting is conducted with a loss function
and a predictive residual design to emphasize future frame prediction accuracy. The predictive resid-
ual design allows FACTS to avoid handling pixel-level noise, enabling it to focus on learning object
dynamics more effectively. We define such a design as a mapping between input t-frame video to
the pixel-wise noise of f future video frames, denoted as ResPredictor ∶ t×c×h×w → f ×1×h×w.
As mentioned, in the future prediction experiments, we found this quite effective in capturing static
objects. This sets free the slots free for capturing moving objects and modelling their dynamics. In
object reconstruction experiments, object reconstruction experiments, this predictor is turned off to
ensure a fair comparison.

C.4 DYNAMIC GRAPH NODE PREDICTION

Benchmark We conducted experiments on the METR-LA traffic dataset, which is a benchmark data
set for traffic prediction, capturing 207 County highway traffic sensor speed observations in Los
Angeles metropolitan area. It contains traffic data collected from sensors placed on road segments,
represented as a dynamic graph with nodes corresponding to sensors and edges capturing traffic
correlations.

Setup We follow the experimental setup of STGM and incorporate FACTS with a masking mech-
anism. Specifically, masking is applied to the routing processes described in equation 12, which
underpins the construction of selective state-space model (SSM) parameters, Ā and B̄. FACTS
captures this mask information and integrates it into state-space dynamics modelling, ensuring that
only relevant historical data informs the predictions.

D ABLATION STUDY

FACTS requires the use of a set encoder and the predefined selection of the number of factors in the
state-space memory prior to training. Our ablation study aims to investigate the impact of different
set encoders and the choice of the number of predefined factors on model performance.

Impact of different set encoders We conduct our experiments on the Electricity dataset, testing
four prediction lengths: 96, 192, 336, and 720. Three different set encoders are evaluated, each
employing different priors: a Discrete-Fourier Transform (DFT) decomposer, a trainable Conv2d
embedder, and a multi-scale Conv2d embedder (inspired by Wu et al. (2023a)). Table 5 presents the
comparison results, with further details of these embedders provided in Appendix C.2. The multi-
scale periodic embedder consistently outperforms the others across all prediction lengths, while the
DFT-based embedder shows declining performance as the prediction length increases. The standard
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error further indicates that longer forecasting horizons amplify the impact of encoder choice, making
it a more critical factor in model accuracy. This highlights the importance of using an unbiased,
learnable set encoder to improve generalisation.

Impact of different number of factors Previous work, such as Mamba (Gu & Dao, 2023) and
xLSTM (Beck et al., 2024), shows that state-space memory size significantly impacts performance.
In FACTS, memory size is determined by the number of factors and the dimension of each factor
(d). To provide a comprehensive analysis, we examine the impact of the preset number of factors
(k) on FACTS’ performance using the MOVi-A videos and the ETTm1 dataset. Specifically, we
show the impact of k during testing time in the MOVi-A video reconstruction experiments and the
robustness of FACTS in training time in ETTm1 MTS forecasting experiments (with a 96-prediction
length setting).

For the MOVi-A experiments, we took a FACTS model that is trained under the “object dicscovery
for video reconstruction” setting and evaluated its video reconstruction performance (measured by
the image visual quality measure, LPIPS) against different preset k at testing time on the MOVi-
A data. Our results in Figure 4 show that the video reconstruction quality can be improved by
increasing k up to certain level (> 11). Knowing that the maximum number of objects in these
videos (the true causal factors) is 11 (10 objects plus 1 background), suggesting a “sweet point”
that is both effective and computationally efficient. However, in practice, identifying such a point in
advance can be challenging, Figure 4 indicates that a larger k is preferred.

As the choice of k could largely affect FACTS’s performance, we want to investigate how robust
FACTS is against different choices of k. We examined this on the MTS forecasting task using the
ETTm1 data, which consists of 7 variates. To isolate the effect of the number of factors, we train
the model across various settings, gridded by different numbers of factors and factor dimensions.
As shown in Table 6, FACTS achieves consistent performance across different number of factors
(during training) and also the factor dimensions, demonstrating FACTS’ robustness to these hyper-
parameters.

Figure 4: Video reconstruction quality vs
number of slots. With video reconstruction
quality measure by LPIPS↓.

FACTS (Ours) SAVi
FG-ARI↑ 0.66 0.64

Table 7: Quantitative comparison of unsupervised
object discovery performance. The results high-
light FACTS’ superior performance over SAVi,
achieving a higher FG-ARI score (0.66 vs. 0.64).

E ADDITIONAL RESULTS
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GT

t = 8
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t = 10

t = 12

t = 14
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t = 18

Pred Object-0 Object-1 Object-2

Figure 5: Qualitative results of slot dynamics prediction on CLEVRER. The first two columns show
the ground truth (GT) and model predictions (Pred) for future frames. The subsequent columns
represent independently rendered dynamics of individual objects (Object-0, Object-1, and Object-
2) identified by the model. We show 3 object-centric dynamics in the remaining columns: two
columns for each object: the left displays the predicted object dynamics, and the right shows the
corresponding object masks.
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GT
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t = 14

t = 18

t = 22

t = 26

t = 30

Pred Object-0 Object-1 Object-2

Figure 6: Qualitative results of slot dynamics prediction on OBJ3D. The first two columns show
the ground truth (GT) and model predictions (Pred) for future frames. The subsequent columns
represent independently rendered dynamics of individual objects (Object-0, Object-1, and Object-
2) identified by the model. We show 3 object-centric dynamics in the remaining columns: two
columns for each object: the left displays the predicted object dynamics, and the right shows the
corresponding object masks.
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Figure 7: Qualitative results of slot dynamics prediction on OBJ3D. The top row shows the ground
truth (GT) video frames, with burn-in frames used for initialization. The middle row presents the
predicted future frames (Pred Video) generated by the model. The bottom row illustrates the object
segmentation masks predicted by the model.
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GT
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Figure 8: Qualitative results of unsupervised object discovery. The first column shows selected
ground truth future frames, while the second column presents our predicted future object-cetric states
rendered as frames. We show 3 object-centric dynamics in the remaining columns: two columns for
each object: the left displays the predicted object dynamics, and the right shows the corresponding
attention masks. FACTS effectively discover and captures interpretable “factors”, i.e. objects, for
modelling video dynamics.
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Data FACTS (Ours) S-Mamba iTransformer TimesNet PatchTST DLinear Crossformer FEDformer Autoformer
Pred.Len. MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.326 0.363 0.333 0.368 0.334 0.368 0.338 0.375 0.329 0.367 0.345 0.372 0.404 0.426 0.379 0.419 0.505 0.475
192 0.366 0.386 0.376 0.390 0.377 0.391 0.374 0.387 0.367 0.385 0.380 0.389 0.450 0.451 0.426 0.441 0.553 0.496
336 0.412 0.407 0.408 0.413 0.426 0.420 0.410 0.411 0.399 0.410 0.413 0.413 0.532 0.515 0.445 0.459 0.621 0.537
720 0.468 0.441 0.475 0.448 0.491 0.459 0.478 0.450 0.454 0.439 0.474 0.453 0.666 0.589 0.543 0.490 0.671 0.561
Avg. 0.393 0.399 0.398 0.405 0.407 0.410 0.400 0.406 0.387 0.400 0.403 0.407 0.513 0.496 0.448 0.452 0.588 0.617

ETTm2

96 0.175 0.258 0.179 0.263 0.180 0.264 0.187 0.267 0.175 0.259 0.193 0.292 0.287 0.366 0.203 0.287 0.255 0.339
192 0.241 0.300 0.250 0.309 0.250 0.309 0.249 0.309 0.241 0.302 0.284 0.362 0.414 0.492 0.269 0.328 0.281 0.340
336 0.304 0.341 0.312 0.349 0.311 0.348 0.321 0.351 0.305 0.343 0.369 0.427 0.597 0.542 0.325 0.366 0.339 0.372
720 0.406 0.400 0.411 0.406 0.412 0.407 0.408 0.403 0.402 0.400 0.554 0.522 1.730 1.042 0.421 0.415 0.433 0.432
Avg. 0.281 0.325 0.288 0.332 0.288 0.332 0.291 0.333 0.281 0.326 0.350 0.401 0.757 0.610 0.305 0.349 0.327 0.371

ETTh1

96 0.382 0.390 0.386 0.405 0.386 0.405 0.384 0.402 0.414 0.419 0.386 0.400 0.423 0.448 0.376 0.419 0.449 0.459
192 0.433 0.419 0.443 0.437 0.441 0.436 0.436 0.429 0.460 0.445 0.437 0.432 0.471 0.474 0.420 0.448 0.500 0.482
336 0.474 0.440 0.489 0.468 0.487 0.458 0.491 0.469 0.501 0.466 0.481 0.459 0.570 0.546 0.459 0.465 0.521 0.496
720 0.473 0.462 0.502 0.489 0.503 0.491 0.521 0.500 0.500 0.488 0.519 0.516 0.653 0.621 0.506 0.507 0.514 0.512
Avg. 0.441 0.428 0.455 0.450 0.454 0.447 0.458 0.450 0.469 0.454 0.456 0.452 0.529 0.522 0.440 0.460 0.496 0.487

ETTh2

96 0.288 0.337 0.296 0.348 0.297 0.349 0.340 0.374 0.302 0.348 0.333 0.387 0.745 0.584 0.358 0.397 0.346 0.388
192 0.374 0.392 0.376 0.396 0.380 0.400 0.402 0.414 0.388 0.400 0.477 0.476 0.877 0.656 0.429 0.439 0.456 0.452
336 0.420 0.429 0.424 0.431 0.428 0.432 0.452 0.452 0.426 0.433 0.594 0.541 1.043 0.731 0.496 0.487 0.482 0.486
720 0.422 0.439 0.426 0.444 0.427 0.445 0.462 0.468 0.431 0.446 0.831 0.657 1.104 0.763 0.463 0.474 0.515 0.511
Avg. 0.376 0.399 0.381 0.405 0.383 0.407 0.414 0.427 0.387 0.407 0.559 0.515 0.942 0.684 0.437 0.449 0.450 0.459

Electricity

96 0.143 0.240 0.139 0.235 0.148 0.240 0.168 0.272 0.181 0.270 0.197 0.282 0.219 0.314 0.193 0.308 0.201 0.317
192 0.158 0.255 0.159 0.255 0.162 0.253 0.184 0.289 0.188 0.274 0.196 0.285 0.231 0.322 0.201 0.315 0.222 0.334
336 0.171 0.268 0.176 0.272 0.178 0.269 0.198 0.300 0.204 0.293 0.209 0.301 0.246 0.337 0.214 0.329 0.231 0.338
720 0.198 0.293 0.204 0.298 0.225 0.317 0.220 0.320 0.246 0.324 0.245 0.333 0.280 0.363 0.246 0.355 0.254 0.361
Avg. 0.168 0.264 0.170 0.265 0.178 0.270 0.192 0.295 0.205 0.290 0.212 0.300 0.244 0.334 0.214 0.327 0.227 0.338

Exchange

96 0.081 0.197 0.086 0.207 0.086 0.206 0.107 0.234 0.088 0.205 0.088 0.218 0.256 0.367 0.148 0.278 0.197 0.323
192 0.172 0.295 0.182 0.304 0.177 0.299 0.226 0.344 0.176 0.299 0.176 0.315 0.470 0.509 0.271 0.315 0.300 0.369
336 0.322 0.407 0.332 0.418 0.331 0.417 0.367 0.448 0.301 0.397 0.313 0.427 1.268 0.883 0.460 0.427 0.509 0.524
720 0.846 0.692 0.867 0.703 0.847 0.691 0.964 0.746 0.901 0.714 0.839 0.695 1.767 1.068 1.195 0.695 1.447 0.941
Avg. 0.355 0.398 0.367 0.408 0.360 0.403 0.416 0.443 0.367 0.404 0.354 0.414 0.940 0.707 0.519 0.429 0.613 0.539

Traffic

96 0.444 0.285 0.382 0.261 0.395 0.268 0.593 0.321 0.462 0.295 0.650 0.396 0.522 0.290 0.587 0.366 0.613 0.388
192 0.455 0.289 0.396 0.267 0.417 0.276 0.617 0.336 0.466 0.296 0.598 0.370 0.530 0.293 0.604 0.373 0.616 0.382
336 0.471 0.299 0.417 0.276 0.433 0.283 0.629 0.336 0.482 0.304 0.605 0.373 0.558 0.305 0.621 0.383 0.622 0.337
720 0.511 0.320 0.460 0.300 0.467 0.302 0.640 0.350 0.514 0.322 0.645 0.394 0.589 0.328 0.626 0.382 0.660 0.408
Avg. 0.470 0.298 0.414 0.276 0.428 0.282 0.620 0.336 0.481 0.304 0.625 0.383 0.550 0.304 0.610 0.376 0.628 0.379

Weather

96 0.164 0.211 0.165 0.210 0.174 0.214 0.172 0.220 0.177 0.218 0.196 0.255 0.158 0.230 0.217 0.296 0.266 0.336
192 0.213 0.254 0.214 0.252 0.221 0.254 0.219 0.261 0.225 0.259 0.237 0.296 0.206 0.277 0.276 0.336 0.307 0.367
336 0.271 0.295 0.274 0.297 0.278 0.296 0.280 0.306 0.278 0.297 0.283 0.335 0.272 0.335 0.339 0.380 0.359 0.395
720 0.352 0.347 0.350 0.345 0.358 0.347 0.365 0.359 0.354 0.348 0.345 0.381 0.398 0.418 0.403 0.428 0.419 0.428
Avg. 0.250 0.277 0.251 0.276 0.258 0.278 0.259 0.287 0.259 0.281 0.265 0.317 0.259 0.315 0.309 0.360 0.338 0.382

Solar-Energy

96 0.203 0.238 0.205 0.244 0.203 0.237 0.250 0.292 0.234 0.286 0.290 0.378 0.310 0.331 0.242 0.342 0.884 0.711
192 0.253 0.271 0.237 0.270 0.233 0.261 0.296 0.318 0.267 0.310 0.320 0.398 0.734 0.725 0.285 0.380 0.834 0.692
336 0.276 0.291 0.258 0.288 0.248 0.273 0.319 0.330 0.290 0.315 0.353 0.415 0.750 0.735 0.282 0.376 0.941 0.723
720 0.292 0.297 0.260 0.288 0.249 0.275 0.338 0.337 0.289 0.317 0.356 0.413 0.769 0.765 0.357 0.427 0.882 0.717
Avg. 0.256 0.274 0.240 0.273 0.233 0.262 0.301 0.319 0.270 0.307 0.330 0.401 0.641 0.639 0.291 0.381 0.885 0.711

Table 8: Full results for the MTS long-term forecasting task (in MSE↓ and MAE↓). We compare
extensive competitive models under different prediction lengths. The input sequence length is set to
36 for the ILI dataset and 96 for the others. Avg is averaged from all four prediction lengths. For
each metric and each dataset, the top performance and the second best are highlighted in red and
blue, respectively.
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