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Abstract

Modern neural networks are expected to simultaneously satisfy a host of desirable1

properties: accurate fitting to training data, generalization to unseen inputs, pa-2

rameter and computational efficiency, and robustness to adversarial perturbations.3

While compressibility and robustness have each been studied extensively, a unified4

understanding of their interaction still remains elusive. In this work, we develop a5

principled framework to analyze how different forms of compressibility - such as6

neuron-level sparsity and spectral compressibility - affect adversarial robustness.7

We show that these forms of compression can induce a small number of highly8

sensitive directions in the representation space, which adversaries can exploit to9

construct effective perturbations. Our analysis yields a simple yet instructive ro-10

bustness bound, revealing how neuron and spectral compressibility impact ℓ∞ and11

ℓ2 robustness via their effects on the learned representations. Crucially, the vulnera-12

bilities we identify arise irrespective of how compression is achieved - whether via13

regularization, architectural bias, or implicit learning dynamics. Through empirical14

evaluations across synthetic and realistic tasks, we confirm our theoretical predic-15

tions, and further demonstrate that these vulnerabilities persist under adversarial16

training and transfer learning, and contribute to the emergence of universal adver-17

sarial perturbations. Our findings show a fundamental tension between structured18

compressibility and robustness, and suggest new pathways for designing models19

that are both efficient and secure.20

1 Introduction21

Machine learning (ML) systems are increasingly deployed in high-stakes domains such as health-22

care (Rajpurkar et al., 2022) and autonomous driving (Hussain & Zeadally, 2019), where reliability23

is paramount. With their growing social impact, modern neural networks are now expected to meet a24

suite of often conflicting demands: they must fit the data (explain observations), generalize to unseen25

inputs, remain efficient in storage and inference, i.e., be compressible, and exhibit robustness against26

adversarial perturbations, as well as other distribution shifts. While each of these desiderata has been27

studied extensively in isolation, a mature and unified understanding of how they interact—and in28

particular, how compressibility shapes robustness—remains elusive.29

As desirable as adversarial robustness and compressibility both are, the research has been equivocal30

regarding whether/when/how their simultaneous achievement is possible (Guo et al., 2018; Balda31

et al., 2020; Li et al., 2020a; Merkle et al., 2022; Liao et al., 2022; Piras et al., 2024). However,32

recent work has started to provide mechanism-based explanations for the relationship between33

the two, highlighting how compressibility impacts models’ vulnerability to adversarial noise. For34

example, Savostianova et al. (2023) demonstrate that low-rank parameterizations may inadvertently35

amplify local Lipschitz constants, increasing sensitivity to perturbations. Nern et al. (2023) connect36

adversarial transferability to layer-wise operator norms and their impact on representation geometry.37
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Feng et al. (2025) further shows that while moderate sparsity can enhance robustness, excessive38

sparsity causes ill-conditioning that reintroduces fragility and vulnerability. These results hint at a39

delicate, regime-dependent relationship between compressibility and robustness—but a principled40

and general framework is still lacking.41

In this work, we develop a framework to investigate the effect of structured sparsity on adversarial42

robustness through its effect on parameter operator norms and network’s Lipschitz constant. We43

jointly study how different forms of compressibility—particularly neuron-level sparsity and spectral44

compression—affect adversarial robustness. Our central result is an intuitive and instructive adver-45

sarial robustness bound that reveals how compressibility can induce a small set of highly sensitive46

directions in the representation space. These “adversarial axes” dramatically amplify perturbations47

and are readily exploited by adversaries. Empirically, we confirm that these axes are not merely48

theoretical constructs: adversarial attacks reliably identify and exploit them across architectures,49

datasets, and attack models. Previous research tightly links compressibility to generalization (Arora50

et al., 2018; Barsbey et al., 2021); however, our findings imply that the very mechanisms that promote51

generalization can also introduce structural weaknesses. In summary, our contributions are:52

1. We provide an adversarial robustness bound that decomposes into analytically interpretable terms,53

and predicts that neuron and spectral compressibility create adversarial vulnerability against ℓ∞54

and ℓ2 attacks, through their effects on networks’ Lipschitz constants.55

2. Utilizing various compressibility-inducing interventions, we empirically validate our predictions56

regarding the emergence of adversarial vulnerability under structured compressibility.57

3. We demonstrate that the detrimental effects of compressibility persist under adversarial training58

and transfer learning, and can contribute to the appearance of universal adversarial examples.59

4. We demonstrate that the compressed models inherit the negative effects of compressibility, and60

leverage our bound to propose regularization and pruning strategies that are simple yet effective.61

We will make our implementation publicly available upon publication.62

2 Setup63

Notation. We denote scalars by lower case italic (k), vectors with lower case bold (x), and matrices64

with upper case bold (W) characters respectively. Vector ℓp norms are denoted by ∥x∥p. For matrices,65

∥W∥F , ∥W∥2, ∥W∥∞ correspond to Frobenius, spectral, and ℓ∞ operator norms, respectively. We66

denote the ith element of a vector x with xi, and row i of a matrix W with wi. Elements of a67

sequence of matrices (e.g. layer matrices) are referred to by Wl, l ∈ [λ]. For an integer n, we use68

[n] := (1, . . . , n).69

Unless otherwise specified, we will be focusing on supervised classification problems, which will70

involve the input x ∈ X and label y ∈ Y . A predictor g : X → R|Y|, parametrized by θ ∈ Θ71

produces output logits s = g(x,θ), the maximum of which is the predicted label ŷ = argmaxi∈|Y| si.72

Predictions are evaluted by a loss function ℓ : R|Y| × Y → R+. For brevity, we define the composite73

loss function f(x,θ) := ℓ(g(x,θ), y).74

Risk and adversarial robustness. Assuming a data distribution π on X×Y , we define the population75

and empirical risks accordingly: F (θ) := Ex,y∼π[f(x,θ)], and F̂ (θ, S) := 1
n

∑n
i=1 f(xi,θ),76

where (xi, yi)
n
i=1 denotes a set of i.i.d. samples from π. Adversarial attacks are minimal perturbations77

to input that dramatically disrupt a model’s predictions (Szegedy et al., 2014). In this paper, we focus78

on bounded p-norm attacks, which we define as79

a∗ = argmax
∥a∥p≤δ

f(x+ a,θ). (1)

Given the adversarial loss fadv
p (x,θ; δ) := f(x+ a∗,θ), we define adversarial risk and empirical80

adversarial risk as F adv
p (θ; δ) := Ex∼π[f

adv
p (x,θ; δ)] and F̂ adv

p (θ, S; δ) := 1
n

∑n
i=1 f

adv
p (xi,θ; δ),81

respectively. The type of the selected attack norm p for the attack budget δ, determines the type of82

adversarial attack in question, with p = 2 and p = ∞ as the most common choices. In this paper, we83

are primarily interested in what we call the adversarial robustness gap: ∆adv
p := F adv

p (θ, δ)− F (θ).84

A model with small ∆adv
p is considered adversarially robust.85
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Neural networks. Our analyses will focus on neural networks under classification. We define a fully86

connected neural network (FCN) with λ hidden layers of h units as below:87

g(x,θ) = Cϕ(Wλϕ(. . .W1x)), (2)

where θ := (C,W1, . . . ,Wλ), ϕ is elementwise ReLU activation function. We can write g as88

the composition of two functions, a linear classifier head c : Rh → R|Y|, and a feature encoder89

Φ : X → Rh, such that g(x,θ) := c(·,C) ◦ Φ(·,W1 . . .Wλ)(x). To avoid notational clutter and90

without loss of generality, throughout our analyses we assume that x ∈ Rh, and omit bias parameters.91

Lipschitz continuity. Given two Lp spaces X and Y , a function g : X → Y is called Lipschitz92

continuous if there exists a constant Kp such that ∥g(x1)−g(x2)∥p ≤ Kp∥x1−x2∥p,∀ x1,x2 ∈ X .93

Said Kp is called the (global) Lipschitz constant. Any K̄p that is valid for a subspace U ⊂ X is94

called a local Lipschitz constant. Although its computation is NP-hard for even the simplest neural95

networks (Scaman & Virmaux, 2018); as a notion of input-based volatility, estimation, utilization,96

and regularization of the Lipschitz constant have been a staple of robustness research (Cisse et al.,97

2017; Bubeck et al., 2020; Grishina et al., 2025). Note that the FCN as defined in Eq (2) is Lipschitz98

continuous in ℓp for p ∈ [1,∞], along with other commonly used architectures such as convolutional99

neural networks (CNN) (Zühlke & Kudenko, 2025).100

Compressibility. Various prominent approaches to neural network compression exist, such as101

pruning, quantization, distillation, and conditional computing, (O’Neill, 2020). Here we focus on102

pruning, which is arguably the most commonly used and researched form of compression (Hohman103

et al., 2024). More specifically, we focus on inherent properties of network parameters that make104

them amenable to pruning, i.e. their compressibility. We continue with a formal definition.105

Definition 2.1 ((q, k, ϵ)-compressibility). Given a vector θ ∈ Rd and a non-negative integer k ≤ d,106

let θk denote the compressed vector which contains the largest (in magnitude) k elements of θ with107

all the other elements set to 0. Then, θ is (q, k, ϵ)-compressible if and only if108

∥θ − θk∥q / ∥θ∥q ≤ ϵ. (3)

In the case of equality, we call θ to be strictly (q, k, ϵ)-compressible.109

Moving forward we will assume any vector denoted as compressible is strictly compressible, unless110

otherwise noted. The concept of compressibility can be thought of as the generalization of sparsity,111

with the obvious advantage of being applicable to domains where true sparsity is rare, such as112

neural network parameter values. Note that our intuitive definition of compressibility is based on113

foundational results in compressed sensing and is well exploited in the established machine learning114

literature (Amini et al., 2011; Gribonval et al., 2012; Barsbey et al., 2021; Diao et al., 2023; Wan115

et al., 2024). We refer the reader to our suppl. material for a discussion / comparison.116

Dominance vs. spread. While (q, k, ϵ)-compressibility quantifies how well a vector can be approxi-117

mated using its top-k entries, it does not fully capture the internal structure among those dominant118

terms. Consider the vectors x1 = (10, 2, 1, 1) and x2 = (6, 6, 1, 1): both yield the same 2-term119

relative approximation error under q = 1, yet their dominant components differ markedly in structure.120

To formalize this distinction, we introduce the spread variable as a complementary descriptor.121

Given a vector θ with elements sorted by magnitude, we define its spread β ∈ [0, 1] via the relation122

|θk| = (1−β)|θ1|. Intuitively, β quantifies the relative decay from the largest to the k-th largest entry,123

capturing an additional degree of freedom in the geometry of compressibility, better describing and124

distinguishing compressible distributions beyond what is possible with approximation error alone.125

Structured compressibility. Importantly, given that the θ can be any vector, the above definition126

can be used flexibly to describe different notions of compressibility, including those of structured127

compressibility, where particular substructures in the model dominate the rest. More specifically,128

given a layer parameter matrix W ∈ Rh×h from Eq (2), let ννν := (∥w1∥1, . . . , ∥wh∥1) denote129

ℓ1 norms of rows of the matrix W. The compressibility of ννν would correspond to row/neuron130

compressibility, which is a desirable property for neural network parameters as it expedites pruning131

of whole neurons, with tangible computational gains. Note that this also would correspond to132

filter compressibility/pruning in CNNs with a matricization of the convolution tensor. Similarly, let133

σσσ := (σ1, σ2, . . . ) denote the singular values of matrix W. Compressibility of σσσ would correspond134

to spectral compressibility, closely related to the notion of approximate/numerical low-rankness.135
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3 Norm-based adversarial robustness bounds136

Motivating hypothesis. Our analysis relies on a simple intuition: Although structured (neuron,137

spectral) compressibility is desirable from a computational perspective, it also focuses the total energy138

of the parameter on a few dominant terms (rows/filters, singular values). This in turn creates a few,139

potent directions in the latent space and increases the operator norms of the parameters (ℓ∞, ℓ2140

operator norms respectively). This increases their sensitivity to worst-case perturbations: adversarial141

attacks exploiting these directions are amplified in the representation space, and can more easily142

disrupt the predictions of the model.143
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Figure 1: Decision bound-
aries under compressibility.

Taken from an experiment presented in full detail in Sec. 4, Fig. 1144

visualizes the decision boundaries for a single sample under a baseline145

vs. spectrally compressible model. The figure summarizes our core146

hypothesis concisely: the right column shows that the representation147

of the adversarial perturbation in relation to that of the original image148

is dramatically increased in the compressible model. The attack thus149

successfully disrupts the prediction under compressibility, whereas150

it fails to do so in the baseline model. In contrast, since the attack151

takes place under a fixed budget in the input space, the reflection of152

this in the input space is remarkably different: decision boundaries are153

contracted around the input to reflect the vulnerability produced by the154

sensitive attack directions created by compressibility. Before deriving155

further insights from this and other experiments, we formalize our156

intuition in the following analysis. For brevity all proofs are deferred to the supplementary material.157

Compressibility-based Lipschitz bounds. Our theory will relate structured compressibility to ro-158

bustness through its effect on network’s operator norms and Lipschitz constants. However, this brings159

about a particular conceptual challenge. Our notion of (q, k, ϵ) compressibility, like others’ (Diao160

et al., 2023), is a scale-independent measure. Therefore, any direct relation between compressibility161

and Lipschitz constants would be rendered void by the arbitrary scaling of the parameters. Therefore,162

we characterize ℓ∞ and ℓ2 operator norms of the parameters by an upper bound that decomposes163

into (compressibility × Frobenius norm) terms. This “structure vs. scale” decomposition allows164

us to meaningfully relate compressibility and robustness, and also allows us to develop concrete165

hypotheses regarding the effect of various interventions in neural network training.166

Theorem 3.1. The following statements relate operator norms and structured compresibility.167

(a) Neuron compressibility (i.e. row-sparsity): Let wi, i ∈ [h] denote the rows of the matrix W, and168

let ννν := (∥w1∥1, . . . , ∥wh∥1) denote ℓ1 norms of its rows. Assuming ννν is (1, kννν , ϵννν) compressible169

and each row wi is (2, kr, ϵr) compressible implies:170

∥W∥∞ ≤ (1− ϵννν)

(1− βννν)

(√
hkr + hϵr

kννν

)
∥W∥F . (4)

(b) Spectral compressibility (i.e. low-rankness): Let σσσ := (σ1, σ2, . . . ) denote the singular values171

of matrix W. Assuming σσσ is (1, kσσσ, ϵσσσ) compressible implies:172

∥W∥2 ≤ (1− ϵσσσ)

(1− βσσσ)

(√
h

kσσσ

)
∥W∥F . (5)

Intuitively, Thm 3.1 describes how increasing compressibility affects layer operator norms: Neuron173

compressibility, i.e. a small number of rows dominating the matrix increases ℓ∞ operator norm174

of the matrix, especially if the spread within these dominant rows are high. Similarly, increased175

spectral compressibility and spread increases the ℓ2 operator norm. Note that the latter result is176

closely related to results from the literature that connect stable rank or condition number to robustness177

(Savostianova et al., 2023; Feng et al., 2025). We highlight that although Thm 3.1 directly relates178

neuron and spectral compressibility to perturbations defined in ℓ∞ and ℓ2 norms, we do not claim that179

relationships across attack and operator norms do not hold. Indeed in our suppl. material, we show180

that the two operator norms are likely to move together under compressibility, connecting structured181

compressibility to a broader notion of adversarial vulnerability.182

As we move on to characterizing layers within a neural network, Wl
k will be used to denote the183

compressed version of the parameter matrix of layer l. In the case of row compression, this will184
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correspond to keeping the k dominant rows as is, and setting the h − k trailing rows to 0. In the185

case of spectral compression, given the singular value decomposition (SVD), Wl = UlΣlVlT , the186

compressed matrix would correspond to Wl
k := Ul

kΣ
l
kV

lT

k , where the h−k smallest singular values187

are truncated.188

Note that the sensitivity of the network not only relies on the characteristics of layer parameters, but189

also on the interactions between them. As an informative extreme case, assume that layer Wl greatly190

amplifies the input in the direction u1, due to spectral compressibility producing a large σ1. Ignoring191

nonlinearities for now, if u1 is in the null space of Wl+1, this amplification will have no effect on the192

sensitivity of the overall network. Thus, potent attack directions in the network are determined not193

only through layers’ inherent properties, but how well the dominant directions in consecutive layers194

“align”, in consideration with the nonlinearities between them. We will characterize this crucial195

interaction with the interlayer alignment terms A∗
∞ and A∗

2. With D as the set of all diagonal binary196

matrices, standing for all possible ReLU activation patterns, these are defined as:197

A∗
∞(Wl+1

k ,Wl
k) ≜ max

D∈D

∥Wl+1
k DWl

k∥∞
∥Wl+1∥∞∥Wl∥∞

+R∞(ϵ) (6)

A∗
2(W

l+1
k ,Wl

k) ≜ max
D∈D

∥
√

Σl+1
k Vl+1T

k DUl
k

√
Σl

k∥2√
∥Wl+1∥2∥Wl∥2

+R2(ϵ), (7)

where R∞(ϵ) := νlk+1/ν
l
1 + νl+1

k+1/ν
l+1
1 + νlk+1ν

l+1
k+1/ν

l
1ν

l+1
1 is a remainder alignment term and198

likewise, R2(ϵ) :=
√
σl
k/σ

l
1 +

√
σl+1
k+1/σ

l+1
1 +

√
σl
k+1σ

l+1
k+1/σ

l
1σ

l+1
1 . In the suppl. material, we199

show that for p ∈ {2,∞}, Rp(ϵ) → 0 as ϵ → 0. There, we also show that for all layers A∗
p ≤ 1;200

alignment terms can therefore be interpreted to act as a normalized function that corrects the worst-201

case bound based on the dominant terms’ misalignment. Next theorem will use Thm 3.1 and Eq (6)202

and (7) to provide an upper bound to the Lipschitz constant of the network.203

Theorem 3.2. Let Lp
Φ be the Lipschitz constant of the encoder Φ defined following Eq (2). Let D204

denote the set of all diagonal binary matrices, corresponding to ReLU activation layers. Then:205

(a) Row/neuron compressibility: The ℓ∞ Lipschitz constant of Φ can be upper bounded by:206

L∞
Φ ≤ L̂∞

Φ :=

λ∏
l=1

(1− ϵννν)

(1− βννν)

(√
hkr + hϵr

kννν

)
∥W∥F

λ−1∏
l=1

Ã∗
∞(W

{l+1}
k ,Wl

k), (8)

where Ã∗
∞(W

{l+1}
k ,Wl

k) = A∗
∞(W

{l+1}
k ,Wl

k) if l ∈ Sopt, and 1 otherwise. Sopt ⊆207

{1, 2, . . . , L− 1} is the optimal alignment partition set (See Dfn. A.4) that can be determined in208

O(λ) time.209

(b) Spectral compressibility: The ℓ∞ Lipschitz constant of Φ can be upper bounded by:210

L2
Φ ≤ L̂2

Φ :=

λ∏
l=1

(1− ϵσσσ)

(1− βσσσ)

(√
h

kσσσ

)
∥W∥F

λ−1∏
l=1

A∗
2(W

{l+1}
k ,Wl

k). (9)

We note that this upper bound can be directly used in conjunction with other results from the literature211

(Ribeiro et al., 2023) to characterize adversarial robustness gap:212

Corollary 3.3. Under a binary classification task with cross-entropy loss, ℓ(y,x⊤θ) = ℓ(y, ŷ) =213

log
(
1 + e−yŷ

)
, given a neural network classifier as described in (2), under the same assumptions214

with (8), F adv
∞ (θ; δ) ≤ F (θ) + δL̂∞

Φ ∥θ∥1. Similarly, under the assumptions of F adv
2 (θ; δ) ≤215

F (θ) + δL̂2
Φ∥θ∥2.216

Note that although bounds provided in Thm 3.2 are tighter than the pessimistic “product-of-norms”217

bounds, it deliberately trades off some tightness by utilizing Thm 3.1. However, in return, this results218

in a bound that decomposes into analytically interpretable and actionable terms. Such bounds have219

proven valuable in analyzing adversarial robustness in deep learning (Wen et al., 2020). Regardless,220

in our suppl. material we show that our bounds correlate with adversarial robustness gap, as well221

as showing that as the global Lipschitz constant increases, empirically estimated local Lipschitz222

constants scale accordingly. There, we also explore the alignment terms’ empirical behavior and223

estimation techniques, although a detailed analysis thereof lies beyond our primary focus. We now224

translate these theoretical insights into concrete hypotheses and test them through experiments.225
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Figure 2: Model statistics under increasing strength of nuclear norm regularization (α).

4 Experimental evaluation226

We now validate our theoretical findings through specific experimentation. We first validate our227

motivating hypothesis and then empirically show that (i) neuron and spectral compressibility-inducing228

interventions will reduce adversarial robustness against ℓ∞ and ℓ2 adversarial attacks; (ii) the229

negative effects of compressibility to persist under adversarial training, (iii) the compressibility-230

related vulnerabilities being baked into the learned representations during pretraining, will impact any231

downstream task in transfer learning; (iv) increasing compressibility creates vulnerable directions in232

the latent space, further enabling universal adversarial examples (UAEs), while increasing Frobenius233

norm will create vulnerability without leading to UAEs; and (v) compressed models will inherit the234

vulnerability of the original models, and conducting compression based on (q, k, ϵ) -compressibility235

and reducing the spread of the dominant terms will improve robustness.236

Datasets, architectures, and training. We conduct our experiments in the most commonly used237

datasets and architectures in the literature on adversarial robustness under pruning (Piras et al.,238

2024). Datasets we use include MNIST (Deng, 2012), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,239

2009), SVHN (Netzer et al., 2011). Architectures we utilize include fully connected networks240

(FCN), ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman, 2014), and WideResNet-101-2241

(Zagoruyko & Komodakis, 2016). Unless otherwise noted, we use softmax cross-entropy loss, the242

AdamW optimizer with a weight decay of 0.01, a learning rate of 0.001, and use validation set based243

model selection for early stopping.244

Evaluating and training for adversarial robustness. When evaluating adversarial robustness, we245

utilize AutoPGD as the primary adversarial attack algorithm for evaluation (Croce & Hein, 2020),246

through its implementation by Nicolae et al. (2018). When training for adversarial robustness, we247

utilize a PGD attack to generate adversarial samples at every iteration (Madry et al., 2018). Unless248

otherwise noted, we use a ratio of 0.5 for adversarial samples in a training minibatch. We use249

ϵ = 8/255 and ϵ = 0.5 for ℓ∞ and ℓ2 attacks respectively for end-to-end adversarially trained250

models. We use 0.25 of these budgets for standard trained or adversarially fine-tuned models to251

allow a visible comparison. By default, we present results for ℓ∞ and ℓ2 attacks when evaluating252

robustness under neuron and spectral compressibility respectively, and defer the cross-norm results253

to the supplementary material, which also includes further details on our experiment settings and254

implementation.255

4.1 Results256

Testing the motivating hypothesis We start our empirical analysis with a demonstrative experiment257

to visually investigate the implications of our initial hypothesis. For this, we train a single 400-width258

hidden layer FCN with ReLU activations on the MNIST dataset. We use nuclear norm regularization259

(NNR) to encourage singular value (SV) compressibility, adding the term α∥σσσ∥1 to the training260

objective, with α as a hyperparameter. To avoid confounding by NNR decreasing overall parameter261

norms, we apply Frobenius norm normalization to W1 at every iteration (Miyato et al., 2018).262

In Fig. 2 (left) we validate that our intervention indeed increases spectral norm compressibility.263

As expected, Fig. 2 (center left) shows that SV compressibility actually allows pruning: the more264

compressible models retain their performance under stronger pruning. Fig. 2 (center right) shows265

that increased compressibility comes at the cost of adversarial robustness: as α increases, adversarial266

accuracy dramatically falls. We further investigate whether this fall is due to our hypothesized267

mechanism. Let z = Φ(x) and zadv = Φ(x+ a∗) denote the learned representations of clean and268

perturbed input images. If the adversarial attacks are taking advantage of the potent directions created269

by compressibility, then as compressibility increases: (1) The perturbations a∗ should align more270

with the dominant singular directions, i.e., v⊺
i a

∗ ≫ v⊺
ja

∗ ∀i ∈ [k], j /∈ [k], (2) representations of271

adversarial perturbations should grow stronger in relation to the original image’s representation, i.e.272
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∥zadv − z∥2/∥z∥2 should increase. Fig. 2 (right) confirms both predictions. Lastly, the previously273

presented Fig. 1 visualizes the effect of compressibility in the input and representation space.274
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Figure 3: Results with FCN (top) and ResNet18 (bottom)
trained on CIFAR-10 dataset.

Adversarial robustness and com-275

pressibility under standard training.276

For implications of our analysis un-277

der more realistic settings, we start278

by investigating the effects of com-279

pressibility on adversarial robustness280

in fully connected networks (FCN).281

We induce neuron and spectral com-282

pressibility through group lasso regu-283

larization1 and low-rank factorization,284

respectively (latter avoids the exces-285

sive cost of nuclear norm regulariza-286

tion). As above, we conduct Frobe-287

nius norm normalization at every iter-288

ation. Fig. 3 (top) presents the results289

of these experiments: The reduction290

in adversarial robustness as a function291

of increasing compressibility is clear292

in both cases, confirming our main hy-293

pothesis. Note that we present robust accuracy / standard accuracy ratio alongside robust accuracy294

to highlight that the obtained results are not due to baseline standard accuracy being lower under295

compressibility.296

We then investigate whether our hypotheses apply beyond the context of our theory, and test our297

predictions in ResNet18 models trained on CIFAR-10 datasets. Here we eschew Frobenius norm298

normalization for standard weight decay. However, to prevent confounding from group lasso’s effect299

on general parameter scales, we create a scale-invariant version that regularizes row norms’ ℓ1/ℓ2300

norm ratio.2 Fig. 3 (bottom) demonstrates that the effects describe above clearly translate to this301

setting as well, further solidifying the relationship between structured compressibility and adversarial302

robustness. We present similar results on two other architectures (VGG16, WideResNet-101) and303

two other datasets (CIFAR-100, SVHN) in the suppl. material. Going forward, for brevity we will304

focus on neuron compressibility results, and defer corresponding spectral compressibility results to305

the suppl. material, where we also discuss unstructured compressibility and inductive-bias based306

emergent compressibility.307
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Figure 4: Adversarial fine-tuning and training.

Effect of adversarial training / fine-308

tuning on network compressibility.309

Given that adversarial training is the310

primary method for obtaining models311

that are robust against adversaries, we312

next investigate whether the effects313

we have observed will persist under314

this regime. We first take two models315

from the setting presented in Fig. 3316

with ResNet18s trained on CIFAR-10317

under row sparsity regularization, and take the baseline model as well as a model with high sparsity318

regularization (regularization parameter = 0.05). Afterwards, we fine-tune both models for 10 epochs319

under adversarial training, using various adversarial sample ratios ∈ [0, 1]. The results are presented320

in Fig. 4 (left), and show a remarkable pattern: While both models demonstrate a large variability321

in terms of robust vs. standard accuracy trade-off based on the sample ratio in the fine-tuning, the322

original difference in their robustness performance remains, as the different versions of the two323

models form two pareto fronts. Next, we investigate whether the impact of compressibility on robust-324

ness will disappear under adversarial training from initialization. To make this setting as close to325

practice as possible, we also include a learning rate annealing schedule (Cosine annealing) and basic326

1Group lasso regularization penalizes the ℓ1 norm of row ℓ2 norms of each layer, promoting row-sparsity.
2In the suppl. material, we show that standard group lasso creates a “tug-of-war” between increasing

compressibility and decreasing parameter scales; the former eventually wins, resulting in decreased robustness.
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Figure 5: Transfer learning and universal adversarial examples.

data augmentation (horizontal flip and random crops). The results almost identically replicate our327

observations under standard training. Although adversarial training increases adversarial robustness328

overall, the relative effect of compressibility remains as is.329

Transferability of adversarial vulnerability. Next, we investigate our hypothesis that the effects330

of compressibility should persist under transfer learning due to the structural effects created on331

representations. We train a ResNet18 model on CIFAR-100 dataset with increasing row sparsity332

regularization. After the training is complete, we train a linear classifier head for prediction on333

CIFAR-10 dataset and evaluate the robustness of the resulting model. Fig. 5 (left) shows that the334

effects of compressibility observed above directly translate to the context of transfer learning, where335

increased compressibility in pretraining affects robustness performance in the downstream task, for336

which the network is fine-tuned.337

Universal adversarial examples. Examining the terms in Thm 3.2, we predict that while both338

compressibility and Frobenius norm are likely to increase vulnerability, only the former is likely339

to lead universal adversarial examples (UAEs) (Moosavi-Dezfooli et al., 2017), due to the global340

vulnerable directions it creates. To test our hypothesis, we modify the setting of FCN experiments341

presented above: As an alternative to increasing row sparsity regularization under a fixed Frobenius342

norm, in an alternative set of experiments we systematically increase the constant to which Frobenius343

norm of the layers is fixed, without any row sparsity regularization. We utilize a FGSM-based344

(Goodfellow et al., 2015) UAE computation to develop adversarial samples. Fig. 5 (center, right)345

confirms our hypothesis: while increasing Frobenius norm only decreases standard adversarial346

robustness, increasing compressibility additionally creates vulnerability to UAEs.347

Compression and robustness. We now investigate whether the compressed models inherit the348

adversarial vulnerability of the original models, as they are subjected to increasing layerwise filter349

pruning. Using the ResNet18 and CIFAR-10 combination under adversarial training, in Fig. 6 (left),350

we compare the baseline model (α = 0.0) to a compressible model (α = 0.1). We see that at no351

point the compressed model surpasses the baseline model’s uncompressed performance in terms of352

standard and robust accuracy. However, as expected, as pruning increases the baseline model fails to353

retain its standard nor robust performance whereas the compressible model does considerably better,354

demonstrating the fundamental tension between robustness and compressibility.355

Lastly, we develop two simple interventions based on our bound that results in tangi-356

ble improvements in reconciling compressibility and robustness. Given the fact that layer-357

wise pruning is known to produce harmful bottlenecks that lead to layer collapse (Blalock358

et al., 2020), we develop an intuitive global compression method based on our bound.359
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Figure 6: Robustness under compression. SA/RA: Stan-
dard/Robust Acc. LW/Glob.: Layerwise vs. global pruning.

Instead of targeting a pruning ratio360

and pruning each layer accordingly,361

we set a target ϵ, and for each layer362

compute k that satisfies this ϵ level.363

Given a target global pruning ratio,364

we scan over different levels of ϵ and365

determine the level that gets closest366

to the target ratio. Moreover, during367

training we control the spread of the368

dominant terms, β, which our anal-369

yses show to be harmful for robust-370

ness, without increasing compressibil-371

ity. We accomplish this through simply regularizing the variance of the top 0.05 of each layer’s372
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filters’ norms. Fig. 6 (right) demonstrates that our interventions create a dramatic improvement in373

performance retention, demonstrated on a model with α = 0.01.374

5 Related work375

Adversarial robustness. The susceptibility of the neural network models to adversarial examples376

created through small perturbations (Szegedy et al., 2014) engendered a lot of research investigating377

the issue (Madry et al., 2018). To this day adversarial robustness remains one of the most important378

topics in machine learning security (Malik et al., 2024). The literature ranges from the development379

of new attacks and defenses (Moosavi-Dezfooli et al., 2016; Abdollahpoorrostam et al., 2024), to380

investigating sources/mechanisms of adversarial vulnerability, to implications of AEs for the inductive381

biases of modern machine learning architectures (Ilyas et al., 2019; Ortiz-Jimenez et al., 2021; Xu382

et al., 2024), to developing strategies to retain model expressivity and generalization while defending383

against adversarial attacks (Tsipras et al., 2019; Zhang et al., 2024).384

Compressibility and pruning. Prominent compression approaches include pruning, quantization,385

distillation, conditional computing, and efficient architecture development (O’Neill, 2020). Out386

of these, pruning remains among the most actively researched compression approaches due to its387

versatility (Cheng et al., 2024). Inducing compressibility / sparsity at training time is the easiest way388

to obtain prunable models (Hohman et al., 2024). Compressibility across different substructures, a.k.a389

group sparsity (Li et al., 2020b), allows for structured pruning (e.g. neuron/row, filter/channel, kernel390

pruning), which is computationally efficient (Yang et al., 2018), yet lead to sharp reduction in network391

connectivity, threatening performance (Blalock et al., 2020). Lastly, spectral compressibility relaxes392

the notion of low-rankness, utilized for approximating large matrices with appealing theoretical393

properties (Suzuki et al., 2020; Schotthöfer et al., 2022).394

Compressibility and robustness. Whereas some research argues that compressibility is beneficial395

for adversarial robustness (Guo et al., 2018; Balda et al., 2020; Liao et al., 2022), others indicate the396

relation is at best highly dependent on the degree and type of compressibility, as well as attack type397

(Li et al., 2020a; Merkle et al., 2022; Savostianova et al., 2023; Feng et al., 2025). While a stream398

of new methods that incorporate adversarial robustness in novel ways to pruning, newly emerging399

systematic benchmarks reveal at best marginal benefits for such methods compared to weight-based400

pruning (Lee et al., 2020; Piras et al., 2024). Whereas some methods demonstrate benefits of401

adversarial training-aware sparsification (Gui et al., 2019; Sehwag et al., 2020; Pavlitska et al., 2023),402

infamous problems adversarial training (AT) poses for standard generalization, transferability, as well403

as computational feasibility especially for larger models still plague such methods (Tsipras et al.,404

2019; Wen et al., 2020; Yang et al., 2024).405

6 Conclusion and future work406

In this paper, we present a unified theoretical and empirical treatment of how structured compressibil-407

ity shapes adversarial robustness. Via a novel analysis of neuron-level and spectral compressibility,408

we uncover a fundamental mechanism: compression concentrates sensitivity along a small number409

of directions in representation space, rendering models more vulnerable—even under adversarial410

training and transfer learning. Our norm-based robustness bounds offer interpretable decompositions411

that predict both standard and universal adversarial vulnerability, and shed light on the trade-offs412

between efficiency and security in modern neural networks. Empirically, we validate these insights413

across datasets, architectures, and training regimes, showing how both compressibility and its spread414

determines adversarial susceptibility. We show that these vulnerabilities can be mitigated through415

targeted strategies guided by our bounds.416

Our work provides a novel insight into the relationship between structured compressibility and417

adversarial vulnerability. A limitation is our theory’s reliance on global Lipschitz constants to418

characterize network performance: future work should focus on providing a unified view that419

incorporates both structural/global weaknesses, as well as the localization of sensitivity in the input420

space. Moreover, while the simple interventions suggested by our theory provides cost-effective421

improvements to the compressibility-robustness trade-off, these insights should be combined with422

novel compression methods to improve the frontiers of robust compression.423

Broader impact statement. Our research is largely theoretical and raises no direct societal or ethical424

concerns. To the extent that it has any downstream effects, we expect them to be positive by increasing425

robustness and resource-efficiency of machine learning models.426
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A Proofs622

We start with a number of auxiliary results that are used in the theorems and corollary presented in623

Sec. 3.624

Lemma A.1. For any strictly (q, k, ϵ) compressible vector θ and for all q ≥ 1, ∥θ(k)∥q = (1 −625

ϵq)1/q∥θ∥q .626

Proof. ∥θ−θ(k)∥qq = ϵq∥θ∥qq follows from the definition of compressibility. Adding ∥θ(k)∥qq to both627

sides leads to ∥θ∥qq = ϵq∥θ∥qq + ∥θ(k)∥qq, with LHS due to elements of x and θ − θ(k) populating628

disjoint sets of coordinates. Result follows with simple algebraic manipulation.629

Note that for the results in this section, we use θ(k) and θk equivalently to denote a vector that630

includes only the k dominant terms.631

Lemma A.2. For p∗ < q, given the (2, k, ϵ)-compressible vector θ ∈ Rd, we have:632

∥θ∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q + d
1
p∗ − 1

q ϵ∥θ∥q. (10)

Proof. We start by applying Minkowsky’s inequality to ∥θ∥p∗ :633

∥θ∥p∗ ≤ ∥θ(k)∥p∗ + ∥θ − θ(k)∥p∗ . (11)

We now bound the terms on RHS separately. For the first term, since p∗ < q by Hölder’s inequality
for k-sparse vectors we have

∥θ(k)∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q.
For the next term, we can write

∥θ − θ(k)∥p∗ ≤ d
1
p∗ − 1

q ∥θ − θ(k)∥q ≤ d
1
p∗ − 1

q ϵ∥θ∥q,

with the left inequality due to Hölder’s inequality, and the right due to θ(k)’s (q, k, ϵ) compressibility.634

Combining the expressions for both terms, we have635

∥θ∥p∗ ≤ k
1
p∗ − 1

q ∥θ(k)∥q + d
1
p∗ − 1

q ϵ∥θ∥q. (12)

636

Proposition A.3. Given a linear binary classifier and binary cross-entropy loss function, we have637

the following bound:638

F adv
p (θ; δ) ≤ F (θ; δ) + δ∥θ∥p∗ (13)

Proof of Proposition A.3. For binary cross-entropy loss we have:

fadv(x,θ; δ) = log
(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

))
.

We observe that fadv(x,θ; δ) ≤ f(x,θ; δ) + δ∥θ∥p∗ since639

fadv(x,θ; δ) = log
(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

))
= log

(
1 + exp

(
−y(x⊤θ)

))
+ log

(
1 + exp

(
−y(x⊤θ) + δ∥θ∥p∗

)
1 + exp (−y(x⊤θ))

)

= f(x,θ; δ) + log

(
1 + (exp (δ∥θ∥p∗)− 1)

exp
(
−y(x⊤θ)

)
1 + exp (−y(x⊤θ))

)
≤ f(x,θ; δ) + δ∥θ∥p∗ ,

with the last inequality due to the fact that
exp(−y(x⊤θ))

1+exp(−y(x⊤θ))
< 1. Taking the expectation of the640

expression gives:641

F adv(θ; δ) ≤ F (θ; δ) + δ∥θ∥p∗

642
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Main results. We now present the proofs for Thm. 3.1 and 3.2 and Corollary 3.3.643

Proof of Thm 3.1. For brevity we will omit ννν as a subscript, such that ϵ = ϵννν , k = kννν , β = βννν .644

For (a), we assume ννν is in a descending order w.l.o.g., and ν̂νν is the corresponding vector of ℓ2 norms645

for each row. We note that646

∥ννν(k)∥1 =

k∑
i=1

νi ≥ kνk (14)

≥ k(1− β)ν1 (15)
(1− ϵ)∥ννν∥1 ≥ k(1− β)ν1 (16)

(1− ϵ)

(1− β)

1

k
∥ννν∥1 ≥ ν1 (17)

(1− ϵ)

(1− β)

1

k
∥ννν∥1 ≥ ∥W∥∞ (18)

with (14) being the smallest magnitude element in ννν(k), (15) due to the definition of slack variable647

β, and (16) due to Lemma A.1, and (18) due to the fact that ∥W∥∞ = ν1, as ννν is assumed to be648

magnitude-ordered. We then move on to characterizing ∥ννν∥1. Notice that649

∥ννν∥1 =

h∑
i=1

νi ≤
h∑

i=1

√
hν̂i (19)

≤
√
h∥ν̂νν∥1 (20)

≤
√
h
(√

kr∥ν̂νν(kr)∥2 +
√
h∥ν̂νν∥2

)
(21)

≤
(√

hkr +
√
hϵr

)
∥ν̂νν∥2 (22)

≤
(√

hkr +
√
hϵr

)
∥W∥F (23)

Note that (19) is due to standard norm inequality between ℓ1 and ℓ2 rows, (21) is due to Lemma A.2,650

and (23) is due to ℓ2 norm of the vector of row ℓ2 rows equals the Frobenius norm. Plugging (23)651

back into (18) gives the desired result.652

For (b) the proof follows similarly through steps (14)-(17) by replacing ννν with σσσ. After that, we653

continue with654

(1− ϵ)

(1− β)

1

k
∥σσσ∥1 ≥ σ1 (24)

(1− ϵ)

(1− β)

1

k
∥σσσ∥1 ≥ ∥W∥2 (25)

(1− ϵ)

(1− β)

√
h

k
∥σσσ∥2 ≥ ∥W∥2 (26)

(1− ϵ)

(1− β)

√
h

k
∥W∥F ≥ ∥W∥2 (27)

with (25) due to ∥W∥2 = σ1, (26) due to standard norm inequality between ℓ1 and ℓ2 norms, and655

(27) due to the fact that ℓ2 norm of singular values equals Frobenius norm, i.e. ∥W∥F = ∥σσσ∥2.656

Proof of Thm 3.2. Proofs for both conditions rely on an additive decomposition of the layer matrices657

Wl into dominant/leading terms vs. remainder terms, i.e. Wl = Wl
k + Wl

r. In structured658

compressibility this takes the form of Wl
k and Wl

r including k leading (largest ℓ1 norm) rows and659

h − k remaining rows, respectively, with the rest of the rows set to 0 in both cases. In spectral660

compressibility, this takes the form of Wl
k + Wl

r = Ul
kΣ

l
k

(
Vl

k

)⊤
+ Ul

rΣ
l
r

(
Vl

r

)⊤
, where the661

remaining h− k vs. leading k singular values are set to 0 respectively.662
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Let zl denote the post-activation representations of the network after layer l ∈ [λ]. The Jacobian of663

the network output zλ with respect to the input x is given by:664

JΦ(x) = Dλ(x)WλDλ−1(x)Wλ−1Dλ−2(x) . . .D1(x)W1, (28)
where Dl(x) is the diagonal binary matrix corresponding to the ReLU activation after layer l, i.e.,665

(Dl)ii = I[(z̄l)i > 0], with z̄l being the pre-activation representation at layer l for input x.666

Letting Lp
Φ denote the p-norm Lipschitz constant of the compressed encoder in the input domain, it667

can be computed as the maximum p → p operator norm of the Jacobian over the input space X :668

Lp
Φ = sup

x∈X
∥JΦ(x)∥p = sup

x∈X
∥Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1∥p. (29)

For brevity, we use the following notation:669

P(D) := Dλ(x)WλDλ−1(x)Wλ−1 . . .D1(x)W1. (30)
Note that the optimization over X can be replaced with the optimization over all binary activation670

matrices Dl ∈ D for each layer whenever convenient. We replace the notation Dl(x) with Dl when671

doing so.672

For brevity, we introduce the following abbreviations for the alignment terms with a slight abuse of673

notation:674

A∗
p,l := A∗

p(W
l+1,Wl) := max

D∈D
Ap,l := max

D∈D
Ap(W

l+1,D,Wl), (31)

where Ap(W
l+1,D,Wl) is the inner RHS term optimized over in Eq (6) and Eq (7).675

(a) Row/neuron compressibility We aim to bound L∞
Φ as:676

L∞
Φ ≤ max

D1,...,Dλ
∥P(D)∥∞. (32)

We start by noting that we can upper bound this norm by partitioning the inside terms based on the677

submultiplicative property:678

∥P(D)∥∞ ≤ ∥DλWλDλ−1Wλ−1 . . .D1W1∥∞ (33)

≤ ∥WλDλ−1Wλ−1∥∞∥Dλ−2∥∞∥Wλ−2∥∞
. . . ∥Wl+1DlWl∥∞ . . . ∥D1∥∞∥W1∥∞ (34)

Note that any such parsing is valid as long as a layer does not appear in two interlayer terms at once.679

Given a valid parsing set S ⊆ {1, 2, . . . , λ− 1}, we have the interlayer alignment terms for l ∈ S, i.e.680

∥Wl+1DlWl∥∞ and standalone terms for all remaining layers {l | l /∈ S, l + 1 /∈ S}: ∥Wl∥∞. We681

denote all such valid parsing layer subsets with S , where S does not include any consecutive indices682

for any S ∈ S. We will first prove the bound for any valid parsing set, and then define the optimal683

alignment parsing set that would lead to the tightest bound.684

We first analyze a generic alignment term, using the additive decomposition into leading and remainder685

terms. Remember that for layer l we denote the row ℓ1 norms with νννl = (νl1, . . . , ν
l
h), and w.l.o.g.686

assume that the rows are ordered in descending order according to νl. Also note that ∥Wl
k∥∞ =687

∥Wl∥∞ = νl1.688

∥Wl+1DlWl∥∞ ≤ ∥Wl+1
k DlWl

k∥∞ + ∥Wl+1
k DlWl

r∥∞
+ ∥Wl+1

r DlWl
k∥∞ + ∥Wl+1

r DlWl
r∥∞ (35)

≤ ∥Wl+1
k DlWl

k∥∞ + ∥Wl+1
k ∥∞∥Wl

r∥∞
+ ∥Wl+1

r ∥∞∥Wl
k∥∞ + ∥Wl+1

r ∥∞∥Wl
r∥∞ (36)

≤ ∥Wl+1∥∞∥Wl∥∞
( ∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+

νlk+1

νl1

+
νl+1
k+1

νl+1
1

+
νlk+1ν

l+1
k+1

νl1ν
l+1
1

)
. (37)

≤ ∥Wl+1∥∞∥Wl∥∞

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
. (38)
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Since the remaining, standalone layer norms also contribute ∥Wl∥∞, we have689

∥P(D)∥∞ ≤
λ∏

l=1

∥Wl∥∞
∏
l∈S

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
. (39)

Bounding the Lipschitz constant accordingly:690

L∞
Φ ≤ max

D1,...,Dλ

λ∏
l=1

∥Wl∥∞
λ−1∏
l=1

(
∥Wl+1

k DlWl
k∥∞

∥Wl+1∥∞∥Wl∥∞
+R∞(ϵ)

)
(40)

=

λ∏
l=1

∥Wl∥∞
∏
l∈S

(
max
D∈D

∥Wl+1
k DWl

k∥∞
∥Wl+1∥∞∥Wl∥∞

+R∞(ϵ)

)
(41)

=

λ∏
l=1

∥Wl∥∞
∏
l∈S

A∗
∞(Wl+1,Wl) +R∞(ϵ). (42)

Contributing an alignment term of 1 for {l | l /∈ S, l + 1 /∈ S} gives the desired result if S = Sopt,691

which we define below.692

Given multiple valid parsing sets are possible whenever λ > 2, we lastly define the optimal alignment693

parsing set, Sopt.694

Definition A.4 (Optimal Alignment Parsing Set). The Optimal Alignment Parsing Set Sopt is a set in695

S that achieves the minimum product of the corresponding maximum alignment factors:696

Sopt ∈ argmin
S∈S

∏
l∈S

A∗
∞,l. (43)

Note that Sopt might not be unique, but min
S∈S

∏
l∈S A∗

∞,l is.697

Complexity of finding Sopt: Finding Sopt ∈ argmin
S∈S

∏
l∈S A∗

∞,l is equivalent to finding the698

independent set S in the path graph G = (V,E) with V = {1, . . . , L− 1} that maximizes
∑

l∈S wl,699

where weights wl = − logA∗
∞,l (assuming A∗

∞,l > 0; we handle A∗
∞,l = 0 as a special case yielding700 ∏

l∈Sopt
A∗

∞,l = 0). This is the Maximum Weight Independent Set, which can be solved in linear701

time in chordal graphs, of which path graphs are a subfamily (Frank, 1976).702

(b) Spectral compressibility: We can upper bound L2
Φ by considering all possible activation patterns703

(all possible binary diagonal matrices Dl):704

L2
Φ ≤ max

D1,...,Dλ
∥P(D)∥2 (44)

We modify the SVD decomposition for layers as705

Wl = Ul
√
Σl

√
Σl
(
Vl
)⊤

(45)

=

(
Ul

k

√
Σl

k +Ul
r

√
Σl

r

)
︸ ︷︷ ︸

Al

(√
Σl

k

(
Vl

k

)⊤
+
√
Σl

r

(
Vl

r

)⊤)
︸ ︷︷ ︸

Bl

. (46)

Note that we assume untruncated singular vector matrices for Wl
k and Wl

r for the equation above to706

be valid. We then decompose the spectral norm using the submultiplicative property:707

∥P(D)∥2 = ∥DλWλDλ−1Wλ−1Dλ−2 . . .D1W1∥2 (47)

≤ ∥Aλ∥2∥BλDλ−1Aλ−1∥2∥Bλ−1Dλ−2Aλ−2∥2
. . . ∥Bl+1DlAl∥2 . . . ∥B2D1A1∥2∥B1∥2 (48)

We then analyze the central term ∥Bl+1DlAl∥2, and decompose it using the submultiplicative708

and subadditivity properties. Remember that for layer l we denote the singular values with σσσl =709
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(σl
1, . . . , σ

l
h). Also note that ∥Wl

k∥2 = ∥Wl∥2 = σl
1.710

∥Bl+1DlAl∥2

≤ ∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2 + ∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

r

√
Σl

r∥2

+ ∥
√

Σl+1
r

(
Vl+1

r

)⊤
DlUl

k

√
Σl

k∥2 + ∥
√
Σl+1

r

(
Vl+1

r

)⊤
DlUl

r

√
Σl

r∥2 (49)

≤ ∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2 +
√

σl+1
1 ∥

(
Vl+1

k

)⊤
DlUl

r∥2
√
σl
k+1

+
√
σl+1
k+1∥

(
Vl+1

r

)⊤
DlUl

r∥2
√
σl
1 +

√
σl+1
k+1∥

(
Vl+1

r

)⊤
DlUl

r∥2
√

σl
k+1 (50)

≤
√

σl+1
1

√
σl
1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+

√
σl
k+1

σl
1

+

√
σl+1
k+1

σl+1
1

+

√
σl
k+1σ

l+1
k+1

σl
1σ

l+1
1


(51)

≤
√

σl+1
1

√
σl
1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 , (52)

where we set all cross-alignment terms other than dominant-dominant interaction to 1. This is made711

possible by the fact that they are the multiplication of orthogonal matrices and a ReLU matrix, all712

of which have spectral norms upper bounded by 1. Note that for all layers l ∈ 1, . . . , λ,
√

σl
1 will713

appear twice in the multiplication, including the first and last layers due to the leading and final terms714

in (48), leading to the expression:715

∥P(D)∥2 ≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (53)

Bounding the Lipschitz constant:716

L2
Φ ≤ max

D1,...,Dλ
∥P(D)∥2 (54)

≤ max
D1,...,Dλ

λ∏
l=1

∥Wl∥2
λ−1∏
l=1

∥
√
Σl+1

k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (55)

≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

max
D∈D

∥
√

Σl+1
k

(
Vl+1

k

)⊤
DlUl

k

√
Σl

k∥2√
σl
1σ

l+1
1

+R2(ϵ)

 (56)

≤
λ∏

l=1

∥Wl∥2
λ−1∏
l=1

A∗
2(W

l+1
k ,Wl

k), (57)

yielding the desired result.717

718

Proof of Corollary 3.3. Let a denote the adversarial perturbation on the input x, where ∥a∥p ≤ δ.719

We define the effective perturbation budget in ℓp norm for the feature encoder Φk as δΦk
p :=720

max ∥Φ(x)−Φ(x+p)∥p. Note that by definition of the Lipschitz constant and by Thm 3.2, we have721

δΦp = max ∥Φ(x)− Φ(x+ a)∥p ≤ ∥x− (x+ a)∥pL2
Φ ≤ ∥a∥pL̃2

Φ = δL̃2
Φ. (58)

Plugging the result back into Eq (13) yields the desired result.722

Lemma A.5. Under the conditions described in Thm 3.2, Rp(ϵ) → 0 as ϵ → 0 for p ∈ {2,∞}.723
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Proof. p = ∞: Due to the definition of compressibility, for all l ∈ [λ],724

∥νννl − νννlk∥1 ≤ ϵ∥νννl∥1 (59)

νlk+1 ≤ ϵh∥Wl∥F , (60)

by applying standard norm inequalities across rows and columns. The result follows from noting that725

the final inequality applies to both νlk+1 and νl+1
k+1.726

p = 2: Similarly, due to the definition of compressibility, for all l ∈ [λ],727

∥σσσl − σσσl
k∥1 ≤ ϵ∥σσσl∥1 (61)

σl
k+1 ≤ ϵ

√
h∥Wl∥F , (62)

since ∥σσσl∥2 = ∥W l∥F . The result follows from noting that the final inequality applies to both σl
k+1728

and σl+1
k+1.729

Lemma A.6. Under the conditions described in Thm 3.2, A∗
p(W

l+1,Wl) ≤ 1 for p ∈ {2,∞}.730

Proof. For p = ∞,731

A∗
∞(Wl+1,Wl) = max

D∈D

∥Wl+1DWl∥∞
∥Wl+1∥∞∥Wl∥∞

(63)

≤ ∥Wl+1∥∞ maxD∈D ∥D∥∞∥Wl∥∞
∥Wl+1∥∞∥Wl∥∞

(64)

≤ ∥Wl+1∥∞∥Wl∥∞
∥Wl+1∥∞∥Wl∥∞

= 1. (65)

The proof follows identically for p = 2.732

B Additional Technical Results and Analyses733

B.1 (q, k, ϵ) compressibility vs. other notions of approximate sparsity734

Our notion of (q, k, ϵ) compressibility is similar to notions exploited in machine learning previously735

(Amini et al., 2011; Gribonval et al., 2012; Barsbey et al., 2021; Wan et al., 2024). More specifically,736

when k ≪ d and ϵ ≪ 1, Definition 2.1 is equivalent to Gribonval et al. (2012)’s definition of737

compressible vector. Inspired by desiderata from an ideal metric of sparsity in the economics738

literature, Diao et al. (2023) recently introduced another scale-invariant notion of approximate739

sparsity:740

Definition B.1 (PQ Index Diao et al. (2023)). For any 0 < p < q, the PQ Index of a non-zero vector741

w ∈ Rd is742

Ip,q(w) = 1− d
1
q−

1
p
∥w∥p
∥w∥q

. (66)

Interestingly, it is possible to directly relate this notion of sparsity to (q, k, ϵ) compressibility, as743

shown in the following proposition.744

Proposition B.2. Given 0 < p < q, for a vector θ, its (q, k, ϵ) compressibility implies the following745

lower bound for its PQ Index:746

1− ϵ− κϕ ≤ Ip,q(θ), (67)

where κ = k/d and ϕ = 1
p − 1

q . Note that the constraints on p, q imply ϕ > 0.747

Proof. Let γ = 1
p − 1

q . Note that from (12) we know that ∥θ∥p ≤ (kγ + dγϵ) ∥θ∥q . This implies748

∥θ∥p
∥θ∥q

≤ kγ + dγϵ. (68)

Note that PQ Index from (66) can be written as (1− Ip,q(θ))d
γ =

∥θ∥p

∥θ∥q
. Plugging this into the LHS749

of (68) and simple algebraic manipulation gives the desired result.750
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Figure 7: Optimizing for ℓ∞ (top) and ℓ2 (bottom) operator norms.

Remark B.3. Assume that θ and θ′ are (q, k, ϵ) and (q, k′, ϵ′) compressible respectively. If k = k′751

and ϵ < ϵ′; or k < k′ and ϵ = ϵ′ implies a larger lower bound on PQI. That is, a larger (q, k, ϵ)752

compressibility suggests a larger PQI.753

B.2 Relationships between operator norms754

Although Thm 3.1 directly relates ℓ∞ and ℓ2 operator norms to neuron and spectral compressibility,755

both the known norm inequality relationships and our results on cross-norm adversarial attacks imply756

that these two quantities are likely to be strongly correlated under this context. We conduct simple757

experiment to test this hypothesis: We optimize for either ℓ∞ or ℓ2 operator norm of a random i.i.d.758

Gaussian matrix A where Ai,j
i.i.d.∼ N (0, 1). We then conduct a gradient ascent-based optimization of759

the matrix’s either ℓ∞ or ℓ2 operator norms, while normalizing the Frobenius norm to its initialization760

value. In Fig. 7, as an average of 10 random seeds, we show how ℓ∞ and ℓ2 evolve while either ℓ∞761

(top) and ℓ2 (bottom) are optimized. We note that in both case both norms are strongly associated in762

increasing simultaneously. Note that given the inequality ∥A∥2 ≤ ∥A∥F , by the end of optimization763

the spectral norm reaches its limit in Frobenius norm. While the left column shows the norms across764

iterations, center and right columns portray the qualitative differences produced by optimizing for765

either columns. As expected, optimizing for ℓ∞ collects all energy in a single row, while optimizing766

for ℓ2 produces a 1-rank matrix.767

B.3 Empirical analyses of the robustness bound and related quantities768

In this section, we directly investigate how well our bound correlates with the adversarial robustness769

gap, as predicted in Corollary 3.3. In order to fully conform to the setting of Corollary 3.3, we convert770

the previously introduced MNIST dataset to a binary classification task by converting its labels to771

0-1, by assigning 0-4 to class 0 and 5-9 to class 1. We create a fully connected network (FCN) with772

two hidden layers of width 300, with ReLU activations after each layer. We then create networks773

with various spectral compressibility through varying the rank of the hidden layers, imposed through774

low-rank factorization. While computing the bound, we determine k (num. dominant terms), and775

compute ϵ and β as statistics. Note that if β = 1, this would make the bound undefined - however,776

instead of being a numerical problem, this implies that k should be selected lower, as dominant terms777
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Figure 8: Empirically investigating the implications of Thm 3.2.
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Figure 9: Adversarial fine-tuning (left) and training (center). Robust accuracy under increasing
learning rate (right).

including 0 is an undesired corner case. Fig. 8 demonstrates the results of our experiment. First,778

Fig. 8 (left) shows that our bound is closely correlated with adversarial robustness gap. This shows779

that although our bound is an order of magnitude above the empirical loss difference, it is still a780

faithful indicator of adversarial robustness.781

We then investigate whether local input sensitivity of the network tracks its global properties. As782

in the main paper, letting z = Φ(x) and zadv = Φ(x+ a∗) denote the learned representations of783

clean and perturbed input images, we compute ∥z − zadv∥2/∥a∗∥2 for 1000 test samples. We take784

this metric as a secant approximation of the local Lipschitz constant around input x. We then use the785

maximum and the mean of this statistic over the samples as empirical lower bounds to the global and786

expected local Lipschitz constants respectively. Fig. 8 (center) shows that these two values are closely787

correlated: An increase in the maximum sensitivity to perturbation is reflected in a similar increase788

in the average sensitivity. Lastly, Fig. 8 (right) investigates the effect of spectral compressibility on789

interlayer alignment, in parallel to product of spectral norms of the layers (to quantify the intra- vs.790

interlayer dynamics in our bound). Results show that while norms increase as expected, interlayer791

alignment does not necessarily portray a consistent pattern. We consider how and why interlayer792

alignment changes in response to various compressibility inducing sparsity and training dynamics to793

be a crucial future research direction.794

B.4 Approximating the interlayer alignment terms795
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Figure 10: Effects of standard
group lasso on compressibility and
adversarial robustness.

Note that the interlayer alignment terms used in Thm 3.2 lead to796

a combinatorial optimization problem due to the discreteness of797

ReLU gradients, i.e. {0, 1}. A closely related precedent from798

the literature is SeqLip by Scaman & Virmaux (2018), with the799

differences relating to the normalization of the terms, and the800

k-term adaptation. However, since these differences do not lead801

to any changes with respect to the optimization of these terms802

(i.e.their maxima), the authors’ approximation methodology is803

an attractive choice for determining A∗
p. Scaman & Virmaux804

(2018) report that their gradient-ascent based greedy search805

algorithm is in ∼ 1% of the analytical solution for cases where806

the latter is computationally feasible. We adopt their solution807

to our case for both interlayer alignment terms.808
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C Details of the Experimental Setting809

10 4 10 3 10 2 10 1

Row Sparsity Regularization ( )
0.30

0.35

0.40

0.45 0.00 0.50 0.75

Compressibility

Rob. Acc.
Rob. Acc./Std. Acc. 0.35

0.40

0.45

0.50

20 40 60
Layer Rank (r)

0.63

0.65

0.68

0.70

0.73 0.00 0.50 0.75

Compressibility

Rob. Acc.
Rob. Acc./Std. Acc.

0.68

0.70

0.72

0.74

0.76

0.78

0.80

10 4 10 3 10 2 10 1

Row Sparsity Regularization ( )

0.01

0.02

0.03

0.03

0.04

0.04

0.05

0.00 0.50 0.75

Compressibility

Rob. Acc.
Rob. Acc./Std. Acc.

0.04

0.06

0.08

0.10

0.12

20 40 60
Layer Rank (r)

0.04

0.06

0.08

0.10

0.12

0.14
0.0 0.1 0.2

Compressibility

Rob. Acc.
Rob. Acc./Std. Acc. 0.15

0.20

0.25

0.30

0.35

0.40

Figure 11: Results with SVHN & Wide ResNet 101-2 (top),
CIFAR-100 & VGG16 (bottom).

Datasets. Our experiments are con-810

ducted using the most commonly uti-811

lized datasets and architectures in re-812

search on adversarial robustness under813

pruning (Piras et al., 2024). Our datasets814

include MNIST (Deng, 2012), CIFAR-815

10, CIFAR-100 (Krizhevsky & Hinton,816

2009), SVHN (Netzer et al., 2011). As817

detailed in Appendix B, we convert818

MNIST into a binary classification task819

for empirically investigating how our820

bound correlates with adversarial robust-821

ness gap. In all datasets, we use the822

canonical train, test splits. Whenever823

validation set-based model selection or824

early stopping is used, we utilize 5% of825

the training set for this task, and con-826

duct early stopping with a patience of827

10 epochs based on validation loss.828
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Figure 12: Unstructured alongside
structured comp., for row sparsity
(top) and spectral comp. (bottom).

Models. Architectures we utilize include fully connected net-829

works (FCN), ResNet18 (He et al., 2016), VGG16 (Simonyan830

& Zisserman, 2014), and WideResNet-101-2 (Zagoruyko &831

Komodakis, 2016). Whenever needed, we apply modifications832

to the standard architectures in question. For our visualization833

experiments at the beginning of Sec. 4, we utilize a 1-hidden834

layer FCN with ReLU activation, no bias nodes, and with a835

width of 400. For our main results with CIFAR-10, we utilize836

a 2000-width FCN with 4 hidden layers, with the remaining837

architectural choices identical. Regarding the VGG16 archi-838

tecture, due to our datasets being size 32× 32, we remove the839

redundant 4096-width linear layers (along with their interleav-840

ing dropout and ReLU layers). Lastly, when conducting the841

low-rank factorization experiments, we modify linear layers842

with a factorized layer, and do the equivalent for 2D convolu-843

tional layers (Zhong et al., 2023).844

Standard training. We normally use softmax cross-entropy loss, the AdamW optimizer with a845

weight decay of 0.01, a learning rate of 0.001, and use validation set based model selection for early846

stopping. For adversarial training tasks, we also include a cosine learning rate annealing schedule847

(epochs = 60, min. learning rate = 0), basic data augmentation in the form of random cropping and848

horizontal flips, and an adversarial validation set.849

Evaluating and training for adversarial robustness. For evaluating adversarial robustness, we850

primarily employ the AutoPGD attack (Croce & Hein, 2020), using the implementation from Nicolae851

et al. (2018). During adversarial training, we generate adversarial examples at each iteration using the852

PGD attack (Madry et al., 2018). Unless stated otherwise, adversarial examples make up 50% of each853

training minibatch. For models trained end-to-end with adversarial robustness, we set ϵ = 8/255 for854

ℓ∞ attacks and ϵ = 0.5 for ℓ2 attacks. For standard or adversarially fine-tuned models, we use 25%855

of these budgets to enable a clear comparison.856

Implementation. We utilize the Python programming language and PyTorch deep learning framework857

for our implementation (Paszke et al., 2019). Whenever possible, we utilize the default torchvision858

(maintainers & contributors, 2016) implementations of our models - we modify these baselines for the859

changes mentioned above. For adversarial training and evaluation, we use the Adversarial Robustness860

Toolbox (Nicolae et al., 2018). The attached source code provides further details regarding our861

implementation, and will be made publicly available upon the paper’s publication.862
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Hardware and resources. All experiments are conducted on the computational server of an insitute,863

utilizing Nvidia L40S GPUs. The main paper experiments took a total of 600 GPU hours to complete,864

including ≥ 3 seed replication for the main results. Total development time is estimated to be 3.5×865

of the compute time for the final publication.866

D Additional Empirical Results867

D.1 Experiments with other datasets and architectures868

As mentioned in the main paper, we now extend our empirical findings to other datasets and architec-869

tures. Fig. 11 demonstrates results with SVHN dataset and Wide ResNet 101-2 architecture (top),870

and CIFAR-100 dataset and VGG16 architecture (bottom). Our results replicate with novel datasets871

and architectures, as qualitatively identical results are obtained in these alternative settings.872

D.2 Group sparsity regularization873

In the main paper, we highlight that we utilize a scale-invariant version of group lasso to disentangle874

the downstream effects of increasing compressibility vs. decreasing overall parameter scale. Fig. 10875

replicates our main results on ResNet18 and CIFAR-10 while using standard group lasso regulariza-876

tion. While its effects are mostly similar to our version of group lasso, we note that Fig. 10 presents877

a subtle difference, where group lasso first creates a slight but statistically significant (error bars =878

1 std. deviation) increase in robustness at very low levels. However, as indicated in the main text,879

these benefits are overtaken by the negative effects of row compressibility as regularization strength880

increases.881

D.3 Adversarial training results for spectral compressibility882
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Figure 13: Results with CIFAR-10, FCN (top) and
ResNet18 (bottom), with alternative attack norms to Fig. 3.

Fig. 9 (left, center) presents the spectral883

compressibility counterpart for adversar-884

ial fine-tuning and training results from885

the main paper, under ℓ2 adversarial at-886

tacks. The patterns clearly mirror those887

presented in the main paper under row888

sparsity conditions.889

D.4 Compressibility890

through inductive bias891

We now examine whether the results we892

have observed with explicit regulariza-893

tion methods also apply to cases when894

compressibility is obtained through the895

inductive bias of the learning algorithm.896

For this, we go back to the setting presented in Appendix B, and instead of increasing regularization897

hyperparameter, we increase initial learning rate (η) of the training algorithm. The results, presented898

Fig. 9 (right), paint an intriguing picture. While initially increasing η improves adversarial robustness899

under ℓ∞ attacks (perhaps paralleling its well-known benefits for standard generalization), as soon as900

it starts to increase row compressibility, its benefits of η quickly disappear. This highlights the fact901

that our results not only inform the adversarial robustness behavior under explicit regularization and902

architecture design, but also inductive biases of the learning algorithm.903

D.5 Unstructured compressibility904

While unstructured compressibility is not the focus of our study, we note that it appears in the905

bound for L∞
Φ in Thm 3.2, unlike that for L2

Φ. To investigate the significance of this result, we906

replicate the setting presented in Appendix B, but this time in addition to increasing the group907

lasso/nuclear norm regularization, we run a separate set of experiments where we either solely908

increase L1 regularization, or increase it along with structured sparsity-inducing regularization.909
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We then compare the performance of the resulting models under the corresponding adversarial910

attacks. The results are presented in Fig. 12. Remember that our bound implies positive effects of911

unstructured compressibility for L∞
Φ . Indeed, in Fig. 12 we see that L1 regularization can compensate912

for the negative effects of structured compressibility (top), while it has no such benefits for spectral913

compressibility (bottom). We believe that understanding the intricate relationships among different914

types of compressibility is a crucial future research direction.915

D.6 Results with alternative norms916

While for brevity we presented our main results to include robustness against ℓ∞ attacks under neuron917

sparsity, and ℓ2 attacks under spectral compressibility, for completeness we provide our central results918

with the cross-norm attacks, i.e.ℓ∞ attacks under spectral compressibility, and ℓ2 attacks under neuron919

sparsity. The results are presented in Fig. 13, and are fully in line with the results presented in the920

main paper.921

12


	Introduction
	Setup
	Norm-based adversarial robustness bounds
	Experimental evaluation
	Results

	Related work
	Conclusion and future work
	Appendix
	Proofs
	Additional Technical Results and Analyses
	(q,k,) compressibility vs. other notions of approximate sparsity
	Relationships between operator norms
	Empirical analyses of the robustness bound and related quantities
	Approximating the interlayer alignment terms

	Details of the Experimental Setting
	Additional Empirical Results
	Experiments with other datasets and architectures
	Group sparsity regularization
	Adversarial training results for spectral compressibility
	Compressibility through inductive bias
	Unstructured compressibility
	Results with alternative norms


