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ABSTRACT

The success of denoising diffusion models raises important questions regarding
their generalisation behaviour, particularly in high-dimensional settings. Notably,
it has been shown that when training and sampling are performed perfectly, these
models memorise training data—implying that some form of regularisation is es-
sential for generalisation. Existing theoretical analyses primarily rely on algorithm-
independent techniques such as uniform convergence, heavily utilising model
structure to obtain generalisation bounds. In this work, we instead leverage the
algorithmic aspects that promote generalisation in diffusion models, developing a
general theory of algorithm-dependent generalisation for this setting. Borrowing
from the framework of algorithmic stability, we introduce the notion of score
stability, which quantifies the sensitivity of score-matching algorithms to dataset
perturbations. We derive generalisation bounds in terms of score stability, and
apply our framework to several fundamental learning settings, identifying sources
of regularisation. In particular, we consider denoising score matching with early
stopping (denoising regularisation), sampler-wide coarse discretisation (sampler
regularisation) and optimising with SGD (optimisation regularisation). By ground-
ing our analysis in algorithmic properties rather than model structure, we identify
multiple sources of implicit regularisation unique to diffusion models that have so
far been overlooked in the literature.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) are a class of
generative models that have achieved state-of-the-art performance across image, audio, video, and
protein synthesis tasks (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022; Watson
et al., 2023; Esser et al., 2024). Their ability to generate high-quality samples from complex, high-
dimensional distributions with limited data motivates the need for a theoretical understanding of the
mechanisms underpinning their strong generalisation capabilities.

The goal of diffusion models is to generate new synthetic samples from a data distribution νdata using
a finite set of N data points {xi}Ni=1. Central to the methodology is a unique approach to generating
data, formulating it as the iterative transformation of noise into data, or equivalently, the reversal of a
diffusion process (Song et al., 2021). This diffusion process, called the forward process, is defined by
the stochastic differential equation (SDE),

dXt = −αXt dt+
√
2 dWt, X0 ∼ νdata, t ∈ [0, T ], (1)

for some α ≥ 0, where Wt denotes the Brownian motion in Rd and T > 0 is the terminal time. It
can then be shown that the time-reversal of this process, Yt := XT−t admits a weak formulation as a
solution to the SDE,

dYt = αYtdt+ 2∇ log pT−t(Yt)dt+
√
2dWt, Y0 ∼ pT , t ∈ [0, T ), (2)

where pt denotes the marginal density of Xt (Haussmann & Pardoux, 1986). Therefore, simulating
samples from νdata = p0 can be achieved by solving the diffusion process in (2), which requires
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t = 0.000 t = 3.437 t = 5.902 t = 7.597 t = 8.702 t = 9.374 t = 9.743 t = 9.918 t = 9.983 t = 9.998 t = 9.999
Closest

training data

Figure 1: Samples generated using the empirical score function on CIFAR-10 compared to the closest
image in the dataset, illustrating memorisation of the training data.

an approximation of the score function, ∇ log pt. This is achieved by fitting a time-dependent deep
neural network to minimise a weighted L2-distance called the (population) score matching loss:

ℓsm(s; τ) :=

∫
EXt [∥s(Xt, t)−∇ log pt(Xt)∥2] τ(dt), (3)

where τ is a probability measure over (0, T ] that determines the weighting of the timepoints. Since
∇ log pt is unknown, typically the (population) denoising score matching loss ℓdsm, which differs
from ℓsm(s) only by a constant, is used instead and is then approximated using the dataset, forming
the empirical denoising score matching loss ℓ̂dsm (see equations (6) and (8)). The score network
s(x, t) is trained on this objective using standard stochastic optimisation methods relying on mini-
batching. Once an approximation is obtained, samples are generated by numerically solving the
reverse-time SDE, (2). Both score matching and sampling introduce distinct challenges and design
choices that impact the quality of model output (Karras et al., 2022).

Score matching presents a key difference from standard supervised learning. In the space of all L2

score functions, the empirical objective ℓ̂dsm possesses a unique minimiser—the empirical score
function—as a result of the integration over Xt|X0 (see Lemma 1). This contrasts with traditional
supervised learning, where the empirical risk minimisation problem can have infinitely many solutions
(e.g., in overparameterised regression) and often requires regularisation to be well-posed. As shown in
Figure 1, sampling with this empirical score leads to exact recovery of the training data (Pidstrigach,
2022). This behaviour is distinct from ’benign overfitting’, a phenomenon from the deep learning
literature where interpolating the data does not necessarily prevent generalisation (Bartlett et al.,
2021; Zhang et al., 2021). This divergence suggests that existing theory may be insufficient to explain
the success of diffusion models, highlighting the need for new frameworks tailored to this setting.

Recently, there has been a drive towards developing theory for better understanding the unique
structure of diffusion models. The most developed subset of this work focuses on connecting sample
quality to score matching by deriving upper bounds on distribution error (e.g. KL divergence, total
variation, or Wasserstein distance) between model samples and the data distribution, controlling it
by the population score matching loss (De Bortoli et al., 2021; De Bortoli, 2022; Lee et al., 2022;
Chen et al., 2023; Benton et al., 2024; Potaptchik et al., 2024). These results, often referred to as
convergence bounds, typically take the form,

Distribution error ≲ ℓsm(s) + ∆,

where ∆ is the discretisation error of the sampling scheme, which can be made small with sufficiently
fine discretisation. However, since ℓsm is not computable, these bounds say little about performance
under empirical guarantees—that is, their generalisation properties. One line of work, initiated by
Oko et al. (2023) and extended in (Azangulov et al., 2024; Tang & Yang, 2024), applies classical
uniform convergence theory to bound the generalisation gap from the decomposition,

ℓsm(s) = ℓ̂sm(s) + ℓsm(s)− ℓ̂sm(s)︸ ︷︷ ︸
generalisation gap

, (4)

where ℓ̂sm denotes the empirical counterpart to ℓsm. These results rely on covering number bounds
for specific classes of neural networks and, while informative, they are limited to carefully chosen
model classes and do not account for algorithmic properties. An alternative approach by De Bortoli
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(2022) uses a decomposition of the Wasserstein distance that leverages convergence properties of
the empirical measure. Though more model-agnostic, this method overlooks how diffusion models
generate novel data. Both lines of work are fundamentally algorithm-independent, in that they lack
any utilisation of the algorithmic aspects that uniquely define diffusion models. Recent efforts aim to
incorporate algorithmic effects by restricting the problem. For instance, Shah et al. (2023); Chen et al.
(2024) consider Gaussian mixture targets, while Li et al. (2023); Yang (2022) study random feature
models. These settings allow for finer analysis of the role of the score matching algorithm, but remain
limited in scope, leaving open the challenge of developing a more general algorithm-dependent theory
of generalisation in diffusion models.

As noted earlier, if the empirical score matching loss was completely minimised and sampling was
performed perfectly, the diffusion model would simply return training data, failing to generalise.
Therefore, the observed success of diffusion models in producing novel data implies that, in practice,
they either avoid completely minimising ℓ̂sm or must avoid perfectly sampling. This suggests that
(implicit) regularisation in the score matching or sampling algorithm is crucial for generalisation,
making algorithmic considerations essential for understanding diffusion models.

1.1 OUR CONTRIBUTIONS

We introduce score stability, a general, algorithm-dependent framework for analysing diffusion
model generalisation based on the classical approach of algorithmic stability. This framework
quantifies an algorithm’s dependence on individual training examples, from which we derive expected
generalisation gap bounds for score matching losses. Using the score stability framework, we then
analyse several examples of score matching algorithms, identifying three distinct sources of implicit
regularisation in diffusion model training and sampling: noising, sampler, and optimisation-induced
regularisation.

Denoising regularisation. To begin with, we consider the empirical risk minimisation algorithm
(ERM) that minimises ℓ̂dsm over a hypothesis class H. Through a score stability analysis, we reveal a
regularisation source within this objective when early stopping of the forward process is used—a
standard practice in the diffusion model literature. Utilising properties of the noising forward process,
we obtain generalisation gap bounds with near-linear rate, ϵ−d∗/4(ϵ−d∗/2N−2 +minH ℓ̂sm)

c/2 for
any c < 1, where ϵ > 0 is the early stopping time and d∗ is the dimension of the data support.

Sampler regularisation. We then apply this analysis to discrete-time sampling algorithms, deriving
statistical guarantees for the expected KL divergence between the true data distribution and samples
generated by the diffusion model. The bound we derive is formed of two stages: we obtain generic
rates ϵ−1/2(ϵ−d∗/2N−2+minH ℓ̂sm)

c/d∗
but when N−2 and minH ℓ̂sm are sufficiently small relative

to ϵ, we obtain bounds with rates ϵ−d∗/4(ϵ−d∗/2N−2 + minH ℓ̂sm)
c/2 that are faster in N and

minH ℓ̂sm. To derive this bound, we utilise regularisation brought about by the coarseness of the
discretisation. We find that by increasing discretisation coarseness, we can improve the generalisation
gap bound at the expense of worsening the discretisation error term.

Optimisation regularisation. Finally, we consider the role of the optimisation scheme, analysing
stochastic gradient descent (SGD) with gradient clipping and weight decay. On the model class,
we assume only structural assumptions typical in the optimisation literature, including non-global
Lipschitz and smoothness assumptions. While this initially yields bounds that grow with the number
of iterations, we more closely inspect the impact of the high-variance gradient estimator used in
diffusion training. We show this gradient noise induces a contractive behaviour in the training
dynamics, which we harness to obtain stability bounds that do not grow with the number of iterations
(Proposition 14), showing that the noisy dynamics enable tighter generalisation guarantees.

2 BACKGROUND

Suppose that the data distribution νdata is on Rd and we are provided a finite dataset of samples
S = {x1, ..., xN} which we assume are sampled independently and identically (i.i.d.) from νdata. As
discussed in the introduction, diffusion models are formed of two distinct stages. The first stage, score
matching, consists of learning an approximation to the score function ∇ log pt using the dataset S. In
this work, we take a score function to be any function belonging to the set L0(Rd × [0, T ];Rd), the
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set of Borel measurable functions of the form Rd × [0, T ] → Rd. Then, a score matching algorithm
is taken to be any mapping of the form Asm : (∪∞

N=1(Rd)⊗N )× Ω → H where H is a measurable
subset of L0(Rd × [0, T ];Rd). Here, Ω is the event space belonging to a probability space (Ω,F ,P).

The second stage of diffusion models, sampling, consists of generating samples with the learned
score function. We take a sampling algorithm to be a mapping of the form, Asamp : H → P(Rd)
where P(Rd) denotes the set of Borel measures on Rd. Typically, sampling is performed using an
approximation to the reverse process given in (2), replacing ∇ log pt with the learned score function
s(·, t) and replacing its initial distribution, pT with a data-independent prior, pprior = N (0, σ2

priorI). In
the case of α > 0, we choose σ2

prior = α−1 so that the prior coincides with the stationary distribution
of the forward process, and when α = 0 we simply set σ2

prior = 2T . With this, we arrive at the SDE,

dŶt = αŶtdt+ 2s(Ŷt, T − t)dt+
√
2dWt, Ŷ0 ∼ pprior. (5)

Thus, a sample is generated by sampling from ŶT , or more commonly, the process is terminated
early, sampling from ŶT−ϵ for some small ϵ > 0. Therefore, diffusion models are density estimation
algorithms formed from the composition Asamp ◦Asm.

Denoising score matching and overfitting. As stated in the introduction, computing ℓsm requires
access to the population score function, ∇ log pt. So instead, the (population) denoising score
matching loss is used in its place:

ℓdsm(s; τ) := EX0∼ν

[ ∫
EXt|X0

[∥s(Xt, t)−∇ log pt|0(Xt|X0)∥2|X0] τ(dt)

]
, (6)

which differs from ℓsm(s) only by a constant Csm, (see Lemma 16) whilst being easier to approximate
without access to ∇ log pt (Hyvärinen, 2005). Since pt|0 is a Gaussian kernel, its score is given by,

∇y log pt|0(y|x) =
µtx− y

σ2
t

, µt = e−αt, σ2
t = α−1(1− µ2

t ). (7)

In practice, the objective in (6) is further approximated via Monte Carlo estimation using the dataset
which leads to the empirical denoising score matching loss,

ℓ̂dsm(s;S, τ) :=
1
N

∑N
i=1

∫
EXt|X0

[∥s(Xt, t)−∇ log pt|0(Xt|xi)∥2|X0 = xi] τ(dt). (8)

In the following lemma, we highlight the important property that this can equivalently be defined as
the denoising score matching objective for the process X̂t which evolves as in (1) but with the initial
distribution given by the empirical distribution, X̂0 ∼ 1

N

∑N
i=1 δxi

(dx).

Lemma 1. The objective ℓ̂dsm(s;S, τ) is identical, up to a constant, to the objective

ℓ̂sm(s;S, τ) :=

∫
E[∥s(X̂t, t)−∇ log p̂t(X̂t)∥2|S]τ(dt), (9)

where p̂t is the marginal density of X̂t. Therefore, any minimiser of ℓ̂dsm(·;S, τ) on
L0(Rd × [0, T ];Rd) is identical to ∇ log p̂t a.e. for any t ∈ supp(τ).

See Appendix A.2 for the proof. This lemma shows that, unlike in traditional supervised learning
problems, the empirical objective here admits a single unique minimiser, the empirical score function,
∇ log p̂t. The nature of this score function and the samples it generates has been the focus of several
recent studies, notably (Pidstrigach, 2022) which shows that with perfect sampling, any score function
sufficiently close to ∇ log p̂t recovers the training data.

Other notation. When the score matching algorithm Asm is random, we use Asm(S) as shorthand
for the random score function (x, t, ω) 7→ Asm(S, ω)(x, t). Given two random score functions s, s′,
we let Γ(s, s′) denote the set of all couplings of these random functions (Appendix A.1 for details).

3 SCORE STABILITY AND GENERALISATION

Algorithmic stability is a classical technique in learning theory used to understand the generalisation
properties of a variety of important learning algorithms (Kearns & Ron, 1999; Devroye & Wagner,
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1979; Bousquet & Elisseeff, 2002; Hardt et al., 2016). While there are various formulations, they all
share the common aim of connecting properties of a learning algorithm to its robustness under changes
in the dataset. Its use has primarily been focused around regression and classification problems—in
this section, we propose a notion of stability that applies specifically to diffusion models.

We introduce the notion of score stability which quantifies how sensitive a score matching algo-
rithm Asm is to individual changes in the dataset. We do this by defining the adjacent dataset
Si := {x1, ..., xi−1, x̃, xi+1, ..., xN} where x̃ ∼ νdata, independent from S, and then measuring the
similarity between the score functions ŝ = Asm(S) and ŝi = Asm(S

i).

Definition 2. A score matching algorithm Asm is score stable with constant εstab > 0 if for any
i ∈ [N ] it holds that,

ES,x̃

[
inf

(ŝ,ŝi)∈Γi

∫
E[∥ŝ(Xt, t)− ŝi(Xt, t)∥2|X0 = x̃, S, x̃] τ(dt)

]
≤ ε2stab,

where Γi = Γ(Asm(S), Asm(S
i)).

Since Asm may be random, we define score stability in terms of the best-case coupling of the random
score functions ŝ, ŝi. We recall that Γ(·, ·) denotes the set of couplings between two random score
functions, and when it is not random, it is given by the singleton Γi = {(Asm(S), Asm(S

i))}. In
the following theorem, we connect score stability to generalisation by controlling the expected
generalisation gap by the score stability constant.

Theorem 3. Suppose that the score matching algorithm Asm is score stable with constant εstab. Then,
with ŝ = Asm(S), it holds that∣∣E[ℓdsm(ŝ; τ)]1/2 − E

[
ℓ̂dsm(ŝ;S, τ)

]1/2∣∣ ≤ εstab. (10)

Furthermore, it holds that

E
[
ℓsm(ŝ; τ)

]
− E

[
ℓ̂sm(ŝ;S, τ)

]
≤ 2 εstab E

[
ℓ̂dsm(ŝ;S, τ)

]1/2
+ ε2stab. (11)

With Theorem 3, we obtain that the generalisation gap for both the denoising score matching loss and
the score matching loss decays at the same rate as score stability. We can further simplify the bound
for the score matching loss using the fact that ℓ̂dsm and ℓ̂sm are identical up to a constant, to obtain,

E
[
ℓsm(ŝ; τ)

]
≲ E

[
ℓ̂sm(ŝ; τ)

]
+ εstab C

1/2
sm + ε2stab.

One should expect that if the score matching algorithm is effective, both ŝ and ŝi converge to the
ground truth as N grows, and thus εstab should decrease to 0. Ascertaining the rate at which N
decreases requires an analysis of the algorithm at hand, hence the categorisation of algorithmic
stability as an algorithm-dependent approach. This contrasts with uniform learning, which utilises
control over the hypothesis class, providing a worst-case bound that is independent from the algorithm.

In the following sections, we apply the framework of score stability to some common learning settings
for diffusion models. We derive estimates of the score stability constant for these algorithms and
identify features that promote generalisation.

4 EMPIRICAL SCORE MATCHING AND IMPLICIT REGULARISATION

We begin our examples by considering the score matching algorithm that minimises the empirical
denoising score matching loss. Given a hypothesis class H ⊆ L0(Rd × [0, T ];Rd), we define this
algorithm by,

Aerm(S) = argmins∈Hℓ̂dsm(s;S, τ).

While this algorithm is not often used in practice, it is the natural analogue to empirical risk minimi-
sation from traditional supervised learning and thus serves as a canonical example. We consider the
setting of the manifold hypothesis where the data distribution is supported on a submanifold of Rd.

Assumption 4. Suppose that νdata is supported on a smooth submanifold of Rd that has dimension
d∗ and reach τreach > 0. Furthermore, its density on the submanifold, pν , satisfies cν := inf pν > 0.

5
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The reach describes the maximum distance where the projection to the manifold is uniquely defined
and therefore, it quantifies the maximum curvature of the manifold. We refer to Appendix A.3 for the
full definition. Several recent works have considered the assumption that νdata lies on a submanifold
of Rd. These works argue that d∗ can often be far smaller than d and so dependence with respect to
d∗ over d is favourable (De Bortoli, 2022; Pidstrigach, 2022; Loaiza-Ganem et al., 2024; Potaptchik
et al., 2024; Huang et al., 2024). The assumption that the density is bounded from below has also
appeared in several of these works (Potaptchik et al., 2024; Huang et al., 2024). We also make the
following assumption about the class of score networks.
Assumption 5. Suppose there exists DH ≥ 0 such that for any s, s′ ∈ H, it holds that

∥s(·, t)− s′(·, t)∥L∞ ≤ DH/σ2
t , for all t ∈ supp(τ).

Under these assumptions, we obtain the following estimate for the stability constant.
Proposition 6. Suppose that assumptions 4 and 5 hold and that ϵ := inf supp(τ) ∈ (0, τ2reach), then
for any c ∈ (0, 1) and sufficiently large N , the score matching algorithm Aerm is score stable with,

ε2stab ≲ C
(
CCsmN

−2 + E[ℓ̂sm(ŝ)]
)c
, C =

D2
H

σ4
ϵ
∨ 1

cνσd∗
ϵ
.

An interesting feature of Proposition 6 is that generalisation bounds under only basic assumptions
about the structure of the hypothesis class without any additional regularisation. This contrasts with
algorithmic stability in the setting of traditional supervised learning, where empirical risk minimi-
sation is stable only when restricting the hypothesis class or with the use of explicit regularisation
(Zhang et al., 2021; Bousquet & Elisseeff, 2002). Here, we show that the denoising score matching
loss possesses the unique property that it is stable without the need for additional regularisation,
suggesting that the denoising score matching loss possesses a form of implicit regularisation.

When d∗ > 4, for ϵ sufficiently small, we have that C = O(c−1
ν ϵ−d∗/2), Csm = O(d∗ϵ−1). Since

the bound only depends on d∗ and not d, this suggests that diffusion models are automatically
manifold-adaptive. The bound also heavily depends on ϵ, with it being smaller for larger ϵ and
growing exponentially fast as ϵ approaches zero, indicating that the natural regularisation present in
the score matching objective is more prevalent at larger noise scales. The requirement to have ϵ > 0
is closely related to the technique of early stopping which is frequently used in the diffusion model
literature (Song & Kingma, 2021; Karras et al., 2022). This is where the backwards process Ŷt is
terminated early by some small amount of time to avoid irregularity issues of the score function when
close to convergence. Other theoretical works have also identified the importance of early stopping in
the generalisation properties of diffusion models (Oko et al., 2023; Azangulov et al., 2024).

Proof summary We now provide a brief summary of the proof of Proposition 6. The first step
of the proof technique utilises a fundamental property of the empirical denoising score matching
objective, ℓ̂dsm(s;S, τ): that it is strongly convex in s in a data-dependent weighted L2-space. Strong
convexity is often used in algorithmic stability analyses, especially in deriving stability bounds for
linear models—here we borrow a similar approach, but we analyse the stability of the algorithm in
function space. With this, we arrive at the following inequality (see Lemma 19):∫

E[∥ŝ(X̂t, t)− ŝi(X̂t, t)∥2]τ(dt) ≲ E[ℓ̂sm(ŝ)] + εstab
N (C

1/2
sm + εstab), (12)

where εstab is the (yet-to-be bounded) score stability constant of Aerm.

The second step of the proof technique utilises a characteristic property of the heat kernel—that it
smooths out functions. In particular, we utilise the celebrated Harnack inequality of Wang (1997)
that captures this property by showing that for any positive measurable ϕ : Rd → R+, x, y ∈ Rd, it
holds that

E[ϕ(Xt)|X0 = x] ≤ E[ϕ(Xt)
p|X0 = y]1/p exp

(µ2
t∥x−y∥2

2(p−1)σ2
t

)
,

for any t > 0, p > 1. Utilising this bound, we convert the upper bound in (12) to a bound on the
stability constant. The full proof can be found in Appendix C.

5 STOCHASTIC SAMPLING AND SCORE STABILITY

In practice, the backwards process in (5) cannot be sampled exactly, so we instead rely on approx-
imations based on numerical integration schemes. In this section, we investigate how algorithmic
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stability interacts with these sampling schemes. We consider the Euler-Maruyama-type sampling
scheme proposed in (Benton et al., 2024; Potaptchik et al., 2024) which discretises at the timesteps
(tk)

K
k=0, where tk = T − (1 + κ)

T−1
κ −k for large k. The quantity κ > 0 is chosen freely and we

choose K ∼ log(ϵ−1)/ log(1 + κ) so that tK ≈ ϵ (see Appendix D for details). By sampling its
terminating iterate ŷK , we obtain a sampling algorithm, Aem, that maps a score function s to the
distribution law(ŷK), which approximates the distribution law(Ŷϵ).

In the previous section, we identified that early stopping of the backwards process benefits gen-
eralisation. In the present section, we will consider how coarseness of the discretisation scheme
produces similar benefits. It is often the case that the score function is trained only at those time steps
considered by the sampler, i.e. using the time-weighting, τ̂κ(dt) = 1

K

∑K−1
k=0 δT−tk(dt) (Ho et al.,

2020). As a result, the effective stopping time of the algorithm can be much larger than the early
stopping time, ϵ. In the following proposition, we demonstrate how this benefits generalisation.
Proposition 7. Consider the setting of Proposition 6 with α = 1 and set τ = τ̂κ, then for sufficiently
large N , κ ≤ ϵ−1/4 and any c ∈ (0, 1), we have that for qK = Aem ◦Aerm(S),

E[D(pϵ∥qK)] ≲ E[ℓ̂⋆sm,κ] +B
1
2
κ (1 + κ)−d∗

+ Bκ

Csm
(1 + κ)−2d∗

+ κ(1 + κ)d∗ log(ϵ−1)2 + de−2T ,

where Bκ = Csm

cν
(Csm

cν
N−2 + E[ℓ̂⋆sm,κ])

cϵ−d∗
, ℓ̂⋆sm,κ := infH ℓ̂sm(h;S, τ̂κ).

The second and third terms of the bound in Proposition 7 are due to the score stability of the ERM
algorithm and decay as κ increases. The fourth term of the bound captures the discretisation error
and therefore increases with κ. What this result captures is that there is a trade-off between sampler
accuracy and generalisation that is managed by the discretisation of the diffusion model. In the
following corollary, this trade-off is optimised.
Corollary 8. Consider the setting of Proposition 7, then for any c ∈ (0, 1) and sufficiently small ϵ,
there exists κ > 0 such that with qK = Aem ◦Aerm(S)

E[D(pϵ∥qK)] ≲

{
B

1
2
κ + C−1

smBκ, if Bκ ≤ log(ϵ−1)2,

log(ϵ−1)B
1

2(d∗+1)
κ + (C−1

sm + d∗) log(ϵ−1)2B
1

d∗+1
κ + de−2T , otherwise.

The primary strength of this result over (Oko et al., 2023; Azangulov et al., 2024) is that we assume
little about the hypothesis class. Their results require carefully constrained network architectures and
a specific early stopping time to control complexity. In contrast, our result holds for any sufficiently
small early stopping time, relying instead on a carefully chosen discretisation scheme, which is
usually tuned in practice (Karras et al., 2022; Williams et al., 2024). The main drawback is that our
general approach does not exploit the model class to adapt to smoothness properties of the underlying
measure, which we leave for future work.

6 STOCHASTIC OPTIMISATION AND IMPLICIT REGULARISATION

To learn the score function, it is common to choose it from a parametric hypothesis class {sθ : θ ∈
Rn} (e.g. a deep neural network) by minimising ℓ̂dsm via stochastic optimisation (Karras et al., 2024).
In this section, we consider the score stability of this setting, focusing on stochastic gradient descent
(SGD) with gradient clipping and weight decay. We consider the standard gradient estimator: given
the mini-batch (x′

i)
NB
i=1 of size NB ≪ N we define the random estimator,

G(θ, (x′
i)

NB
i=1) =

1
NBP

∑NB

i=1

∑P
j=1wti,j∇θ∥sθ(Xi,j , ti,j)−∇ log pti,j |0(Xi,j |x)∥2, (13)

where we define the random variables Xi,j = µti,jx
′
i + σti,jξi,j , ti,j ∼ w−1

t τ(dt), ξi,j ∼ N(0, Id).
The additional variance introduced by the random variables ξi,j and ti,j leads to a gradient estima-
tor with significantly higher variance than in standard supervised learning. This presents several
challenges during training, and various strategies have been proposed to mitigate this issue (Karras
et al., 2024; Song & Kingma, 2021). For example, the weighting function w : [0, T ] → R+ can be
tuned to reduce variance (Karras et al., 2022) or the number of resamples P ∈ N can be increased.
We consider the following iterative scheme, defined for a given weight decay constant λ > 0 and
clipping value C > 0:

θk+1 = (1− ηkλ)θk − ηk ClipC(Gk(θk, (xi)i∈Bk
)), (14)

7
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where ηk > 0 and Bk ⊂ [N ] are the learning rates and mini-batch indices for each iteration k ∈ N
and we define the clipping operator ClipC(v) = (1∧(C∥v∥−1))v. Both gradient clipping and weight
decay are widely used in diffusion model training and are typically motivated by their stabilising
effect on optimisation, minimising the impact of the high variance of the gradient estimator (Song
et al., 2021; Ho et al., 2020). Throughout this section, we take the mini-batch Bk to be i.i.d. and
uniformly sampled from [N ] without replacement. For the sake of simplicity, we suppose that the
iterative scheme is terminated after K ∈ N iterations, where K is fixed and independent of the data.

6.1 STABILITY OF SGD WITH WEIGHT DECAY AND CLIPPING

In our analysis, we avoid restricting the score network to a specific parametric class and instead make
structural assumptions based on its smoothness properties. We recall that a function is Lipschitz with
constant L ≥ 0 if it is differentiable and its directional derivatives are uniformly bounded by L.
Assumption 9 (Smoothness of the score network). There exists L : Rd × (0, T ] → R+ and
M : Rd × (0, T ] → R+ such that for almost all x ∈ Rd, t ∈ (0, T ], sθ(x, t) is Lipschitz and smooth
(gradient-Lipschitz) in θ ∈ Rn with constants L(x, t) and M(x, t), respectively. Furthermore, there
exists constants L,M ≥ 0 such that for any x ∈ supp(νdata),∫

E[L(Xt, t)
2|X0 = x] τ(dt) ≤ L

2
,

∫
E[M(Xt, t)

2|X0 = x] τ(dt) ≤ M
2
.

The use of Lipschitz and smoothness assumptions is commonplace in the analysis of optimisation
schemes (Nesterov, 2018; Hardt et al., 2016). However, the assumption differs slightly from the
usual in that we only require these properties to hold almost everywhere with respect to the input
distribution and we allow the Lipschitz and smoothness constants to vary with the input, provided
their square averages remain bounded. This relaxation enables us to accommodate common models
that would otherwise violate global smoothness assumptions, such as ReLU networks.
Assumption 10. Suppose there exists Bℓ > 0 such that for any θ ∈ Rn, it holds that

ℓ̂dsm(sθ; {x}, δt) ≤ B2
ℓ /σ

4
t , for each x ∈ supp(νdata), t ∈ supp(τ). (15)

This property requires that the supported score functions are made of denoising functions that are
concentrated on a compact set. To highlight that this can be achieved quite easily, we note that with
the naive estimate s(x, t) = −x/σ2

t , (15) is satisfied with B2
ℓ = E[∥X0∥2].

In the following proposition we demonstrate score stability bounds in the case that the step size is
decaying with a rate of 1/k.
Proposition 11. Consider the score matching algorithm Asm : S 7→ sθK for some fixed K ∈ N
where (θk)k is as given in (14). Suppose that assumptions 9 and 10 hold and ηk ≤ η̄/k for all k < K,
for some η̄ ∈ (0, λ−1). Then, we obtain that Asm is score stable with constant,

ε2stab ≲

(
C

λ
∨R

)1+ η̄υ
η̄υ+1 L

2

(η̄υ) ∨ 1

(
C

η̄

) 1
η̄υ+1 NBK

η̄υ
η̄υ+1

N
,

where R2 = E[∥θ0∥2], υ = (MBℓC
1/2
τ + L

2 − λ) ∨ 0 and Cτ =
∫
σ−4
t τ(dt).

Since the score matching algorithm is random, to control the stability constant we construct a
coupling of the random score functions Asm(S) and Asm(S

i) through a coupling of the optimisation
trajectories associated with training on S versus Si.

6.2 UTILISING NOISE IN THE GRADIENT ESTIMATOR

The primary drawback of Proposition 11 is that the bound grows with the number of iterations. This is
particularly problematic since diffusion models often require numerous steps due to the high-variance
gradient estimator. In this section, we improve this dependence by explicitly leveraging the noise
in the gradient estimator. The idea that stochasticity in optimisation can act as a form of implicit
regularisation has motivated the development of numerous learning algorithms and theoretical works
in recent years (Srivastava et al., 2014; Bishop, 1995; Mou et al., 2018; Pensia et al., 2018). Here,
we investigate how the noise intrinsic to the gradient estimator for ℓ̂dsm can play a similar role in
promoting generalisation in diffusion models.

8
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To incorporate the effects of the gradient noise, we consider a simplified model in which the noise
from the stochastic gradient estimator is approximated with a second-order Gaussian approximation:

θk+1 = (1− ηλ)θk − ηE
[
ClipC(Gk)

∣∣θk, Bk, S
]
+ ηCov

(
ClipC(Gk)

∣∣θk, Bk, S
)1/2

ξk, (16)

where ξk ∈ Rd is a standard Gaussian and we use Gk := Gk(θk, Bk). This approximation can be
justified by observing that the inner summation in (13) is over conditionally i.i.d. variables, once
conditioned on θ,B and S. Therefore, the gradient estimator G becomes approximately Gaussian as
P grows large. For this analysis, we assume the following lower bound on the gradient noise.
Assumption 12. There exists a positive semi-definite matrix Σ ∈ Rn×n such that for any x ∈ supp(ν)
and θ ∈ Rn,

Covt∼τ,Xt|X0

(
ClipC(∇θ∥sθ(Xt, t)− x∥2)

∣∣X0 = x
)
≽ Σ.

Furthermore, the eigenvalues of Σ, (λi)
n
i=1, possess the spectral gap λgap := minλi ̸=0 λi > 0.

We use the matrix Σ to dictate the geometry on which we perform our analysis. In particular, we
consider the weighted norm ∥v∥

Σ
+ := vTΣ

+
v where Σ

+
is the pseudoinverse matrix.

Assumption 13. For almost all x ∈ Rd, t ∈ (0, T ], sθ(x, t) is Lipschitz and smooth (gradient-
Lipschitz) in θ ∈ Rn with respect to the seminorm ∥ · ∥

Σ
+ and with constants L(x, t) and M(x, t),

respectively. Furthermore, there exists constants L,M ≥ 0 such that for any x ∈ supp(νdata),∫
E[L(Xt, t)

4|X0 = x] τ(dt) ≤ L
4
,

∫
E[M(Xt, t)

4|X0 = x] τ(dt) ≤ M
4
.

By requiring that the Lipschitz and smoothness properties hold with respect to ∥ · ∥
Σ

+ , we effectively
require that the gradient estimator adds noise in all directions aside from those that do not change the
function (e.g. along symmetries in the parameter space). With this, we arrive at our time-convergent
score stability bound for SGD.
Proposition 14. Consider the score matching algorithm Asm : S 7→ sθK for some fixed K ∈ N
where (θk)k is as given in (16). Suppose that assumptions 10, 12 and 13 hold, then there exists some
η̄ > 0 such that, if supp ηp ≤ η̄, we obtain that Asm is score stable with constant

ε2stab ≲
L
2
C2(P + n)

λgapN
min

{
ηminλgapλ

2

PNBC

K−1∑
k=0

ηk, exp

(
c̃

PNBC

ηminλgapλ2

)}
,

where c̃ ≲ (M4BℓC
1/2
τ + L

2

4)(PNBλgap)
−1/2 ∨ 1, ηmin = mink ηk.

In this bound, we recover the 1√
N

score stability bounds from Proposition 11 while also introducing
the property that the bound does not grow endlessly with the number of iterations. This property
is obtained using the noise in the gradient estimator and is not possible without additional noise.
Through this analysis, we identify the generalisation benefit of a property unique to diffusion models
and how they interact with SGD.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a general algorithm-dependent framework for analysing the generalisation
capabilities of diffusion models. We introduce score stability, which quantifies an algorithm’s
sensitivity to the dataset, and use it to derive expected generalisation gap bounds. Applying this
framework to several common algorithms, we derive closed-form bounds and identify several
previously overlooked sources of implicit regularisation in diffusion models. First, our analysis
of empirical risk minimisation finds that the denoising score matching objective provides inherent
stability guarantees without further regularisation (denoising regularisation). We then analyse how
score stability interacts with discrete-time samplers, identifying that coarse discretisation can improve
generalisation guarantees (sampler regularisation). Finally, we consider stochastic optimisation
schemes for score matching, obtaining stability guarantees (optimisation regularisation).

This work opens several avenues for future research. Key directions include developing high-
probability bounds, developing bounds on privacy and memorisation, tightening our analysis by
incorporating data or model properties, like smoothness, and extending the framework to compare
different sampling algorithms, such as the probability flow ODE.
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A FURTHER BACKGROUND

We begin with some further details on notation and lemmas used throughout this work and provide
proofs for the lemmas in Section 2.

A.1 RANDOM SCORE MATCHING ALGORITHMS

We begin with some additional details on how random score matching algorithms are defined in this
work. Recalling the probability space (Ω,F ,P), we define the set of random score functions,

S :=
{
s : Rd × [0, T ]× Ω : s(·, ·, ω) ∈ L0(Rd × [0, T ];Rd)

}
.

For any random score matching algorithm Asm : (∪∞
N=1(Rd)⊗N )× Ω → L0(Rd × [0, T ];Rd), we

use Asm(S) as shorthand for the random score function (ω, x, t) 7→ Asm(S, ω)(x, t) belonging to S .

Given two random score functions s, s′, let Γ(s, s′) denote the set of all couplings of these functions
which we define as,

Γ(s, s′) :=
{
(s̃, s̃′) ∈ S × S : s̃ ≃ s, s̃′ ≃ s′

}
,

where s̃ ≃ s denotes the fact that for any bounded measurable test function ϕ : L0(Rd×[0, T ];Rd) →
R, it holds that, ∫

ϕ(s(·, ·, ω))dP =

∫
ϕ(s̃(·, ·, ω))dP.

A.2 PRELIMINARY LEMMAS

For the score matching loss bound, we begin with the fact that the score matching loss is equivalent
to the denoising score matching loss up to an added constant Song et al. (2021); Hyvärinen (2005).

Lemma 15. For any t > 0, y ∈ Rd, we have

∇ log pt(y) =
µtE[X0|Xt = y]− y

σ2
t

, ∇ log p̂t(y) =
µtE[X̂0|X̂t = y, S]− y

σ2
t

. (17)

Proof. We begin by showing that the conditional score is an unbiased estimate of ∇ log pt. For any
x ∈ Rd, t > 0, we have

E[∇ log pt|0(Xt|X0)|Xt = x] =

∫
∇x log pt|0(x|y) p0|t(y|x)dy

=

∫
∇ log pt|0(x|y)

pt|0(x|y)p0(y)
pt(x)

dy

=

∫
∇pt|0(x|y)

p0(y)

pt(x)
dy.

Therefore, using the exchangeability of gradients and integrals (note that pt|0 is C∞), we arrive at

E[∇ log pt|0(Xt|X0)|Xt = x] =
∇pt(x)

pt(x)
(18)

= ∇ log pt(x). (19)

Alternatively, using (7), we obtain that the left-hand side takes the form,

E[∇ log pt|0(Xt|X0)|Xt = x] =
µtE[X0|Xt = x]− x

σ2
t

,

completing the proof of the first equality in (17). For the second equality, concerning that empirical
score function, the proof follows similarly once the empirical measure 1

N

∑N
i=1 δxi

is considered in
place of νdata.
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Lemma 16. For any integrable score function s, it holds that

ℓdsm(s; τ) = ℓsm(s; τ) + Csm,

where, given s⋆(x, t) := ∇ log pt(x), we define

Csm :=

∫
µ2
t

σ4
t

E[TrCov(X0|Xt)]τ(dt) = ℓdsm(s
⋆; τ). (20)

Proof. Let s be any score function. Using the equality in (19), we obtain the following bias-variance
decomposition of ℓdsm(s; τ):

ℓdsm(s; τ)

=

∫
E
[
∥s(Xt, t)−∇ log pt|0(Xt|X0)∥2

]
τ(dt)

=

∫
E
[
∥s(Xt, t)−∇ log pt(Xt)∥2

]
τ(dt) +

∫
E
[
∥∇ log pt|0(Xt|X0)−∇ log pt(Xt)∥2

]
τ(dt)

= ℓsm(s; τ) +

∫
E
[
TrCov

(
∇ log pt|0(Xt|X0)

∣∣∣Xt

)]
τ(dt).

Once we note that,

TrCov
(
∇ log pt|0(Xt|X0)

∣∣∣Xt

)
= TrCov

(
µtX0 − x

σ2
t

∣∣∣∣Xt

)
=

µ2
t

σ4
t

TrCov(X0|Xt),

we obtain the bound ℓdsm(s; τ) = ℓsm(s; τ) + Csm from the statement. To derive the equality
Csm = ℓdsm(s

⋆; τ), we use that ℓsm(s⋆; τ) = 0 and so we obtain ℓdsm(s
⋆; τ) = 0 + Csm.

Similarly, there is an equivalence between the empirical forms of the denoising score matching loss
and the score matching loss,

ℓ̂dsm(s;S, τ) = ℓ̂sm(s;S, τ) + Ĉsm, (21)

where

Ĉsm :=

∫
µ2
t

σ4
t

E[TrCov(X̂0|X̂t, S)|S]τ(dt) = ℓ̂dsm(ŝ
⋆;S, τ), (22)

and ŝ⋆(x, t) = ∇p̂t(x). This follows immediately from the above proof once the empirical measure
1
N

∑N
i=1 δxi is considered in place of νdata. This effectively completes the proof of Lemma 1 in

Section 2.
Lemma 1. The objective ℓ̂dsm(s;S, τ) is identical, up to a constant, to the objective

ℓ̂sm(s;S, τ) :=

∫
E[∥s(X̂t, t)−∇ log p̂t(X̂t)∥2|S]τ(dt), (23)

where p̂t is the marginal density of X̂t. Therefore, any minimiser of ℓ̂dsm(·;S, τ) on
L0(Rd × [0, T ];Rd) is identical to ∇ log p̂t a.e. for any t ∈ supp(τ).

Proof. The proof follows nearly immediately from (21). Since pt|0 is C∞, ∇ log pt|0 is measurable
and thus its empirical average ∇ log p̂t must be also. Therefore, the score function s⋆(x, t) =
∇ log p̂t(x) satisfies ŝ⋆ ∈ L0(Rd × [0, T ];Rd) as well as,

ℓ̂sm(ŝ
⋆;S, τ) = 0.

Now let s ∈ L0(Rd × [0, T ];Rd) be any minimiser of ℓ̂dsm(·;S, τ). Through the equivalence of ℓ̂dsm
and ℓ̂sm up to a constant, it follows that s must also be a minimiser of ℓ̂sm(·;S, τ) and, due to the
existence of ŝ⋆, must satisfy ℓ̂sm(s;S, τ) = 0 also. Letting t ∈ supp(t), we note that since t > 0, we
must have that pt|0 has full support and thus, s(·, t) = s⋆(·, t) almost everywhere.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 MANIFOLDS

We also introduce some basic properties of smooth manifolds, primarily referencing Aamari et al.
(2019). We define the manifold reach and include a known property of this quantity.
Definition 17. The reach of a set A ⊂ Rd, is defined by τA = infp∈A d(p,Med(A)), where we
define the set,

Med(A) =
{
z ∈ Rd : ∃p, q ∈ A s.t. p ̸= q, ∥p− z∥ = ∥q − z∥

}
.

Lemma 18. Suppose that the measure µ is supported on a manifold M with reach τM > 0 and
dimension d∗. Then, for any r ≤ τM , we have

µ(Br(x)) ≥
∣∣∣ inf
Br(x)

pµ

∣∣∣ rd∗
,

where pµ denotes the density of µ with respect to the volume measure on M .

For the proof of this lemma, we refer to the proof of Proposition 4.3 in Aamari et al. (2019) or Lemma
III.23 in Aamari (2017).

B PROOFS FOR THE GENERALISATION GAP BOUNDS

We now provide provide the proof of theorem 3 that bound the generalisation gap under score stability
guarantees. For the sake of brevity, throughout this section we suppress the notation for the time
weighting, for example, using the shorthand ℓ̂sm(s;S) in place of ℓ̂sm(s;S, τ).
Theorem 3. Suppose that the score matching algorithm Asm is score stable with constant εstab. Then,
with ŝ = Asm(S), it holds that∣∣E[ℓdsm(ŝ; τ)]1/2 − E

[
ℓ̂dsm(ŝ;S, τ)

]1/2∣∣ ≤ εstab. (24)

Furthermore, it holds that

E
[
ℓsm(ŝ; τ)

]
− E

[
ℓ̂sm(ŝ;S, τ)

]
≤ 2 εstab E

[
ℓ̂dsm(ŝ;S, τ)

]1/2
+ ε2stab. (25)

Proof. Setting ŝ = Asm(S) and ŝi = Asm(S
i), we use the property that (ŝ, x̃) and (ŝi, xi) are

distributed identically to obtain that,

E[ℓdsm(ŝ; τ)] = E[ℓ̂dsm(ŝ; {x̃})]

= E
[ 1

N

N∑
i=1

ℓ̂dsm(ŝ
i; {xi})

]
= E

[ 1

N

N∑
i=1

∫
EXt

[∥ŝi(Xt, t, ω)−∇ log pt|0(Xt|xi)∥2|X0 = xi, S] τ(dt)

]
.

Therefore, it follows from the triangle inequality in L2-norm that∣∣∣E[ℓdsm(ŝ; τ)]1/2 − E[ℓ̂dsm(ŝ;S)]1/2
∣∣∣ ≤ E

[
1

N

N∑
i=1

∫
E[∥ŝ(Xt, t)− ŝi(Xt, t)∥2|X0 = xi, S] τ(dt)

]1/2
Note that if the algorithm Asm is stochastic, the right-hand side would hold regardless of how ŝ|S, x̃
and ŝi|S, x̃ were coupled. Therefore the most efficient coupling can be chosen, leading to the bound,∣∣∣E[ℓdsm(ŝ;τ)]1/2 − E[ℓ̂dsm(ŝ;S)]1/2

∣∣∣ (26)

≤ E
[

inf
(ŝ,ŝi)∈Γi

1

N

N∑
i=1

∫
E[∥ŝ(Xt, t)− ŝi(Xt, t)∥2|X0 = xi, S] τ(dt)

]1/2
≤ εstab, (27)

15
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completing the proof of the bound in (24).

To obtain the bound in (25), we use Lemma 16 to derive

E[ℓsm(ŝ; τ)] = E[ℓ̂sm(ŝ;S)] + E[ℓdsm(ŝ; τ)− ℓ̂dsm(ŝ;S)] + E
[
ℓ̂dsm(∇ log p̂t;S)

]
− ℓdsm(∇ log pt; τ). (28)

Since ℓ̂dsm(·;S) is a unbiased estimator of ℓsm(·; τ), we have that

ℓdsm(∇ log pt; τ) = E[ℓ̂dsm(∇ log pt;S)] ≥ E[ℓ̂dsm(∇ log p̂t;S)], (29)

where the inequality follows from the fact that ∇ log p̂t minimises ℓ̂dsm. Furthermore, using (27), we
deduce the bound,

|E[ℓdsm(ŝ; τ)− ℓ̂dsm(ŝ;S)]|

=
(
E[ℓdsm(ŝ; τ)]1/2 + E[ℓ̂dsm(ŝ;S)]1/2

)∣∣∣E[ℓdsm(ŝ;S)]1/2 − E[ℓ̂dsm(ŝ;S)]1/2
∣∣∣

≤
(
2E[ℓ̂dsm(ŝ;S)]1/2 + εstab

)
εstab

= 2εstabE[ℓ̂dsm(ŝ;S)]1/2 + ε2stab. (30)

Thus, substituting (29) and (30) in to (28) recovers the bound in (25) in the statement.

We obtain upper bounds relying on the fact that the constant separating the score matching loss from
the denoising score matching loss is larger on average in the empirical case. One could obtain lower
bounds through our techniques but this would require an analysis of the rate of convergence of this
constant which is beyond the scope of this paper.

C PROOFS FOR STABILITY OF EMPIRICAL DENOISING SCORE MATCHING

In this section, we provide the proof for Theorem 3, where the algorithm that minimises ℓ̂dsm(·;S, τ)
over some class of score functions H is shown to be score stable.

C.1 ON-AVERAGE STABILITY OF THE ERM ALGORITHM

We begin with an important lemma that shows that under minimal assumptions, ŝ = Aerm(S) and
ŝi = Aerm(S) are close in L2 space, averaged over the full dataset. The first half of this proof utilises
the fact that ℓ̂dsm is 1-strongly convex in a weighted L2 space, exploiting a well-known relationship
between strong-convexity and algorithmic stability (e.g. see (Bousquet & Elisseeff, 2002; Charles &
Papailiopoulos, 2018; Vary et al., 2024; Attia & Koren, 2022)).

Lemma 19. Suppose that Aerm is score stable with constant εstab, then for any i ∈ [N ], we obtain,

E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)
]
≤ 8E[ℓ̂sm(ŝ)] +

8

N
εstab(C

1/2
sm + εstab) (31)

where ŝ = Aerm(S), ŝ
i = Aerm(S).

Proof. Choose i ∈ [N ] and let ŝ = Aerm(S), ŝ
i = Aerm(S

i) so that ŝ ∈ argminH ℓ̂dsm(·;S, τ), ŝi ∈
argminH ℓ̂dsm(·;Si, τ). The proof begins with the following simple expression, that holds for all
j ∈ [N ]:

2

∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi −∇ log pt|0(y|xj)

〉
pt|0(dy|xj)

=

∫
∥ŝi(y, t)−∇ log pt|0(y|xj)∥2 pt|0(dy|xj)−

∫
∥ŝ(y, t)−∇ log pt|0(y|xj)∥2 pt|0(dy|xj)

+

∫
∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xj).

16
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By averaging over j ∈ [N ] and integrating with respect to τ(dt), we arrive at the upper bound,

2

N

∑
j∈[N ]

∫ ∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi −∇ log pt|0(y|xj)

〉
pt|0(dy|xj) τ(dt)

= ℓ̂dsm(ŝ
i;S, τ)− ℓ̂dsm(ŝ;S, τ) +

∫ ∫
∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)

≥
∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt), (32)

where the inequality follows from the fact that ℓ̂dsm(ŝ;S, τ) ≤ ℓ̂dsm(s;S, τ) for any score function
s ∈ H. Additionally, the left-hand side is upper bounded using the Cauchy-Schwarz inequality to
obtain,

2

N

∑
x∈S

∫ ∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi −∇ log pt|0(y|x)

〉
pt|0(dy|x) τ(dt)

=
2

N

∑
x∈Si

∫ ∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi(y, t)−∇ log pt|0(y|x)

〉
pt|0(dy|x) τ(dt)

+
2

N

∫ ∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi(y, t)−∇ log pt|0(y|xi)

〉
pt|0(dy|xi) τ(dt)

− 2

N

∫ ∫ 〈
ŝi(y, t)− ŝ(y, t), ŝi(y, t)−∇ log pt|0(y|x̃)

〉
pt|0(dy|x̃) τ(dt)

≤ 2ℓ̂sm(ŝ
i;Si, τ)1/2

(∫ ∫
∥ŝi(y, t)− ŝ(y, t)∥2 p̂it(dy) τ(dt)

)1/2

+
2

N
ℓ̂dsm(ŝ

i; {xi}, τ)1/2
(∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xi) τ(dt)

)1/2

+
2

N
ℓ̂dsm(ŝ

i; {x̃}, τ)1/2
(∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|x̃) τ(dt)
)1/2

, (33)

where p̂it(dy) =
1
N

∑
x∈Si pt|0(dy|x). Combining the expressions in (32) and (33) and taking the

expectation, we derive the bound,

E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)
]

≤ 2E[ℓ̂sm(ŝi;Si, τ)]1/2E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂it(dy) τ(dt)
]1/2

+
2

N
E[ℓ̂dsm(ŝi; {xi}, τ)]1/2E

[ ∫ ∫
∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xi) τ(dt)

]1/2
+

2

N
E[ℓ̂dsm(ŝi; {x̃}, τ)]1/2E

[ ∫ ∫
∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|x̃) τ(dt)

]1/2
≤ 2E[ℓ̂sm(ŝ;S, τ)]1/2E

[ ∫ ∫
∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)

]1/2
+

2

N
εstab

(
E[ℓ̂dsm(ŝ;S, τ)]1/2 + E[ℓdsm(ŝ, )]1/2

)
,

where we recall that εstab is the stability constant for Aerm. Here, we have used the fact that (ŝ, S)
has the same law as (ŝi, Si) and also E[ℓ̂dsm(ŝi; {x̃})] = E[ℓ̂dsm(ŝ;S)] and E[ℓ̂dsm(ŝi; {xi})] =
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E[ℓdsm(ŝ)]. By solving the quadratic equation, we deduce that the above inequality implies that,

E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)
]

≤
(
E[ℓ̂sm(ŝ;S, τ)]

1
2 +

√
E[ℓ̂sm(ŝ;S, τ)] + 2

N εstab(E[ℓdsm(ŝ; τ)]
1
2 + E[ℓ̂dsm(ŝ;S, τ)]1/2)

)2

≤ 4E[ℓ̂sm(ŝ;S, τ)] +
4

N
εstab(E[ℓdsm(ŝ; τ)]

1
2 + E[ℓ̂dsm(ŝ;S, τ)]

1
2 ).

We simplify the above expression further using Theorem 3. Using the stability assumption, it follows
from (24) that E[ℓdsm(ŝ)]1/2 ≤ E[ℓ̂dsm(ŝ)]1/2 + ε. Furthermore, from Lemma 16, we have

E[ℓ̂dsm(ŝ)] = E[ℓ̂sm(ŝ)] + E[Ĉsm]

≤ E[ℓ̂sm(ŝ)] + Csm,

where we recall the definitions of Ĉsm and Csm from (22) and (20) and recall that E[Ĉsm] ≤ Csm

from (29). Thus, from Young’s inequality, we obtain the bound

E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)
]

≤ 4E[ℓ̂sm(ŝ)] +
4

N
εstab(2E[ℓ̂sm(ŝ)]1/2 + 2C1/2

sm + εstab)

≤ 8E[ℓ̂sm(ŝ)] +
4

N
εstab(εstab/N + 2C1/2

sm + εstab)

≤ 8E[ℓ̂sm(ŝ)] +
8

N
εstab(C

1/2
sm + εstab).

C.2 PROOF OF PROPOSITION 6

To obtain the stability bound in Proposition 6, we convert the result in Lemma 19, which is a bound
in L2(p̂t), to a bound in L2(pt|0(·|x̃) which is required of score stability. For this, we rely on two
further lemmas, the first of which is a fundamental property of the Ornstein-Uhlenbeck process,
captured by the Harnack inequality of Wang (1997) (see Theorem 5.6.1 Bakry et al. (2014)).

Lemma 20 (Wang’s Harnack inequality). For each positive measurable function ϕ : Rd → R, every
t > 0, p > 1 and every x, y ∈ Rd, it holds that

E[ϕ(Xt)|X0 = x] ≤ E[ϕ(Xt)
p|X0 = y]1/p exp

(
µ2
t∥x− y∥2

2(p− 1)σ2
t

)
.

This result describes the stability of the diffusion semigroup under changes in initial position and
shows that as t grows, the distribution of Xt depends less on X0. The second lemma, for which we
provide a proof, controls the empirical measure,

ν̂(dx) =
1

N

N∑
i=1

δxi
(dx),

on balls around training examples.

Lemma 21. Suppose that Assumption 4 is satisfied, then for any i ∈ [N ], r ∈ (0, τreach] and any
decreasing function ϕ : (0,∞) → R+, we have the bound

E
[
ϕ
(
ν̂(Br(xi))

)]
≤ ϕ(N−1) exp(−cνN

2rd
∗
) + ϕ(cνr

d∗
/2),

whenever N ≥ 4c−1
ν r−d∗

, where cν = inf pν .
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Proof. We rewrite the object ν̂(Br(xi)) as an empirical average of Bernoulli random variables

ν̂(Br(xi)) =
1

N

N∑
j=1

1xj∈Br(xi) =
1

N
+

1

N

∑
j ̸=i

1xj∈Br(xi).

When conditioned on xi, the random variables (1xj∈Br(xi))j ̸=i are independently and identically
distributed Bernoulli random variable with probability µ = νdata(Br(xi)). To utilise concentration
of the empirical process, we first rewrite the probability

P
(
ν̂(Br(xi)) ≤ µ/2

∣∣∣xi

)
≤ P

(
SN−1 ≤ Nµ

2
− 1

∣∣∣xi

)
, SN−1 =

∑
j ̸=i

1xj∈Br(xi).

Therefore, by Chernoff’s inequality we obtain

P
(
ν̂(Br(xi)) ≤ µ/2

∣∣∣xi

)
≤ exp

(
− µ−1(Nµ/2− 1)2

)
≤ exp(−N2µ/16),

where the last bound holds when N ≥ 4µ−1. Therefore, using the above bound as well as the trivial
bound ν̂(Br(xi)) ≥ N−1 we apply the law of total expectation to obtain,

E
[
ϕ
(
ν̂(Br(xi))

)∣∣∣xi

]
= E

[
ϕ
(
ν̂(Br(xi))

)∣∣∣ν̂(Br(xi)) > µ/2
]
+ P

(
ν̂(Br(xi)) ≤ µ/2

∣∣∣xi

)
ϕ(N−1)

≤ ϕ(µ/2) + exp(−N2µ/16)ϕ(N−1).

To control µ, we use Lemma 18 which asserts that µ ≥ cνr
d∗

.

This now brings us to the proof of the proposition, which we first restate.

Proposition 6. Suppose that assumptions 4 and 5 hold and that ϵ := inf supp(τ) ∈ (0, τ2reach), then
for any c ∈ (0, 1) and sufficiently large N , the score matching algorithm Aerm is score stable with,

ε2stab ≲ C
(
CCsmN

−2 + E[ℓ̂sm(ŝ)]
)c
, C =

D2
H

σ4
ϵ
∨ 1

cνσd∗
ϵ
.

Proof. We use the shorthand ℓ̂sm(s) = ℓ̂sm(s;S, τ), ℓ̂dsm(s) = ℓ̂dsm(s;S, τ), ℓsm(s) = ℓsm(s; τ)
for the sake of brevity. We start from Lemma 19 which provides a bound on the difference between
ŝi and ŝ in L2(p̂t) and use it to develop a bound in L2(p̂t|0(·|x̃)), as required by score stability. In
particular, we define the quantity

ε2 = E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xi) τ(dt)

]
,

so that, by the symmetric of the algorithm, Aerm is score stable with constant ε (we have that ε < ∞
from Assumption 5. Therefore, from Lemma 19, we have

E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy) τ(dt)
]
≤ 8E[ℓ̂sm(ŝ)] +

8

N
ε(C1/2

sm + ε).

We proceed using Lemma 20 with ϕ(y) = ∥ŝi(y, t) − ŝ(y, t)∥2 to obtain that for any j ∈ [N ],
p > 1, ∫

∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xi)

≤
(∫

∥ŝi(y, t)− ŝ(y, t)∥2p pt|0(dy|xj)

)1/p

exp

(
µ2
t∥xi − xj∥2

2(p− 1)σ2
t

)
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Given any subset of the dataset B ⊂ S with xi ∈ B we can average over the above bound to obtain,∫
∥ŝi(y, t)− ŝ(y, t)∥2 pt|0(dy|xi)

≤ 1

|B|
∑
x∈B

(∫
∥ŝi(y, t)− ŝ(y, t)∥2p pt|0(dy|x)

)1/p

exp

(
µ2
t diam(B)2

2(p− 1)σ2
t

)

≤
(

1

|B|
∑
x∈B

∫
∥ŝi(y, t)− ŝ(y, t)∥2p pt|0(dy|x)

)1/p

exp

(
µ2
t diam(B)2

2(p− 1)σ2
t

)

≤ ν̂(B)−1/p

(∫
∥ŝi(y, t)− ŝ(y, t)∥2p p̂t(dy)

)1/p

exp

(
µ2
t diam(B)2

2(p− 1)σ2
t

)
≤ (DH/σ2

t )
2(1−1/p)ν̂(B)−1/p

(∫
∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy)

) 1
p

exp
(µ2

t diam(B)2

2(p−1)σ2
t

)
,

where in the final inequality we use the L∞ bound in Assumption 5. Integrating with respect to τ
and taking the expectation, we obtain,

ε2 ≤ (DH/σ2
ϵ )

2/qE
[
ν̂(B)−1/p

]
E
[ ∫ ∫

∥ŝi(y, t)− ŝ(y, t)∥2 p̂t(dy)τ(dt)
]
exp

(
µ2
ϵ diam(B)2

2(p− 1)σ2
ϵ

)
≤ (DH/σ2

ϵ )
2/qE

[
ν̂(B)−q/p

]1/q(
8E[ℓ̂sm(ŝ)] +

8

N
ε(C1/2

sm + ε)

)1/p

exp

(
µ2
ϵ diam(B)2

2(p− 1)σ2
ϵ

)
,

where we define q := (1− 1/p)−1. Using Young’s inequality, it follows that for any λ > 0,

ε2 ≤ D2
H

σ4
ϵλ

qq
E
[
ν̂(B)−q/p

]
exp

(
qµ2

ϵ diam(B)2

2(p− 1)σ2
ϵ

)
+

λp

p

(
8E[ℓ̂sm(ŝ)] +

8

N
ε(C1/2

sm + ε)

)
.

Setting κ := 8λp/pN , we can rearrange this to obtain the quadratic inequality,

(1− κ)ε2 − C1/2
sm κε ≤

(
8

Npκ

)q/p
D2

H
σ4
ϵ q

E
[
ν̂(B)−q/p

]
exp

(
qµ2

ϵ diam(B)2

2(p− 1)σ2
ϵ

)
+NκE[ℓ̂sm(ŝ)].

Requiring that κ ≤ 1/2, we solve the quadratic to obtain the inequality,

ε2

4
≤ Csmκ

2 +

(
8

Npκ

)q/p
D2

H
σ4
ϵ q

E
[
ν̂(B)−q/p

]
exp

(
qµ2

ϵ diam(B)2

2(p− 1)σ2
ϵ

)
+NκE[ℓ̂sm(ŝ)]. (34)

Next, we optimise B by setting B = Bσϵ
(xi)∩S. We apply Lemma 21 with ϕ(r) = r−q/p to obtain

that whenever σϵ ≤ τreach we obtain,

E
[
ν̂(B)−q/p

]
≤ Nq/p exp(−cνN

2rd
∗
) +

(
2

cνrd
∗

)q/p

≤ 2

(
2

cνσd∗
ϵ

)q/p

,

where the second inequality holds whenever N ≥ q/2p. Returning to (34), it follows from the above
that

ε2

4
≤ Csmκ

2 +

(
16

Npcνσd∗
ϵ κ

)q/p
2D2

H
σ4
ϵ q

exp

(
2q

p− 1

)
+NκE[ℓ̂sm(ŝ)]. (35)

We now choose κ by optimising the second two terms of this bound, by which we arrive at the choice

κq/p+1 =
2D2

H
σ4
ϵ pNγ

exp

(
2q

p− 1

)(
16

Npcνσd∗
ϵ

)q/p

,

for some γ > 0. Substituting this in to (35), we arrive at the bound

ε2

4
≤ Csm(Np)−2

(
2D2

H
σ4
ϵ

)2/q

exp

(
4

p− 1

)(
16

cνσd∗
ϵ

)2/p

γ−1/q

+

(
2D2

H
σ4
ϵ

)1/q

exp

(
2

p− 1

)(
16

cνσd∗
ϵ

)1/p(
γ1/p

q
+

1

pγ1/q
E[ℓ̂sm(ŝ)]

)
.
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Optimising γ leads to the bound,

ε2

4
≤

(
2D2

H
σ4
ϵ

) 1
q

exp

(
2

p− 1

)(
16

cνσd∗
ϵ

) 1
p
(
CsmN

−2

(
2D2

H
σ4
ϵ

) 1
q

exp

(
2

p− 1

)(
16

cνσd∗
ϵ

) 1
p

+ E[ℓ̂sm(ŝ)]
) 1

p

≤
(
2D2

H
σ4
ϵ

∨ 16

cνσd∗
ϵ

)
exp

(
4

p− 1

)((
2D2

H
σ4
ϵ

∨ 16

cνσd∗
ϵ

)
CsmN

−2 + E[ℓ̂sm(ŝ)]
)1/p

Optimising p, we obtain

ε2

4
≲

(
2D2

H
σ4
ϵ
∨ 16

cνσd∗
ϵ

)
exp

(
5

2
√
2
log(α−1)1/2−2

)
α, α =

(
2D2

H
σ4
ϵ
∨ 16

cνσd∗
ϵ

)
CsmN

−2+E[ℓ̂sm(ŝ)],

from which the bound in the statement follows. To obtain that κ ≤ 1/2 and N ≥ q/2q, it is sufficient
to require that N is sufficiently large.

D PROOFS FOR SAMPLING AND SCORE STABILITY

In this section, we provide details for the discretisation scheme considered in Section 5 and give the
proof for Proposition 7 and Corollary 8. In the work of Potaptchik et al. (2024), they consider the
following discretisation scheme, based on the scheme of (Benton et al., 2024):

ŷk+1 = µ−1
tk+1−tk

ŷk +
σ2
tk+1−tk

µtk+1−tk

s(ŷk, T − tk) + σtk+1−tk

σT−tk+1

σT−tk

ζk, k ∈ {0, ...,K − 1},

where ζk ∼ N(0, Id) and we recall that the timesteps (tk)Kk=0 are given by,

tk =

{
κk, if k < T−1

κ ,

T − (1 + κ)
T−1
κ −k, if T−1

κ ≤ k ≤ K,

where L = T−1
κ > 0, K = ⌊L + log(ϵ−1)/ log(1 + κ)⌋ and κ > 0, T ≥ 1 is chosen freely. We

recall the following result from Potaptchik et al. (2024).
Lemma 22. Suppose that α = 1 and Assumption 4 holds with diam supp(νdata) ≤ 1. Then, it holds
that,

D(pϵ∥Aem(s)) ≲ ℓsm(s; τ̂) +D(pT ∥p∞) + ∆κ,K ,

∆κ,K = κ+ d∗κ2(K − L)(log(ϵ−1) + sup | log(pν)|),
where we define the measure,

τ̂(dt) =
1

K

K−1∑
k=0

δT−tk(dt).

D.1 COARSE DISCRETISATION AND REGULARISATION

Fix ϵ > 0 and suppose that κ is such that log(ϵ−1)/ log(1 + κ) is an integer. Set K = L +
log(ϵ−1)/ log(1 + κ) so that, according to the discretisation scheme,

tK = T − (1 + κ)− log(ϵ−1)/ log(1+κ) = T − ϵ.

Proof of Proposition 7. Let ŝ = Aerm(S). We begin with Lemma 22, which provides the bound,

E[D(pϵ∥Aem(ŝ))] ≲ E[ℓsm(ŝ;S, τ̂)] +D(pT ∥p∞) + ∆κ,K .

For ϵ sufficiently small we have the bound,

∆κ,K = κ+ d∗κ2 log(ϵ−1)

log(1 + κ)
(log(ϵ−1) + sup | log(pν)|)

≲ κ(1 + κ)d∗ log(ϵ−1)2.
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Using Theorem 3, we obtain that if the algorithm is εstab-score stable, we have

E[ℓsm(ŝ; τ̂)] ≲ E[ℓ̂sm(ŝ;S, τ̂)] + εstabE[ℓ̂dsm(ŝ;S, τ̂)]1/2 + ε2stab

≲ E[ℓ̂sm(ŝ; τ̂)] + εstabC
1/2
sm + ε2stab

Using Proposition 6 we obtain that with τ = τ̂ , Aerm is score stable, with constant,

ε2stab ≲ C
(
CCsmN

−2 + E[ℓ̂sm(ŝ)]
)c

≲ c−1
ν σ−d∗

T−tK−1

(
c−1
ν σ−d∗

T−tK−1
CsmN

−2 + E[ℓ̂sm(ŝ)]
)c

.

Now by definition, we have that

T − tK−1 = (1 + κ)L−K+1 = ϵ(1 + κ),

so if we take ϵ, κ sufficiently small so that ϵ(1 + κ) ≤ 1
2 , we also have σ2

ϵ(1+κ) ≥ ϵ(1 + κ) and thus
we obtain,

ε2stab ≲ c−1
ν ϵ−d∗/2(1 + κ)−d∗/2

(
c−1
ν ϵ−d∗/2(1 + κ)−d∗/2CsmN

−2 + E[ℓ̂sm(ŝ)]
)c

.

≲ c−1
ν ϵ−d∗

(1 + κ)−d∗
(
c−1
ν CsmN

−2 + E[ℓ̂sm(ŝ)]
)c

,

where in the last inequality, we use that ϵ(1 + κ) ≤ 1/2.

We now proceed by proving Corollary 8 in which the bound in Proposition 7 is optimised.

Proof of Corollary 8. Let τ̃ϵ denote the weak limit of the measure τκ as κ → 0+. Since supp(τ̃ϵ) ⊆
[ϵ, T ] and ϵ > 0, we know that infH ℓ̂sm(·;S, τ̃ϵ) < ∞. From this, we deduce that limκ→0+ Bκ < ∞.

With this there exists κ∗ ≥ 1 which is the smallest quantity satisfying,

(1 + κ∗)2d
∗+2 =

Bκ∗

log(ϵ−1)2
∨ 1.

In the case that Bκ∗ > log(ϵ−1), we have that

B
1/2
κ∗ (1 + κ∗)−d∗

+
Bκ∗

Csm
(1 + κ∗)−2d∗

+ κ∗(1 + κ∗)d∗ log(ϵ−1)2

= B
1

2(d∗+1)

κ∗ log(ϵ−1)
d∗

d∗+1 + (C−1
sm + d∗)B

1
d∗+1

κ∗

≤ B
1

2(d∗+1)

κ∗ log(ϵ−1) + (C−1
sm + d∗)B

1
d∗+1

κ∗ log(ϵ−1)2.

Plus, if Bκ∗ ≤ log(ϵ−1) and therefore κ∗ = 1, then there exists κ such that,

B1/2
κ (1 + κ)−d∗

+
Bκ

Csm
(1 + κ)−2d∗

+ κ(1 + κ)d∗ log(ϵ−1)2 ≲ B1/2
κ +

Bκ

Csm
+ de−T .

Combining these leads to the bound in the statement.

E PROOFS FOR STABILITY OF SGD

In this section, we analyse the stochastic optimisation scheme in (14), deriving the score stability
bounds given in Proposition 11. We begin with a basic lemma that follows from weight decay and
gradient clipping.

Lemma 23. Suppose that ηk < λ−1 for all k ∈ N, then for any K ∈ N, it holds that

∥θK∥ ≤ Ce

λ
∨ ∥θ0∥.
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Proof. We begin with the bound,

∥θk+1∥ ≤ (1− ηkλ)∥θk∥+ ηk∥ClipC(Gk(θk, {xi}i∈Bk
))∥

≤ (1− ηkλ)∥θk∥+ ηkC.

By comparison, this leads to the bound

∥θk∥ ≤ C

K−1∑
k=0

ηk

K−1∏
i=k+1

(1− ηkλ) +

K−1∏
k=0

(1− ηkλ)∥θ0∥

≤ C

K−1∑
k=0

ηk exp

(
λ

k∑
i=0

ηk

)
+ exp

(
− λ

K−1∑
i=0

ηk

)
∥θ0∥

≤ C exp

(
− λ

K−1∑
i=0

ηk + λmax
k

ηk

)K−1∑
k=0

ηk exp

(
λ

k−1∑
i=0

ηk

)
+ exp

(
− λ

K−1∑
i=0

ηk

)
∥θ0∥

Since the sum forms a left Riemann sum, approximating an integral of an increasing function, we can
upper bound it by the integral over exp(λt). Furthermore, we have that λmaxk ηk ≤ 1, which leads
to the bound,

∥θk∥ ≤ Ce exp

(
− λ

K−1∑
i=0

ηk

)∫ ∑K−1
k=0 ηk

0

exp(λt)dt+ exp

(
− λ

K−1∑
i=0

ηk

)
∥θ0∥

≤ Ce

λ

(
1− exp

(
− λ

K−1∑
k=0

ηk

))
+ exp

(
− λ

K−1∑
k=0

ηk

)
∥θ0∥

≤ Ce

λ
∨ ∥θ0∥.

We are now ready to prove Proposition 11.

Proposition 11. Consider the score matching algorithm Asm : S 7→ sθK for some fixed K ∈ N
where (θk)k is as given in (14). Suppose that assumptions 9 and 10 hold and ηk ≤ η̄/k for all k < K,
for some η̄ ∈ (0, λ−1). Then, we obtain that Asm is score stable with constant,

ε2stab ≲

(
C

λ
∨R

)1+ η̄υ
η̄υ+1 L

2

(η̄υ) ∨ 1

(
C

η̄

) 1
η̄υ+1 NBK

η̄υ
η̄υ+1

N
,

where R2 = E[∥θ0∥2], υ = (MBℓC
1/2
τ + L

2 − λ) ∨ 0 and Cτ =
∫
σ−4
t τ(dt).

Proof. Since the stochastic mini-batch scheme, and therefore the resulting score matching algorithm,
is symmetric to dataset permutations, we consider stability under changes in the N th entry of the
dataset, without loss of generality. Let θk be the process given in (14), using the dataset S and let θ̃k
be the same process using SN instead of S:

θ̃k+1 = (1− ηλ)θ̃k − ηk ClipC(Gk(θ̃p, {x̃i}i∈Bk
)), θ̃0 = θ0,

where x̃i = xi for i ̸= N , x̃N = x̃. By having the processes share the same mini-batch indices Bk

and gradient approximation Gk (i.e. sharing the same random time variables ti,j and noise ξi,j), we
couple the processes θk and θ̃k.
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We proceed by first controlling the stability of the gradient estimator, computing the bound,

∥Gk(θk,(xi)i∈Bk
)−Gk(θ̃k, (xi)i∈Bk

)∥

≤ 1

NBP

∑
i∈Bk

P∑
j=1

wti,j∥∇sθk(Xi,j , ti,j)
T (sθk(Xi,j , ti,j)−∇ log pti,j |0(Xti,j |xi))

−∇sθ̃k(Xti,j , ti,j)
T (sθ̃k(Xti,j , ti,j)−∇ log pti,j |0(Xti,j |xi)))∥

≤ 1

NPP

∑
i∈Bk

P∑
j=1

wti,j

(
∥∇sθk(Xti,j , ti,j)−∇sθ̃k(Xti,j , ti,j)∥∥sθk(Xti,j , ti,j)

−∇ log pti,j |0(Xti,j |xi)∥+ ∥∇sθ̃k(Xti,j , ti,j)∥∥sθk(Xti,j , ti,j)− sθ̃k(Xti,j , ti,j)∥
)

≤ 1

NPP

∑
i∈Bk

P∑
j=1

wti,j

(
M(Xti,j , ti,j)∥sθk(Xti,j , ti,j)−∇ log pti,j |0(Xti,j |xj)∥

+ L(Xti,j , ti,j)
2
)
∥θk − θ̃k∥.

We control the expectation of this by first noting that,

E
[
wti,j

(
M(Xti,j , ti,j)∥sθk(Xti,j , ti,j)−∇ log pti,j |0(Xti,j |xj)∥+ L(Xti,j , ti,j)

2
)∣∣∣θk, θ̃k, S, x̃]

≤
(∫

E[M(Xt, t)
2|X0 = xi]τ(dt)

)1/2(∫
ℓ̂dsm(sθk ; {xi}, δt)τ(dt)

)1/2

+

∫
E[L(Xt, t)

2|X0 = xi]τ(dt)

≤ MBℓC
1/2
τ + L

2
,

where we define the quantity Cτ :=
∫
σ−4
t τ(dt). From this, it follows that

E
[
∥Gk(θk, (xi)i∈Bk

)−Gk(θ̃k, (xi)i∈Bk
)∥
∣∣∣θk, θ̃k, S, x̃] ≤

(
MBℓC

1/2
τ + L

2
)
∥θk − θ̃k∥.

Furthermore, we can control the difference between Gk(θ̃k, (xi)i∈Bk
) and Gk(θ̃k, (x̃i)i∈Bk

), using
the fact that they are identical whenever N ̸∈ Bk. Thus, obtaining,

E
[
∥ClipC(G(θk, (xi)i∈Bk

))− ClipC(G(θ̃k, (x̃i)i∈Bk
))∥

∣∣∣θk, θ̃k, S, x̃]
≤ E

[
∥G(θk, (xi)i∈Bk

)−G(θ̃k, (xi)i∈Bk
)∥
∣∣∣θk, θ̃k, S, x̃]

+ E
[
∥ClipC(G(θ̃k, (xi)i∈Bk

))− ClipC(G(θ̃k, (x̃i)i∈Bk
))∥

∣∣∣θk, θ̃k, S, x̃]
≤

(
MBℓC

1/2
τ + L

2
)
∥θk − θ̃k∥+ 2C

NB

N
,

where we have used the fact that P(N ∈ Bk) =
NB

N . Thus, using (14), we obtain that for any k0 ≤ k,

E
[
∥θk+1−θ̃k+1∥

∣∣∣θk0
, θ̃k0

, S, x̃
]

≤
(
1 + ηk

(
MBℓC

1/2
τ + L

2 − λ
))

E
[
∥θk − θ̃k∥

∣∣∣θk0
, θ̃k0

, S, x̃
]
+ 2ηkC

NB

N
.

≤ (1 + ηkυ)E
[
∥θk − θ̃k∥

∣∣∣θk0
, θ̃k0

, S, x̃
]
+ 2ηkC

NB

N
,

where υ = MBℓC
1/2
τ + L

2 − λ. Thus, by comparison, we obtain,

E
[
∥θK − θ̃K∥

∣∣∣θk0 , θ̃k0 , S, x̃
]
≤

K−1∑
i=k0

2ηiC
NB

N

K−1∏
j=i+1

(1 + ηjυ) + ∥θk0 − θ̃k0∥
K−1∏
j=k0

(1 + ηjυ).
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From this we obtain the following:

E[∥θK − θ̃K∥|θk0
= θ̃k0

, S, x̃] ≤ 2C
NB

N

K−1∑
i=k0

ηi exp

( K−1∑
j=i+1

ηjυ

)

≤ 2CNB η̄

N

K−1∑
i=k0

1

i

(
K

i

)η̄υ

≲
CNB

Nυ

(
K

k0

)η̄υ

,

where we use the fact that
∑K−1

j=i+1
1
j ≤ log(K)− log(i). By the law of total probability, we have

E[∥θK − θ̃K∥|θ0]
= E[∥θK − θ̃K∥|θk0 = θ̃k0 ]P(θk0 = θ̃k0 |θ0) + E[∥θK − θ̃K∥|θk0 ̸= θ̃k0 , θ0]P(θk0 ̸= θ̃k0 |θ0)

≲
CNB

Nυ

(
K

k0

)η̄υ

+

(
Ce

λ
∨ ∥θ0∥

)
k0NB

N
,

where in the second inequality, we use Lemma 23. Thus, optimising k0 leads to the bound,

E[∥θK − θ̃K∥|θ0] ≲
(
C

c

) 1
υ+1

(1 + 1/cυ)

(
Ce

λ
∨ ∥θ0∥

) cυ
cυ+1 NB

N
K

cυ
cυ+1 .

Finally, we obtain score stability using the fact that∫
E[∥sθK (Xt, t)−sθ̃K (Xt, t)∥2|X0 = x̃, S]τ(dt)

≤ E
[
L̄2∥θK − θ̃K∥2

]
≤ 2E

[
L̄2

(
Ce

λ
∨ ∥θ0∥

)
∥θK − θ̃K∥

]
≲ L̄2

(
Ce

λ
∨R

)1+ cυ
cυ+1

(
C

c

) 1
cυ+1

(1 + 1/cυ)
NB

N
K

cυ
cυ+1 ,

where R2 = E∥θ0∥2.

F WASSERSTEIN CONTRACTIONS

In this section, we derive the Wasserstein contraction result used in the proof of Proposition 14.
We begin with the more abstract problem of deriving Wasserstein contractions for a discrete time
diffusion process with anisotropic non-constant volatility. We consider stochastic processes given by
the discrete-time update,

xk+1 = (1− ηλ)xk + ηb(xk) +
√
ησ(xk)ξk, (36)

yk+1 = (1− ηλ)yk + ηb̃(yk) +
√
ησ̃(yk)ξk, (37)

for some b, b̃ : Rd → Rd, σ, σ̃ : Rd → Rd×d where ξk ∼ N(0, Id), and we show that the laws of xk

and yk contract in Wasserstein distance. We borrow the strategy developed by Eberle (2016) and
extended in (Eberle & Majka, 2019; Majka et al., 2020), constructing a coupling and a metric for
which exponential contractions of the coupling can be obtained. However, these works are restricted
to the setting of isotropic noise with constant volatility (i.e. σ(x) = cId) and so some careful
modification to the strategy is required. In particular, we analyse this process with respect to the
seminorm ∥ · ∥G+ given by ∥x∥2G+ = xTG+x, where G+ denotes the Moore-Penrose pseudoinverse
of the matrix G. Furthermore, we allow for xk and yk to have different bias and volatility terms and
so controlling for this will also require some modifications to the proof technique.
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To define our coupling we first suppose that there exists a symmetric positive semi-definite matrix
G ∈ Rd×d such that σ(x), σ̃(y) ≽ G1/2 for all x ∈ Rd, and to couple an update from the above
process starting at x, y ∈ Rd, we first define the update,

x̃ = (1− ηλ)x+ ηb(x), ỹ = (1− ηλ)y + ηb̃(y),

x̂ = x̃+
√
η(σ(x)−G1/2)Z ′, ŷ = ỹ +

√
η(σ̃(y)−G1/2)Z ′,

where Z ′ ∼ N(0, Id). We then define the synchronous coupled processes,

X ′ = x̂+
√
ηG1/2Z

Y ′
s = ŷ +

√
ηG1/2Z,

with Z ∼ N(0, Id). We also consider the reflection coupling,

Y ′
r = ŷ +

√
ηG1/2

(
I − 2(G1/2)+eeT (G1/2)+

)
Z, with e = (x̂− ŷ)/∥x̂− ŷ∥G+ (38)

which has the noise act in the mirrored direction. We combine these couplings to arrive at the final
coupling (X ′, Y ′):

Y ′ =


X ′, if ζ ≤ ϕŷ,ηG(X

′)/ϕx̂,ηG(X
′), |⟨e, Z⟩|2 < m2/η and r̂ ≤ r1

Y ′
r , if ζ > ϕŷ,ηG(X

′)/ϕx̂,ηG(X
′), |⟨e, Z⟩|2 < m2/η and r̂ ≤ r1

Y ′
s , otherwise,

(39)

for some fixed m > 0.

We assume the following regularity properties.

Assumption 24. Suppose that b is bounded, satisfying B := supx∈Rn ∥b(x)∥G+ < ∞ and we have
the Lipschitz property, ∥b(x)− b(y)∥G+ ≤ Lb∥x− y∥G+ and ∥σ(x)−σ(y)∥op,G+ ≤ Lσ∥x− y∥G+

for all x, y ∈ Rn and for some Lb, Lσ ≥ 0.

We also allow for b ̸= b̃ and σ ̸= σ̃, making the following assumption.

Assumption 25. Suppose that b, b̃ satisfy ∥b(x)− b̃(x)∥G+ ≤ B̃b, ∥σ(x)− σ̃(x)∥op,G+ ≤ B̃σ for
all x ∈ Rn and for some B̃b, B̃σ ≥ 0.

We define the objects,

R = ∥x− y∥G+ , r̃ = ∥x̃− ỹ∥G+ , r̂ = ∥x̂− ŷ∥G+ , R′ = ∥X ′ − Y ′∥G+ .

We wish to show that R′ contracts in expectation, i.e. it is less than R on average. We modify the
metric to guarantee this is possible. We define the function,

f(r) =

{
1
a (1− e−ar), if r ≤ r2,
1
a (1− e−ar2) + 1

2r2
e−ar2(r2 − r22), otherwise,

where a = 6Lbr1/c0, r1 = 4(1 + η0Lb)B/λ, r2 = r1 +
√
η0 and c0, η0 are defined below. The

coupling and the strategy for proving contractions is closely based on an analysis in Majka et al.
(2020) and for the sake of comparison, we rely on similar notation. We will also heavily borrow
properties of the function f that are proven in this work.

By allowing σ to be non-constant, we run in to additional complications that are controlled by making
the following assumption about the scale of Lσ .

Assumption 26. Suppose that the following three inequalities hold:

n− 1, (λ2/16L2
σ − 1)2 ≥ 32 log

(
8Lσ(6 ∨ (4a))κ

1/2
0√

η(1− e−ar2)c

)
, L2

σ ≤ λ/8n,

for some universal constant κ0.

Under these assumptions, we obtain exponential contractions.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proposition 27. Suppose that assumptions 24, 25 and 26 hold and m =
√
η0/2, then for any η ≤ η0

and x, y ∈ Rd, it holds that

E[f(R′)] ≤ (1− ηc/4)f(r) +
3

2r2
e−ar2(η2B̃2 + ηnB̃2

σ),

where

c := min

{
e−ar2

λ

16
,

1
2e

−ar2r2
1
a (1− e−ar2)

λ

16
,
9L2r21
2c0

e−6Lr21/c0 ,
3Lr1
16

√
η0

}
,

η0 := min

{
λ

4L2
,
16

λ
,
1

2L
,
2c0 log(3/2)λ

2

432L2B2
,
4B2

λ2
,
c20(log(2))

2λ2

2304L2B2

}
,

for some universal c0 and L = 2(Lb − λ)+ + 4η−1/2Lσ

√
2(n− 1).

F.1 THE COUPLING

Before we provide the proof of Proposition 27, we provide an explanation of how the coupling is
arrived at. We begin by discussing the one-dimensional coupling of the Gaussian distribution that
the construction is ultimately based on. Consider the following coupling of N (t, η) and N (s, η) for
t, s ∈ R: with z ∼ N (0, 1),

t′ = t+
√
ηz, (40)

s′ =


t′, if ζ ≤ ϕs,η(t

′)/ϕt,η(t
′), |√ηz| < m̃, and |t− s| ≤ r1,

s−√
ηz, if ζ > ϕs,η(t

′)/ϕt,η(t
′), |√ηz| < m̃, and |t− s| ≤ r1,

s+
√
ηz, otherwise.

(41)

This coupling has the following property given in lemmas 3.1 and 3.2 of Majka et al. (2020).

Lemma 28. For the coupling defined in (40) and (41), we have

E[|t′ − s′|] = |t− s|,

and if η ≤ 4m̃2, we have

E
[
(|t′ − s′| − |t− s|)21|t′−s′|∈I|t−s|

]
≥ 1

2
c0 min(

√
η, |t− s|)√η,

where Ir =

{
(0, r +

√
η), if r ≤ √

η,

(r −√
η, r), otherwise,

for some universal constant c0 > 0.

Thus, through the second bound, we have control of the probability that |t′ − s′| contracts below
|t− s|. The coupling proposed in (39) is a multivariate analogue of this that also accounts for the
diffusion coefficient G1/2. Let the vector e ∈ Rd be as defined in (38), then we obtain that,

⟨e,G+X ′⟩ = ⟨e,G+x̂⟩+
√
h⟨(G1/2)+e, Z⟩,

⟨e,G+Y ′
s ⟩ = ⟨e,G+ŷ⟩+

√
h⟨(G1/2)+e, Z⟩.

Therefore, ⟨e,G+X ′⟩, ⟨e,G+Y ′
s ⟩ are a synchronous coupling of N (⟨e,G+x̂⟩, h) and

N (⟨e,G+ŷ⟩, h). Furthermore, we have

⟨e,G+Y ′
r ⟩ = ⟨e,G+ŷ⟩+

√
h⟨(G1/2)+e, (I − 2(G1/2)+eeT (G1/2)+)Z⟩

= ⟨e,G+ŷ⟩+
√
h⟨(G1/2)+e, Z⟩ − 2

√
h⟨e,G+e⟩⟨(G1/2)+e, Z⟩

= ⟨e,G+ŷ⟩ −
√
h⟨(G1/2)+e, Z⟩,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

and so ⟨e,G+X ′⟩, ⟨e,G+Y ′
r ⟩ is the one-dimensional reflection coupling. Finally we obtain,

ϕŷ,ηG(X
′)

ϕx̂,ηG(X ′)
=

ϕ(G1/2)+(ŷ−x̂),η(G1/2)+G1/2(
√
ηZ)

ϕ0,η(G1/2)+G1/2(
√
ηZ)

= exp

(
− 1

2η
∥√ηZ − (G1/2)+(ŷ − x̂)∥2(G1/2)+G1/2 +

1

2η
∥√ηZ∥2(G1/2)+G1/2

)
= exp

(
− 1

2η
∥ŷ − x̂∥2G+ +

1

η

√
η⟨(G1/2)+(ŷ − x̂), Z⟩

)
= exp

(
− 1

2η
|⟨e,G+(ŷ − x̂)⟩|2 + 1

η

√
η⟨e,G+(ŷ − x̂)⟩⟨(G1/2)+e, Z⟩

)
= exp

(
− 1

2η
(
√
η⟨e,G+Z⟩ − ⟨e,G+(ŷ − x̂)⟩)2 +

|√η⟨(G1/2)+e, Z⟩|2

2η

)
=

ϕ⟨e,G+(ŷ−x̂)⟩,η(
√
η⟨(G1/2)+e, Z⟩)

ϕ0,η(
√
η⟨(G1/2)+e, Z⟩)

=
ϕ⟨e,G+ŷ⟩,η(⟨e,G+X ′⟩)
ϕ⟨e,G+x̂⟩,η(⟨e,G+X ′⟩)

.

From this, we deduce that ⟨e,G+X ′⟩, ⟨e,G+Y ′⟩ are coupled as in (40), (41). The equivalence
follows by setting

t′ = ⟨e,G+X ′⟩, s′ = ⟨e,G+Y ′⟩ (42)

t = ⟨e,G+x̂⟩, s = ⟨e,G+ŷ⟩, z = ⟨(G1/2)+e, Z⟩. (43)

Through this equivalence, we can extend the previous lemma to obtain the following result about the
high dimensional coupling.

Lemma 29. For the coupling defined in (39), we obtain that for η ≤ 4m2, we have the following:

E[R′] = r̂, E
[
(R′ − r̂)21R′∈Ir̂

]
≥ 1

2
c0 min(

√
η, r̂)

√
η,

where c0 and Ir is as in Lemma 28.

Proof. Let {ei}ni=1 be a basis of Rn with respect to the inner product ⟨·, ·⟩G+ with e1 = e. Then, we
have that

(R′)2 =

n∑
i=1

|⟨ei, G+(X ′ − Y ′)⟩|2

= |t′ − s′|2 +
n∑

i=2

|⟨ei, G+(X ′ − Y ′)⟩|2, (44)

where t′, s′ are as defined in (42). For any i ̸= 1, we can use that ei ⊥ e, to obtain that

⟨ei, G+Y ′
r ⟩ = ⟨ei, G+ŷ⟩+

√
h⟨ei, e⟩+ 2

√
h⟨ei, Z⟩

= ⟨ei, G+ŷ⟩+ 2
√
hz.

From this, we obtain that,

⟨ei, G+(X ′ − Y ′
r )⟩ = ⟨ei, G+(x̂− ŷ)⟩ = 0.

This also holds for the synchronous coupling and hence we obtain ⟨ei, G+(X ′−Y ′)⟩ = 0. Combined
with (44), we obtain that R′ = |t′ − s′|. Similarly it can be shown that r̂ = |t − s| and thus, from
Lemma 28, the statement of the lemma follows.
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F.2 PROOF OF PROPOSITION 27

We begin by considering the setting where Z ′ is truncated Gaussian noise and that b = b̃, σ = σ̃.
We will then extend this to the more general setting in Section F.2.3. We begin by decomposing
ξ ∼ N(0, Id) in to directions parallel and perpendicular to the radial vector,

ξ1 = vvT ξ, ξ2 = (I − vvT )ξ, v =
x̃− ỹ

∥x̃− ỹ∥G+

.

We then clip each direction according to constants z̄1, z̄2 > 0 and add them together:
Z ′ = (1 ∧ z̄1∥ξ1∥−1

G+)ξ1 + (1 ∧ z̄2∥ξ2∥−1
G+)ξ2. (45)

To prove that the process is contractive, we consider two cases based on the initial distance r.

F.2.1 THE CASE OF r ≥ r1

When r is large, we can rely on contractive properties following from the weight decay. For this, we
obtain the following.
Lemma 30. Suppose that Assumption 24 holds and that 4z̄1 ≤ λL−1

σ
√
η, 2z̄2 ≤

√
λLσ, η ≤ λ−1.

Then whenever r ≥ 4B/λ, we have

r̂ ≤
(
1− ηλ

8

)
r, (46)

and when r < 4B/λ,
r̂ ≤ (1 + ηL)r, (47)

where L = 2(Lb − λ)+ + 4η−1/2Lσ z̄1.

Proof. From the triangle inequality and the Lipschitz property of b, we obtain
r̃ ≤ (1− ηλ)∥x− y∥G+ + η∥b(x)− b(y)∥G+

≤ (1 + η(Lb − λ)+)r.

Alternatively, we can use the fact that ∥b∥G+ ≤ B to obtain, r̃ ≤ (1− ηλ)r + 2ηB. In particular, if
r ≥ 4B/λ, we obtain r̃ ≤ (1− ηλ/2)r. Next we bound r̂ using the decomposition,
r̂2 = ∥x̃− ỹ +

√
η(σ(x)− σ(y))Z ′∥2G+

= ∥x̃− ỹ +
√
η(σ(x)− σ(y))(1 ∧ z̄1∥ξ1∥−1

G+)ξ1∥2G+ + ∥√η(σ(x)− σ(y))(1 ∧ z̄2∥ξ2∥−1
G+)ξ2∥2G+

≤ ∥x̃− ỹ +
√
η(σ(x)− σ(y))(1 ∧ z̄1∥ξ1∥−1

G+)ξ1∥2G+ (48)
The second term is then bounded by,

∥√η(σ(x)− σ(y))(1 ∧ z̄2∥ξ2∥−1
G+)ξ2∥2G+ ≤ η∥σ(x)− σ(y)∥op,G+(1 ∧ z̄2∥ξ2∥−1

G+)
2∥ξ2∥2G+

≤ ηL2
σ z̄

2
2r

2, (49)
and the first term is bounded by,

∥x̃− ỹ +
√
η(σ(x)− σ(y))(1 ∧ z̄1∥ξ1∥−1

G+)ξ1∥2G+ ≤ r̃2 + ηL2
σ z̄

2
1r

2 + 2
√
ηLσ⟨v,G+ξ1⟩r̃2

≤ (1 + 2
√
ηLσ z̄1)r̃

2 + ηL2
σ z̄

2
1r

2. (50)
We substitute (49) and (50) in to (48) to obtain

r̂2 ≤ (1 + 2
√
ηLσ z̄1)r̃

2 + ηL2
σ(z̄

2
1 + z̄22)r

2

≤ (1 + η(Lb − λ)+)
2(1 + 2

√
ηLσ z̄1)r

2 + ηL2
σ(z̄

2
1 + z̄22)r

2

≤ (1 + η(Lb − λ)+ + 2η3/2(Lb − λ)+Lσ z̄1 + 2
√
ηLσ z̄1 + ηL2

σ(z̄
2
1 + z̄22))r

2

≤ (1 + 2η(Lb − λ)+ + 4
√
ηLσ z̄1)r

2,

where we have used that 2η1/2Lσ z̄1 ≤ 1, η1/2Lσ(z
2
1 + z22) ≤ z̄1, producing the bound in (47). In the

case that r ≤ 4B/λ, we can use the fact that 2η1/2Lσ z̄1 ≤ ηλ/2 and L2
σ(z̄

2
1 + z̄22) ≤ λ/4 to refine

this bound:
r̂2 ≤ (1− ηλ/2)2(1 + 2

√
ηLσ z̄1)r

2 + ηL2
σ(z

2
1 + z22)r

2

≤ (1− ηλ/2)(1− η2λ2/4)2r2 + ηL2
σ(z

2
1 + z22)r

2

≤ (1− ηλ/4)r2.

Using the fact that (1− ηλ/4)1/2 ≤ 1− ηλ/8, we obtain the bound in (46).
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We will also need a property of f given in Majka et al. (2020).
Lemma 31. The function f satisfies the property that for all r ≥ r2,

f
((

1− ηK
2

)
r
)
− f(r) ≤ −ηcf(r).

Using the fact that f is increasing, it follows from lemmas 30 and 31 that,

f(r̂) ≤ f
((

1− ηK
2

)
r
)
≤ (1− ηc)f(r).

Thus, to obtain contractions of E[f(R′)] when r ≥ r1, it is sufficient to show that E[f(R′)|Z ′] ≤
f(r̂). Note that when r̂ ≥ r1 or ∥√ηZ∥ ≥ m, the synchronous coupling is used and so R′ = r̂.
Furthermore, if r̂ < r1 and ∥√ηZ∥ < m, we have that R′ ≤ r2 and thus, using the concavity of f ,
we deduce that

E[f(R′)|Z ′]− f(r̂) ≤ f ′(r̂)(E[R′|Z ′]− r̂) = 0.

Thus, we have shown that whenever r ≥ r1, E[f(R′)|Z ′] ≤ f(r̂).

F.2.2 THE CASE OF r < r1

When r is small we no longer have contractions due to weight decay and must instead rely on
properties of the coupling and function. From Taylor’s theorem we have the following:

f(R′)− f(r̂) = f ′(r̂)(R′ − r̂) +
1

2
sup
θ

f ′′(θ)(R′ − r̂)2.

where the supremum is between all θ ≥ 0 between R′ and r̂. We note that in the present setting,
r̂ ≤ r1 also (this follows from Lemma 30) and furthermore R′ − r̂ ≤ 2m ≤ r2. Therefore, we can
use that f is concave between R′ and r̂ and so f ′′ is negative. Using this fact, as well as the fact that
E[R′|Z ′] = r̂, we obtain the bound,

E[f(R′)|Z ′]− f(r̂) ≤ 1

2
E
[
sup
θ

f ′′(θ)(R′ − r̂)21R′∈Ir̂

]
≤ 1

2
sup
θ∈Ir̂

f ′′(θ)E
[
(R′ − r̂)21R′∈Ir̂

∣∣∣Z ′
]

≤ 1

4
sup
θ∈Ir̂

f ′′(θ)c0 min(
√
η, r̂)

√
η.

Furthermore, we analyse the contractions between r̂ and r using the fact that the function is concave
between these values, obtaining,

f(r̂)− f(r) ≤ f ′(r)(r̂ − r) ≤ f ′(r)ηLr.

Since we have the derivative f ′(r) = e−ar = f ′(r̂)e−a(r−r̂) ≤ f ′(r̂)eaηLr1 , it holds that

f(r̂)− f(r) ≤ f ′(r̂)eaηLr1ηLr̂, (51)

where we have used that f(r̂)− f(r) ≤ 0 holds trivially whenever r ≥ r̂. Putting these together, we
obtain the bound,

E[f(R′)|Z ′]− f(r) ≤ f ′(r̂)eaηLr1ηLr̂ +
1

4
sup
θ∈Ir̂

f ′′(θ)c0 min(
√
η, r̂)

√
η.

To complete the analysis of this case, we borrow a result from Majka et al. (2020).
Lemma 32. The function f , satisfies the property that for all r̂ ∈ [0, r1],

f ′(r̂)eaηLr1ηLr̂ +
1

4
c0 min(

√
η, r̂)

√
η sup

Ir̂

f ′′(r̂) ≤ −chf(r̂).

Between this section and the previous, we have shown that for any x, y ∈ Rn,

E[f(R′)] ≤ (1− ηc/2)f(r),

in the setting where Z ′ is the truncated Gaussian defined in (45) and b = b̃, σ = σ̃.
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F.2.3 FULL NOISE AND INACCURATE DRIFT

We now consider the more general case of b ̸= b̃, σ ̸= σ̃ necessarily and also set Z ′ = ξ, so that it is
Gaussian distributed. We do this by borrowing the contraction analysis above. We use the notation
R′′ = ∥X ′ − Y ′∥G+ to not confuse it with R′ used above. We obtain,

R′′ ≤ R′ + η∥b(y)− b̃(y)∥G+ +
√
η∥(σ(y)− σ̃(y))ξ∥G+ +

√
η∥(σ(x)− σ(y))(Z ′ − ξ1 − ξ2)∥G+

≤ R′ + ηB̃ +
√
ηB̃σ∥ξ∥G+

+
√
η∥σ(x)− σ(y)∥op,G+∥Z ′ − (1 ∧ z̄1∥ξ1∥−1

G+)ξ1 − (1 ∧ z̄2∥ξ2∥−1)ξ2∥G+

≤ R′ + ηB̃ +
√
ηB̃σ∥ξ∥G+ +

√
ηLσr(∥ξ1∥G+1∥ξ1∥G+≥z̄1 + ∥ξ2∥G+1∥ξ2∥G+≥z̄2).

We use the following stability bound for the function f given in the proof of Theorem 2.5 in Majka
et al. (2020).
Lemma 33. For any t, s ≥ 0, we have

f(t)− f(s) ≤ (r−1
2 e−ar2(t ∨ s) + 1)|t− s|.

Thus, the difference between f(R′′) and f(R′) is given by,

f(R′′)− f(R′)

≤ f(R′ + ηB̃ +
√
ηB̃σ∥ξ∥G+ +

√
ηLσr(∥ξ1∥G+1∥ξ1∥G+≥z̄1 + ∥ξ2∥G+1∥ξ2∥G+≥z̄2))− f(R′)

≤ (r−1
2 e−ar2(R′ + ηB̃ +

√
ηB̃σ∥ξ∥G+ +

√
ηLσr(∥ξ1∥G+1∥ξ1∥G+≥z̄1 + ∥ξ2∥G+1∥ξ2∥G+≥z̄2))

+ 1)(ηB̃ +
√
ηB̃σ∥ξ∥G+ +

√
ηLσr(∥ξ1∥G+1∥ξ1∥G+≥z̄1 + ∥ξ2∥G+1∥ξ2∥G+≥z̄2)). (52)

We now control the expected value of this. Using concentration of the χ2 distribution (see Example
2.11 of Wainwright (2019)), we obtain that for any z̄1 =

√
2λgap(G)−1(n− 1),

E[∥ξ2∥2G+1∥ξ2∥G+≥z̄2 ]

≤ λgap(G)−1E[∥ξ2∥21∥ξ2∥≥λgap(G)1/2z̄2 ]

≤ λgap(G)−1

∫ ∞

λgap(G)z̄2
2

P(∥ξ2∥2 ≥ r) dr

+ λgap(G)−1

∫ λgap(G)z̄2
2

0

P(∥ξ2∥ ≥ z̄2) dr

≤ λgap(G)−1

∫ ∞

λgap(G)z̄2
2

exp

(
− (r − (n− 1))2

8n

)
dr

+ λgap(G)−1 exp

(
−

(λgap(G)z̄22 − (n− 1))2

8n

)
z̄2

≤ λgap(G)−1(
√
8(n− 1)π + λgap(G)z̄22) exp

(
−

(λgap(G)z̄22 − (n− 1))2

8(n− 1)

)
≤ λgap(G)−1

(√
8(n− 1)π exp(−(n− 1)/16)

+ λgap(G)z̄22 exp(−z̄42/64)

)
exp

(
−

(λgap(G)z̄22 − (n− 1))2

16(n− 1)

)
≤ κ0λgap(G)−1 exp

(
−

(λgap(G)z̄22 − (n− 1))2

16(n− 1)

)
≤ κ0λgap(G)−1 exp

(
− n− 1

16

)
,

for some universal constant κ0 ≥ 1 (independent of n and z̄). Similarly, we have

E[∥ξ1∥2G+1∥ξ1∥G+≥z̄1 ] ≤ κ0λgap(G)−1 exp

(
−

(λgap(G)z̄21 − 1)2

16

)
,
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for any z̄1 ≥ λgap(G)−1/2. Therefore, we choose z̄1 = λ
4L

−1
σ

√
ηWe now return to (52) using these

bounds as well as the fact that E[R′|Z ′] = r̂. Defining the quantity,

A := κ
1/2
0 λgap(G)−1/2 exp(−(n− 1)/32) + κ

1/2
0 λgap(G)−1/2 exp(−(λgap(G)z̄21 − 1)2/32),

we obtain that for η ≤ min{B̃/2, dB̃2
σ/4, 1/2L, 1/2L

2
σA

2}
E[f(R′′)− f(R′)]

= (r−1
2 e−ar2(E[r̂2]1/2 + ηB̃ +

√
ηdB̃σ +

√
ηLσrA) + 1)(ηB̃ +

√
ηdB̃σ +

√
ηLσrA)

≤ (r−1
2 e−ar2(1 + ηL+

√
ηLσA)r + 1)

√
ηLσrA+

1

r2
e−ar2(η2B̃2 + ηdB̃2

σ)

+ (r−1
2 e−ar2(1 + ηL+

√
ηLσA)r + 1)(ηB̃ +

√
ηdB̃σ)

+ r−1
2 e−ar2(ηB̃ +

√
ηdB̃σ)

√
ηLσr

2A

≤ (4r−1
2 e−ar2r + 1)

√
ηLσrA+

3

2r2
e−ar2(η2B̃2 + ηdB̃2

σ).

When r ≤ r2, we have

(r−1
2 e−ar2(1 + ηL+ 3

√
ηLσA)r + 1)r

≤ (e−ar2(1 + ηL+
√
ηLσA) + 1)r

≤ (e−ar2(1 + ηL+
√
ηLσA) + 1)(a−1(1− e−ar2))−1a−1(1− e−ar)

≤ 4(a−1(1− e−ar2))−1f(r),

where in the final line, we used η ≤ L−1 and
√
ηLσκ

1/2
0 ≤ 1. When r > r2, we have

(r−1
2 e−ar2(1 + ηL+

√
ηLσA)r + 1)r ≤ (e−ar2(1 + ηL+

√
ηLσA) + 1)r−1

2 r2

≤ 2(2 + ear2)f(r).

Thus, we obtain,

E[f(R′′)] ≤ E[f(R′)] +
√
ηLσA

6∨(4a)
1−e−ar2

f(r) +
1

2r2
e−ar2(η2B̃2 + ηdB̃2

σ)

≤ (1− ηc/2 +
√
ηLσA

6∨(4a)
1−e−ar2

)f(r) +
3

2r2
e−ar2(η2B̃2 + ηdB̃2

σ),

where we used ALσ
6∨(4a)

1−e−ar2
≤ √

ηc/4.

G PROOFS FOR THE STABILITY OF THE NOISY GRADIENT ESTIMATOR

Using the Wasserstein contraction obtained in the previous section, we will now prove Proposition
14.
Proposition 14. Consider the score matching algorithm Asm : S 7→ sθK for some fixed K ∈ N
where (θk)k is as given in (16). Suppose that assumptions 10, 12 and 13 hold, then there exists some
η̄ > 0 such that, if supp ηp ≤ η̄, we obtain that Asm is score stable with constant

ε2stab ≲
L
2
C2(P + n)

λgapN
min

{
ηminλgapλ

2

PNBC

K−1∑
k=0

ηk, exp

(
c̃

PNBC

ηminλgapλ2

)}
,

where c̃ ≲ (M4BℓC
1/2
τ + L

2

4)(PNBλgap)
−1/2 ∨ 1, ηmin = mink ηk.

The proof of Proposition follows from an application of Proposition 27 to the process in (16). Similar
to the proof of Proposition 11, we obtain stability estimates by analysing the trajectories θk and θ̃k
trained on S and SN with coupled minibatch indices. In particular, given a set of minibatch indices
B ⊂ [N ] with |B| = NB , if we set

b(θ) := E
[
ClipC(G(θ, (xi)i∈B))

∣∣∣θ,B, S
]
, b̃(θ) := E

[
ClipC(G(θ, (x̃i)i∈B))

∣∣∣θ,B, SN
]

σ(θ) :=
√
ηΣS(θ,B)1/2, σ̃(θ) :=

√
ηΣSN (θ,B)1/2,
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where we use (x̃i)
N
i=1 to denote the dataset SN (i.e. x̃i = xi for all i ̸= N and x̃N = x̃),

then the trajectories θk and θ̃k are updated as in (36), (37). Using the shorthand, vi,j(θ) =
wt(i,j)∇θ∥sθ(X(i,j), t(i,j))−∇ log pt(i,j)|0(X(i,j)|xi)∥2, we obtain the bound,

ΣS(θ,B) ≽ Cov

(
1

PNB

∑
i∈B

P∑
j=1

ClipC(vi,j(θ))

∣∣∣∣θ,B, S

)
≽

1

P

1

N2
B

∑
i∈B

Cov
(
ClipC(vi,j(θ))

∣∣θ,B, S
)

≽
1

PNB
Σ̄.

Therefore, we have σ(θ) ≽
√

η/PNB Σ̄1/2 =: G1/2, and similarly, σ̃(θ) ≽ G1/2. The weighted
norm ∥ · ∥G+ satisfies the property,

∥θ∥G+ ≤ λmax(G
+)1/2∥θ∥ ≤

√
PNB

ηλgap
∥θ∥

Therefore, due to the gradient clipping, we have ∥b(θ)∥G+ ≤
√
PNB/ηλgapC =: B. Furthermore,

by Assumption 13, we apply the same argument used in the proof of Proposition 11 to obtain

∥b(θ)− b(θ′)∥G+ ≤ (M4BℓC
1/2
τ + L

2

4)∥θ − θ′∥G+

so Lb = M4BℓC
1/2
τ + L

2

4. To obtain the Lipschitz constant for the volatility matrix, we first obtain,

σ(θ)− σ(θ′) ≼
√
ηCov

(
1

PNB

∑
i∈B

P∑
j=1

(
(1 ∨ (C∥vi,j(θ)∥−1))vi,j(θ)

− (1 ∨ (C∥vi,j(θ′)∥−1))vi,j(θ
′)
)∣∣∣∣θ,B, S

)1/2

.

From this, we deduce,

∥σ(θ)− σ(θ′)∥op,G+ ≤ √
η sup
∥v∥G+=1

Var
(〈

G+v,
1

PNB

∑
i∈B

P∑
j=1

(
(1 ∨ (C∥vi,j(θ)∥−1))vi,j(θ)

− (1 ∨ (C∥vi,j(θ′)∥−1))vi,j(θ
′)
)〉∣∣∣θ,B, S

)1/2

≤ √
η

(
1

PN2
B

∑
i∈B

Var
(
∥vi,j(θ)− vi,j(θ

′)∥G+

∣∣∣θ,B, S
))1/2

.

To control this further, we use the Lipschitz assumption on to show that υ is Lipschitz also:

∥vi,j(θ)− vi,j(θ
′)∥G+

≤ 2∥sθ(X(i,j), t(i,j))− sθ′(X(i,j), t(i,j))∥G+∥∇θsθ(X(i,j), t(i,j))∥op,G+

+ 2∥sθ(X(i,j), t(i,j))−∇ log pt(i,j)|0(X(i,j)|xi)∥G+∥∇θsθ(X(i,j), t(i,j))

−∇θsθ′(X(i,j), t(i,j))∥op,G+

≤ 2L(X(i,j), t(i,j))
2∥θ − θ′∥G+ +

2c1/2µt

σ2
t

M(X(i,j), t(i,j))∥θ − θ′∥G+ .

Computing the variance of this leads to the bound,

∥σ(θ)− σ(θ′)∥op,G+ ≤ 2

√
η

PNBλgap
(M4BℓC

1/2
τ + L

2

4)∥θ − θ′∥G+ =: Lσ∥θ − θ′∥G+ .

Next, we use a similar argument to the proof of Proposition 11 to obtain

∥b(θ)− b̃(θ)∥G+ ≤

√
PNB

ηλgap
∥b(θ)− b̃(θ)∥ ≤

√
PNB

ηλgap

2C

NB
1N∈B =: B̃b.
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∥σ(θ)− σ̃(θ′)∥op,G+ ≤ √
η

(
1

PN2
B

∑
i∈B

Var
(
∥ClipC(vi,j(θ))− ClipC(vi,j(θ

′))∥G+

∣∣∣θ,B, S
))1/2

≤
√

η

PN2
B

Var
(
∥ClipC(vN,j(θ))− ClipC(vN,j(θ

′))∥G+

∣∣∣θ,B, S
)1/2

1N∈B

Since 0 ≤ ∥ClipC(vi,N (θ))− ClipC(ṽi,N (θ′))∥G+ ≤ 2C
√

PNB

ηλgap

∥σ(θ)− σ̃(θ′)∥op,G+ ≤
√

η

PN2
B

√
PNB

ηλgap
C1N∈B

≤

√
1

NBλgap
C1N∈B

=: B̃σ.

Therefore we have satisfied all assumptions of Proposition 27 aside from Assumption 26. To satisfy
this assumption we use that Lσ ∼

√
η/P and so if η is sufficiently small, or P is sufficiently large,

this assumption is satisfied once n is sufficiently large also.

Using Proposition 27, we obtain the contraction,

E[d(θk+1, θ̃k+1)|θk, θ̃k, Bk] ≤ (1− ηc/2)d(θk, θ̃k) +
3

2r2
e−ar2

(
η 4PC2

λgapNB
1N∈B + ηn

NBλgap
C2

1N∈B

)
.

Using the fact that P(N ∈ Bk) = NB/N , we obtain,

E[d(θk+1, θ̃k+1)] ≤ (1− ηc/2)E[d(θk, θ̃k)] + η
3

2r2
e−ar2

(
4PC2

λgap
+

n

λgap
C2

)
1

N
.

Thus, by comparison, we obtain the bound,

E[d(θK , θ̃K)] ≤ 3

2r2
e−ar2

(
4PC2

λgap
+

n

λgap
C2

)
1

N
η

K−1∑
k=0

(1− ηc/2)k

=
3

2r2
e−ar2

(
4PC2

λgap
+

n

λgap
C2

)
1− (1− ηc/2)K

Nc/2

≤ 3

2r2
e−ar2(4P + n)

C2

λgapN
(ηK ∧ 2/c).

By the definition of f(r), we have that it dominates r2 up to a multiplicative constant:

f(r) ≥
((

1

a
(1− e−ar2)

)
∧
(

1

2r2
e−ar2

))
r2

≥ 1

2r2
e−ar2

((
2r2
a

(ear2 − 1)

)
∧ 1

)
r2

≥ 1

2r2
e−ar2((2r22) ∧ 1)r2.

Thus, using assumption 13, it follows that∫
E[∥sθK (Xt, t)− sθ̃K (Xt, t)∥2|X0 = x̃, S]τ(dt)

≤ L̄2E
[
∥θK − θ̃K∥2G+

]
≤ L̄2

(
1

2r2
e−ar2((2r22) ∧ 1)

)−1

E
[
d(θK , θ̃K)

]
≤ 3L̄2((2r22)

−1 ∨ 1)(4P + n)
C2

λgapN
(ηK ∧ 2/c).
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We then use the fact that when η is sufficiently small, we obtain the estimate η0 ≳ λ−1 and therefore,

r21, r
2
2 ≳

PNBC

ηλgapλ2
, L ≲ (M4BℓC

1/2
τ + L

2

4)(PNBλgap)
−1/2 ∨ 1

and since L and r1 explode as η → 0+, we also have,

r22c ≳ L2r41 exp(−6Lr21/c0)

≳ exp(−6Lr21/c0).
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