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ABSTRACT

Large language models exhibit strong capabilities on reasoning tasks, yet often
produce flawed intermediate steps while still yielding correct final answers. This
behavior undermines interpretability and reliability, suggesting reliance on spu-
rious shortcuts rather than faithful reasoning. Although earlier efforts have ex-
plored step-level supervision, distinguishing decisive steps from redundant ones
remains challenging. We propose O2-CritiCuRL, a novel curriculum reinforce-
ment learning framework that introduces critical-step awareness through an iter-
ative offline–online paradigm. In the offline stage, O2-CritiCuRL decomposes
chain-of-thought trajectories, automatically identifies decisive steps while down-
weighting redundant ones, and then restructures the trajectories into difficulty-
based tiers for curriculum learning. In the online stage, we employ a progressive
step-level reinforcement learning strategy, where truncated chains guide the model
to infer missing steps and refine its reasoning. Coupled with the offline stage, this
iterative process gradually sharpens the model’s focus on critical steps and mit-
igates the limitations of static supervision. Extensive experiments on multiple
reasoning benchmarks show that our method not only achieves state-of-the-art
performance but also delivers superior training and inference efficiency.

1 INTRODUCTION

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in
multi-step reasoning across domains such as mathematics, code generation, and scientific discov-
ery (Wang et al., 2023; Guo et al., 2024; Comanici et al., 2025). A common strategy to enhance
such abilities is curriculum learning, which, inspired by human education, gradually exposes mod-
els to increasingly complex examples (Bengio et al., 2009). By regulating task difficulty, curriculum
learning helps stabilize optimization and improves generalization, making it an effective paradigm
for complex reasoning tasks (Zeng et al., 2024; El-Kishky et al., 2025). Reinforcement learning
(RL) plays a central role in these advances by optimizing models with process- or outcome-based
rewards (Hendrycks et al., 2021; Stiennon et al., 2022; Wang et al., 2024b). Among RL methods,
Group Relative Policy Optimization (GRPO) has gained prominence for its efficiency and scalabil-
ity, which encourages “slow thinking” by guiding models to generate and refine multiple reasoning
paths(Shakya et al., 2023; Comanici et al., 2025; Guo et al., 2025). As a result, the integration
of curriculum learning and reinforcement learning has therefore proven effective in strengthening
LLMs’ performance on reasoning-intensive tasks(Yuan et al., 2025a; Shao et al., 2024).

Nevertheless, models are often observed to generate flawed intermediate reasoning steps yet still
reach the correct final answer (Ling et al., 2023; Lightman et al., 2023b). While this may preserve
accuracy, it raises concerns about interpretability and reliability, as the reasoning process may hinge
on spurious correlations rather than robust logic (Poursabzi-Sangdeh et al., 2021). Such behavior
undermines trust in high-stakes applications that demand transparent step-by-step reasoning, includ-
ing education, scientific research, and legal or medical decision support (Arrieta et al., 2020; Benda
et al., 2022). This phenomenon can be regarded as a form of resembles reward hacking, where a
model attains high scores by exploiting shortcuts instead of engaging in faithful reasoning. (Amodei
et al., 2016; Stiglic et al., 2020). Unlike traditional reward hacking, which arises from flawed re-
ward design, this issue stems from answer-only supervision that rewards correct outcomes while
neglecting the reasoning process (Skalse et al., 2022; Lightman et al., 2023a).
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MiniCPM-o-2.6 O2 -CritiCuRL

In the figure, circle O is depicted。If the minor arc 
opposite chord AB measures 120.0 degrees and the 
radius of the circle is 2.0, what is the distance 
from the center O to chord AB, denoted as OC?

Think Accurately & Concisely

Critical Step Wise

Interpretable & Trusted ��Q S2 S3S1 A

Think
Better

Model OutputModel Input

Reasoning StepsSi

Online 
Update

Offline
Rollout

Critical Steps

Lucky
Guess

To find the distance ..., we 
need to use properties of ...
Understand the given: Radius of 
c i rc l e  =  2 .  The m inor  arc 
opposite  AB measures 120°.
 Central Angle Calculation. 
Since . . . Therefore, if the 
central angle subtended by the 
same minor arc is also 120°, 
t h e n  i t ' s  c o r r e s p o n d i n g 
inscribed angle would be 12/2 
= 60°. Triangle Properties. 
Triangle AOC will be a right 
triangle with... In △AOC, ∠OA 
=  6 0 ° ,  U s i n g  s i n ( ∠ A  = 
o p p o s i t e / h y p o t e n u s e ,  s o 
sin(60°) = OC/2.  We know 
that sin(60°) = √3/2. Thus, 
OC/2 = √3/2 => OC = (√3
/2) * 2 = √3.

Therefore, the distance from 
the center O to chord AB is 1.

# Step 1: The central angle 
∠AOB subtend ing arc AB is 
120°. OA = OB = 2.0.
# Step 2: Draw OC⊥AB, △AOC 
is a right triangle. By the Law of 
C o s i n e s ,  A B 2  = O A 2 + O B 2 -
2OA·OB·cosAOB= 12.  Therefore, 
AB = 2√3.
# Step 3: C is midpoint of AB. So 
AC = AB/2 = √3.
# Step 4: In right triangle△OAC, 
OC = √OA2 - AC2 = √4 - 3=1. 

# The final answer is:
OC is 1. 

Figure 1: Overview of O2-CritiCuRL. Given a mathematical problem (left), MiniCPM-o-2.6 gen-
erates a verbose and potentially redundant chain-of-thought (CoT) trajectory, which may include
incorrect or non-critical steps (e.g.,“Lucky Guess”). In contrast, O2-CritiCuRL identifies critical
reasoning steps—those whose removal significantly degrades performance—via offline decompo-
sition and self-designed reward analysis. These critical steps are highlighted (green checkmarks),
while redundant or erroneous ones are down-weighted or pruned. The refined trajectories are or-
ganized into difficulty tiers for curriculum learning. During the online stage, the model undergoes
progressive reinforcement learning: reasoning chains are gradually truncated, prompting the model
to infer missing critical steps and the final answer. This iterative loop between offline critical-step
identification and online update enables the model to learn accurate, concise, and trustworthy rea-
soning paths (“Think Better”), ultimately improving both accuracy and interpretability.

A natural solution is to incorporate step-level supervision into training framework. Aligning model
behavior with human-annotated reasoning chains is able to guarantee the integrity of intermediate
reasoning steps in principle (Cheng et al., 2024; Luo et al., 2024). However, available datasets often
contain long, complex, and redundant trajectories, making direct training computationally expensive
and cognitively diffuse (Qu et al., 2025; Lu et al., 2025). As every step is treated indiscriminately,
the model struggles to identify and prioritize the decisive parts of reasoning. Reinforcement learn-
ing with process-level rewards offers an alternative by encouraging models to refine reasoning paths
dynamically rather than imitating fixed trajectories, but it incurs high computational cost due to re-
liance on additional reward models and remains vulnerable to reward hacking (Wang et al., 2024c;
Chen et al., 2025).These limitations highlight the need for training paradigms that adaptively em-
phasize decisive-step awareness while maintaining efficiency and robustness.

To address these challenges, we propose O2-CritiCuRL, a novel offline–online curriculum rein-
forcement learning framework. Rather than treating all reasoning steps equally, O2-CritiCuRL au-
tomatically identifies the steps most decisive for deriving correct answers. In the offline stage, long
chain-of-thought trajectories are decomposed, and a self-designed reward is used to detect critical
steps: those whose removal significantly degrades performance are marked as critical, while redun-
dant steps are down-weighted or reorganized. The resulting trajectories are then restructured into
difficulty tiers to ensure curriculum learning focuses on decisive reasoning patterns.

In the online stage, we introduce a progressive step-level reinforcement learning strategy guided
by step-level rewards. By gradually truncating reasoning chains, the model is encouraged to infer
missing critical steps and final answers, enabling step-wise acquisition of robust reasoning ability.
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Static supervision and fixed curriculum learning fail to capture the evolving nature of critical rea-
soning steps. Early-stage models often misidentify these steps, and the truly decisive ones emerge
only as the model improves, while noisy reward signals further exacerbate the challenge. To address
these challenges, O2-CritiCuRL adopts an iterative training mechanism that alternates between of-
fline critical-step identification and online reinforcement learning, continuously refining the model’s
focus as training progresses. This iterative loop yields improved accuracy, enhanced interpretability,
and more stable optimization. Our framework alternates between offline identification of critical
steps and online reinforcement learning, with the updated model fed back into the offline stage for
refined step re-identification. Through this iterative loop, the model gradually sharpens its focus on
critical steps, yielding improved accuracy, enhanced interpretability, and greater training stability.
In summary, our contributions are threefold:

• We introduce O2-CritiCuRL, the first curriculum reinforcement learning framework that
explicitly models critical-step awareness, automatically detecting decisive reasoning steps
and restructuring trajectories for efficient and principled reasoning supervision.

• We develop a novel iterative offline–online training mechanism, where critical-step discov-
ery and reinforcement learning co-evolve, enabling progressive refinement of reasoning
with improved accuracy, interpretability, and stability..

• O2-CritiCuRL substantially improves reasoning performance, while also offering greater
training efficiency compared to prevailing step-level reinforcement learning approaches.

2 RELATED WORK

2.1 CURRICULUM LEARNING AND REINFORCEMENT LEARNING FOR REASONING

Curriculum learning is a training paradigm that organizes tasks in increasing order of difficulty to
promote smoother and more effective model learning (Bengio et al., 2009). In the domain of LLMs
and VLMs, it has been widely adopted to stabilize optimization and enhance reasoning generaliza-
tion. From the perspective of reward design, existing works can be categorized as result-based or
process-based rewards. Result-based methods evaluate the final answer correctness or similarity as
the primary criterion, such as Light-R1 (Wen et al., 2025), Curr-ReFT (Deng et al., 2025), VLM-
R1 (Shen et al., 2025), Vision-G1 (Zha et al., 2025), Infi-MMR (Liu et al., 2025a), ASTRO (Kim
et al., 2025), and JT-Math (Hao et al., 2025). In contrast, process-based reward approaches explicitly
assess intermediate steps, as in R-PRM (She et al., 2025), VisualPRM (Wang et al., 2025a), Step-
GRPO (Zhang et al., 2025a), DocThinker (Yu et al., 2025), and ALPHALLM-CPL (Wang et al.,
2024c). These methods provide finer-grained supervision signals but still face challenges such as
high reward modeling costs, limited scalability to multimodal settings, and insufficient ability to dif-
ferentiate truly critical steps. From the perspective of training phase design, works like Curr-ReFT
(Deng et al., 2025) and PCuRL (Yuan et al., 2025a) introduce explicit progressive stages, while Infi-
MMR (Liu et al., 2025a), E2D (Parashar et al., 2025), and GHPO (Liu et al., 2025b) employ dynamic
scheduling functions or adapt between imitation and reinforcement learning. Although effective in
structuring learning, these approaches generally rely on static difficulty annotations or handcrafted
schedules, and rarely account for the evolving importance of intermediate reasoning steps. Our
work builds on these insights by introducing a curriculum reinforcement learning framework that
explicitly integrates step-level supervision with critical-step awareness.

2.2 SUPERVISION STRATEGIES FOR REASONING PROCESSES

Traditional answer-only supervision enables models to bypass reasoning trajectories as long as the
final answer is correct, which undermines interpretability and reliability (Lightman et al., 2023a). To
mitigate this, recent efforts incorporate intermediate reasoning rewards, such as R-PRM (She et al.,
2025), VisualPRM (Wang et al., 2025a), and StepGRPO (Zhang et al., 2025a), which evaluate the
quality of intermediate steps. Although these methods provide more transparent supervision, they
tend to treat all steps equally, ignoring the fact that many reasoning trajectories contain redundant
or low-impact steps (Qu et al., 2025; Arora et al., 2025). Several approaches attempt to address this
issue through data selection or trajectory restructuring. For example, DUMP (Wang et al., 2025c),
Writing-RL (Lei et al., 2025), and Vision-G1 (Zha et al., 2025) prioritize high-value samples via
bandit mechanisms or influence functions, while EduFlow (Zhu et al., 2025a) and VersaPRM (Zeng

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

et al., 2025) leverage large-scale preference annotations. However, these strategies remain limited
in their ability to dynamically pinpoint which reasoning steps are critical for problem-solving. Our
work differs in explicitly modeling critical-step awareness. We propose an offline–online framework
that automatically detects decisive steps, restructures reasoning trajectories accordingly, and itera-
tively refines supervision as the model evolves. By progressively focusing on the most impactful
reasoning components, our method improves accuracy, interpretability, and training efficiency.

3 THEORETICAL PROOFS

Assumption: We define a critical step as the reasoning step that contributes the most to deriving the
correct answer. To formalize this notion, we assume that each problem admits a set of possible an-
swers that are uniformly distributed within an answer space. A reasoning process can then be viewed
as a sequence of partitions of this space, where each step progressively reduces the set of candidate
answers. Within this framework, a critical step corresponds to the partition that achieves the greatest
reduction in the answer space, thereby maximizing the probability of selecting the correct answer.

Definition: To establish a theoretical foundation for quantifying critical steps, we begin by defining
the probabilistic state space of the reasoning process. Let Ω be the set of all possible answers.
The model’s reasoning state is represented by a probability distribution over Ω. P0 = Uniform(Ω)
denotes the initial distribution without any steps, while Pi denotes the conditional distribution given
steps S1:i. To measure the uncertainty of the answer space, we introduce the Shannon Entropy, and
the contribution of the i-th step can then be quantified as the entropy reduction in ∆p:

Pi = P (· | S1:i), H(P ) = −
∑
a∈Ω

P (a) logP (a), ∆Hi = H(Pi−1)−H(Pi) (1)

Within our formulation, the reduction in uncertainty of the conditional distribution directly man-
ifests as compression of the probability space, effectively eliminating a substantial portion of in-
correct answers. (i.e., entropy reduction). The degree and efficiency of probability distribution
changes triggered by each reasoning step are central to measuring its criticality. The relative en-
tropy (Kullback-Leibler Divergence) naturally quantifies this distribution change, making it our
information-theoretic measure for the criticality of step Si:

Ki = DKL(Pi ∥ Pi−1) =
∑
ω∈Ω

Pi(ω) log
Pi(ω)

Pi−1(ω)
(2)

Step 1: Decomposition of Relative Entropy. We decompose the relative entropy into contributions
from the correct answer ω∗ and the space of incorrect answers ω:

Ki = Pi(ω
∗) log

Pi(ω
∗)

Pi−1(ω∗)︸ ︷︷ ︸
Contribution from correct answer probability increase

+
∑
ω ̸=ω∗

Pi(ω) log
Pi(ω)

Pi−1(ω)︸ ︷︷ ︸
Contribution from incorrect answer space compression

(3)

Step 2: Uniform Compression Assumption. The second term remains intractable without addi-
tional assumptions. To address this, we assume that all incorrect answers are uniformly compressed,
i.e., their probabilities decrease by the same proportion. This abstraction eliminates spurious biases
and is consistent with the principle of maximum entropy. It further reflects the intuition that a de-
cisive step reduces the probability of all incorrect answers and shifts the mass toward the correct
one.

∀ω ̸= ω∗,
Pi(ω)

Pi−1(ω)
=

1− pi
1− pi−1

, where pi = Pi(ω
∗) (4)

Step 3: Simplifying Contributions. Based on the uniform compression assumption, the contribu-
tion from incorrect answers simplifies to the logarithmic change of their total probability:∑

ω ̸=ω∗

Pi(ω) log
Pi(ω)

Pi−1(ω)
= (1− pi) log

1− pi
1− pi−1

(5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Meanwhile, the contribution from the correct answer remains:

Pi(ω
∗) log

Pi(ω
∗)

Pi−1(ω∗)
= pi log

pi
pi−1

(6)

Step 4: Criticality Metric Formula. Combining both contributions yields final criticality metric,
which is fully characterized by the model’s probability assigned to the correct answer at step Si:

Ki = pi log
pi

pi−1
+ (1− pi) log

1− pi
1− pi−1

(7)

Boundary Behavior and Robustness. The criticality measure Ki exhibits intuitive boundary be-
havior consistent with its information-theoretic interpretation: it diverges to +∞ when a step raises
the probability from near zero to a finite value, and it vanishes as pi− 1 → 1, since no further
entropy reduction is possible. In practice, due to cold-start conditions and the finite capability of the
model, the system never reaches these extremes. (e.g. steps are neither infinitely informative nor en-
tirely negligible.) Moreover, the logarithmic form of Ki naturally suppresses the influence of small
statistical fluctuations. When pi ≈ pi−1 and both are away from the extremes, Ki ≪ |pi − pi−1|,
which reduces false positives caused by random noise.

4 METHOD
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Question: In the given figure, 
AB and AC are tangent lines of 
circle O. ... If AB is 3 units long, 
what is the perimeter of triangle 
AEF?

# Step 1: Identify the tangent segments: AE=AD, AF=AC, ...
# Step 2: Given that AB = 3 units, and AB = BC because 
they are tagnents from a common point A, ...
# Step 3: Since AE = AF, triangle AEF is isosceles, implying 
AE = AF = 3/2 each.

# The final answer is: 6.0 units.

Training Framework for each RL Stage

step acc

answer acc

Figure 2: The overview of our proposed O2-CritiCuRL. Our method conducts curriculum learn-
ing at the stage level according to task difficulty. Within each stage, we further split training into two
phases including offline rollout and online update, and train between these two phases iteratively,
thereby achieving curriculum learning at the critical step level.

In this section, we introduce our proposed framework “O2-CritiCuRL”. The methodology begins
with supervised fine-tuning on existing data to provide a cold-start initialization for the model. Sub-
sequently, large language models (LLMs) are employed to segment reasoning trajectories, which
serve as the basis for identifying potential critical steps. Building on this foundation, we adopt an
iterative optimization strategy: in the offline phase, critical steps are identified, while in the online
phase, these identified steps are leveraged to update the model. The updated model is then fed back
into the offline phase for refined identification, forming a closed loop of alternating offline and on-
line optimization. This process is repeated until clear convergence criteria are met, ensuring both
the stability of critical step identification and the effectiveness of reinforcement learning.
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4.1 DATA PROCESS

First, we leverage large language models to decompose the long-chain reasoning process into ex-
plicit steps. Specifically, to mitigate the risk of reward hacking during reinforcement learning, we
first convert all multiple-choice questions in the original dataset into open-ended question-answering
format. Subsequently, we employ the GPT to analyze the converted data and perform an initial seg-
mentation of critical steps within the long-chain CoT reasoning trajectories as illustrated in equation
8, where Pi represents the i-th reasoning step in the long-chain CoT process. Finally, we catego-
rized the data into four difficulty levels (e.g., basic, intermediate, advanced, and expert) based on
the number of reasoning steps, thereby distinguishing samples with varying levels of complexity.

fGPT
seg : {P1, P2, . . . , Pn} −→ {Step 1: P1, Step 2: P2, . . . , Step n: Pn} (8)

4.2 MODEL INITIALIZATION

We adopt Qwen-2.5-VL as the backbone model and initiate the training process with a cold-start
strategy. During the cold-start phase, we employ basic data for supervised fine-tuning (SFT) to
facilitate the initial development of the model’s fundamental reasoning capabilities. To enable cur-
riculum learning that gradually exposes the model to harder samples, we employ the remaining
data within our framework, structuring training into three progressive stages. Unlike conventional
curriculum learning approaches that primarily adjust task difficulty in a coarse-grained manner, we
introduce a two-phase progressive refinement framework in each stage.

4.3 OFFLINE STEP DISTILLATION

In the offline phase, the model autonomously identifies and extracts critical reasoning steps, effec-
tively reducing redundancy and capturing essential structures of long-chain reasoning. As shown
in Figure 2, we perform offline rollouts over the entire dataset to identify critical reasoning steps.
For each instance, the segmented reasoning steps are concatenated with the original question in a
sequential manner. Specifically, each step is appended to the question one by one, forming inputs of
the model, until the complete chain of reasoning is reconstructed:

I = { q, q + s1, q + s1 + s2, . . . , q + s1 + s2 + · · ·+ sT } (9)

We sequentially feed the constructed inputs into the model and evaluate the reward based on whether
the predicted answer matches the ground truth. For each input, we perform n independent rollouts,
obtaining n reward samples. These samples form an empirical distribution that approximates the
model’s behavior over the answer space for the given input. Following the practical refinement
of Eq. (7), we introduce several adjustments to ensure stability under extreme probability cases.
First, both pi and pi−1 are clipped into the interval [ε, 1 − ε] to avoid degenerate values at 0 or
1. Second, a small lower bound is imposed when pi falls below a threshold (e.g., 0.01), preventing
disproportionately large contributions to the metric. Third, if pi and pi−1 are nearly indistinguishable
(e.g., |pi−pi−1| < ε) or if pi exceeds 1− tol, the corresponding contribution is set to zero, reflecting
the absence of meaningful information gain in such cases:

mi = min
(
max(pi,max(ε, 0.01)), 1− ε

)
(10)

Under these refinements, we use the stabilized probabilities mi and mi−1 to compute the criticality
score K between adjacent steps as following:

Ki = mi log
mi

mi−1
+ (1−mi) log

1−mi

1−mi−1
(11)

where mi and mi−1 denote the probability values after the adjustments. Based on the ranking of
computed criticality scores, we select the topk steps with the highest scores as the identified critical
steps, where K is adaptively determined according to the total number of steps in each stage.

4.4 ONLINE STEP OPTIMIZATION

As illustrated in Figure 2, we construct paired training samples for reinforcement learning. Each pair
consists of a truncated input sequence and its corresponding target, where critical steps identified

6
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during offline distillation are explicitly marked by K. This formulation enables the model to receive
supervision not only from the final answer but also from intermediate reasoning checkpoints, thereby
emphasizing the contribution of critical steps during optimization:

(q + s1 · · ·+ s5 ⇒ A), (q + s1 · · · s3 ⇒ A+ s5 + sk4), (q + s1 ⇒ A+ s5 + · · · sk2) (12)

To encourage the model to derive correct answers by accurately reasoning through critical steps, we
incorporate a reward component that explicitly accounts for step-wise correctness. Inspired by the
notion of gated control, the reward for answer correctness is further modulated by the step score:
if the step score is low (i.e., the reasoning steps are incorrect), the overall reward is substantially
attenuated even when the final answer is correct. This mechanism imposes a structured constraint
on the reasoning trajectory, thereby enhancing both the reliability and interpretability of the model’s
reasoning process. The reward function is formally defined as follows, where α,β, and γ are used to
maintain the balance among different rewards.

score =
[

Rfmt︸︷︷︸
format score

·α+(1−α)·( Rstp acc︸ ︷︷ ︸
step accuracy

·β+(1−β)· Rstp︸︷︷︸
step format

)
]
·
[
(1−γ)+γ · Racc︸︷︷︸

answer accuracy

]
(13)

Rfmt denotes the format score (excluding step formatting), Rstp acc measures the correctness of rea-
soning steps, Rstp evaluates step format, where si is the model-predicted step index and Racc repre-
sents the correctness of the final answer. The online strategy design enables the model to internalize
both the correctness of the final answer and the validity of intermediate reasoning steps, cultivating
the ability to derive correct answers through correctly reasoning about the critical steps.

4.5 OFFLINE–ONLINE ITERATION

As training progresses, the model’s ability to identify critical steps becomes more accurate, yielding
step selections that better align with the true pivotal nodes of the reasoning process. Importantly, the
set of steps regarded as critical is not static: as the model improves, previously difficult steps may
no longer be bottlenecks, while new decisive steps emerge as the primary contributors to reason-
ing success. This dynamic evolution provides increasingly precise and informative learning signals
for subsequent optimization. This provides more precise and informative learning signals for sub-
sequent optimization. For each epoch, critical steps within all samples are first identified through
Offline Step Distillation. The data is then reorganized during the Online Step Optimization phase
and used to update the model, marking the completion of one iteration. In the subsequent itera-
tion, the updated model is applied to the next batch, where Offline Step Distillation and Online
Step Optimization are repeated. After several epochs, steps that have consistently never been iden-
tified as critical are pruned from subsequent training, thereby reducing redundant computation and
accelerating convergence without sacrificing performance. Through this iterative cycle, the model
progressively improves both its capacity to recognize critical steps and its accuracy in reasoning.
The iterative process proceeds until model performance reaches a stable point, at which point the
reinforcement learning stage is deemed converged and training advances to the subsequent phase.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Evaluation. We adopt a hierarchical soft matching framework for both final answers and critical
reasoning steps. For answers, we first normalize predictions and references with LaTeX processing
and unit unification. They are compared using layered strategies, including exact, equality-based
soft, numerical, and canonical containment matching. Multiple candidates are allowed only on
the reference side to capture annotation diversity, while enumerated predictions are disallowed to
prevent guessing. For reasoning steps, reference keywords are extracted with Qwen3-Max(Team,
2025b), and outputs are segmented into “# Step k:” blocks. A strict–soft matching scheme is applied,
relying on LaTeX normalization for strict matching and falling back to the answer-level matcher
otherwise. Enumeration suppression, dynamic length control, and step count limits further ensure
precise and efficient detection of critical conclusions.

Datasets. We train on three multimodal mathematical benchmarks: GEO3K (Lu et al., 2021),
GEOQA (Chen et al., 2022), and GEOs(Seo et al., 2015). In total, 44k samples are used for SFT-
based cold start, and 5.1k samples are employed in the Offline–Online RL stages.
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Training. All experiments are conducted on 8× A800 GPUs. Training with 1k questions per stage
for one epoch takes about 2 hours. We adopt Qwen-2.5-vl-Instruct-7B as the backbone. In
the SFT stage, we train for 3 epochs with a batch size of 32 and learning rate 2e−6. In the RL stage,
the learning rate is set to 1e−6, and we experiment with subsets of 2k samples trained for a single
epoch. Reward weights are set to α = 0.3, β = 0.75, and γ = 0.15.

5.2 MAIN RESULTS

Table 1: Comparison across Various Benchmarks

Model AIME 25 MathVista MathVision MathVerse MM-Math OlympiadBench DynaMath MathScape

Qwen-2.5-VL-7B(Bai et al., 2025) 10.7 68.2 25.4 47.9 34.1 22.3 - 27.3
InternVL3-8B(Zhu et al., 2025b) 13.3 71.6 29.3 39.8 12.2 12.0 15.9 -
R1-VL-7B(Zhang et al., 2025b) 16.7 74.3 28.2 52.2 24.6 10.3 - 47.3
Vision-R1-7B(Huang et al., 2025) 23.3 73.5 - 52.4 36.2 11.9 16.4 -
ThinkLite-VL-7B(Wang et al., 2025b) 9.5 75.1 32.3 50.7 30.4 16.7 19.8 29.0
MiniCPM-o-2.6-7B(Team, 2025a) 11.4 71.9 21.6 35.0 22.0 9.3 12.2 67.0
VL-COGITO-7B(Yuan et al., 2025b) 3.3 74.8 30.7 53.3 35.8 22.4 15.9 45.8
Mulberry-7B(Yao et al., 2024) 14.2 63.1 19.1 41.6 23.7 9.5 - 40.3
R1-Onevision-7B(Yang et al., 2025) 19.9 64.1 29.9 40.0 - 18.3 10.2 71.5

Ours (O2-CritiCuRL-7B) 25.6 78.3 33.1 55.2 38.9 25.3 22.7 43.2

We evaluate O2-CritiCuRL on several benchmarks, including the text-only AIME-25 and multi-
modal datasets. As shown in Table 1, MathVista(Lu et al., 2024), MathVisionWang et al. (2024a),
and MathVerse(Zhang et al., 2024) assess visual mathematical reasoning across charts, diagrams,
and natural images. MM-Math(Sun et al., 2024) covers open-ended middle-school problems,
OlympiadBench(He et al., 2024) and DynaMathZou et al. (2025) focus on advanced and dy-
namic reasoning, and MathScape(Liang et al., 2025) provides 1, 369 real-world math photos. O2-
CritiCuRL achieves state-of-the-art performance across most benchmarks, while achieves relatively
lower score due to its hand-captured images. It scores 78.3 on MathVista, outperforming the prior
best 7B model ThinkLite-VL(Wang et al., 2025b) by 3.2 points, surpasses VL-COGITO(Yuan et al.,
2025b) by 1.9 points on MathVerse, and improves upon ThinkLite-VL by 0.8 points on MathVision.
O2-CritiCuRL also sets a new standard on AIME-25 25.6, highlighting its strong generalization
across both multimodal and text-only reasoning tasks.

Table 2: Different Design for Reward Functions

Reward
Function MathVista MathVision MathVerse

Add 77.5 33.1 54.8

Multiply 78.3 33.5 55.2

Table 3: Different Training Stage Performance

Training
Stages MathVista MathVision MathVerse

SFT 67.0 25.2 45.9

RL-Stage1 72.4 27.3 49.5
RL-Stage2 76.2 29.6 53.7
RL-Stage3 78.3 33.1 55.2

5.3 ABLATION STUDY OF REWARD AND TRAINING STAGES

We evaluate both our reward design and training stages on three benchmarks (MathVista, MathVi-
sion, MathVerse). As shown in Table 2, the multiplicative gating reward consistently outperforms
the additive formulation (average +0.53), as it enforces stronger dependencies between step correct-
ness and final answer accuracy, thereby discouraging degenerate guessing. Table 3 further shows
steady gains across successive stages: RL-Stage1 improves over the SFT baseline, RL-Stage2 yields
the largest boost by consolidating step correctness, and RL-Stage3 provides additional robustness
with expert-level data. Together, these results verify that our step-aware curriculum and reward
design complement each other, progressively enhancing both reasoning quality and final accuracy.

5.4 ABLATION STUDY OF REWARD FUNCTION AND INFERENCE SPEED

We first validate the effectiveness of our design choices through ablation studies. As shown in
Table 4, our proposed metric Ki surpasses two intuitive baselines (e,g, absolute change ∆p and
relative improvement) by 3−7 points across MathVista, MathVision, and MathVerse, confirming its
advantage in capturing step importance. Table 5 shows that incorporating step accuracy (stepAcc)
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Table 4: Metrics for Critical Step

metric for
critical step MathVista MathVision MathVerse

∆p 71.8 28.5 47.7
pi−pi−1

1−pi−1
74.3 30.1 49.3

Ki 78.3 33.5 55.2

Table 5: Step Accuracy Ablation

MathVista MathVision MathVerse

w/o
stepAcc 74.2 31.6 52.0

w/
stepAcc 78.3 33.5 55.2

as a reward yields consistent gains of 3− 4 points over answer-only supervision, demonstrating the
benefit of rewarding correct intermediate reasoning steps for accuracy. In addition to accuracy, O2-
CritCuRL also improves efficiency (Table 6): on MM-Math it is 2× faster than R1-VL-7B and over
4× faster than Vision-R1-7B, while on MathScape it reduces inference time to 37min compared to
59min and 3h14min. These results highlight that O2-CritCuRL not only enhances reasoning quality
but also achieves superior efficiency, making it well-suited for practical deployment.

6 CASE STUDY

BO

M

A

N

C

Question: O is a point on line AB, 
MON is a right-angled triangle ruler, 
with the right-angle vertex at point O. 
A ray OC is drawn inside angle MON, 
and OC exactly bisects angle MOB. If 
angle BON = 2  angle NOC, what is 
the measure of angle AOM in degrees?

O2 -CritiCuRL

# Step 1: Since ∠MON=90∘, let 
∠MOC=t, then ∠NOC=90∘-t.
# Step 2: Because OC bisects 
∠MOB, ∠BOC=∠MOC=t.
# Step 3: Because ∠BON=2∠NOC,
and ∠BON+∠NOC=∠BOC=t, 
∠NOC=1/3∠BOC=t/3.
# Step 4: ∠NOC=t/3=90∘-t, so t=
67.5∘.
# Step 5: ∠AOM=180∘-∠MOC-
∠BON=180∘-2t=45∘.
# The final answer is: 45∘

Figure 3: Case Study.

Figure 3 presents a representative example
to illustrate the reasoning ability of our O2-
CritiCuRL. In this geometry problem, the
model is required to reason over multiple an-
gle relations involving both bisection and pro-
portional constraints. As shown in the step-
by-step reasoning process, our model success-
fully identified and executed the critical rea-
soning steps (Steps 3 and 4), it derived the
relation ̸ BON = 2̸ NOC, correctly trans-
formed it into the proportional form ̸ NOC =
1
3
̸ BOC and consequently obtained the inter-

mediate value t = 67.5◦. Building on this accu-
rate intermediate conclusion, the model then proceeded to compute ̸ AOM = 45◦, which matches
the ground-truth answer. This case demonstrates that O2-CritiCuRL reaches correct answer through
faithful and logically consistent reasoning steps.

7 CONCLUSION

Table 6: Inference Speed of different models on MM-
Math and MathScape datasets.

Model MM-Math (1k-subset) MathScape (0.4k-subset)
Vision-R1-7B 4h39min 3h14min
R1-VL-7B 2h11min 59min
Ours (O2-CritiCuRL-7B) 1h03min 37min

In this work, we propose O2-CritiCuRL,
an offline–online curriculum reinforce-
ment learning framework that emphasizes
critical-step awareness. By adaptively
identifying decisive steps and iteratively
refining them through offline decompo-
sition and online reinforcement learn-
ing, our method improves accuracy, inter-
pretability, and efficiency over conventional step-level RL. Experiments across multiple reasoning
benchmarks demonstrate state-of-the-art performance. Looking ahead, we envision that the princi-
ple of critical-step awareness is not limited to mathematical reasoning, but can be broadly applied
to domains that demand transparent and trustworthy decision-making, such as scientific discovery,
legal analysis, and medical diagnosis. Future work will explore integrating human feedback into
step identification, scaling to larger multimodal datasets, and designing adaptive curricula that co-
evolve with model capability, further bridging the gap between human-like reasoning and practical
deployment in real-world scenarios.
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Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information fusion, 58:82–115, 2020.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Natalie C Benda, Laurie L Novak, Carrie Reale, and Jessica S Ancker. Trust in ai: why we should
be designing for appropriate reliance. Journal of the American Medical Informatics Association,
29(1):207–212, 2022.
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8 APPENDIX

8.1 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper, We have also provided a full description of
experiments, to assist others in reproducing our experiments. Additionally, datasets, such as Math-
Vista(Lu et al., 2024), MathVisionWang et al. (2024a), are publicly available, ensuring consistent
and reproducible evaluation results. We believe these measures will enable other researchers to
reproduce our work and further advance the field.

8.3 LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephras-
ing,grammar checking, and enhancing the overall flow of the text. It is important to note that the
LLM was not involved in the ideation, research methodology, or experimental design. All research
concepts, ideas, and analyses were developed and conducted by the authors. The contributions of
the LLM were solely focused on improving the linguistic quality of the paper, with no involve-
ment in the scientific content or data analysis. The authors take full responsibility for the content
of the manuscript, including any text generated or polished by the LLM. We have ensured that the
LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific
misconduct.
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THEORETICAL FOUNDATION AND INTERPRETATION

This section provides the theoretical foundation, detailing the derivation and practical implementa-
tion of the criticality metric Ki. In our approach, the criticality of a reasoning step is assessed based
on the change in the model’s accuracy after sequentially introducing each step. Assuming each step
is correct, adding a step will not decrease the model’s accuracy; it can either improve it or leave it
unchanged (if the step provides no additional information).

Introducing a critical step inevitably causes a significant shift in the answer probability distribution:
the probability of the correct answer increases, while the probabilities of other answers decrease.
To describe this process in a simple yet principled way, we introduce the uniform compression
assumption:

1. When the model has no reasoning ability, all answers are assigned approximately equal
initial probabilities; if the answer space is very large, these probabilities naturally approach
zero.

2. When a critical step is introduced, the correct answer probability increases, while the re-
maining probability mass of other answers is assumed, in an idealized sense, to be uni-
formly redistributed. This assumption provides a tractable and reasonable approximation
of the probability shift.

To quantify the difference between the prior and posterior distributions induced by a reasoning step,
we use the Kullback-Leibler (KL) divergence, defined as

DKL(P ∥ Q) =
∑
ω∈Ω

P (ω) log
P (ω)

Q(ω)
. (14)

Its fundamental interpretation is the additional information required to represent the target distribu-
tion P using a code optimized for the distribution Q. In our context, the KL divergence measures
the extra information needed for the current distribution to align with a distribution that successfully
leads to the correct answer.

Within this framework, the criticality of step Si is quantified as the KL divergence between the
posterior Pi and the prior Pi−1:

Ki = DKL(Pi ∥ Pi−1). (15)
Intuitively:

• Large Ki: Indicates a substantial difference between Pi and Pi−1, meaning the step Si

provides significant new information, which is highly critical for correcting the model when
it was previously far from the correct answer.

• Small Ki: Indicates that Pi is similar to Pi−1, meaning the step Si offers only minor
refinements, acting more like a fine-tuning adjustment when the model is already close to
the correct answer.

DERIVATION OF THE COMPUTABLE METRIC

The definition of Ki is general but computationally complex as it requires a sum over the entire
answer space Ω. To derive a tractable metric, we introduce a structural assumption about how
reasoning steps affect the probability distribution.

We begin by decomposing the sum into the contribution from the correct answer ω∗ and the space
of all incorrect answers:

Ki = Pi(ω
∗) log

Pi(ω
∗)

Pi−1(ω∗)
+

∑
ω ̸=ω∗

Pi(ω) log
Pi(ω)

Pi−1(ω)
. (16)

Let pi = Pi(ω
∗) denote the probability assigned to the correct answer at step i. Consequently, the

total probability mass of all incorrect answers is 1− pi =
∑

ω ̸=ω∗ Pi(ω).

Assumption (Uniform Compression). We assume that the effect of a reasoning step on the prob-
ability of all incorrect answers is uniform. Formally, the probability ratio is identical for every
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incorrect answer ω ̸= ω∗:

∀ω ̸= ω∗,
Pi(ω)

Pi−1(ω)
=

1− pi
1− pi−1

. (17)

This assumption implies that the reasoning step homogeneously compresses the entire incorrect
answer space, redistributing the probability mass toward the correct answer.

Under this assumption, the second term simplifies as follows:∑
ω ̸=ω∗

Pi(ω) log
Pi(ω)

Pi−1(ω)
= (1− pi) log

1− pi
1− pi−1

. (18)

The first term remains unchanged:
pi log

pi
pi−1

. (19)

Combining these contributions yields our final computable metric for step criticality:

Ki = pi log
pi

pi−1
+ (1− pi) log

1− pi
1− pi−1

. (20)

BOUNDARY BEHAVIOR, ROBUSTNESS, AND SMOOTHING

The metric Ki exhibits extreme and theoretically justified behavior at the boundaries of the proba-
bility space, which necessitates careful handling in practice.

Boundary Analysis:

Case 1: pi−1 → 0+ Consider

Ki = pi log
pi

pi−1
+ (1− pi) log

1− pi
1− pi−1

.

As pi−1 → 0+, the second term behaves as

(1− pi) log
1− pi

1− pi−1
= (1− pi) log

(
1 +

pi−1 − pi
1− pi−1

)
→ (1− pi) log(1− pi),

which remains finite. The first term behaves as

pi log
pi

pi−1
= pi(log pi − log pi−1) ∼ −pi log pi−1 → +∞,

since − log pi−1 → +∞. Therefore, Ki → +∞, reflecting an infinite information gain when
updating from near-zero prior probability to a finite posterior.

Case 2: pi−1 → 1− Let qi = 1− pi and qi−1 = 1− pi−1. Then

Ki = (1− qi) log
1− qi

1− qi−1
+ qi log

qi
qi−1

.

As qi−1 → 0+, the first term behaves as

(1− qi) log
1− qi

1− qi−1
→ log 1 = 0,

and the second term

qi log
qi

qi−1
= qi(log qi − log qi−1) ∼ −qi log qi−1 → 0,

because qi → 0 along with qi−1. Hence Ki → 0, indicating negligible information gain when the
model is already nearly certain.

Robustness Property via Taylor Expansion:
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Let ∆p = pi − pi−1. Expanding Ki around pi = pi−1 using log(1 + x) ≈ x− x2

2 +O(x3):

Ki = pi−1 log
pi−1 +∆p

pi−1
+ (1− pi−1) log

1− pi−1 −∆p

1− pi−1

= pi−1 log

(
1 +

∆p

pi−1

)
+ (1− pi−1) log

(
1− ∆p

1− pi−1

)
≈ pi−1

(
∆p

pi−1
− (∆p)2

2p2i−1

)
+ (1− pi−1)

(
− ∆p

1− pi−1
− (∆p)2

2(1− pi−1)2

)
= ∆p− (∆p)2

2pi−1
−∆p− (∆p)2

2(1− pi−1)

=
(∆p)2

2

(
1

1− pi−1
+

1

pi−1

)
=

(∆p)2

2pi−1(1− pi−1)
.

Summing both contributions:

Ki ≈
(∆p)2

2

(
1

1− pi−1
+

1

pi−1

)
=

(∆p)2

2pi−1(1− pi−1)
.

This shows that for small ∆p, Ki is of order (∆p)2, making it inherently robust to small fluctuations
in the probability estimates.

Smoothing Technique: To ensure numerical stability, smoothing is applied at both ends of the
probability range. At the lower end, if pi or pi−1 equals 0, this is effectively a numerical error
since the model’s initial reasoning ability cannot be exactly zero. To avoid excessively large KL
divergence values in practice, these probabilities are replaced by a small positive constant ϵ, e.g.,
ϵ = 0.1, which is much smaller than the minimal sampling probability precision.

At the upper end, if pi or pi−1 equals 1, although the result does not theoretically diverge, com-
puting log 0 could occur during calculations, which leads to numerical instability. Therefore, these
probabilities are also capped below 1− ϵ to ensure stability:

p̃i = min
(
max(pi, ϵ), 1− ϵ

)
,

p̃i−1 = min
(
max(pi−1, ϵ), 1− ϵ

)
,

ϵ ≪ minimal sampling probability.

(21)

The smoothed criticality metric is then computed as:

K(smooth)
i = p̃i log

p̃i
p̃i−1

+ (1− p̃i) log
1− p̃i

1− p̃i−1
. (22)

8.4 REWARD FUNCTION

Our reward function is designed to guide the model towards three key objectives simultaneously:

1. Correctly output the final answer.

2. Perform step-wise, logical reasoning.

3. Recognize whether the reasoning process is complete: if complete, directly output the
answer; if incomplete, correctly continue the reasoning steps.

The entire training process is divided into two distinct phases, each with its own reward function.
They work in tandem to achieve our ultimate goal.
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Offline Rollout Phase: This phase does not involve model training. Instead, it serves as an ana-
lytical tool to identify and evaluate critical steps within a Chain-of-Thought (CoT) demonstration.
By using the reward function in this stage, we can prune redundant or less essential steps, creating a
more concise and efficient training dataset.

Online Update Phase: This is the active model training phase. We use the refined dataset from
the offline stage and provide real-time, granular feedback with the online reward function. This
guides the model to learn and execute a correct reasoning process. This two-stage approach ensures
that we first obtain high-quality training data and then use that data effectively to train the model.

8.4.1 OFFLINE ROLLOUT REWARD FUNCTION

This phase is focused on evaluating the informational value of each step in a demonstration. The
reward function here helps in identifying which steps are most crucial for reaching the correct final
answer.

Answer Accuracy: Racc This metric provides a foundational measure of the model’s ability to
produce the correct final answer after a given number of reasoning steps.

• For each input sample, we execute multiple simulated ”rollouts.” In each rollout, we extract
the final answer (the text following # The final answer is:) and compare it to the
ground truth.

– If the answer is correct, we assign a reward of Racc = 1.
– If the answer is incorrect, the reward is Racc = 0.

• The mean correctness probability, pi, is then calculated by averaging the Racc values over a
series of n rollouts. This is performed after step i has been provided to the model, meaning
the model has access to all steps from 1 to i.

pi =
1

n

n∑
j=1

R(j)
acc

Here, pi represents the mean probability that the model can correctly solve the problem
after having access to the first i reasoning steps.

Key Step Metric Ki The Key Step Metric, Ki, is the core of our offline analysis. It quantifies the
informational value of a specific step by measuring how significantly it alters the model’s probability
of producing the correct final answer.

• We compute the Kullback-Leibler (KL) divergence between the correctness probabilities
of consecutive steps, pi and pi−1. A large Ki value signifies that the step provides crucial
new information that dramatically improves the chances of getting the final answer correct.

Ki = pi log
pi

pi−1
+ (1− pi) log

1− pi
1− pi−1

Conversely, a small Ki indicates the step is less essential or even redundant.

8.4.2 ONLINE UPDATE REWARD FUNCTION

This phase involves granular, real-time feedback to guide the model towards producing a correct and
well-formatted reasoning process.

Format Score: Rfmt This score ensures that the model’s output strictly adheres to a predefined
format, which is essential for consistent and automated evaluation throughout the training process.

• If the model output strictly follows the specified format (# Step # The final
answer is: ...\n), Rfmt = 1.

• Any deviation from the required format results in Rfmt = 0.
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Step Format: Rstp This component evaluates whether the model’s predicted step number aligns
with the expected sequential order and whether it correctly decides to stop or continue the process.
We use a variable, judging step, to denote the expected next step number that the model should
output.

• When reasoning is incomplete (judging step ̸= 0):
– Correct Continuation: If the model’s output begins with # Step judging step,

it receives the highest reward, Rstp = 1.
– Incorrect Step Number: If the model’s output begins with # Step pred step

where pred step is not equal to judging step, the reward is calculated using a
decay coefficient k: Rstp = max(0, 1− k · |pred step− judging step|). The larger the
deviation, the smaller the reward.

– Early Answer Output: If the model outputs the final answer before the reasoning is
complete, the reward is Rstp = 0.

• When reasoning is complete (judging step = 0, indicating the model has reached the
final step from the reference CoT):

– Correct Termination: If the model correctly outputs the final answer, it receives the
highest reward, Rstp = 1.

– Redundant Step: If the model generates a superfluous step after the reasoning is com-
plete, it receives a small, token reward of Rstp = 0.05. This encourages early answer
output and reduces redundancy.

– Other Incorrect Output: Any other incorrect output results in Rstp = 0.

Step Accuracy: Rstp acc This reward is crucial for ensuring the quality of the reasoning content
itself.

• We check if the model’s output for the current step contains a pre-extracted key string
(key str), which represents a crucial piece of information for that specific step.

• If the output contains the key string, Rstp acc = 1.0.
• Otherwise, Rstp acc = 0.0.

Final Reward Score (Multiplicative Gating) The total reward score is a composite of all compo-
nents, orchestrated by a multiplicative gating mechanism. This structure ensures a holistic evaluation
of the model’s performance, balancing process quality with final correctness.

score =
[

Rfmt︸︷︷︸
format score

·α+(1−α)·( Rstp acc︸ ︷︷ ︸
step accuracy

·β+(1−β)· Rstp︸︷︷︸
step format

)
]
·
[
(1−γ)+γ · Racc︸︷︷︸

answer accuracy

]
(23)

The formula is structured into two main parts connected by multiplication. The first part evaluates
the quality of the reasoning process itself. The second part serves as a modulator based on the final
answer accuracy. This multiplicative gating ensures that if the final answer is incorrect (Racc =
0), the overall reward is significantly penalized, reinforcing that process quality, while vital, must
ultimately lead to a correct solution.

PARAMETER EXPLANATIONS

• α (Format Weight): Set to 0.3. This value is chosen to give a significant, but not over-
whelming, weight to format correctness.

• β (Step Accuracy Weight): Set to 0.75. This high value deliberately emphasizes the
paramount importance of content accuracy within each step.

• γ (Answer Accuracy Weight): Set to 0.15. This low weight is a critical design choice. It
signals that while the final answer’s correctness is important, the quality and integrity of
the intermediate reasoning steps are given a higher priority during training.

• k (Step Decay Coefficient): Set to 0.25. This parameter controls the reward decay when
the predicted step number deviates from the expected one, preventing excessive rewards
for incorrect steps.
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8.5 PROMPT

8.5.1 PROMPT FOR DATASET STEP EXTRACTION

Single-word/phrase answer
Outline the reasoning in the fewest necessary atomic steps, omitting any redundancy. If 
a step involves obtaining information from image, add '[image]' at the start, like '# Step 
x: [image]...'.
Next, check my answer-if correct, output it; otherwise give the correct one.
Strictly format your response with the following sections, separated by '#':
# Question:
# Step 1:
# Step 2:
...
# Answer: 
# Brief answer:"

question:
Is the given caption "The cake is 
below the teddy bear." fitting for the 
image?

reasoning:
The image shows a cake with a 
teddy bear on top. The teddy bear is 
positioned higher up on the cake, 
and the cake itself is underneath it. 
Therefore, the caption "The cake is 
below the teddy bear" accurately 
describes the image."

question:
Is the given caption "The cake is below the 
teddy bear." fitting for the image?
reasoning:
#Step 1:[image] Observe that the teddy bear is 
placed on top of the cake.
#Step 2:[image] Determine spatial relationship: 
the cake is directly underneath the teddy bear.
#Step 3: Evaluate the caption: "The cake is 
below the teddy bear" correctly describes the 
vertical positioning.
#Answer: Yes
#Brief answer: Yes

Single-option answer
First, keep the original meaning of the question unchanged, and rewrite it as an open-
ended question that can be answered with a single word/phrase. If the question includes 
a context section, keep it unchanged and place it before the question.
Next, check my answer-if correct, output it directly or rewrite it as a sentence; otherwise 
give the correct one.
Finally, summarize the correct answer in a single word or phrase.
Strictly format your response with the following sections, separated by '#':
# Question:
# Step 1:
# Step 2:
...
# Answer:
# Brief answer:
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question:
what is holding the 
umbrella?\nChoices:\nA. Hand.\nB. A 
man.\nC. A girl.\nD. A table.\nAnswer 
with the option's letter from the given 
choices directly.

reasoning:
The image shows a person's hand 
extending from a train window, 
holding a blue umbrella. The hand's 
bounding box overlaps with the 
umbrella's, indicating direct contact. 
Other options don't fit the 
context.\n\nAnswer: A. Hand

question:
what is holding the umbrella?
reasoning:
#Step 1: [image] Observe a hand extending 
from a train window, gripping a blue umbrella.
#Step 2: [image] Confirm direct contact 
between the hand and the umbrella via 
overlapping bounding boxes.
#Step 3: Eliminate incorrect options: no full 
man or girl visible, and the umbrella is not 
attached to a table.
Step 4: Identify that the hand is the direct object 
holding the umbrella.
Answer: A. Hand
Brief answer: Hand

For the mathematical category of questions, we selected three subsets—geo3k, 
geoqa_plus, and GEOS—from the math-mulberry dataset, which has already 
undergone step segmentation. These categories were chosen due to their relatively 
consistent question difficulty and more uniform step distribution compared to other 
categories, making them more suitable for reinforcement learning (RL) training
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        <image>You are given a question about the image and a step-by-step reasoning progress.
        If the provided reasoning steps are already sufficient, output only the final answer.
        If the reasoning steps are incomplete, continue generating the subsequent reasoning steps, 
and then provide the final answer. Ensure the steps are logical and concise.
        Always format your response with the following sections, separated by #.
        # Step (next number):
        (New reasoning step here)
        # Step (next number+1):
        (New reasoning step here)
        ...
        # The final answer is:
        (Your final answer here)

The the instruction following prompt for training  is  designed to guide the model 
through an incremental reasoning process. The key goals are:

Promoting Incremental Reasoning: The model is instructed to generate 
reasoning steps in sequence, ensuring that each step logically leads to the next. 
This encourages the model to build on previous steps and engage in systematic 
problem-solving, which is crucial for handling complex tasks.

Ensuring Completeness in Reasoning: If the initial reasoning steps are 
insufficient, the model is prompted to continue generating additional steps. This 
ensures that the model can handle incomplete or ambiguous reasoning processes, 
thereby improving its ability to deal with real-world situations that often require 
iterative problem-solving.

Structured Response Format: By enforcing a structured response format with 
clearly delineated steps and a final answer, the prompt fosters consistency in how 
the model organizes and presents its reasoning. This structure aids in improving the 
interpretability of the model’s outputs and makes it easier for humans to follow the 
model’s thought process.

Adaptability for Training: This design helps the model adapt to a wide range of 
problem complexities by learning to evaluate when reasoning is sufficient and 
when further elaboration is required. This encourages the model to handle a variety 
of reasoning tasks effectively during training.
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8.5.2 PROMPT FOR TRAINING

8.5.3 PROMPT FOR VALIDATING

The  instruction following prompt for validation focuses on the generation of 
reasoning without prior steps. The design objectives are:

Encouraging Reasoning from Scratch: The model is required to generate a step-
by-step reasoning process from the given question, fostering the model’s ability to 
approach new problems without pre-existing steps. This is crucial for evaluating 
the model's ability to generalize to unseen tasks and situations.

Ensuring Logical and Concise Steps: The emphasis on generating logical and 
concise reasoning steps encourages the model to produce clear and efficient 
explanations. This aligns with the goal of creating AI systems that are not only 
accurate but also able to explain their reasoning in a manner that is understandable 
and precise.

Providing a Final Answer: After reasoning, the model is instructed to provide the 
final answer in a clear format. This ensures that the model is able to synthesize its 
reasoning into a coherent conclusion, which is essential for answering complex 
questions in real-world applications.

Evaluation of Reasoning Ability: This prompt design is particularly useful for 
evaluating the model’s capacity to generate reasoning and conclusions in a 
structured format. The clear format of steps and the final answer ensures 
consistency across multiple test cases, enabling a more accurate assessment of the 
model's performance.

         <image>You are given a question about the image.
        Generate a step-by-step reasoning progress to solve the problem. Ensure the steps are 
logical and concise.
        Finally, provide the final answer in the following format: \'The final answer is: xxx\'.
        Always format your response with the following sections, separated by #."
        # Step 1:
        (Reasoning step 1 here)
        # Step 2:
        (Reasoning step 2 here)
        ...
        # The final answer is:
        (Your final answer here)
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8.6 CASE

MiniCPM-o-2.6：

Question 1：
If the ABDEF shape is a rectangle where an equilateral 
triangle has been removed from one side of it, the area of the 
ABDEF shape is 36, the ACGH shape is a rectangle where a 
semi-circle has been removed from one side of it and the area 
of the ACGH shape is 78, compute the area of the ABC right 
triangle. Assume π = 3.14. Round computations to 2 decimal 
places.

Model  output：
#Step1: Let rectangle height = ℎ, AB = 𝑥, BC = 𝑦.

Shape ABDEF: rectangle area 𝑥ℎ minus equilateral triangle area
3

4
ℎ2 equals 36: 

𝑥ℎ −
3

4
ℎ2 = 36.

Shape ACGH: rectangle area 𝑥 + 𝑦 ℎ minus semicircle area
𝜋ℎ2

8
equals 78: 

𝑥 + 𝑦 ℎ −
𝜋ℎ2

8
= 78.

#Step2: Assume AB vertical ⇒ 𝑥 = ℎ.
From first equation: ℎ2 − 0.4330127ℎ2 = 36, 0.5669873ℎ2 = 36, ℎ2 ≈ 63.51, ℎ ≈ 7.97.
#Step3: From second equation: 7.97 + 𝑦 7.97 − 0.3927 × 63.51 = 78, 7.97 + 𝑦 7.97
− 24.92 = 78, 7.97 + 𝑦 7.97 = 102.92, 7.97 + 𝑦 ≈ 12.91 ⇒ 𝑦 ≈ 4.94

Step4:Area of triangle ABC =
1

2
𝑥𝑦 ≈

1

2
7.97 4.94 ≈ 19.69.

The final answer is 19.69

Model  output：
Step 1: The area of the DEFG trapezium equals 70 and DB = 7 ⋅

1

2
× 7 + 0 × 7 = 3.5.

Step 2: Subtracting the areas of the trapezium and the equilateral triangle gives: 70 − 3.5 − 3.37
= 6.93.

Step 33 : Let AB = x. Then: 𝑥 × 7 −
3

4
× 𝑥2 × 7 = 9.35.  𝑥 × 7 = 9.75.

Step 33 : The length of the AB side is 1.35.
Step 3 3 : The lengths of the AC and BC sides are 1.25 and 7, respectively. Applying the 

Pythagorean theorem, we have 𝐴𝐶 = 𝐵𝐶2 − 𝐴𝐵2 = 72 − 1.252 = 66.65.
Step 32: The lengths of the AC and BC sides are 6.65 and 7. Applying the formula for the area of the 

right triangle gives us. 𝐴𝑟𝑒𝑎 =
1

2
× 𝐴𝐶 × 𝐵𝐶 =

1

2
× 6.65 × 7 = 28.4. Round 8.4 to 2 decimal places 

resulting in 8.40.

Answer：8.4
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MiniCPM-o-2.6：

Question 2：
Compute the perimeter of the ABCD parallelogram. Round 
computations to 2 decimal places.

Model  output：
Step 1: Identify the given parallelogram and its properties.
Step 2: Note that in is given a parallelogram, opposite sides are e-
qual. Thus AD = bc and ab = cd.
Step 33: Given AB=20, CD=7, so perimeter P = 2(AB + CD)
Step 3: Plug in values into formula.
Step 3: Calculate using.
Step 4: Perimeter = 2(20+7)

Answer：54.0

Model  output：
#Step1: In a parallelogram, opposite sides are equal in length.
From the figure, we can identify the lengths of two adjacent sides:

 AD = 7, DC = 20.
#Step2: Since ABCD is a parallelogram, the side opposite to AD is BC, and the side opposite to DC is 
AB.

Therefore, BC = AD = 7, AB = DC = 20.
#Step3: The perimeter of a polygon is the sum of the lengths of all its sides. Perimeter of 
parallelogram ABCD = AD + DC + CB + BA.
#Step4: Substitute the values of the side lengths into the formula:

Perimeter = 7 + 20 + 7 + 20=54. 
Alternatively, the formula for the perimeter of a parallelogram is P = 2 * (a + b), where 'a' and 'b' 
are the lengths of adjacent sides. P = 2 * (7 + 20), P = 2 * (27), P = 54.
The result is an integer, so no rounding is needed.

The final answer is 54.
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