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ABSTRACT

The success of denoising diffusion models raises important questions regarding
their generalisation behaviour, particularly in high-dimensional settings. Notably,
it has been shown that when training and sampling are performed perfectly, these
models memorise training data—implying that some form of regularisation is es-
sential for generalisation. Existing theoretical analyses primarily rely on algorithm-
independent techniques such as uniform convergence, heavily utilising model
structure to obtain generalisation bounds. In this work, we instead leverage the
algorithmic aspects that promote generalisation in diffusion models, developing a
general theory of algorithm-dependent generalisation for this setting. Borrowing
from the framework of algorithmic stability, we introduce the notion of score
stability, which quantifies the sensitivity of score-matching algorithms to dataset
perturbations. We derive generalisation bounds in terms of score stability, and
apply our framework to several fundamental learning settings, identifying sources
of regularisation. In particular, we consider denoising score matching with early
stopping (denoising regularisation), sampler-wide coarse discretisation (sampler
regularisation) and optimising with SGD (optimisation regularisation). By ground-
ing our analysis in algorithmic properties rather than model structure, we identify
multiple sources of implicit regularisation unique to diffusion models that have so
far been overlooked in the literature.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., [2015; Ho et al., [2020; |Song et al., 2021) are a class of
generative models that have achieved state-of-the-art performance across image, audio, video, and
protein synthesis tasks (Rombach et al.| 2022} |Saharia et al., [2022; [Ramesh et al.| 2022} [Watson
et al.l 2023} |[Esser et al., 2024). Their ability to generate high-quality samples from complex, high-
dimensional distributions with limited data motivates the need for a theoretical understanding of the
mechanisms underpinning their strong generalisation capabilities.

The goal of diffusion models is to generate new synthetic samples from a data distribution v/, using
a finite set of IV data points {x;}2¥ ;. Central to the methodology is a unique approach to generating
data, formulating it as the iterative transformation of noise into data, or equivalently, the reversal of a
diffusion process (Song et al., [2021)). This diffusion process, called the forward process, is defined by
the stochastic differential equation (SDE),

dX; = —aX,dt + V2dW,,  Xo~ Vdata,  t €[0,T], (1)

for some « > 0, where W; denotes the Brownian motion in R% and 7' > 0 is the terminal time. It
can then be shown that the time-reversal of this process, Y; := X7 _; admits a weak formulation as a
solution to the SDE,

dY; = aYydt + 2V logpr_(Yy)dt + V2dW,, Yo ~pr,  t€[0,T), )

where p; denotes the marginal density of X; (Haussmann & Pardoux, |1986). Therefore, simulating
samples from vg.t, = po can be achieved by solving the diffusion process in (2), which requires
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Figure 1: Samples generated using the empirical score function on CIFAR-10 compared to the closest
image in the dataset, illustrating memorisation of the training data.

an approximation of the score function, V log p;. This is achieved by fitting a time-dependent deep
neural network to minimise a weighted L?-distance called the (population) score matching loss:

lim(8;7) i= /]EXt[HS(Xt,t) — Vg p(X:)|1?] 7(dt), 3)

where 7 is a probability measure over (0, T'] that determines the weighting of the timepoints. Since
V log p; is unknown, typically the (population) denoising score matching loss {4sn,, which differs
from /g, (s) only by a constant, is used instead and is then approximated using the dataset, forming

the empirical denoising score matching loss {qsm, (see equations () and (8)). The score network
s(x, t) is trained on this objective using standard stochastic optimisation methods relying on mini-
batching. Once an approximation is obtained, samples are generated by numerically solving the
reverse-time SDE, (2). Both score matching and sampling introduce distinct challenges and design
choices that impact the quality of model output (Karras et al., [2022).

Score matching presents a key difference from standard supervised learning. In the space of all L?
score functions, the empirical objective Liem possesses a unique minimiser—the empirical score
function—as a result of the integration over X;| X, (see Lemma . This contrasts with traditional
supervised learning, where the empirical risk minimisation problem can have infinitely many solutions
(e.g., in overparameterised regression) and often requires regularisation to be well-posed. As shown in
Figure([I] sampling with this empirical score leads to exact recovery of the training data (Pidstrigachl
[2022)). This behaviour is distinct from benign overfitting’, a phenomenon from the deep learning
literature where interpolating the data does not necessarily prevent generalisation (Bartlett et al.
2021} [Zhang et al.} 2021)). This divergence suggests that existing theory may be insufficient to explain
the success of diffusion models, highlighting the need for new frameworks tailored to this setting.

Recently, there has been a drive towards developing theory for better understanding the unique
structure of diffusion models. The most developed subset of this work focuses on connecting sample
quality to score matching by deriving upper bounds on distribution error (e.g. KL divergence, total
variation, or Wasserstein distance) between model samples and the data distribution, controlling it
by the population score matching loss (De Bortoli et al., De Bortoli, 2022} [Lee et al., 2022}
[Chen et al.} 2023} Benton et al.| [2024; [Potaptchik et al., [2024)). These results, often referred to as

convergence bounds, typically take the form,

Distribution error < g, (s) + A,

where A is the discretisation error of the sampling scheme, which can be made small with sufficiently
fine discretisation. However, since /g, is not computable, these bounds say little about performance
under empirical guarantees—that is, their generalisation properties. One line of work, initiated by

(2023)) and extended in (Azangulov et al., 2024} Tang & Yang| [2024), applies classical

uniform convergence theory to bound the generalisation gap from the decomposition,

Esm(s) = gsm(s) + gsm(s) - ésm(s)a 4
—_—

generalisation gap

where (,,, denotes the empirical counterpart to £5,. These results rely on covering number bounds
for specific classes of neural networks and, while informative, they are limited to carefully chosen
model classes and do not account for algorithmic properties. An alternative approach by |De Bortoli
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(2022)) uses a decomposition of the Wasserstein distance that leverages convergence properties of
the empirical measure. Though more model-agnostic, this method overlooks how diffusion models
generate novel data. Both lines of work are fundamentally algorithm-independent, in that they lack
any utilisation of the algorithmic aspects that uniquely define diffusion models. Recent efforts aim to
incorporate algorithmic effects by restricting the problem. For instance,Shah et al.| (2023));|/Chen et al.
(2024) consider Gaussian mixture targets, while |Li et al.| (2023)); Yang| (2022)) study random feature
models. These settings allow for finer analysis of the role of the score matching algorithm, but remain
limited in scope, leaving open the challenge of developing a more general algorithm-dependent theory
of generalisation in diffusion models.

As noted earlier, if the empirical score matching loss was completely minimised and sampling was
performed perfectly, the diffusion model would simply return training data, failing to generalise.
Therefore, the observed success of diffusion models in producing novel data implies that, in practice,
they either avoid completely minimising { g or must avoid perfectly sampling. This suggests that
(implicit) regularisation in the score matching or sampling algorithm is crucial for generalisation,
making algorithmic considerations essential for understanding diffusion models.

1.1 OUR CONTRIBUTIONS

We introduce score stability, a general, algorithm-dependent framework for analysing diffusion
model generalisation based on the classical approach of algorithmic stability. This framework
quantifies an algorithm’s dependence on individual training examples, from which we derive expected
generalisation gap bounds for score matching losses. Using the score stability framework, we then
analyse several examples of score matching algorithms, identifying three distinct sources of implicit
regularisation in diffusion model training and sampling: noising, sampler, and optimisation-induced
regularisation.

Denoising regularisation. To begin with, we consider the empirical risk minimisation algorithm
(ERM) that minimises £y, over a hypothesis class . Through a score stability analysis, we reveal a
regularisation source within this objective when early stopping of the forward process is used—a
standard practice in the diffusion model literature. Utilising properties of the noising forward process,
we obtain generalisation gap bounds with near-linear rate, ¢ =%/ 4(e*d*/ 2N~2 4+ miny ésm)c/ 2 for
any ¢ < 1, where € > 0 is the early stopping time and d* is the dimension of the data support.

Sampler regularisation. We then apply this analysis to discrete-time sampling algorithms, deriving
statistical guarantees for the expected KL divergence between the true data distribution and samples
generated by the diffusion model. The bound we derive is formed of two stages: we obtain generic
rates e 1/2 (e~ /2N =2 4 ming fsp )%/ but when N2 and miny Js, are sufficiently small relative
to €, we obtain bounds with rates e =% /*(e~¢/2N~2 4 miny ésm)c/z that are faster in N and

mingy 4. To derive this bound, we utilise regularisation brought about by the coarseness of the
discretisation. We find that by increasing discretisation coarseness, we can improve the generalisation
gap bound at the expense of worsening the discretisation error term.

Optimisation regularisation. Finally, we consider the role of the optimisation scheme, analysing
stochastic gradient descent (SGD) with gradient clipping and weight decay. On the model class,
we assume only structural assumptions typical in the optimisation literature, including non-global
Lipschitz and smoothness assumptions. While this initially yields bounds that grow with the number
of iterations, we more closely inspect the impact of the high-variance gradient estimator used in
diffusion training. We show this gradient noise induces a contractive behaviour in the training
dynamics, which we harness to obtain stability bounds that do not grow with the number of iterations
(Proposition [T4)), showing that the noisy dynamics enable tighter generalisation guarantees.

2 BACKGROUND

Suppose that the data distribution vqa;, is on R% and we are provided a finite dataset of samples
S = {x1, ..., N} which we assume are sampled independently and identically (i.i.d.) from Vqata. As
discussed in the introduction, diffusion models are formed of two distinct stages. The first stage, score
matching, consists of learning an approximation to the score function V log p; using the dataset S. In
this work, we take a score function to be any function belonging to the set L°(R? x [0, T]; R?), the
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set of Borel measurable functions of the form R? x [0, TJ — RY. Then, a score matching algorithm
is taken to be any mapping of the form Agy, : (UX_; (RY)®N) x Q — H where H is a measurable
subset of LO(R? x [0, T]; R?). Here, (2 is the event space belonging to a probability space (€2, F,P).

The second stage of diffusion models, sampling, consists of generating samples with the learned
score function. We take a sampling algorithm to be a mapping of the form, Agapmp : H — P(RY)
where P(IR?) denotes the set of Borel measures on R?. Typically, sampling is performed using an
approximation to the reverse process given in (2), replacing V log p; with the learned score function
5(-, t) and replacing its initial distribution, py with a data-independent prior, pprior = N(0, crgﬁml ). In
the case of o > 0, we choose oﬁrior = a1 50 that the prior coincides with the stationary distribution

of the forward process, and when o = 0 we simply set O'grior = 2T'. With this, we arrive at the SDE,

dY; = aYidt + 25(Y;, T — t)dt + V2dWy, Yo ~ Dprior- 5)

Thus, a sample is generated by sampling from Yo, or more commonly, the process is terminated

early, sampling from Y7 _. for some small € > 0. Therefore, diffusion models are density estimation
algorithms formed from the composition Agamp © Agm.

Denoising score matching and overfitting. As stated in the introduction, computing £, requires
access to the population score function, Vlogp;. So instead, the (population) denoising score
matching loss is used in its place:

Lasm(5;7) == Exymn [/EthXU[HS(Xt»t) — V1og pio(X¢| Xo)[I?|Xo] 7(dt) |, (6)

which differs from ¢4, (s) only by a constant Cyy,, (see Lemma whilst being easier to approximate
without access to V log p; (Hyvirinen, 2005). Since py|q is a Gaussian kernel, its score is given by,
wmr—y - -
Vylogpo(yle) = =——,  p=e,  of=a1(1-p) )
t
In practice, the objective in (6) is further approximated via Monte Carlo estimation using the dataset
which leads to the empirical denoising score matching loss,

lasm(5:5,7) = & iy [ Exaixollls(Xe.t) = Viog pyo(Xelwi) |*1Xo = @] 7(dt).  (8)

In the following lemma, we highlight the important property that this can equivalently be defined as
the denoising score matching objective for the process X; which evolves as in (1}) but with the initial
distribution given by the empirical distribution, Xo ~ & Zivzl 0y, (dz).

Lemma 1. The objective stm(s; S, T) is identical, up to a constant, to the objective

fon(5:.5,7) = / E[lls(Xe,t) — V log pr(X0)|P1S)r(dt), ©)

where p; is the marginal density of X,. Therefore, any minimiser of édsm(-;S, T) on
LO(RY x [0, T);R?) is identical to V log p; a.e. for any t € supp().

See Appendix for the proof. This lemma shows that, unlike in traditional supervised learning
problems, the empirical objective here admits a single unique minimiser, the empirical score function,
V log p;. The nature of this score function and the samples it generates has been the focus of several
recent studies, notably (Pidstrigach| 2022) which shows that with perfect sampling, any score function
sufficiently close to V log p; recovers the training data.

Other notation. When the score matching algorithm Ay, is random, we use Ag, (S) as shorthand
for the random score function (z,t,w) — Ay (S, w)(x, t). Given two random score functions s, s',
we let I'(s, s') denote the set of all couplings of these random functions (Appendix for details).

3 SCORE STABILITY AND GENERALISATION

Algorithmic stability is a classical technique in learning theory used to understand the generalisation
properties of a variety of important learning algorithms (Kearns & Ronl [1999; Devroye & Wagner,
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1979; Bousquet & Elisseeff, [2002; [Hardt et al., 2016)). While there are various formulations, they all
share the common aim of connecting properties of a learning algorithm to its robustness under changes
in the dataset. Its use has primarily been focused around regression and classification problems—in
this section, we propose a notion of stability that applies specifically to diffusion models.

We introduce the notion of score stability which quantifies how sensitive a score matching algo-
rithm Agy, is to individual changes in the dataset. We do this by defining the adjacent dataset
St = {21,y 1,7, Ti41, ..., TN } Where T ~ Vqata, independent from S, and then measuring the
similarity between the score functions § = Ag,(S) and §° = Agp, (S?).

Definition 2. A score matching algorithm Ag,, is score stable with constant €y, > 0 if for any
i € [N] it holds that,

Esz [ it JBISOG0) — 8 000X = 2.5, 7(de)| < <
s,5*)el’;

where T'; = T'(Asm (9), Asm (S?)).

Since Agm may be random, we define score stability in terms of the best-case coupling of the random
score functions 8, 8°. We recall that I'(-, -) denotes the set of couplings between two random score
functions, and when it is not random, it is given by the singleton I'; = {(Agn(S), Asm(5%))}. In
the following theorem, we connect score stability to generalisation by controlling the expected
generalisation gap by the score stability constant.

Theorem 3. Suppose that the score matching algorithm Agy, is score stable with constant €,p. Then,
with § = Agm (S), it holds that

B [Casm (3 7)] > = E[fasm(5:9,7)] | < yiar- (10)
Furthermore, it holds that
B [Com(3;7)] — E[amn (3.5, 7)] < 2 e B [lasmn (5.5, 7)] /% + €24 (11)

With Theorem 3] we obtain that the generalisation gap for both the denoising score matching loss and
the score matching loss decays at the same rate as score stability. We can further simplify the bound

for the score matching loss using the fact that fdsm and fsm are identical up to a constant, to obtain,

E[lom(3;7)] S E[lsm(3;7)] + esup CLL2 + €24

One should expect that if the score matching algorithm is effective, both 5 and §* converge to the
ground truth as N grows, and thus e, should decrease to 0. Ascertaining the rate at which NV
decreases requires an analysis of the algorithm at hand, hence the categorisation of algorithmic
stability as an algorithm-dependent approach. This contrasts with uniform learning, which utilises
control over the hypothesis class, providing a worst-case bound that is independent from the algorithm.

In the following sections, we apply the framework of score stability to some common learning settings
for diffusion models. We derive estimates of the score stability constant for these algorithms and
identify features that promote generalisation.

4 EMPIRICAL SCORE MATCHING AND IMPLICIT REGULARISATION

We begin our examples by considering the score matching algorithm that minimises the empirical
denoising score matching loss. Given a hypothesis class H C LO(R? x [0, T]; R?), we define this
algorithm by,

Aerm(S) = argminseﬂédsm(s; S, 7).

While this algorithm is not often used in practice, it is the natural analogue to empirical risk minimi-
sation from traditional supervised learning and thus serves as a canonical example. We consider the
setting of the manifold hypothesis where the data distribution is supported on a submanifold of R¢.

Assumption 4. Suppose that Vg, is supported on a smooth submanifold of R that has dimension
d* and reach Tyeqen, > 0. Furthermore, its density on the submanifold, p,, satisfies ¢, := inf p, > 0.
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The reach describes the maximum distance where the projection to the manifold is uniquely defined
and therefore, it quantifies the maximum curvature of the manifold. We refer to Appendix [A.3|for the
full definition. Several recent works have considered the assumption that vq,, lies on a submanifold
of R?. These works argue that d* can often be far smaller than d and so dependence with respect to
d* over d is favourable (De Bortoli, 2022} |Pidstrigach), 2022} |Loaiza-Ganem et al., 2024} |Potaptchikl
et al., [2024; |[Huang et al.| |2024). The assumption that the density is bounded from below has also
appeared in several of these works (Potaptchik et al., [2024; Huang et al2024). We also make the
following assumption about the class of score networks.

Assumption 5. Suppose there exists Dy > 0 such that for any s, s’ € H, it holds that
|s(-,t) = 8'(-,t)||ne < Dy /o2, forall t € supp(1).

Under these assumptions, we obtain the following estimate for the stability constant.
Proposition 6. Suppose that assumptionsand hold and that € := inf supp(r) € (0,7%_,), then

) “reach

Sforany c € (0,1) and sufficiently large N, the score matching algorithm A, is score stable with,

C

E?rab S C(Ccsm]\]_2 + E[Esm@)]) ) C= % v c,,;g* :

An interesting feature of Proposition[6]is that generalisation bounds under only basic assumptions
about the structure of the hypothesis class without any additional regularisation. This contrasts with
algorithmic stability in the setting of traditional supervised learning, where empirical risk minimi-
sation is stable only when restricting the hypothesis class or with the use of explicit regularisation
(Zhang et al.| [2021; Bousquet & FElisseeft], 2002). Here, we show that the denoising score matching
loss possesses the unique property that it is stable without the need for additional regularisation,
suggesting that the denoising score matching loss possesses a form of implicit regularisation.

When d* > 4, for e sufficiently small, we have that C' = O(c; 'e~%"/2), Cypy = O(d*e~). Since
the bound only depends on d* and not d, this suggests that diffusion models are automatically
manifold-adaptive. The bound also heavily depends on €, with it being smaller for larger ¢ and
growing exponentially fast as e approaches zero, indicating that the natural regularisation present in
the score matching objective is more prevalent at larger noise scales. The requirement to have € > 0
is closely related to the technique of early stopping which is frequently used in the diffusion model
literature (Song & Kingma, 2021; [Karras et al., [2022). This is where the backwards process 17,5 is
terminated early by some small amount of time to avoid irregularity issues of the score function when
close to convergence. Other theoretical works have also identified the importance of early stopping in
the generalisation properties of diffusion models (Oko et al., 2023} |Azangulov et al., [2024)).

Proof summary We now provide a brief summary of the proof of Proposition [6] The first step
of the proof technique utilises a fundamental property of the empirical denoising score matching
objective, Cdsm (s;S,7): that it is strongly convex in s in a data-dependent weighted L2-space. Strong
convexity is often used in algorithmic stability analyses, especially in deriving stability bounds for
linear models—here we borrow a similar approach, but we analyse the stability of the algorithm in
function space. With this, we arrive at the following inequality (see Lemma[I9):

IE[Hg(Xt» t) - §i(Xt7 t)HQ}T(dt) S E[llm(g)] + Esiji?b(cslrflz + ESlab)a (12)
where ey is the (yet-to-be bounded) score stability constant of Aepy,.

The second step of the proof technique utilises a characteristic property of the heat kernel—that it
smooths out functions. In particular, we utilise the celebrated Harnack inequality of [Wang| (1997)
that captures this property by showing that for any positive measurable ¢ : R? — R, z,y € RY, it
holds that

2 _ 2
E[6(X0)|Xo = o] < E[6(X1)|Xo = y]/7 exp (41270,

for any ¢ > 0,p > 1. Utilising this bound, we convert the upper bound in (I2) to a bound on the
stability constant. The full proof can be found in Appendix [C]

5 STOCHASTIC SAMPLING AND SCORE STABILITY

In practice, the backwards process in (3] cannot be sampled exactly, so we instead rely on approx-
imations based on numerical integration schemes. In this section, we investigate how algorithmic
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stability interacts with these sampling schemes. We consider the Euler-Maruyama-type sampling
scheme proposed in (Benton et al., [2024; [Potaptchik et al.| 2024) which discretises at the timesteps
(tk)r_y where ty, = T — (1 + k)=~ for large k. The quantity x > 0 is chosen freely and we
choose K ~ log(e~!)/log(1 + k) so that tx ~ € (see Appendix [D]for details). By sampling its
terminating iterate ¢, we obtain a sampling algorithm, Ay, that maps a score function s to the

distribution law (), which approximates the distribution law (Y).

In the previous section, we identified that early stopping of the backwards process benefits gen-
eralisation. In the present section, we will consider how coarseness of the discretisation scheme
produces similar benefits. It is often the case that the score function is trained only at those time steps
considered by the sampler, i.e. using the time-weighting, 7,;(dt) = & kK:_Ol dr_¢, (dt) (Ho et al.|
2020). As a result, the effective stopping time of the algorithm can be much larger than the early
stopping time, €. In the following proposition, we demonstrate how this benefits generalisation.

Proposition 7. Consider the setting of Proposition[6|with o = 1 and set T = 7, then for sufficiently
large N, k < e Y /4 and any c € (0, 1), we have that for qx = Aem © Acrm (S),

E[D(pellax)] S E[lk, ] + Bi(14+#x)" + B4 5)72 + k(1 + k)d" log(e1)? + de ™27,

where B,, = S (%:“N‘Q +E[ex, e, 0r L o= infy lan(h; S, 7).

cy sm,K » Fsm,K

The second and third terms of the bound in Proposition[7]are due to the score stability of the ERM
algorithm and decay as « increases. The fourth term of the bound captures the discretisation error
and therefore increases with «. What this result captures is that there is a trade-off between sampler
accuracy and generalisation that is managed by the discretisation of the diffusion model. In the
following corollary, this trade-off is optimised.

Corollary 8. Consider the setting of Proposition[7] then for any ¢ € (0, 1) and sufficiently small e,
there exists k > 0 such that with g = Aem © Aerm (S)

B? + C51B,, if B <log(e™))?,

E[D(pellar)] < -~ s

log(e N B +(CLL + d*) log(e 1)2BS ' +de 2T otherwise.
The primary strength of this result over (Oko et al.||2023;|Azangulov et al., 2024) is that we assume
little about the hypothesis class. Their results require carefully constrained network architectures and
a specific early stopping time to control complexity. In contrast, our result holds for any sufficiently
small early stopping time, relying instead on a carefully chosen discretisation scheme, which is
usually tuned in practice (Karras et al., [2022; |Williams et al.,[2024). The main drawback is that our
general approach does not exploit the model class to adapt to smoothness properties of the underlying
measure, which we leave for future work.

6 STOCHASTIC OPTIMISATION AND IMPLICIT REGULARISATION

To learn the score function, it is common to choose it from a parametric hypothesis class {sg : 0 €
R™} (e.g. a deep neural network) by minimising {gem Via stochastic optimisation (Karras et al.|[2024).
In this section, we consider the score stability of this setting, focusing on stochastic gradient descent
(SGD) with gradient clipping and weight decay. We consider the standard gradient estimator: given
the mini-batch ()Y of size Np < N we define the random estimator,

GO, (z)X7) = N;p Zf\g Ef:lwti,jVQHSQ(Xi,j)ti,j) - Vlogpti,j|o(Xi,j|$)||2, (13)

where we define the random variables X; j = s, ;@ + 0, &ij, tij ~ w; '7(dt), & ; ~ N(0,Iy).
The additional variance introduced by the random variables &; ; and t; ; leads to a gradient estima-
tor with significantly higher variance than in standard supervised learning. This presents several
challenges during training, and various strategies have been proposed to mitigate this issue (Karras
et al.; 2024;|Song & Kingma, [2021). For example, the weighting function w : [0,7] — R can be
tuned to reduce variance (Karras et al., [2022) or the number of resamples P € N can be increased.
We consider the following iterative scheme, defined for a given weight decay constant A > 0 and
clipping value C > 0:

Or1 = (1 — i X)0k — ni Clipo (G (O, (24)ieB, ))s (14)
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where 7, > 0 and Bj, C [IN] are the learning rates and mini-batch indices for each iteration k € N
and we define the clipping operator Clip.(v) = (1A (C||v]|~1))v. Both gradient clipping and weight
decay are widely used in diffusion model training and are typically motivated by their stabilising
effect on optimisation, minimising the impact of the high variance of the gradient estimator (Song
et al., [2021; |Ho et al., [2020). Throughout this section, we take the mini-batch Bj, to be i.i.d. and
uniformly sampled from [N] without replacement. For the sake of simplicity, we suppose that the
iterative scheme is terminated after K € N iterations, where K is fixed and independent of the data.

6.1 STABILITY OF SGD WITH WEIGHT DECAY AND CLIPPING

In our analysis, we avoid restricting the score network to a specific parametric class and instead make
structural assumptions based on its smoothness properties. We recall that a function is Lipschitz with
constant L > 0 if it is differentiable and its directional derivatives are uniformly bounded by L.

Assumption 9 (Smoothness of the score network). There exists L : R? x (0,T] — R, and
M :R? x (0,T] — Ry such that for almost all x € Rt € (0,T), s¢(x,t) is Lipschitz and smooth
(gradient-Lipschitz) in 0 € R™ with constants L(x,t) and M (x,t), respectively. Furthermore, there
exists constants L, M > 0 such that for any x € supp(Vgata),

2

[E[L(X;, )2 X0 = 2] 7(dt) < T, °

JE[M(X¢,t)?| X0 = 2] 7(dt) < M .

The use of Lipschitz and smoothness assumptions is commonplace in the analysis of optimisation
schemes (Nesterov, 2018; [Hardt et al., 2016). However, the assumption differs slightly from the
usual in that we only require these properties to hold almost everywhere with respect to the input
distribution and we allow the Lipschitz and smoothness constants to vary with the input, provided
their square averages remain bounded. This relaxation enables us to accommodate common models
that would otherwise violate global smoothness assumptions, such as ReLU networks.

Assumption 10. Suppose there exists By > 0 such that for any 0 € R", it holds that
Casm(so; {x},8,) < BZ /ot Jor each x € supp(Vaata),t € supp(7). (15)

This property requires that the supported score functions are made of denoising functions that are
concentrated on a compact set. To highlight that this can be achieved quite easily, we note that with
the naive estimate s(z,t) = —x /o7, (13 is satisfied with B = E[|| Xo||?].

In the following proposition we demonstrate score stability bounds in the case that the step size is
decaying with a rate of 1/k.

Proposition 11. Consider the score matching algorithm Agy, : S — sg, for some fixed K € N
where (01, is as given in (14). Suppose that assumptions[9|and[10/hold and ny, < 7j/k for all k < K,

Sor some 7 € (0, )\71). Then, we obtain that Ay, is score stable with constant,
Wt L2 O\ NgK e
> (v) v 1 (n) N

where R? = E[||6o]|2],v = (MB,CY* + T* = \) V0 and C, = [ o *7(dt).

C
Esztab 5 <)\ VR

Since the score matching algorithm is random, to control the stability constant we construct a
coupling of the random score functions Agp, (S) and Agp, (S*) through a coupling of the optimisation
trajectories associated with training on S versus S”.

6.2 UTILISING NOISE IN THE GRADIENT ESTIMATOR

The primary drawback of Proposition[TT]is that the bound grows with the number of iterations. This is
particularly problematic since diffusion models often require numerous steps due to the high-variance
gradient estimator. In this section, we improve this dependence by explicitly leveraging the noise
in the gradient estimator. The idea that stochasticity in optimisation can act as a form of implicit
regularisation has motivated the development of numerous learning algorithms and theoretical works
in recent years (Srivastava et al.| 2014; Bishop| |1995; [Mou et al.,2018; [Pensia et al., 2018)). Here,
we investigate how the noise intrinsic to the gradient estimator for Cdm can play a similar role in
promoting generalisation in diffusion models.
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To incorporate the effects of the gradient noise, we consider a simplified model in which the noise
from the stochastic gradient estimator is approximated with a second-order Gaussian approximation:

Os1 = (1 — p\)8g — nE[Clipe(Gi) |6, By, S] + 1 Cov (Clipe (Gi) |0k, Br, S) ¢, (16)

where &, € R? is a standard Gaussian and we use G}, := G (0, Br). This approximation can be
justified by observing that the inner summation in (3] is over conditionally i.i.d. variables, once
conditioned on #, B and S. Therefore, the gradient estimator G becomes approximately Gaussian as
P grows large. For this analysis, we assume the following lower bound on the gradient noise.

Assumption 12. There exists a positive semi-definite matrix ¥ € R™*" such that for any x € supp(v)
and 6 € R",

COVtNT,Xt|X0 (ClipC(VQ”SQ(Xt, t) — .I‘H2)‘X0 = l‘) = i
= MINy,£g /\z > 0.

Furthermore, the eigenvalues of ¥, (\;)™_,, possess the spectral gap Agap

We use the matrix X to dictate the geometry on which we perform our analysis. In particular, we
. . =+ =+ . . .
consider the weighted norm |[v||g+ := v"3 " v where & is the pseudoinverse matrix.

Assumption 13. For almost all x € Rt € (0,T), so(x,t) is Lipschitz and smooth (gradient-
Lipschitz) in 0 € R™ with respect to the seminorm || - ||+ and with constants L(z,t) and M (z, 1),

respectively. Furthermore, there exists constants L, M > 0 such that for any x € supp(Vdata )

JE[L(Xt, )4 X0 = z] 7(dt) < ", JEM (X, 1) Xo = 2] 7(dt) < .

By requiring that the Lipschitz and smoothness properties hold with respect to || - ||+, we effectively
require that the gradient estimator adds noise in all directions aside from those that do not change the
function (e.g. along symmetries in the parameter space). With this, we arrive at our time-convergent
score stability bound for SGD.

Proposition 14. Consider the score matching algorithm Ay, : S — sg,. for some fixed K € N
where (011, is as given in @I) Suppose that assumptions and hold, then there exists some
7] > 0 such that, if sup, n, < 1, we obtain that Asy, is score stable with constant

s LCP4n) (kX N~ PNpC
stab ~>5 AgapN PNBC Nk, €XP T’Inin)\gap)\Q )

3
k=0

where ¢ < (M4B@C’i/2 + fi)(PNB)\ga,,)’l/2 V 1, Nin = ming .

In this bound, we recover the \/% score stability bounds from Proposition|11{while also introducing

the property that the bound does not grow endlessly with the number of iterations. This property
is obtained using the noise in the gradient estimator and is not possible without additional noise.
Through this analysis, we identify the generalisation benefit of a property unique to diffusion models
and how they interact with SGD.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a general algorithm-dependent framework for analysing the generalisation
capabilities of diffusion models. We introduce score stability, which quantifies an algorithm’s
sensitivity to the dataset, and use it to derive expected generalisation gap bounds. Applying this
framework to several common algorithms, we derive closed-form bounds and identify several
previously overlooked sources of implicit regularisation in diffusion models. First, our analysis
of empirical risk minimisation finds that the denoising score matching objective provides inherent
stability guarantees without further regularisation (denoising regularisation). We then analyse how
score stability interacts with discrete-time samplers, identifying that coarse discretisation can improve
generalisation guarantees (sampler regularisation). Finally, we consider stochastic optimisation
schemes for score matching, obtaining stability guarantees (optimisation regularisation).

This work opens several avenues for future research. Key directions include developing high-
probability bounds, developing bounds on privacy and memorisation, tightening our analysis by
incorporating data or model properties, like smoothness, and extending the framework to compare
different sampling algorithms, such as the probability flow ODE.
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A FURTHER BACKGROUND

We begin with some further details on notation and lemmas used throughout this work and provide
proofs for the lemmas in Section 2}

A.1 RANDOM SCORE MATCHING ALGORITHMS

We begin with some additional details on how random score matching algorithms are defined in this
work. Recalling the probability space (€2, F,P), we define the set of random score functions,

S:= {s R X [0,T] x Q: (-, - w) € LO(RE x [O,T};Rd)}.
For any random score matching algorithm Agp, : (U_, (RY)®N) x Q — LO(RY x [0, T]; RY), we
use A (S) as shorthand for the random score function (w, x,t) — Asm (S, w)(z, t) belonging to S.

Given two random score functions s, s, let I'(s, s’) denote the set of all couplings of these functions
which we define as,

[(s,s") = {(5,[9") ESXS:§:S7§’28’},

where 5 ~ s denotes the fact that for any bounded measurable test function ¢ : LO(R?x [0, T]; RY) —
R, it holds that,

[ otstwnar = [ ot wae.

A.2 PRELIMINARY LEMMAS
For the score matching loss bound, we begin with the fact that the score matching loss is equivalent
to the denoising score matching loss up to an added constant/Song et al.| (2021)); [Hyvéarinen| (2005]).

Lemma 15. Foranyt > 0, y € R<, we have

E[Xo|X; = y] — X E[Xo|X: =y, 5] —
VIngt(y> — Ht [ 0| 0-152 y] y7 VIngt(y) _ Mt [ 0‘ 1;-2 Y } y (]7)
t t

Proof. We begin by showing that the conditional score is an unbiased estimate of V log p;. For any
x € R% ¢t > 0, we have

E[V log pyjo(X¢| X0)| X = 2] = /Vx log pyjo(|y) poje (y|z)dy

/W%mmm”fﬂfw

= /th\o(wly) mdy-

dy

Therefore, using the exchangeability of gradients and integrals (note that py| is C*°), we arrive at

v
E[V log pyo( X Xo)| X, = 2] = p’:g) (18)
= Vlog p:(x). (19)

Alternatively, using , we obtain that the left-hand side takes the form,

_ wE[Xo| X =2] —

p)
Ot

E[V log pyjo(X¢| Xo)| X: = ]

completing the proof of the first equality in (T7). For the second equality, concerning that empirical

score function, the proof follows similarly once the empirical measure 3- >_;_; 0, is considered in
place of Vqata- ]

13
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Lemma 16. For any integrable score function s, it holds that
edsm(& T) = gsm(s; T) + Csm,
where, given s*(z,t) := V log pi(z), we define

2
Cap = / PR [Ty Cov(Xo| X)]7(dE) = Lagm(s*; 7). (20)
g.

t

Proof. Let s be any score function. Using the equality in (T9), we obtain the following bias-variance
decomposition of £gqm, (s;7):

Caom (5:7)
— [ B[ls(xe.t) = Viogpya(Xu X0 r(de)
— [ B[ls(Xe.t) = Viogm (X rtde) + [ B[[7 108 puo (Xl Xo) - T log (X0 r(at
— Lo (5:7) +/E[Trcov (v logpt‘O(Xt|X0)’Xt)]T(dt).

Once we note that,

wXo —x

Tr Cov (V 1ogpt|0(Xt|X0)‘Xt> = Tr Cov ( =
t

9

we obtain the bound Lysm (s;7) = lsm(s;7) + Csm from the statement. To derive the equality
Csm = Lasm(8™;7T), we use that £y, (s*;7) = 0 and so we obtain Lgsm, (s*;7) = 0 4+ Cypy. O

12
= “L Tr Cov(Xo|X,),
Oy

Similarly, there is an equivalence between the empirical forms of the denoising score matching loss
and the score matching loss,

édsm(S;SyT) :Esm(S;S;T>+Csm7 (21)

where )

Com = / ML BTy Cov(Xol X, 9)|S]7(dt) = Faam(8*: 5. 7). (22)
Oy
and §*(z,t) = Vp¢(x). This follows immediately from the above proof once the empirical measure
% Zf\il 0z, is considered in place of Vqata. This effectively completes the proof of Lemmain
Section

Lemma The objective édsm(s; S, T) is identical, up to a constant, to the objective

lsm(s; 8, 7) = / E[||s(Xq,t) — Vlog pe(Xy)|||S](dt), (23)

where p; is the marginal density of X,. Therefore, any minimiser of édsm(-;S, T) on
LO(RY x [0,T);R?) is identical to V log p; a.e. for any t € supp().

Proof. The proof follows nearly immediately from (ZI). Since py|o is C*°, V log py|o is measurable

and thus its empirical average V log p; must be also. Therefore, the score function s*(x,t) =
V log p; () satisfies §* € LO(R? x [0, T]; R?) as well as,

gsm(§*; S,7) =0.

Now let s € L°(R? x [0, T]; R?) be any minimiser of édsm(g S, 7). Through the equivalence of Cem
and /g, up to a constant, it follows that s must also be a minimiser of 44, (+; S, 7) and, due to the

existence of §*, must satisfy /s, (s;.5,7) = 0 also. Letting ¢ € supp(t), we note that since ¢ > 0, we
must have that py| has full support and thus, s(-,¢) = s*(-, ) almost everywhere. O

14
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A.3 MANIFOLDS

We also introduce some basic properties of smooth manifolds, primarily referencing |Aamari et al.
(2019). We define the manifold reach and include a known property of this quantity.

Definition 17. The reach of a set A C R, is defined by T4 = inf,c 4 d(p, Med(A)), where we
define the set,

Med(A) ={z € R 3p,g € Ast.p#q,lp— | = g —2II}.

Lemma 18. Suppose that the measure p is supported on a manifold M with reach Tp; > 0 and
dimension d*. Then, for any r < T)s, we have

p(By(x)) = )

inf ) rd,
Bl

where p,, denotes the density of y with respect to the volume measure on M.

For the proof of this lemma, we refer to the proof of Proposition 4.3 in|/Aamari et al.|(2019) or Lemma
II1.23 in|Aamari| (2017)).

B PROOFS FOR THE GENERALISATION GAP BOUNDS

We now provide provide the proof of theorem [3]that bound the generalisation gap under score stability
guarantees. For the sake of brevity, throughout this section we suppress the notation for the time

weighting, for example, using the shorthand (g, (s;.5) in place of fgm (s; S, 7).

TheoremE]. Suppose that the score matching algorithm Agy, is score stable with constant €qp,. Then,
with § = Agm(S), it holds that

’E [gdsm(g; T)] 1z —E [édsm(g; 57 7—)] 1/2’ S Estab- (24)

Furthermore, it holds that

E [l (3:7)] = B [lan (35 9, 7)] < 2 €5y E [lasn (35 5, 7)] /2 + €2 (25)

stab*

Proof. Setting 8 = Agy,(9) and §° = A, (S?), we use the property that (3,7) and (5%, z;) are
distributed identically to obtain that,

E[lasm (3; 7)] = Ellaem (3; {7})]

_ E[% ﬁ:édsm(s:i; )]

N
1 s
-E[+ > / Ex, [ (X1, t,w) — Viog pyo(Xi|2:)[|*| Xo = a4, S| ﬂdt)} :
i=1
Therefore, it follows from the triangle inequality in L?-norm that
R N . 1/2
(5712 = Bl 5551 72| < 8| £ 2 [ BIIS0X00) = 810X, P10 =0 8] (at)
i=1

Note that if the algorithm Ay, is stochastic, the right-hand side would hold regardless of how 3|5,
and §'|S, & were coupled. Therefore the most efficient coupling can be chosen, leading to the bound,

’E[stm(é;T)]l/Q — Eflgem (& S)]l/2‘ (26)

- 1/2
1 ) )
< E[(s;%fg i ;/E[HS(Xt,t) — "Xy, H)|I°| X0 = 4, 9] T(dt)]

< Estabs 27
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completing the proof of the bound in ([24).
To obtain the bound in (23], we use Lemmal[T6]to derive

E[Zsm(é; T)] = ]E[ésm(é; S)] + Ewdsm(é; T) - gdsm(§§ S)] + E [gdsm(v logﬁt; S)]
— Lasm (Vlog py; 7). (28)
Since lqsm (+; S) is a unbiased estimator of £y (+; 7), we have that
lasn(V10g pi: 7) = Ellasm (V10 pe; §)] 2 Ellasm(V log pr; )], (29)

where the inequality follows from the fact that V log p; minimises Edsm. Furthermore, using (27), we
deduce the bound,

|E[€dsm(§§ 7') - édsm(& S)H
— (Elfam (3 )12 + Ellasm (55 )12 ) [Eltasm (53 S)]'/* = Elfasm (33 )]/
< (Q]E[gdsm@; S)]1/2 + Estab)fstab
S 2€slabE[édsm(§; S)]1/2 + Ezlab' (30)
Thus, substituting (29) and (30) in to (28] recovers the bound in (23) in the statement. O

We obtain upper bounds relying on the fact that the constant separating the score matching loss from
the denoising score matching loss is larger on average in the empirical case. One could obtain lower
bounds through our techniques but this would require an analysis of the rate of convergence of this
constant which is beyond the scope of this paper.

C PROOFS FOR STABILITY OF EMPIRICAL DENOISING SCORE MATCHING

In this section, we provide the proof for Theorem 3| where the algorithm that minimises fqgm (+; S, 7)
over some class of score functions # is shown to be score stable.

C.1 ON-AVERAGE STABILITY OF THE ERM ALGORITHM

We begin with an important lemma that shows that under minimal assumptions, § = Aer (S) and
ot

5" = Aerm (S) are close in L? space, averaged over the full dataset. The first half of this proof utilises

the fact that {gqy, is 1-strongly convex in a weighted L? space, exploiting a well-known relationship
between strong-convexity and algorithmic stability (e.g. see (Bousquet & Elisseeff] |2002; (Charles &
Papailiopoulos| 2018} |Vary et al., 2024} |Attia & Koren 2022)).

Lemma 19. Suppose that Aey, is score stable with constant gy, then for any i € [N|, we obtain,
N ) . PO 8

B[ [ [ 168000) = 50,002 1) 7(00)| < SBIEun(9] + Tzl CH2 ) B
where § = Aerm(S), 8° = Aerm(9).
Proof. Choosei € [N]andlet§ = Aem(S), 5" = Aerm(S?) sothat § € argming, lagm (-5 S, 7), 8" €
argming, Lasm (+; S%, 7). The proof begins with the following simple expression, that holds for all
j €[N
2 / <§1(ya t) - ‘§(ya t)7 §z -V logpt|(](y‘xj)> pt\()(dy|xj)

- / 18 (9. 1) — Vlog pyo(yle;) | peo(dyle,) — / 13(y, ) — ¥ log pajo (1)1 peo(dylz;)

+ / 18 (. 1) — 85, 0) 12 prpoldyla; -
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By averaging over j € [N] and integrating with respect to 7(dt), we arrive at the upper bound,

= > (8'(y,t) — 8(y, 1), 8" — Vlog pyo(yl;)) peo(dylz;) 7(dt)
JE[N]//
ngsm(éi;S,T) Edsm (8,8, 7)+ //HS (y,t y, t)||? pe(dy) T(dt)
> [ [180.0) - 80001 fulay) (), 32)

where the inequality follows from the fact that édsm(é; S, 1) < gdsm(s; S, T) for any score function
s € ‘H. Additionally, the left-hand side is upper bounded using the Cauchy-Schwarz inequality to
obtain,

33 [ [ ($ 0t = 500).5 = T1ogpu(ule) po(dyle) 7lde)

zeS

— , y,t), 8 (,t)—Vlo 10(Y]T)) peio(dylz) T(dt)
;// (y,t g pejo(y]x)) pejo(dy

+ //(gi(y,t) — 8(y,1), 8 (y, t) — V1og pyo(ylz:) ) pejo(dy|z:) 7(dt)
B % //<§i(y’t) —3(y, 1), §i(y»t) - V1ngt|o(y|f)>pt\o(dy|:%) 7(dt)

< 2lm (355", /(//| (4.1) — 3, ) i) >)1/2
+%2dsm(§ 1/2<//||8 12) = 50, ) pup (o) (dt))1/2

+ 2 3.0 [ 1900 - 560 bt @) . 09

where pi(dy) = % >, cgi Pejo(dy|z). Combining the expressions in (32) and (33) and taking the
expectation, we derive the bound,

| [ [ 1650nt) = st 01 e riar)]

< 2E[fun(5' iTWE[ [ [15 6.0 = st sitan) (av)| "

Bffan 6% (o1 722 [ [ 1500 é(y,t>||2pt|o<dym>T<dt>]1/2
Blfan (6" ). 7122 [ [ 15000 <,t>||2pto<dy|5c>7<dt>r/2
< 28lfn 5 5,728 [ [ 15000) = 5001 ) (e "

+ s (Elfaom (5 8,72 + Eltaon (5, )]'/2),

2\1\9 2\1\9

where we recall that e, is the stability constant for Ae,,,,. Here, we have used the fact that (s, .S)
has the same law as (8%, 5%) and also E[{qsm (8% {%})] = E[lasm(8; 9)] and E[lgsm (8% {x:})] =

17
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E[€4sm(8)]. By solving the quadratic equation, we deduce that the above inequality implies that,

U/”S y,t) = 8(y, 1)1 pr(dy) 7 (dt)}

< (E[ésm(& S, T)]% + \/E[ésm@; 5,7)] + FEstab (E[lasm (53 7))z + E[lgsm(3; S, T)]1/2)>

4 . 1 . R 1
+ Ngstab(Ew(lsrrl(S; 7-)] 2 + E[gdsm(s; Sv T)} 2 )

We simplify the above expression further using Theorem 3] Using the stability assumption, it follows
from (24) that E[(gem (8)]/% < E[lgem (8)]*/2 + €. Furthermore, from Lemma we have

E[lgsm(8)] = E[lsm(8)] + E[Cim]
< Ellsn(3)] + Com,

where we recall the definitions of Csyy, and Ciy, from (22) and (20) and recall that E[ésm] < Csm
from (29). Thus, from Young’s inequality, we obtain the bound

E[ [ 1500 = 5601 futa) ()

R 4 R
< AE[lg(3)] + Nsmb(mE[esm(g)]l/ 212012 + egap)

< 4]E[ésm(§; S, 7-)]

< 8E{lan(3)] + <

X 8
< 8E [l (8)] + Nsmb(@f + Eqta)-

Estab (5slab/N + 20511412 + 8stab)

C.2 PROOF OF PROPOSITION[G]

To obtain the stability bound in Proposition @ we convert the result in Lemma[T9] which is a bound
in L?(p;), to a bound in L?(pyo(- |x) which is required of score stability. For this, we rely on two
further lemmas, the first of which is a fundamental property of the Ornstein-Uhlenbeck process,
captured by the Harnack inequality of Wang| (1997) (see Theorem 5.6.1 Bakry et al.|(2014)).

Lemma 20 (Wang’s Harnack inequality). For each positive measurable function ¢ : R® — R, every
t>0,p > 1andevery x,y € RY, it holds that

r— 2
E[¢(X,)|Xo = a] < E[p(X,)"|Xo = y]'/" exp (M)

This result describes the stability of the diffusion semigroup under changes in initial position and
shows that as ¢ grows, the distribution of X; depends less on X. The second lemma, for which we
provide a proof, controls the empirical measure,

1 N
W e

on balls around training examples.

Lemma 21. Suppose that Assumption d|is satisfied, then for any i € [N],r € (0, Treacn] and any
decreasing function ¢ : (0,00) — R4, we have the bound

E[6(#(B,(@))| < 6N exp(—e,N*r") 4 pleur” /2),

whenever N > 4c;1r_d , where ¢, = inf p,,.

18
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Proof. We rewrite the object #( B,.(z;)) as an empirical average of Bernoulli random variables

(B (z) NZL:,EB () = NZM,EB ()

J#i

When conditioned on z;, the random variables (1,,¢p, (z,));»: are independently and identically
distributed Bernoulli random variable with probability 11 = Viata(B;(z;)). To utilise concentration
of the empirical process, we first rewrite the probability

) <psnr ey

P(5(B, ) < r). S =3 Len

J#i

Therefore, by Chernoff’s inequality we obtain

IP(z)(B (z:)) < ) < exp( pH(Np/2 - 1)2)
< exp(—N?u/16),

where the last bound holds when N > 44~ 1. Therefore, using the above bound as well as the trivial
bound 2(B,(x;)) > N~! we apply the law of total expectation to obtain,

E[6(#(B,(x.))

w1 = B[6(0(Bo@i))) [p(Bo () > /2] + P(9(By(2:)) < /2
< 6(1/2) + exp(—N?p/16)$(N ).

#i) (N

To control i, we use Lemmawhich asserts that p > curd*. O

This now brings us to the proof of the proposition, which we first restate.

» “reach)?

Proposition|6, Suppose that assumptionsand hold and that € := inf supp(r) € (0,7%_,), then
Sorany c € (0,1) and sufficiently large N, the score matching algorithm A, is score stable with,

iab C(COSIIIN + E[fsm( )])C’ C= %L v Cu;g* '

Proof. We use the shorthand lsm (s) = lam (55, 7), Casm(s) = Lasm (35, 7), lem(s) = lem (5;7)
for the sake of brevity. We start from Lemma [I9| which provides a bound on the difference between
§"and § in L?(p;) and use it to develop a bound in L?(py|o(+|Z)), as required by score stability. In
particular, we define the quantity

{// Y Ol poo(dylz:) 7(dt) |,

so that, by the symmetric of the algorithm, A, is score stable with constant € (we have that £ < oo
from Assumption 5] Therefore, from Lemma[T9] we have

B [ [ 1500 = s 01 il )| < SEGun(9] + (L2 + ).

We proceed using Lemma 20| with ¢(y) = |5 (y,t) — 3(y,t)||? to obtain that for any j € [N],
p>1

1.6 = 50,01 potdyic)

i . 2p e pillzs — ;?
< 18*(y, 1) — 8(y, I prjo(dylz;) | exp 50— 1)o7
t
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Given any subset of the dataset B C S with x; € B we can average over the above bound to obtain,

/ 18 (9, 8) — 3(y, DI prjoldyla)

5 ([ 1500~ 500 ot exp (HESUEE)

|B x€EB
1/p 2 3 2
uy diam(B)
< (5 [ 100 = 001 puotasle) ) exp (12 820LE)
ZEB 2(p_1)0t
1/p 2 1. 2
P i . R diam(B
<o ([0 - s(y,w?ppt(dy)) exp (L)
t
» 2 diam(B)2
< DafotP00(5) 0 ([ 18000) = 501 la) ) exp (GEET),

where in the final inequality we use the L bound in Assumption[5] Integrating with respect to 7
and taking the expectation, we obtain,

22 < (Dufo? = [o(3) PJE] [ [180.0) = st 01 planyr(an) exp (L TUEE)

< D/ o2PE[o(3) /7] " (8BlEn (0] + e(CHf2 4 ) e (“e fan (D1,
)

710-2

where we define ¢ := (1 — 1/p) L. Using Young’s inequality, it follows that for any \ > 0,

D? _ qu? diam(B)? AP -
2 < H ~ q/p € a 1/2
e® < aé‘)\qu{l/(B) } exp (Q(p —1)o? + " 8E[lsm (8)] + —<(C,

Setting k := 8\ /pN, we can rearrange this to obtain the quadratic inequahty,
8 \?Dp2 qu? diam(B)? .
2 1/2 Hl o0y € R
(1 — KZ)€ — CSI{I ke < <]Vp/{) O'élqE[V(B) q/p:| exp (W) + NI{E[Eqm(S)]

Requiring that k < 1/2, we solve the quadratic to obtain the inequality,

g2 8 \v/P D3, qu? diam(B)? -

<o K2 [ B_‘I/”} AHe D)) | NRE[la, (3)]. (34

g = +<pr€) (B) P21z ) T fam(8)). G4

Next, we optimise B by setting B = B,,_(z;) N.S. We apply Lemmawith $(r) = r~9/P to obtain
that whenever o, < Tyeacn We Obtain,

U4q

. 9 a/p
IE[&(B)“I/”} < NP exp(—c, N0 + ( )

c,rd*
9 q/p
<2 — )
ey

where the second inequality holds whenever N > ¢/2p. Returning to (34)), it follows from the above

that y

2 a/P o2

€ 9 16 2Dz, 2q P

— < sm - N E gsm . 35
g = Cme (Npcuoél f%) olg P ) TV REl i (E) 53

We now choose « by optimising the second two terms of this bound, by which we arrive at the choice

2 qa/p
(/P 2D3, exp 2q 16 _ :
aipNy p—1/)\Npe,od

for some y > 0. Substituting this in to (33), we arrive at the bound

2 2\ 2/4 2/p
€ _o( 2D%, 4 16 Y
< 2TH _ q
1 = G ( ot > o (p 1)\t )

203\ 2 16 \'Pryte 1
+( 03) “P\r—1)\eof q +p71/qE[gsm(s)] '
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Optimising y leads to the bound,
€2 _ (2D3\7 2 16 \7(, y-2(2D% v 2 16 \7
4 =\ ot P p—1/)\c,0% lops P p—1/\¢,od
1
+E[ésm<é>])

4 2 1/p
< 2D% V 16 exp 2Dy V 10 CemN™ +E[£sm(§)]
ol c ol p—1 ol c,od"

€

Optimising p, we obtain

e? 2D3 D2

=5 (Bhv L) log(a~1)1/2—2 = (2B 25 ) Com N2+ Bl
5 (vt ) e (s loae) -2 o "+ Bl (5)

from which the bound in the statement follows. To obtain that k < 1/2 and N > ¢/2g¢, it is sufficient
to require that IV is sufficiently large. O

D PROOFS FOR SAMPLING AND SCORE STABILITY

In this section, we provide details for the discretisation scheme considered in Section [5|and give the
proof for Proposition [7]and Corollary 8] In the work of [Potaptchik et al.| (2024), they consider the
following discretisation scheme, based on the scheme of (Benton et al.| [2024):

2

tk+17tk or— (7]

ngrl //’t;,Jrl tkyk"_ (gva_tk) +o—tk+1*tk Ck» ke {07"'3K_ 1}7
g1 —tp OT—ty,

where ¢, ~ N(0, I;) and we recall that the timesteps (¢, )X are given by,

o Kk, if b < =1,
P-4+ R) R, i L <k <K,

where L = T=1 > 0, K = |L 4 log(e ')/log(1 + k)| and k > 0,T > 1 is chosen freely. We
recall the following result from |Potaptchik et al.| (2024).

Lemma 22. Suppose that o = 1 and Assumptionholds with diam supp(Vgata) < 1. Then, it holds
that,

D(pellAem(8)) S lsm(s;7) + D(prlpsc) + As ks
Apx =k +d'w*(K — L)(log(e™ ') + sup | log(p,)|),

where we define the measure,

K—
Z 5y, (dt).
k=0

D.1 COARSE DISCRETISATION AND REGULARISATION

Fix ¢ > 0 and suppose that  is such that log(e™1)/log(1 + k) is an integer. Set K = L +
log(e~1)/log(1 + k) so that, according to the discretisation scheme,

tk =T —-(1+ lﬁ)_log((l)/log(l—m) =T —¢

Proof of Proposition[7] Let § = Acrm (S). We begin with Lemma[22] which provides the bound,
E[D(pe|Aem(3))] S E[lsm(5; 5, 7)] + D(prllpoc) + Ar k-

For € sufficiently small we have the bound,

é@fﬁi)aogw + sup| log(p,)])

< k(1 + K)d* log(e )2

Ap g =K+ d*K?
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Using Theorem@, we obtain that if the algorithm is ey,p-score stable, we have
Ellera (3 7)) S Ellsn(8: 5, 7)] + esunEllasm (33 8, DY + ey
S Ellam (5 7)) + 2 C22 + €2
Using Proposition |§|W€ obtain that with 7 = 7, A 1S score stable, with constant,
P S C(CCmNT2 + Bllan(3)])
< c,jlaq_qf;“l (c;lo;ﬁKilC'smN72 + E[ésm(é)]) C.
Now by definition, we have that
T—tg_1=1+r)EET =1+ k),
so if we take €, x sufficiently small so that €(1 + k) < 3, we also have US(HK) > €(1 + k) and thus
we obtain,
stab ~ “v

52 < c_le_d*/Q(l + K’,)_d*/g (C;lé_d*/2(1 + K)_d*/2csmN_2 + E[gsm(g)])c

< C;lﬁid* (1+ /f)id* (C;lcsmN72 + E[ésm(g)ocv

~

where in the last inequality, we use that e(1 4+ k) < 1/2. O
We now proceed by proving Corollary [§]in which the bound in Proposition [7]is optimised.

Proof of Corollary[8] Let 7. denote the weak limit of the measure 7,; as £ — 0. Since supp(7.) C
[e, T] and € > 0, we know that infy ls (-5 .S, Te) < 0o. From this, we deduce that lim,,_,g+ B, < 0.

With this there exists * > 1 which is the smallest quantity satisfying,

x B,
T4 R7)2M+2 = v,
(1++7) log(e=1)2
In the case that B,.- > log(e~1), we have that

By~

sm

B2+ k)4 4 (14 £%) 72 + 5" (1 + £*)d" log(e1)?
1 * 1
= BXT T log(e )T + (Ol +d*)BIT
1 1
< B log(e™!) + (O + d*)BZ log(e 7 1)2.

Plus, if B« < log(e~!) and therefore x* = 1, then there exists  such that,

- By . B, -
BY2(1 4+ k)~ —|—C (1+r)"2 +ﬁ(1+m)d*log(e_1)2§Bé/2+c—+de T

Combining these leads to the bound in the statement. O

E PROOFS FOR STABILITY OF SGD

In this section, we analyse the stochastic optimisation scheme in (I4)), deriving the score stability
bounds given in Proposition[IT] We begin with a basic lemma that follows from weight decay and
gradient clipping.

Lemma 23. Suppose that n;, < A\~ for all k € N, then for any K € N, it holds that

Ce
10| < ==V [16o]l-
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Proof. We begin with the bound,

[0k+1ll < (1= N[0k + nel|Clipe (Gr Ok, {2 }ie, )l
< (1 =N 0| + i C.

By comparison, this leads to the bound

K-1 K-1 K—1
106l <C > me T 0 =med) + [T @ = meN)ll6o]
k=0  i=k+1 k=0
K-1 k -1
<0 Y mew (A ) +ew (-2 3w )
k=0 =0 =0

K—-1 K—-1 k—1 K—-1
< Cexp ( —AD et Am]?xnk> > mkexp (x\Zm:) + exp ( - A 77k> 0ol
=0

i=0 k=0 i=0 i
Since the sum forms a left Riemann sum, approximating an integral of an increasing function, we can
upper bound it by the integral over exp(At). Furthermore, we have that A maxy, n < 1, which leads
to the bound,

=1 Thso M -1
|0kl < Ceexp (—/\ 77k> / exp(At)dt + exp (—/\ 77k>||‘90
i=0 0 i=0

K-1 K-1

<C:\e<1—exp(—A 77k>>+eXp<_)\Z7lk>H00|
k=0 k=0
< SVl

We are now ready to prove Proposition[T1]

Proposition Consider the score matching algorithm Aay, @ S — Sg,. for some fixed K € N
where (0, is as given in (T4). Suppose that assumptions[9)and[I0\hold and ny, < 7j/k for all k < K,
Sor some 7 € (0, )\71). Then, we obtain that Agy, is score stable with constant,

2 < (Cyp 1+%4f2 ¢ T Np K i
stab =\ ) (u) vV 1\ 7 N

where R? = E[||00|%],v = (MBgCi/Z +I° - N VO0and C, = [ o, 7(dt).

Proof. Since the stochastic mini-batch scheme, and therefore the resulting score matching algorithm,
is symmetric to dataset permutations, we consider stability under changes in the N** entry of the

dataset, without loss of generality. Let 6}, be the process given in (T4), using the dataset .S and let Oy
be the same process using S” instead of S:

Or1 = (1 —n\)0k — i Clipe (G0, {Zi}ien, ), 0o = 6o,
where Z; = x; fori # N, &y = &. By having the processes share the same mini-batch indices By,

and gradient approximation G/, (i.e. sharing the same random time variables ¢; ; and noise &; ;), we
couple the processes 6, and 6.
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We proceed by first controlling the stability of the gradient estimator, computing the bound,

||Gk(9k7(iv1‘)1‘esk) - Gk(ékv (zi)ien,)|

< N P Z Zwtu‘lvsek ,]v ) (Sek(X ,]v ) VIngtl IO(Xt”|xl))
i€B) j=1

_vsek(Xtu’ J)T(Sék(XiJ’ 'L]) Vlogptt |O(X

)
PZZ%J(HM oo i) = Vg, (Xeey ti) 0, (X 1)

i€B j=1

— Vlogpy, 7\O(Xt

)+ 95, (Xt st s, (X s ti) = 55, (Koo 0t

(2%

IN

NpP > Zwtz,( (X, ;o tig)llson (X, 5 ti ) — V1ogpy, ;10(Xe, ; [;)]
1€B j=1

(X, o ti)?) 160k — B

We control the expectation of this by first noting that,

]E|:wti,j (M<Xti,j’ti7j)||89k (X ti o l ) VlOgPt”w( tij x])” + L( LJati,j)g) ‘ekaéka S, j}
1/2 1/2
< (/E[M(Xt,t)2|X0 = z;]7( ) (/edsm (soy; {xi}, 6)T (dt)>

+ /E[L(Xt,t)2|X0 = z;]7(dt)
<MB,CY? + T,
where we define the quantity C, := [ O’t ). From this, it follows that
E[IGk(0k, (wi)icr,) — GO, (xnz—eBk)n]ek,ék, $,3| < (MB.CY2 +T°) 10k - Oul.

Furthermore, we can control the difference between Gy (0, (;)ic s, ) and Gy (0k, (Zi)iep, ) using
the fact that they are identical whenever N ¢ By. Thus, obtaining,

E[[|Clipg (G(6k, (@)ies,)) = Clio (G0, (#)ie )| 00 B, 5.7
<E[IG(0k, (0:)ien,) — GO (w:)ien,) |60, .2
+ E[IClipe(G(f, (@:):em,)) = Clipe(G(f, (@)iem )| 0r. e 5. 3]
< (MBeC'im +f2) 165 — Ok + 20%,
where we have used the fact that P(N € By) = % Thus, using (IED, we obtain that for any kg < k,
E{||9k+1fék+1||‘9k0,§k0,5, :c]
< (1 + 0 (MBeci/Q iy )\)) E[nek — O lekg,éko, s, z} + 2nkc%.
< (1 +mev) E[Hek - ék||‘9ko, Oro. S, 56} + an0%7

where v = MBL;C’i/ 2 + f2 — A. Thus, by comparison, we obtain,

B B K-1 N K-1 ~ K-1
E|:||9K_9K||)9k079k0a5v-%:| < Z 27]10WB H (1+77]U)+ ||0k70 _ekOH H <1+77]U>
1=ko j=i+1 j=ko
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From this we obtain the following:

N K-1 K-1
o N ~ B
Ell0x — Ox 10k, = Ok, 5,7] < 20—~ > miexp ( Z 77;‘“)

i=ko j=i+1
2C Npij Kil} K\™
SN 2\
i=ko

A

CNp (K\™
Nv ]f() ’

K-11 < log(K) — log(). By the law of total probability, we have

where we use the fact that 3771, 5
E[||6x — Ox|||60]
= E[[|0x — 0x|||0ky = O, |P(Oky = Ok |00) + E[l|0r — Ok [|[Ory # Okos O0]P(Ok, # Okol00)
CNg (K\™ [Ce koNg
S — — Ve

where in the second inequality, we use Lemma[23] Thus, optimising kg leads to the bound,

_ O\ 71 Ce Ny
w16~ lion) £ (€)1 1oy (SEv o) R ke

Finally, we obtain score stability using the fact that

Ok

[ Bllson (X2.6)-s5,, (X O X0 = 5. S)r(de)
<E|L*|0x - bx|?]

_ Ce -
<26 [22( 50 v 160l ) 16— ]

e et (o @ Np e
<I? (; v R) () (1+ 1/CU)WBKT+17
C

where R? = E||6]|2. O

F  WASSERSTEIN CONTRACTIONS

In this section, we derive the Wasserstein contraction result used in the proof of Proposition
We begin with the more abstract problem of deriving Wasserstein contractions for a discrete time
diffusion process with anisotropic non-constant volatility. We consider stochastic processes given by
the discrete-time update,

Tp1 = (1 = nX)ag + nb(xk) + /o (xr)Ek, (36)
Yrr1 = (1 —n\)ys + 1b(yr) + /176 (yx )&k, 37)

for some b, b : RY — R? 5,5 : RY — R*? where &; ~ N(0, 1), and we show that the laws of
and y contract in Wasserstein distance. We borrow the strategy developed by Eberle] (2016 and
extended in (Eberle & Majkal 2019; Majka et al., |2020), constructing a coupling and a metric for
which exponential contractions of the coupling can be obtained. However, these works are restricted
to the setting of isotropic noise with constant volatility (i.e. o(x) = ¢I;) and so some careful
modification to the strategy is required. In particular, we analyse this process with respect to the
seminorm | - || g+ given by ||z||%, = #7 Gz, where G denotes the Moore-Penrose pseudoinverse
of the matrix G. Furthermore, we allow for z; and ¥y, to have different bias and volatility terms and
so controlling for this will also require some modifications to the proof technique.
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To define our coupling we first suppose that there exists a symmetric positive semi-definite matrix
G € R¥? such that o(x),5(y) = G'/? for all z € RY, and to couple an update from the above
process starting at =,y € R%, we first define the update,

T=(1-nNe+nb),  §=(1-n\y+nby),
E=3+io(e) G2, =g+ Gy -G
where Z' ~ N(0, I;). We then define the synchronous coupled processes,
X' =i+ nG'?*z
Y=g+ G2,

with Z ~ N(0, I4). We also consider the reflection coupling,
Y/ =g+ G (1= 2(G) e (G )2, withe = (- §)/1@ ~ Gllge (38)

which has the noise act in the mirrored direction. We combine these couplings to arrive at the final
coupling (X', Y"):
X', 3¢ < 636X /6a06(X'),| (e, Z)[2 < m?nand # < 1y
Yi=qY, (> ¢g,6(X')/¢snc(X'), e, Z)|* <m®/nand i <1 (39)
Y!,  otherwise,

S
for some fixed m > 0.

We assume the following regularity properties.

Assumption 24. Suppose that b is bounded, satisfying B := sup,cpn ||b(2)||g+ < 0o and we have
the Lipschitz property, ||b(x) = b(y)llc+ < Ly|[x —yllg+ and |lo(z) —o(y)llop.c+ < Lollz —ylle+
forall x,y € R™ and for some Ly, L, > 0.

We also allow for b # band o # &, making the following assumption.

Assumption 25. Suppose that b, b satisfy |b(z) — b(z)|| g+ < By, ||o(x) — 5(2)|lop.a+ < By for
all x € R™ and for some Bb, EU > 0.

We define the objects,
R =z —yla+, 7= 17— gllg+, 7 =12 — gllg+, R =X =Yg+

We wish to show that R’ contracts in expectation, i.e. it is less than R on average. We modify the
metric to guarantee this is possible. We define the function,

(1—e72) 4 5-e™2(r> —r3), otherwise,

where a = 6Lyr1/co, 11 = 4(1 +noLy)B/X, r2 = r1 + /o and cg, 10 are defined below. The
coupling and the strategy for proving contractions is closely based on an analysis in Majka et al.
(2020) and for the sake of comparison, we rely on similar notation. We will also heavily borrow
properties of the function f that are proven in this work.

By allowing o to be non-constant, we run in to additional complications that are controlled by making
the following assumption about the scale of L,,.

Assumption 26. Suppose that the following three inequalities hold:

8Ly (6 V (4a))rky?

V(1 —emam2)c

n—1,(\?/16L% — 1)? > 32log ( ) L2 < )\/8n,

for some universal constant K.

Under these assumptions, we obtain exponential contractions.
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Proposition 27. Suppose that assumptions and hold and m = \/no /2, then for any n < 1o
and x,y € RY, it holds that

E[f(R)] < (1 - ne/4)f(r) + e~ (2 B2 + nnB2),

27"2
where
U i %e—arz’rg i 9L27’% eiGer/CU 3L’I‘1
’ 16’ %(1 - e_‘"2) 16’ 2¢o ’ 16.,/10 ’

— min A 161 2colog(3/2)\? 4732 c2(log(2))?\?
o = AL2 N'2L° 4320232 ' A2’ 2304L2B2 |’

for some universal co and L = 2(Ly — \) 4 + 417~ 2Ly+/2(n — 1).

F.1 THE COUPLING

Before we provide the proof of Proposition [27] we provide an explanation of how the coupling is
arrived at. We begin by discussing the one-dimensional coupling of the Gaussian distribution that
the construction is ultimately based on. Consider the following coupling of A(¢, ) and N (s, n) for
t,s € R: with z ~ N(0, 1),

t'=t+ 1z, (40)
', if ( < b (t')/ben(t'), |\/n2] <, and [t — 5| < rq,
s'=(s— Mz, (> s, (t)/dent), |Vnz] <m, and [t — 5| < rq, 41)

s+ /nz, otherwise.

This coupling has the following property given in lemmas 3.1 and 3.2 of [Majka et al.| (2020)).
Lemma 28. For the coupling defined in [@0) and @), we have

Ellt" = '] = [t — s,

and if n < 4m?, we have

1 .
E|(|t' —s'| — |t — s|)21‘t,75,|61‘675& > 5€0 min(\/7, [t — s|)v/7,

] <
where I.= 0,74+ /M), ifr< ﬁ7
(r—+/m,r), otherwise,

for some universal constant cy > 0.

Thus, through the second bound, we have control of the probability that |¢' — s’| contracts below
|t — s|. The coupling proposed in is a multivariate analogue of this that also accounts for the
diffusion coefficient G/2. Let the vector ¢ € R< be as defined in (38), then we obtain that,
(e,G*X") = (e, GT &) + Vh{((GY?) e, Z),
(e,GYY!) = (e, GTi)) + VR((GY*)Te, Z).
Therefore, (e, GTX'), (e, GTY]) are a synchronous coupling of N((e,Gt%),h) and
N ({e, GT9), h). Furthermore, we have
(e, GTY) = (e, GTi) + VR{(GY2) Fe, (I —2(GY*) Fee(G1?)7) 2)
= (e, G* ) + VR((GY?)re, Z) — 2Vh{e, GTe) ((GV?) Te, Z)
= (e, GT9) — VR{(GY?)re, Z),
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and so (e, GT X'), (e, GTY}/) is the one-dimensional reflection coupling. Finally we obtain,

¢Z§J]G (X/) _ ¢(G1/2)+(Q—fa),n(G’l/Q)‘*'Gl/? (\/’77Z)
b2 nc(X') bo,n(c1/2)yr a2 (VinZ)

1 R 1
— exp ( = 5 IVAZ = (@) = #)gumyscurs + 2,7|wzn%@m)+au2)

Lo e 1 12\+/n A
- ( - gl = dll + T VRE ) @ —x>,Z>)
1 R R 1 . . 1
~ exp ( - e GG = D) + 1 Vi, GG - D) (G e Z>)
|

:exp<_217](\/ﬁ<e,a+z>—<e,G+(ﬁ—:%)>)2+ L o )

_ Pectg-ana(VI((GY?) e, Z))

b0, (V{(GY/2)Te, Z))
e.G5m((e; GT X))
¢<e a+ayn((e, GTX"))"
(e,

From this, we deduce that (e, G X"}, (e, GTY’) are coupled as in @0), @I). The equivalence
follows by setting

= (e,GTX'), s =(e,GTY") (42)
t=(e,GT1), s = (e,GT), 2= ((GY?)*e, Z). (43)

Through this equivalence, we can extend the previous lemma to obtain the following result about the
high dimensional coupling.

Lemma 29. For the coupling defined in (39), we obtain that for n < 4m?2, we have the following:
1
B[R] =7  E|[(R —)lrer| > seomin(yi, /)il
where co and I, is as in Lemma[28)

Proof. Let {e;}"_; be a basis of R™ with respect to the inner product (-, ) g+ with e; = e. Then, we
have that

= e, GHX' = Y")P?
i=1
= [t = P+ Y e GH X = Y)P, (44)
=2

where t', s’ are as defined in (42)). For any 7 # 1, we can use that e; L e, to obtain that
(e;, GTY)) = (e, GT9) + Ve, e) + 2Vh(es, Z)
= (ei, G*9) + 2Vhz.
From this, we obtain that,

(e, GT(X' = Y])) = (e:,GT (2 — §)) = 0.

r

This also holds for the synchronous coupling and hence we obtain (e;, G*(X’—Y")) = 0. Combined
with (@4)), we obtain that R’ = |[¢' — ¢|. Similarly it can be shown that # = |¢ — s| and thus, from
Lemma[28] the statement of the lemma follows. O
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F.2 PROOF OF PROPOSITION 27]

We begin by considering the setting where Z’ is truncated Gaussian noise and that b = b,o =a.
We will then extend this to the more general setting in Section [F.2.3] We begin by decomposing
& ~ N(0, I;) in to directions parallel and perpendicular to the radial vector,

rT—y

&= UUT€7 §o = (I - UUT)§7 V= -
1Z — dlla+

We then clip each direction according to constants z1, Z2 > 0 and add them together:
7' = (Anall&lgi)e + 1A 2llelg: g (45)

To prove that the process is contractive, we consider two cases based on the initial distance r.

F.2.1 THE CASEOFT > 1

When r is large, we can rely on contractive properties following from the weight decay. For this, we
obtain the following.

Lemma 30. Suppose that Assumptionholds and that 4z; < AL;l\/ﬁ, 2%y < \ELU, n< AL
Then whenever v > 4B/ \, we have

r < (1 — 778/\>7“, (46)
and when r < 4B/,
7 < (1+nL)r, (47)

where L = 2(Ly — \) 4 + 40~/ L, 7.

Proof. From the triangle inequality and the Lipschitz property of b, we obtain
7 < (I=nNlz = yllg+ +nllb(z) — by)lla+
< (X +n(Ly = A)4)r.
Alternatively, we can use the fact that ||b||g+ < B to obtain, 7 < (1 — nX)r 4+ 2nB. In particular, if
r > 4B/\, we obtain 7 < (1 — nA/2)r. Next we bound 7 using the decomposition,

P =2 =5+ (@) — o) Z'l[&+
=1z = 7+ vi(o(x) = o)A Azl lgHelz + Ivnlo(@) —o@) (LA zlélgh ez

<& =g+ vilo(z) =o)L A zl&llg: &G+ (48)
The second term is then bounded by,

Ivi(o(@) =o)L A 2lélghélzs < nlo@) = o@)llopar (1A ZlE050)2 1€ 15+
<nLgzr?, (49)
and the first term is bounded by,
12 — 5+ vilo(z) = o)A A ZléllghHélE < 7 +nLizir® +2y/mLa(v, G &)
< (14 2y/MLo 7)) + nL2 232 (50)
We substitute (@9) and (50) in to (48)) to obtain
7 < (14 2y/nLoz)7 + L2 (2 + 23)r?
< (U n(Ly = N)4)* (14 2¢/nLeZ0)r* + 0Ly (5 + 25)r’
<X +n(Ly — N4 + 20> (Ly — N4 Lo 21 + 24/ Lo 21 +nLE (2 + 23))r?
< (L+2n(Ly = A+ + 4L 21)r?,
where we have used that 2n'/2L, %, < 1,9'/2L, (2} + 23) < 7, producing the bound in 7). In the

case that 7 < 4B/, we can use the fact that 2y'/2L,z; < n)\/2 and L2(z? 4 23) < \/4 to refine
this bound:

2 < (L= n\/2)*(1+ 2L 21)r* + nL5 (1 + 23)r
< (L=nA/2)(1 = 0N /4)*r® + L3 (21 + 25)r°
< (1 —nX/4)r2.
Using the fact that (1 — n)\/4)'/2 < 1 —n\/8, we obtain the bound in (#6)). O
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We will also need a property of f given inMajka et al.| (2020).
Lemma 31. The function f satisfies the property that for all r > 1o,

F((1=%)r) = 1) < —mef ).
Using the fact that f is increasing, it follows from lemmas [30|and 31| that,

7)< (1= 5)r) < (= ne)f(r).

Thus, to obtain contractions of E[f(R')] when r > ry, it is sufficient to show that E[f(R)|Z'] <

f(7). Note that when # > ry or ||\/nZ|| > m, the synchronous coupling is used and so R’ = 7.
Furthermore, if 7 < 71 and ||\/nZ|| < m, we have that R’ < r; and thus, using the concavity of f,
we deduce that

E[f(R)|Z'] — f(7) < f/(P)(E[R|Z] — 7) = 0.
Thus, we have shown that whenever r > r, E[f(R')|Z'] < f(7).

F.2.2 THECASEOFr < r;

When r is small we no longer have contractions due to weight decay and must instead rely on
properties of the coupling and function. From Taylor’s theorem we have the following:

FIR) = 1) = PR =)+ 5sup £/ 0)(R = 7)°

where the supremum is between all # > 0 between R’ and #. We note that in the present setting,
7 < 7y also (this follows from Lemma and furthermore R’ — # < 2m < ry. Therefore, we can
use that f is concave between R’ and 7 and so f”’ is negative. Using this fact, as well as the fact that
E[R'|Z'] = #, we obtain the bound,

E[f(R)|Z"] = f(7)

IN

SE[sup /O — 7 1wer,

< 5 swp [OF[(R —)1nes| 7]
2 oel;
1 . R
< 7 sup f"(0)co min(y/n, 7)/7.
oeclx

Furthermore, we analyse the contractions between 7 and r using the fact that the function is concave
between these values, obtaining,

f@) = fr) < ()7 = 7“) < f'(rmLr.
Since we have the derivative f'(r) = e=%" = f/(#)e~*"=") < f'(#)e®="1, it holds that

f#) = fr) < f (f)e“"”l nL#, (51)
) <

where we have used that f(7) — f(r
obtain the bound,

E[f(R)|Z'] = f(r) < f'(P)e™" ™ nLi + 1 sup f”(6)co min(y/7, #)y/1-

ocl;

0 holds trivially whenever r > 7. Putting these together, we

To complete the analysis of this case, we borrow a result from [Majka et al.| (2020).
Lemma 32. The function f, satisfies the property that for all * € [0,11],

fl(#)es i Li + %co min(4/7, f)\/ﬁsgp F(F) < —chf(F).

Between this section and the previous, we have shown that for any z,y € R",
E[f(R)] < (1= ne/2)f(r),

in the setting where Z’ is the truncated Gaussian defined in andb=b,0 =5
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F.2.3 FULL NOISE AND INACCURATE DRIFT

We now consider the more general case of b # b, o = & necessarily and also set Z' = &, so that it is
Gaussian distributed. We do this by borrowing the contraction analysis above. We use the notation
R" = || X’ — Y’||g+ to not confuse it with R’ used above. We obtain,

R" < R +n|b(y) — b@)lle+ + val(o(y) — 5w)Elle+ + val(o(@) — o)) (Z' — & — &)llg+
< R'+nB + /B, €]l o+
+Villo(@) = o) llop.a+ 12 — (1 A z1|l&llgh )6 — (LA Z2l|&ll ) éllo+
<R +0B+ ViBsll€llo+ + vViLor(|€1lle+ Ljey) s 22 + 162l Ljeal oy 222)-

We use the following stability bound for the function f given in the proof of Theorem 2.5 in Majka
et al.[(2020).

Lemma 33. Foranyt,s > 0, we have
ft)— f(s) < (rytem2(t v s) + 1)t — 5.

Thus, the difference between f(R”) and f(R’) is given by,
f(RY) = f(R)
< f(R + 0B+ ViBs |l + viLer([lla+ Ljey s 22 + 1€2lla+ Ljey) s 22,)) — F(R)
< (ry e (R + 0B + ViBo |€lla+ + viLer([€illa Lje gy 22 + [€2la+ Ljea s >2,))
+ 1B+ viBsllElla+ + ViLor(I€1llo+ Ljeyoe 25 + 12llo+ Ljealigr22))- (52)

We now control the expected value of this. Using concentration of the x? distribution (see Example
2.11 of Wainwright (2019)), we obtain that for any z; = \/2Agep(G)~1(n — 1),

Elll&2)13+ Lje s 2]
< aap(G) T E[[1€2]1P 116 3 A0 (617225

o

< Aap(@)! / P(|&l? > r)dr

Aep(G) 23

Aeap (G)Z5
(@) [ B(&]) = %) dr
0

oo _ —1))2
< )\gap(G)_l (G352 €xp ( - (r(;ln))>d7"

Cenl) = (0 =17

+ /\gap(G)_1 exp ( — ™

< A (VG TT + A exp  — ol = (1= D)

< Aun(@) (VT = D exp((n ~ 1)/16)

72 (n— 2
+ Aeap(G) 23 exp(—z§/64)> exp ( _ (Agap(Ci)fi(zn _(1) 1)) )

Aeap(G)25 — (n — 1))2>
16(n— 1)

< /ﬁo)\gap(G)fl exp ( -

n—1
< "fO)\gap(G)_1 exp (_ 16 )7

for some universal constant k¢ > 1 (independent of n and 2z). Similarly, we have

(Meap(G)ZF — 1)2>

Bl Lty 5] < Koden(G) ™ exp ( - o2
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for any Z; > Agyp(G)~1/2. Therefore, we choose z; = 3L !,/7We now return to (52) using these
bounds as well as the fact that E[R’|Z’] = 7. Defining the quantity,

A= k) Agap(G) 2 exp(—(n — 1)/32) + kg * Agap(G) ™% exp(—(Agap(G) 72 — 1)2/32),
we obtain that for n < min{B/2,dB?/4,1/2L,1/2L? A%}
E[f(R") — f(R)]
= (ryte 2 (B[f%]Y/? + nB + \/ndBy + \/1LsrA) + 1)(nB + /ndBy + \/1LsTA)
< (ryte (14 nL+ /ML, A)r +1)\/nL,r A+ ée“”’“ (n*B? +1dB2)

+ (r;le_‘"?(l +nL+/nL;A)r + 1)(173 + \/nng)
+ry e 2 (B + \/1nd B, )/nLsr? A
< (47"2_167(”27' + 1)\/51107"14 + Qie*am (n2B2 + Tldég)
T2
When r < ry, we have
(7"2_16_(”"2(1 +nL+ 3L, A)r + 1)r
<(e*?(1+4+nL+/nL,A)+ 1)r

(™" (1 4+ 0L + iiLeA) + 1)(a (1 — =) a~ (1 — )
Aa” M1 —em )" f(r),
where in the final line, we used n < L~ 'and \/ﬁLg/-f(l)/2 < 1. When r > ry, we have

(ryte (1 +nL+ nLs A)r + 1)r < (e72(1 + L + /Ly A) + 1)ry 'r?
<224 ) (7).

<
<

Thus, we obtain,

1—e—ar2

E[f(R")] < E[f(R)] + i1Le A7228 £ (r) + 2—1;% (n2B2 + ndB2)

a 3 — D, >,
< (1= ne/2 4 VLo AT EE85) f(r) 4 5 e (1" B + ndBBY),
2

where we used AL, -2Y(4a) < Vne/4.

l—e—ar2

G PROOFS FOR THE STABILITY OF THE NOISY GRADIENT ESTIMATOR

Using the Wasserstein contraction obtained in the previous section, we will now prove Proposition
14
Proposition@ Consider the score matching algorithm Agy, @ S — Sg,. for some fixed K € N

where (O ), is as given in (16). Suppose that assumptions and hold, then there exists some
71 > 0 such that, if sup,, n, < 1), we obtain that Asy, is score stable with constant

—2 K-—1
L C*(P+ min Aeap A2 PNgpC
2 < ( n) . {77 gap Tty €XD (E B )}7

Estab ~ /\gapN PNB C nmin)‘gap)‘Q

k=0
where ¢ < (M;;B@Ci/Q + fi)(PNB)\ga,,)’l/2 V 1, Qmin = ming 7.

The proof of Proposition follows from an application of Proposition[27to the process in (I6). Similar
to the proof of Proposition we obtain stability estimates by analysing the trajectories 6, and 6,

trained on S and S™ with coupled minibatch indices. In particular, given a set of minibatch indices
B C [N] with |B| = N, if we set
b(0) = E[Cline(G(0, ()icp))|6. B,5],  b(0) = E[Cline(G(0, (F)icn))

o(0):=\n2s0,B)Y2  &(0) = nXg~n(0,B)?

e,B,SN}
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where we use (%;)Y; to denote the dataset SV (i.e. #; = =z; forall i # N and Iy = %),
then the trajectories ), and 6, are updated as in (36), (37). Using the shorthand, v; ;(0) =
’th(i’j)v‘g HSQ (X(z,])a t(z73)) -V Ingt(i j)|0(X i,7) |.§UL) ||2, we obtain the bound,

Ys(8, B) = Cov (PN ZZChpC v;,5(0

i€B j=1

9,B,S>

= PN2 ZCOV (Clipe(vs,;(0 |9 B,S)

B ieB
1 =
3.
PNp

Therefore, we have o(6) = \/n/PNp /2 =: G'/2, and similarly, 5(0) = G'/2. The weighted
norm || - ||g+ satisfies the property,

%

PNp
Agap

Therefore, due to the gradient clipping, we have ||b(6)||g+ < \/PNp/nAgpC =: B. Furthermore,
by Assumption[I3] we apply the same argument used in the proof of Proposition ﬂ;fl to obtain

16(60) = b(®") |6+ < (MaBCY? + )0~ 0|l

1016+ < Amax(GH)2]6] <

1]

— —2 . . . .. . .
solLy, =M 4BgCl/ 2 + L,. To obtain the Lipschitz constant for the volatility matrix, we first obtain,

o) = 0(0") < Vi Cov ( zz(w (Coi4 ()70 5(6)

o 1/2
WV s @) 0. 55)

From this, we deduce,

b

I76) = (@) lopo+ < Vi sup Var ({670, 5= 30 37 (v (Cluis O )vis0)

lv]l g+=1 i€B j=1
1/2
- WV (@l @) 8)) )6 5.5
1 1/2
< il 5y 2 Var (s (0) = vig @)l [0.B.S) )
PN -
i€B
To control this further, we use the Lipschitz assumption on to show that v is Lipschitz also:
[065(8) = e8|+
< 2lls0(X (1.5, tag)) — s (X (g b)) la+ 1 Voso (X i) tip) lop.c+
+ 2|50 (X(ig)s L)) — Viogpe, 10Xz lla+ [Vase(Xi gy, teig)
— Vose (X (i) ti ) lop,c+

2c /Nt
< 2L(X (5 5y, t(i )20 — 0|l o+ + M(X (i ) ta )l — 0'lla+
t

Computing the variance of this leads to the bound,

1o(8) — (0 lop.cit < 2| 5 (M4BCL> + T30 — 6|+ =: Lo |6 — 6|+
PNpAgp

Next, we use a similar argument to the proof of Proposition[TT]to obtain

- PNg ~ PNp 2C
_ < — < 1 =B
160) = B(O)lo+ < /52 16(6) = 8O < || S5== T Lven =: B
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0. B, s)> v

1/2
0.B,5) Lyes

lo(0) —G(0")lop.c+ < ﬁ(P]lV?B ZVar (||Clipc(vi,j(0)) — Clipe(vi; (0) e+
i€EB

n . .
</ vz Var (IClipe (v (0)) = Clipe (o ()l

Since 0 < ||Clipc (vi,n (0)) — Cling(0:.5(0') |+ < 20 /732

~ n PNB
o(8) = 5&llop.c+ < @\/;%EB
< ! C1
— NB)\gap NeB

=: B,.
Therefore we have satisfied all assumptions of Proposition 27]aside from Assumption 26 To satisfy

this assumption we use that L, ~ +/1/P and so if 7 is sufficiently small, or P is sufficiently large,
this assumption is satisfied once n is sufficiently large also.

Using Proposition 27, we obtain the contraction,

~ ~ ~ 3 —anr 2 n
E[d(Ok+1, Ok+1)|0k, O, Br] < (1 —ne/2)d(0, Ox) + g€ o <77A4£g3 IneB + 7 CQ]INGB)-

Using the fact that P(N € By) = N /N, we obtain,

~ ~ 3 4PC? n 1
Eld(0k+1,0k+1)] < (1 —ne/2)E[d(0k, 0k)] + 7}2—74267‘"2 ( C’2> N

Agap Agap
Thus, by comparison, we obtain the bound,

E[d(6x, 0 )] s3e—m(4pc L 02) LS (1 ey
2

or o N7
3 (4P02 o)t 1e/2)<
2r Agap  Agap Nc/2
3 2
< —e 2 (4P 4 n) (nK A2/c).

27’2 gap

By the definition of f(r), we have that it dominates 7 up to a multiplicative constant:

0 (=) ()
o o) )

1 —ars
Z Ee z((Q'I"g) AN 1)7”2.

Thus, using assumption T3] it follows that
/]EHISeK (Xe,t) = 55, (Xe, D)|I*| Xo = &, S](dt)
< I2E|)0x — Ox |3+

<1 <1e—‘"2((2r§) A 1)) _1E[d<9m )|

N(nK/\Q/c).

< 3L2((2r3) "tV 1)(4P + n))\c
gap
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We then use the fact that when 7 is sufficiently small, we obtain the estimate 19 > A~! and therefore,

PNpC

2 S
1 'r])\gap)\Q )

i3 2 L < (MyB,CY? +fi)(PNB)\gap)*1/2 v1

and since L and r; explode as 7 — 0™, we also have,
rac 2 L*r} exp(—6Lr? /co)

> exp(—6Lr?/co).
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