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ABSTRACT

Multi-agent reinforcement learning (MARL), as a thriving field, explores how
multiple agents independently make decisions in a shared dynamic environment.
Due to environmental uncertainties, policies in MARL must remain robust to
tackle the sim-to-real gap. Although robust RL has been extensively explored in
single-agent settings, it has seldom received attention in self-play, where strategic
interactions heighten uncertainties. We focus on robust two-player zero-sum
Markov games (TZMGs) in offline RL, specifically on tabular robust TZMGs
(RTZMGs) with a given uncertainty set. To address sample scarcity, we introduce
a model-based algorithm (RTZ-VI-LCB) for RTZMGs, which integrates robust
value iteration considering uncertainty level and applies a data-driven penalty to
the robust value estimates. We establish the finite-sample complexity of RTZ-VI-
LCB by accounting for distribution shifts in the historical dataset. Our algorithm
is capable of learning under partial coverage and environmental uncertainty. An
information-theoretic lower bound is developed to show that learning RTZMGs is
at least as difficult as standard TZMGs when the uncertainty level is sufficiently
small. This confirms the tightness of our algorithm’s sample complexity, which
is optimal regarding both state and action spaces. To the best of our knowledge,
our algorithm is the first to attain this optimality and establishes a new benchmark
for offline RTZMGs. We also extend our algorithm to multi-agent general-sum
Markov games, achieving a breakthrough in breaking the curse of multiagency.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), which aims to develop algorithms for multiple agents
to learn and make decisions in dynamic environments, has gained significant attention in areas
such as game playing (Silver et al., 2017), autonomous driving (Bhalla et al., 2020), and Path
Planning (Cao et al., 2020). Under the constraints on time or resources, a key challenge in applying
MARL to real-world scenarios is the restricted ability to interact or explore the environment. Offline
MARL, also named as batch MARL, addresses this issue by utilizing historical data collected from
past interactions, often generated by unknown behavior policies. Researchers hope that this data
can offer valuable insights into the optimal policy without the need for further exploration (Lambert
et al., 2022). Beyond seeking to maximize the expected total rewards, a critical challenge lies
in addressing environmental uncertainties stemming from model mismatches, system noise, and
the gap between simulation and real-world situations. Standard MARL algorithms that train in
ideal conditions are highly sensitive and prone to catastrophic failure when faced with even small
adversarial perturbations in the deployment environment (Zhang et al., 2020; Yeh et al., 2021; Zeng
et al., 2022). However, historical data is often gathered under the assumption of model stability,
which is unrealistic due to the time-varying and non-stationary nature of real-world systems. Thus,
the robust guarantee is critical in offline settings, leading to the formulation of offline robust MARL.

As a specific setting of MARL, two-player zero-sum Markov games (TZMGs) are a fascinating
area of research, thus leading the field of robust TZMGs (RTZMGs) following from robust MARL.
The inherent solution concepts for RTZMGs encompass equilibria not just between the two players
but also between their adversaries, who select the worst-case environments from a predefined
uncertainty set for each player. This structure inherently offers greater robustness and stability when
facing unmodeled disruptions. Despite recent efforts (Kardeş et al., 2011; Blanchet et al., 2024;
Zhang et al., 2020; Ma et al., 2023), there is still a lack of fundamental understanding in learning for
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RTZMGs. For a tabular RTZMG with horizon length H , states S, actions {A,B}, and uncertainty
sizes {σ+, σ−} for the two players, the best sample complexity for offline setting so far is achieved
by P2M2PO (Blanchet et al., 2024) with a near-optimal sample complexity on H , S, {A,B}, where
however the influence of uncertainty levels is overlooked. Notably, historical data often only offers
partial and limited coverage of the state-action space, leading to poor estimates of model parameters
and, in turn, unreliable policy learning outcomes. We summarize previous works and present them
along with our results in Table 1. Consequently, current solutions lack an algorithm with optimal
sample complexity under partial coverage. Thus, we explore the unresolved question as follows:

Can we achieve effective sample complexity with robustness to learn Nash policy
under partial and limited coverage in TZMGs simultaneously?

Table 1: A comparison between RTZ-VI-LCB and P2M2PO (Blanchet et al., 2024) on finding
an ε-optimal robust Nash policy in finite-horizon offline RTZMGs with f(σ+, σ−, H) =

min
{

(Hσ+−1+(1−σ+)H)
(σ+)2 , (Hσ−−1+(1−σ−)H)

(σ−)2 , H
}

, where the uncertainty set is quantified by total
variation (TV) distance. The sample complexities omit all logarithmic factors.

Algorithm Sample complexity Uncertainty level
P2M2PO CrH

5S2AB
ε2 not consider

RTZ-VI-LCB (Ours) C⋆
r H

4S(A+B)
ε2 f(σ+, σ−, H) full range

Lower bound C⋆
r SH4(A+B)

ε2 min {σ+, σ−}≲ 1
H

Lower bound C⋆
r SH3(A+B)

ε2 min{σ+,σ−} min {σ+, σ−}≳ 1
H

1.1 CONTRIBUTION

We aim to understand and achieve effective sample complexity under partial convergence in
RTZMGs. Our contributions are outlined as follows.

• We introduce a concept to evaluate the quality of historical data, which is the robust
unilateral clipped concentrability coefficient C⋆

r ∈
[

1
S(A+B) ,∞

)
. This coefficient captures

the distribution shift between the behavior policy (µn, νn) and the single optimal robust
policies (µ, ν⋆) and (µ⋆, ν) under model perturbations, without requiring full coverage of
the state-action space by the behavior policy. In contrast, P2M2PO (Blanchet et al., 2024)
measures distribution mismatch using the maximum density ratio Cr, which is less tight
than our robust unilateral clipped concentrability coefficient C⋆

r .
• We design a new model-based algorithm for offline RTZMGs, an optimistic variant

of robust value iteration (VI) for RTZMGs named RTZ-VI-LCB. Specifically, RTZ-
VI-LCB incorporates a plug-in estimator of the nominal transition kernel (Iyengar,
2005) and introduces a data-informed penalty to the robust value estimates. armed
with TV distance, we show that this algorithm achieves an ε-optimal robust Nash
equilibrium (NE) policy up to some logarithmic factor as long as the sample size exceeds
Õ
(

C⋆
r H

4S(A+B)
ε2 min

{
(Hσ+−1+(1−σ+)H)

(σ+)2 , (Hσ−−1+(1−σ−)H)
(σ−)2 , H

})
after a burn-in cost

independent of ε. To the best of our knowledge, this is the first time optimal dependency
on state S and actions {A,B} has been achieved for offline RTZMGs.

• In addition to the upper bound, we derive information-theoretic lower bounds across
various uncertainty levels, independent of the specific distance metric applied. We show
that there exists an algorithm requiring at least Ω

(
C⋆

r SH4(A+B)
ε2

)
samples to find an ε-

optimal robust NE policy when the uncertainty level min {σ+, σ−} ≲ 1
H , and at least

Ω
(

C⋆
r SH3(A+B)

ε2 min{σ+,σ−}

)
samples when min {σ+, σ−} ≳ 1

H . This indicates that learning
RTZMGs is at least as challenging as standard TZMGs (Jin et al., 2022) when the
uncertainty is sufficiently small. Besides, we confirm the optimality of RTZ-VI-LCB across
different uncertainty levels of the critical parameters, i.e., state S and actions {A,B},
except for the finite-horizon H .
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• We design an extended algorithm of RTZ-VI-LCB for robust multi-player general-sum
Markov games (named Multi-RTZ-VI-LCB) and achieve an ε-optimal robust NE policy in

Õ
(

C⋆
r H

4S
∑m

i=1 Ai

ε2 min
{{

(Hσi−1+(1−σi)
H)

(σi)2

}m

i=1
, H
})

samples with M players and Ai

actions and uncertainty size σi per player.

1.2 RELATED WORK

In this section, we review a curated selection of related research, with an emphasis on provably
efficient RL algorithms in the tabular setting, as these are the most pertinent to our work.

Finite-sample studies of standard TZMGs. Markov games (MGs), or called stochastic games,
were first proposed in the early 1950s (Shapley, 1953). Since then, extensive research has been
conducted, and MARL has gained significant attention (Oroojlooy & Hajinezhad, 2023), particularly
around Nash equilibrium (Littman, 1994; Lee et al., 2020). Numerous MARL algorithms with
provable convergence and asymptotic guarantees have been developed (Rashid et al., 2020). More
recent work has focused on creating algorithms for standard MARL with non-asymptotic guarantees
through finite-sample analysis. In this area, most efforts to compute Nash equilibria are focused on
TZMGs. The studies in (Bai & Jin, 2020) and (Xie et al., Jun. 2022) were the first to provide
non-asymptotic sample complexity guarantees for model-based (e.g., VI-Explore and VI-ULCB)
and model-free algorithms (e.g., OMNI-VI). Further improvements in sample complexity have been
explored (Cui et al., 2023; Chen et al., 2022; Liu et al., July 2021; Feng et al., 2023; Li et al., 2024c).

Robustness in MARL. Although progress has been made in standard MARL, existing algorithms
may struggle when faced with environmental disturbances or uncertainties, leading to significantly
deviated equilibria. Increasing research now focuses on enhancing MARL robustness against
uncertainties in different parts of MGs (Vial et al., 2022), including state (Zhou & Liu, 2023),
environment (reward and transition dynamics), agent types (Zhang et al., 2021), and other agents’
policies (Kannan et al., 2023). A typical method to address robustness against uncertainties of
the environment is distributionally robust optimization (DRO), which is a method predominantly
explored in supervised learning (Bertsimas et al., 2018; Gao, 2023; Blanchet & Murthy, 2019). The
application of DRO to manage model uncertainty in single-agent RL (Iyengar, 2005) has attracted
considerable attention. However, when extended to MARL, researchers formulated the problem as
robust MGs armed with DRO and developed a relatively understudied field with only a few proven
algorithms (Blanchet et al., 2024; Kardeş et al., 2011; Ma et al., 2023; Zhang et al., 2020; Shi
et al., 2024b). Thus, relevant algorithms based on partial coverage of datasets while considering the
uncertainty level are lacking.

Single-agent robust RL. In single-agent RL, addressing uncertainties of environments using
DRO—such as robust Markov decision processes (MDPs) and distributionally robust dynamic
programming—has attracted considerable interest in both theoretical research and practical
applications (Badrinath & Kalathil, 2021; Goyal & Grand-Clement, 2023). Recent work has focused
on the finite-sample performance of provable robust RL algorithms, exploring different divergence
functions for uncertainty sets, various sampling mechanisms, and related challenges (Yang et al.,
2023; Blanchet et al., 2024; Shi et al., 2024a). Studies on robust MDPs, particularly relevant
here, use uncertainty sets based on TV distance (Liu & Xu, 2024) or Kullback-Leibler (KL)
divergence (Shi & Chi, 2024) in tabular settings. It has been shown that addressing robust MDPs
does not demand more samples compared with those needed for standard MDPs (Shi et al., 2024a).
However, RTZMGs present additional complexities beyond those in robust single-agent RL.

2 PROBLEM FORMULATION

We focus on offline RTZMGs in this paper, which is a robust version of standard TZMGs taking
environmental uncertainties into consideration. RTZMGs form a broader class than standard
TZMGs, accommodating various prescribed environmental uncertainty sets. Along with this setting,
we investigate an efficient algorithm to achieve robustness and optimal sample complexity on
action {A,B} without requiring full coverage of the state-action space. An RTZMG under the
finite-horizon setting can be defined as MGr =

{
S,A,B,Uσ+

ρ

(
P 0
)
,Uσ−

ρ

(
P 0
)
, r,H

}
, where

3
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S := {1, · · · , S} is the state space of size S; (A := {1, · · · , A},B := {1, · · · , B}) denotes the
action spaces of the max-player and the min-player with sizes A and B, respectively; H is the
horizon length; r = {rh}Hh=1 represents the immediate reward obtained at time step h. Specifically,
rh(s, a, b) is assumed to be deterministic on a state-action pair (s, a, b) and falls within the range
[0, 1]. In RTZMGs, this reward can represent both the gain of the max-player and the loss of the min-
player. A crucial difference from standard TZMGs is that, rather than assuming a fixed transition
kernel, both players in RTZMGs expect that the transition kernel could be chosen arbitrarily from
specified uncertainty sets, Uσ+

ρ (P 0) and Uσ−

ρ (P 0), respectively. These uncertainty sets are centered
on a nominal kernel P 0 : S×A×B 7→ ∆(S), with their size and shape defined by a distance metric ρ
and radius parameters σ+ > 0 and σ− > 0. To accommodate individual robustness preferences, the
max-player and min-player can independently define their uncertainty sets Uσ+

ρ (P 0) and Uσ−

ρ (P 0),
selecting different sizes (σ+ > 0 and σ− > 0) and potentially different divergence functions (ρ) for
shaping the sets. In this paper, we consider the same divergence function for both players.

Uncertainty set with two-player-wise (s, a, b)-rectangularity. We define the transition kernel
uncertainty sets Uσ+

ρ (P 0) and Uσ−

ρ (P 0) for RTZMGs. Inspired by the rectangularity condition used
in robust single-agent RL (Shi et al., 2024a; Iyengar, 2005), we adapt this concept to a two-player
setting, termed two-player-wise (s, a, b)-rectangularity. The adaptation enhances computational
tractability and facilitates the robust version of Bellman recursions. It permits each player to select
its uncertainty set independently, which can be decomposed for each state-action pair into a product
of subsets. Consequently, the uncertainty sets Uσ+

ρ (P 0) and Uσ−

ρ (P 0) for the two players, adhering
to two-player-wise (s, a, b)-rectangularity, are mathematically defined as:

Uσ+

ρ

(
P 0
)
:= ⊗ Uσ+

ρ

(
P 0
h,s,a,b

)
, Uσ−

ρ

(
P 0
)
:= ⊗ Uσ−

ρ

(
P 0
h,s,a,b

)
, (1)

where

Uσ+

ρ

(
P 0
h,s,a,b

)
:=
{
Ph,s,a,b ∈ ∆(S) : ρ

(
Ph,s,a,b, P

0
h,s,a,b

)
≤ σ+

}
.

Here, ⊗ represents the Cartesian product. The uncertainty set for min-player can be defined
similarly. We define a vector of the transition kernel P or P 0 at any state-action pair (s, a, b) as

Ph,s,a,b := Ph(· | s, a, b) ∈ R1×S , P 0
h,s,a,b := P 0

h (· | s, a, b) ∈ R1×S . (2)

Here, the distance function ρ for each player’s uncertainty set can be selected from various options
that quantify differences between probability vectors. These include f -divergences (such as KL
divergence, TV distance, and chi-square) (Yang et al., 2022), the Wasserstein distance (Xu et al.,
2023), and ℓq norms (Clavier et al., 2023).

Robust value functions. In RTZMGs, players seek to optimize their worst-case performance
across all possible transition kernels within their respective uncertainty sets Uσ+

ρ

(
P 0
)

and
Uσ−

ρ

(
P 0
)
. For any product policy (µ× ν) ∈ ∆(A× B), the max-player’s worst-case performance

at time step h is quantified by the robust value function V µ,ν,σ+

h and the robust Q-function Qµ,ν,σ+

h
for all (h, s, a, b) ∈ [H]× S ×A× B, defined as:

V µ,ν,σ+

h (s) := inf
P∈Uσ+

ρ (P 0)
V µ,ν,P
h (s) and Qµ,ν,σ+

h (s, a, b) := inf
P∈Uσ+

ρ (P 0)
Qµ,ν,P

h ; (3)

V µ,ν,σ−

h (s) := sup
P∈Uσ−

ρ (P 0)

V µ,ν,P
h (s) and Qµ,ν,σ−

h (s, a, b) := sup
P∈Uσ−

ρ (P 0)

Qµ,ν,P
h , (4)

where

V µ,ν,P
h (s) := Eµ,ν,P

[
H∑
t=h

rt
(
st, at, bt

)
| sh = s

]
;

Qµ,ν,P
h (s, a, b) := Eµ,ν,P

[
H∑
t=h

rt
(
st, at, bt

)
| sh = s, ah = a, bh = b

]
.
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Offline dataset. Let D be a dataset consisting of K episodes under independence, with
each episode produced by implementing a behavior policy {µn

h, ν
n
h}Hh=1 in a nominal MDP

M0 =
(
S,A,B, H, P 0 := {P 0

h}Hh=1, {rh}Hh=1

)
. For 1 ≤ k ≤ K, the k-th episode(

sk1 , a
k
1 , b

k
1 , . . . , s

k
H , akH , bkH , skH+1

)
is generated as follows:

sk1 ∼ ϱn, akh ∼ µn
h(· | skh), bkh ∼ νnh(· | skh), skh+1 ∼ P 0

h (· | skh, akh, bkh), 1 ≤ h ≤ H. (5)

Throughout this paper, let ϱn denote the initial distribution related to a historical dataset. We
use the short-hand notation for the occupancy distribution w.r.t. the behavior policy (µn, νn) as:
∀(h, s, a, b) ∈ [H]× S ×A× B,

dn,P
0

h (s) = dµ
n,νn,P 0

h (s) := P(sh = s | s1 ∼ ϱn, µn, νn, P 0); (6a)

dn,P
0

h (s, a, b) = dµ
n,νn,P 0

h (s, a, b) := P(sh = s | s1 ∼ ϱn, µn, νn, P 0)µn
h(a | s) νnh(b | s). (6b)

Similarly, for any product policy (µ, ν), there is, ∀(h, s, a, b) ∈ [H]× S ×A× B

dµ,ν,Ph (s) := P(sh = s | s1 ∼ ϱ, µ, ν, P ); (7a)

dµ,ν,Ph (s, a, b) := P(sh = s | s1 ∼ ϱ, µ, ν, P )µh(a | s) νh(b | s). (7b)

Robust Bellman equations. RTZMGs include a robust version of the Bellman equation, referred
to as the robust Bellman equation. The robust value functions V µ,ν,σ+

h (s) for max-player in
RTZMGs, associated with any product policy (µ, ν), satisfy: ∀(h, s) ∈ [H]× S ,

V µ,ν,σ+

h (s) = Ea∼µh(a),b∼νh(a)

[
rh(s, a, b) + inf

P∈Uσ+
ρ (P 0

h,s,a,b)
PV µ,ν,σ+

h+1

]
. (8)

V µ,ν,σ−

h (s) for min-player can be obtained similarly. We highlight that the robust Bellman equations
are intrinsically connected to the two-player-wise (s, a, b)-rectangularity condition (see (1)) applied
to the uncertainty set. This condition separates the dependencies of uncertainty subsets among
different time steps, the players, and state-action pairs, thus leading to the Bellman recursion.

Optimal robust policy. We further define the maximum robust value function with fixed opponent
policy for each player as: ∀(h, s) ∈ [H]× S ,

V ⋆,ν,σ+

h (s) := max
µ:S×[H] 7→∆(A)

V µ,ν,σ+

h (s) = max
µ:S×[H]7→∆(A)

inf
P∈Uσ+

ρ (P 0)
V µ,ν,P
h (s). (9)

Optimal robust policy for min-player can be obtained similarly. As proved by Blanchet et al. (2024),
there is at least one policy referred to as µ⋆

h(s) : S × [H] 7→ ∆(A) (for the max-player) and
ν⋆h(s) : S × [H] 7→ ∆(B) (for the min-player), corresponding to as the robust best-response policy.
These policies can simultaneously achieve V ⋆,ν,σ+

h (s) (for the max-player) and V µ,⋆,σ−

h (s) (for the
min-player) for all s ∈ S and h ∈ [H].

Robust Nash equilibrium. In RTZMGs, the dynamics expand beyond traditional TZMGs to
involve four participants: two players and two adversaries determining the worst-case transitions.
Therefore, finding an equilibrium becomes central in RTZMGs due to potentially conflicting
objectives. We introduce the robust variant of standard solution concepts—robust NE for RTZMGs.
A product policy (µ, ν) is considered a robust NE if

∀(s) ∈ S, V ⋆,ν,σ+

h (s) = V ⋆,σ+

h (s); V µ,⋆,σ−

h (s) = V ⋆,σ−

h (s). (10)

A robust NE signifies that given the product policy (µ, ν) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Uσ+

ρ (P 0) or Uσ−

ρ (P 0).

Since finding exact robust equilibria can be complex and may not always be feasible, practitioners
often seek approximate equilibria. In this context, a product policy (µ × ν) ∈ ∆(A × B) can be
termed an ε-robust NE if

Gap(µ, ν) := max
{
V ⋆,ν,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ), V ⋆,σ−

1 (ϱ)− V µ,⋆,σ−

1 (ϱ)
}
≤ ε, (11)

5
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where

V ⋆,ν,σ+

1 (ϱ) = Es∼ϱV
⋆,ν,σ+

1 (s), and V ⋆,σ+

1 (ϱ) = Es∼ϱV
⋆,σ+

1 (s).

The definitions of V µ,⋆,σ−

1 (ϱ) and V ⋆,σ−

1 (ϱ) can be obtained similarly. The existence of robust NE
has been proved for general divergence functions in the uncertainty set by Blanchet et al. (2024).

Learning objective With a dataset collected from the nominal environment, our objective is to find
a solution among the ε-robust NEs for the RTZMGMGr with respect to a specified uncertainty set
U(P 0) around the nominal kernel, while minimizing the number of samples required under partial
coverage of the state-action space.

3 ALGORITHM DESIGN

In this section, we propose an efficient model-based algorithm RTZ-VI-LCB to achieve robustness
and optimal sample complexity on action {A,B}. This algorithm is designed for offline RTZMGs
within the finite-horizon setting.

3.1 BUILDING AN EMPIRICAL NOMINAL MDP

According to the empirical frequencies of state transitions, we can naturally construct an empirical
estimate P̂ 0 = {P̂ 0

h}Hh=1 of P 0, where

P̂ 0
h (s′ | s, a, b) =

{
1

Nh(s,a,b)

∑N
i=1 1 {(si, ai, bi, s′i) = (s, a, b, s′)} , if Nh (s, a, b) > 0;

1
S , if Nh (s, a, b) = 0,

(12)

r̂h (s, a, b) =

{
rh (s, a, b) , if Nh (s, a, b) > 0;

0, if Nh (s, a, b) = 0,
(13)

for any (h, s, a, b, s′) ∈ [H]× S ×A× B × S . Besides, Nh(s, a, b) represents the total number of
sample transitions from (s, a, b) at step h, and

Nh(s, a, b) :=

N∑
i=1

1
{
(si, ai, bi) = (s, a, b)

}
. (14)

Algorithm 1: Two-stage subsampling technique for RTZ-VI-LCB.
1 Input: Dataset D, probability δ.
2 Step 1: Data Partitioning. Split D into two equal-sized subsets, Dm and Da, each containing

K/2 trajectories.
3 Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions

from Dm (resp. Da) as Nm
h (s) (resp. N a

h(s)). Construct the trimmed count as:

N t
h(s) := max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
; (15)

4 Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the
form (s, a, b, h, s′)) from Dm uniformly. For each (s, h) ∈ S × [H], include
min{N t

h(s), N
m
h (s)} transitions in the new dataset Dt.

5 Output: Set D0 = Dt.

Although it is feasible to decompose the historical dataset D into sample transitions, the
dependencies between transitions within the same episode introduce complexities in our analysis. To
address this issue, Li et al. (2024a) introduced a two-fold subsampling method for single-agent RL to
preprocess D, thereby reducing statistical dependencies and producing a distributionally equivalent
dataset D0 with independent samples. We adapt this method to TZMGs, as outlined in Algorithm 1.
We present the following lemma concerning the dataset D0, which is proved in Appendix C.1.
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Lemma 1 The dataset produced by the two-stage subsampling method is distributionally identical
toD0 with probability at least 1−8δ, where {Nh(s, a, b)} are independent of the sample transitions
in D0 and obey: ∀(h, s, a, b) ∈ [H]× S ×A× B,

Nh(s, a, b) ≥
Kdnh(s, a, b)

8
− 5

√
Kdnh(s, a, b) log

KH

δ
. (16)

By applying the two-fold sampling method, we can treat the dataset D0 as having independent
samples, simplifying the analysis significantly as supported by Lemma 1.

3.2 AN OPTIMISTIC VARIANT OF ROBUST VI WITH LOWER CONFIDENCE BOUNDS.

We propose a model-based approach for solving RTZMGs using an approximate P̂ 0 for P 0, which
is the nominal transition kernel. Specifically, we introduce VI with lower confidence bounds (LCBs)
for RTZMGs (RTZ-VI-LCB) to compute a robust NE for two players, as summarized in Algorithm 2.

Our algorithm begins at the final time step h = H and proceeds backward through h = H − 1, H −
2, . . . , 1. Drawing from the principle of pessimism in single-agent offline RL (Li et al., 2024a; Jin
et al., 2021), we design an optimistic robust Q-value to estimate the robust Q-function at time step
h ∈ [H] as Q̂+

h and Q̂−
h for all (h, s, a, b) ∈ [H]× S ×A× B, that is,

Q̂+
h (s, a, b) = r̂h (s, a, b) + inf

P∈Uσ+(P̂ 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂ +

h+1

)
; (17a)

Q̂−
h (s, a, b) = r̂h (s, a, b) + sup

P∈Uσ−(P̂ 0
h,s,a,b)

PV̂ −
h+1 − βh

(
s, a, b, V̂ −

h+1

)
. (17b)

Dual problem. Solving (17) directly is computationally intensive because it requires optimizing
over an S-dimensional probability simplex, which becomes exponentially more difficult as the state
space size S increases. In fortunate, strong duality for TV distance allows us to tackle this problem
by solving its dual (Iyengar, 2005):

inf
P∈Uσ+(P̂ 0

h,s,a,b)
PV̂ +

h+1= max
α∈[mins V̂ +

h+1,maxs V̂ +
h+1]

{
P̂ 0
h,s,a,b

[
V̂ +
h+1

]
α
−σ+

(
α−min

s′

[
V̂ +
h+1

]
α
(s′)
)}

.

(18)

where
[
V̂ +
h+1

]
α

denotes the clipped versions of V̂ −
h+1 ∈ RS and V̂ +

h+1 ∈ RS based on some level

α ≥ 0, as follows. supP∈Uσ−(P̂ 0
h,s,a,b)

PV̂ −
h+1 can be defined similarly. See Appendix A for details.[

V̂ +
h+1

]
α
(s) :=

{
V̂ +
h+1(s), if V̂ +

h+1(s) > α;

α, otherwise;
(19)

Penalty term. The optimistic robust Q-function estimate is refined by βh(s, a, b, V̂ ), which is a
data-driven penalty term and includes the uncertainty in value estimates. We adopt the Bernstein-
style penalty to better capture the variance structure over time. In particular, for any (s, a, b, h) ∈
S ×A× B × [H] and δ ∈ (0, 1), the penalty term βh(s, a, b, V̂ ) is defined as:

βh

(
s, a, b, V̂

)
= min

max


√

Cn log
KH
δ

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V̂ ),

2CnH log KH
δ

Nh (s, a, b)

 , H

 , (20)

where Cn is some universal constant, and

VarP̂ 0
h,s,a,b

(
V̂
)
:= P̂ 0

h,s,a,bV̂
2 − (P̂ 0

h,s,a,bV̂ )2. (21)

Note that we choose P̂ 0, as opposed to P 0 (i.e., VarP̂ 0
h,s,a,b

(V̂ )) in the variance term, since we

have no access to the true transition kernel P 0. This penalty term is distinct from those used
in standard offline TZMGs (Cui et al., 2023; Li et al., 2024a), as it accounts for the unique
structure of robust self-play MDPs. Specifically, it provides a tight upper bound on statistical
uncertainty, considering the non-linear and implicit dependency introduced by the uncertainty set
U(P 0), addressing challenges not present in standard MDP scenarios.
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Policy estimation. We update the policies using the estimated Q-functions with uncertainty as line
6 in Algorithm 2. Specifically, for any matrix N ∈ RA×B , the function ComputNash(N) returns
a solution (ŵ, ẑ) to the minimax problem maxw∈∆(A) minz∈∆(B) w

⊤Nz. In other words, for each
s ∈ S, we compute the NE policies

(
µ+
h (s), ν

+
h (s)

)
and

(
µ−
h (s), ν

−
h (s)

)
∈ ∆(A) ×∆(B) for the

zero-sum matrix games with payoff matrices Q̂+
h (s, ·, ·) and Q̂−

h (s, ·, ·), respectively. Solving these
robust matrix games is generally PPAD-hard due to the potential for players to choose different
worst-case transition kernels.

Algorithm 2: Value iteration with lower confidence bounds for RTZMGs (RTZ-VI-LCB).

1 Initialization: Set uncertainty levels σ− and σ+; set V̂ −
h (s) = 0 and V̂ +

h (s) = H for all
(s, h) ∈ S × [H + 1]; set Q̂−

h (s, a, b) = 0 and Q̂+
h (s, a, b) = H for all

(s, a, b, h) ∈ S ×A× B × [H + 1].
2 Compute the empirical reward function r̂ using (13) and the empirical transition kernel P̂0

using (12).
3 for h = H,H − 1, . . . , 1 do
4 Update the robust Q-value estimate as

Q̂+
h (s, a, b) = min

{
r̂h (s, a, b) + inf

P∈Uσ+(P̂ 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂ +

h+1

)
, H

}
;

Q̂−
h (s, a, b) = max

r̂h (s, a, b) + sup
P∈Uσ−(P̂ 0

h,s,a,b)
PV̂ −

h+1 − βh

(
s, a, b, V̂ −

h+1

)
, 0

 ,

with βh (s, a, b, V ) = min

{
max

{√
Cn log

KH
δ

Nh(s,a,b)
VarP̂ 0

h,s,a,b
(V ),

2CnH log KH
δ

Nh(s,a,b)

}
, H

}
.

5 Compute Nash policy for each s ∈ S as(
µ+
h (s) , ν+h (s)

)
= ComputNash

(
Q̂+

h (s, ·, ·)
)
;(

µ−
h (s) , ν−h (s)

)
= ComputNash

(
Q̂−

h (s, ·, ·)
)
,

6 Update the robust value estimate for each s ∈ S as

V̂ −
h (s) = Ea∼µ−

h (s),b∼ν−
h (s)

[
Q̂−

h (s, a, b)
]
, V̂ +

h (s) = Ea∼µ+
h (s),b∼ν+

h (s)

[
Q̂+

h (s, a, b)
]
.7

8 Output: The policy pair (µ̂, ν̂), where µ̂ = {µ−
h }Hh=1 and ν̂ = {ν+h }Hh=1.

4 PERFORMANCE GUARANTEES

Robust unilateral clipped concentrability. To assess the effectiveness of the historical dataset
for achieving the desired goal, it is essential to measure the distributional discrepancy between the
historical data and the target data. Drawing on the single-policy clipped concentrability assumption
in the single-agent RL (Li et al., 2024a), we propose a novel assumption for RTZMGs as:

Assumption 1 (Robust unilateral clipped concentrability) The behavior policies of the historical
dataset D satisfies

max

{
sup

(µ,s,a,b,h,P )∈∆(A)×S×A×B×[H]×Uσ− (P 0)

min
{
dµ,ν

⋆,P
h (s, a, b), 1

S(A+B)

}
dn,P

0

h (s, a, b)
,

sup
(ν,s,a,b,h,P )∈∆(B)×S×A×B×[H]×Uσ+ (P 0)

min
{
dµ

⋆,ν,P
h (s, a, b), 1

S(A+B)

}
dn,P

0

h (s, a, b)

}
≤ C⋆

r (22)

8
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for some quantity C⋆
r ∈

[
1

S(A+B) ,∞
]
. We define C⋆

r as the smallest value that satisfies (22),
referring to it as the robust unilateral clipped concentrability coefficient. For consistency, we adopt
the convention 0/0 = 0.

Notably, if dµ,ν
⋆,P

h (s, a, b) or dµ
⋆,ν,P

h (s, a, b) is larger than 1
S(A+B) , the robust unilateral clipped

concentrability assumption above do not require the data distribution dn,P
0

h (s, a, b) to scale with
dµ,ν

⋆,P
h (s, a, b) or dµ

⋆,ν,P
h (s, a, b) proportionally. We here outline the principal theoretical findings

concerning the sample complexity of learning robust NE in RTZMGs, including an upper bound for
the RTZ-VI-LCB algorithm (Algorithm 2) and an information-theoretic lower bound. Initially, we
present the finite-sample guarantee for RTZ-VI-LCB, with detailed proof provided in Appendix B.

Theorem 1 (Upper bound for RTZ-VI-LCB) Under the TV uncertainty set Uσ+

(·) and Uσ−
(·)

defined in (2) with σ+, σ− ∈ (0, 1]. Define dnm = minh,s,a,b {dnh(s, a, b) : dnh(s, a, b) > 0}. Define

f(σ+, σ−) = min
{

(Hσ+−1+(1−σ+)H)
(σ+)2 , (Hσ−−1+(1−σ−)H)

(σ−)2 , H
}

. Consider any δ ∈ (0, 1) and any

RTZMG MGr =
{
S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H

}
. For sufficient large constants c0, c1 > 0,

with probability at least 1− δ, we can achieve

Gap(µ̂, ν̂) ≤ c1

√
C⋆

r H
3S(A+B) log KH

δ

K
f(σ+, σ−, H), (23)

with the total number of samples T exceeding

T = KH ≥ c0
H2S(A+B)

dnm
log

KH

δ
f(σ+, σ−, H). (24)

Now, we introduce a lower bound of sample complexity in RTZMGs, whose proof is in Appendix D.

Theorem 2 (Lower bound for solving robust MGs) Consider any tuple MGr ={
S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H

}
obeying H > 16 log 2 and σ+, σ− ∈ (0, 1 − c0] with

any small efficiently positive constant 0 < c0 ≤ 1
4 . Let

ε ≤
{

c2
H , if max {σ+, σ−} ≤ c2

2H ,

1 otherwise
(25)

for any c2 ≤ 1
4 . With an initial state distribution ϱ, we can construct a set of RTZMGs{

Mϕ
f |f ∈ F = {0, 1, · · · , SA− 1}, ϕ = [ϕh]1≤h≤H ∈ Φ ⊆ {0, 1}H

}
such that for any dataset

with K independent samples trajectories and H lengths per trajectories satisfying C ≤ C⋆
r ≤ 2C,

such that

inf
µ̂,ν̂

max
(f,ϕ)∈F×Φ

{
Pϕ

(
Gap(µ̂, ν̂) > ε

)}
≥ 1

8
, (26)

provided that

T = KH ≤
c2C

⋆
r H

3S(A+B)min{ 1
min{σ+,σ−} , H}

ε2
. (27)

Here, c2 denotes an efficiently small constant. The infimum is obtained over all estimators (µ̂, ν̂).

Moreover, our algorithm can be extended to multi-player general-sum Markov games with m players
and Ai actions and uncertainty size σi per player with details provided in Appendix F, i.e., Multi-
RTZ-VI-LCB. Specifically, we obtain the following theoretical guarantee of Multi-RTZ-VI-LCB:

Theorem 3 (Upper bound for Multi-RTZ-VI-LCB) Consider any δ ∈ (0, 1) and any robust
multi-player general-sum MGs MGr = M(S, {Ai}mi=1, H, {Uσi

ρ (P 0)}mi=1, {ri}mi=1). Under the
TV uncertainty set Uσi(·) defined in (2) with σi ∈ (0, 1] for i = 1, 2, · · · ,m. Define dnm =

9
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minh,s,a {dnh(s,a) : dnh(s,a) > 0}, and f({σi}mi=1, H) = min
{{

(Hσi−1+(1−σi)
H)

(σi)2

}m

i=1
, H
}

.

For sufficient large constants c0, c1 > 0, with probability of at least 1− δ, we can achieve

Gap(π̂) ≤ c1

√
C⋆

r H
3S
∑m

i=1 Ai log
KH
δ

K
f({σi}mi=1, H), (28)

with the total number of samples T exceeding

T = KH ≥ c0
H2S

∑m
i=1 Ai

dnm
log

KH

δ
f({σi}mi=1, H). (29)

Here are the key implications of these theorems:

• Theorem 1 demonstrates that the proposed RTZ-VI-LCB algorithm can attain an ε-robust
NE solution when the total sample size exceeds:

Õ

(
C⋆

r H
4S(A+B)

ε2
min

{
(Hσ+ − 1 + (1− σ+)H)

(σ+)2
,
(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

})
,

suggesting that the sample efficiency for robust offline TZMGs is strongly influenced by the
dataset quality (quantified by C⋆

r ) and the problem structure of RTZMGs (reflected in the
occupancy distributions dnm). If C⋆

r is as small as 1
S(A+B) , the upper bound of the sample

complexity exhibits a weaker dependency on actions {A,B} and state S. Combining
this upper bound with the lower bound in Theorem 2 shows that RTZ-VI-LCB’s sample
complexity is optimal w.r.t. key factors S, A, B and ε. This is the first optimal sample
complexity upper bound for offline RTZMGs, regarding state S and actions {A,B}.

• Theorem 2 conveys two important points. When the uncertainty level is small (i.e.,
min{σ+, σ−} ≲ 1

H ), no algorithm can find an ε-optimal robust policy with fewer than

Ω
(

C⋆
r SH4(A+B)

ε2

)
samples, matching the complexity requirement for non-robust offline

TZMGs (Jin et al., 2022). This implies that robust TZMGs are at least as challenging as
standard TZMGs for low uncertainty. When the uncertainty level satisfies min{σ+, σ−} ≳
1
H , no algorithm can find an ε-optimal robust policy with the numbers of samples fewer

than Ω
(

C⋆
r SH3(A+B)

ε2 min{σ+,σ−}

)
. Thus, RTZ-VI-LCB is the first provably near-optimal algorithm

on S and {A,B} for RTZMGs without requiring full coverage assumptions.
• Theorem 3 demonstrates that the proposed Multi-RTZ-VI-LCB algorithm can attain an ε-

robust NE solution when the total sample size exceeds:

Õ

(
C⋆

r H
4S
∑m

i=1 Ai

ε2
min

{{
(Hσi − 1 + (1− σi)

H)

(σi)2

}m

i=1

, H

})
,

suggesting that the algorithm can break the curse of multiagency.

5 CONCLUSION

To balance model robustness with sample efficiency, we design an efficient robust model-based
algorithm for offline RTZMGs, which is value iteration with lower confidence bounds for RTZMGs
(RTZ-VI-LCB). Our algorithm integrates robust VI with the principle of pessimism. By imposing a
tailored and mild assumption (robust unilateral clipped concentrability) on the historical dataset to
account for the distribution shift, we do not require full state-action space coverage. We address
robustness against the distribution shifts in the worse-case scenario of the shared environment,
analyze the finite-sample complexity of the proposed RTZ-VI-LCB algorithm, and establish an
information-theoretic lower bound to evaluate its optimality across various uncertainty levels.

To the best of our knowledge, this is the first provably optimal algorithm for offline RTZMGs that
addresses the dependency on states S and actions {A,B}, while accounting for model perturbations
and partial coverage. Furthermore, we extend RTZ-VI-LCB to multi-agent general-sum MGs,
demonstrating a breakthrough in breaking the curse of multiagency. Our algorithm opens up several
intriguing questions, such as designing efficient model-free algorithms for robust offline TZMGs
with partial coverage and exploring ways to adjust the size and metric of the uncertainty set to
complete the algorithmic design.
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A PRELIMINARIES

Dual equivalence of robust Bellman. We can compute the robust Bellman operator by solving its
dual formulation rather than the original form, as long as the predefined uncertainty set is in a benign
form (e.g., utilizing TV distance as the divergence function) (Iyengar, 2005; Shi et al., 2024a).
Taking TV distance as an example, we describe the equivalence under strong duality between the
robust Bellman operator and its dual form as Lemma 2.

Lemma 2 Consider any TV uncertainty set Uσ+

(P ) and Uσ−
(P ) associated with fixed uncertainty

levels σ+ and σ− ∈ (0, 1] and any probability vector P ∈ ∆(S), respectively. For any vector
V ∈ RS obeying V ≥ 0, one has

inf
P∈Uσ+ (P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ+

(
α−min

s′
[V ]α (s′)

)}
; (30a)

sup
P∈Uσ− (P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ−

(
α−min

s′
[V ]α (s′)

)}
, (30b)

where [V ]α is defined in (19)

The proof of Lemma 2 is similar to Iyengar (2005, Lemma 4.3). Therefore, comparing the standard
Bellman operator, the lemma above guarantees that no more computation cost is required when
applying the robust Bellman operator, ignoring some logarithmic factors (Iyengar, 2005).

Facts of RTZMGs and empirical RTZMGs. Recall the definition of any RTZMG MGr ={
S,A,B,Uσ+

ρ (P 0),Uσ−

ρ (P 0), r,H
}

. According to robust Bellman equations in (8), one has: for
any product policy (µ, ν) and any (h, s, a, b) ∈ [H]× S ×A× B,

Qµ,ν,σ+

h (s, a, b) = rh(s, a, b) + inf
P∈Uσ+

ρ (P 0
h,s,a,b)

PV µ,ν,σ+

h+1 ; (31a)

Qµ,ν,σ−

h (s, a, b) = rh(s, a, b) + sup
P∈Uσ−

ρ (P 0
h,s,a,b)

PV µ,ν,σ−

h+1 , (31b)

where

V µ,ν,σ+

h (s) = Ea∼µh(s),b∼νh(s)

[
Qµ,ν,σ+

h (s, a, b)
]
;

V µ,ν,σ−

h (s) = Ea∼µh(s),b∼νh(s)

[
Qµ,ν,σ−

h (s, a, b)
]
.

Considering the offline setting, we use M̂Gr =
{
S,A,B,Uσ+

ρ (P̂ 0),Uσ−

ρ (P̂ 0), r,H
}

to represent
the empirical RTZMG, which is establishing along with the estimated nominal distribution P̂ 0

in (12). Therefore, for any product policy (µ, ν), we define the empirical robust value function
(resp. empirical robust Q-function) in M̂Gr as V̂ µ,ν,σ+

h and V̂ µ,ν,σ−

h (resp. Q̂µ,ν,σ+

h and Q̂µ,ν,σ−

h ),
which are analogous to (4). Moreover, we can similarly define the optimal of the empirical robust
value function for both player over M̂Gr, which is: for ∀s ∈ S,

V̂ ⋆,ν,σ+

h (s) = V̂ µ⋆,ν,σ+

h (s) := max
µ:S×[H]→∆(A)

V̂ µ,ν,σ+

h (s) = max
µ:S×[H]→∆(A)

inf
P∈Uσ+ (P̂ 0)

V̂ µ,ν,P
h (s);

(32a)

V̂ µ,⋆,σ−

h (s) = V̂ µ,ν⋆,σ−

h (s) := max
ν:S×[H]→∆(B)

V̂ µ,ν,σ−

h (s) = max
ν:S×[H]→∆(B)

inf
P∈Uσ− (P̂ 0)

V̂ µ,ν,P
h (s).

(32b)

Notably, for all s ∈ S, there exists at least one robust best-response policy that can achieve
V̂ ⋆,ν,σ+

h (s) and V̂ µ,⋆,σ−

h (s), as proved by Blanchet et al. (2024).
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Therefore, we can obtain the empirical robust Bellman equation similar to (8) as: for any product
policy (µ, ν),

Q̂µ,ν,σ+

h (s, a, b) = rh(s, a, b) + inf
P∈Uσ+

ρ (P̂ 0
h,s,a,b)

PV̂ µ,ν,σ+

h+1 ; (33a)

Q̂µ,ν,σ−

h (s, a, b) = rh(s, a, b) + sup
P∈Uσ−

ρ (P̂ 0
h,s,a,b)

PV̂ µ,ν,σ−

h+1 , (33b)

where

V̂ µ,ν,σ+

h (s) = Ea∼µh(s),b∼νh(s)[Q̂
µ,ν,σ+

h (s, a, b)];

V̂ µ,ν,σ−

h (s) = Ea∼µh(s),b∼νh(s)[Q̂
µ,ν,σ−

h (s, a, b)].

B PROOF OF THEOREM 1

The proof of Theorem 1 can be separated into three steps, as outlined below.

B.1 STEP 1: DECOUPLING STATISTICAL DEPENDENCY

Before bounding Gap(µ̂, ν̂), we introduce an important lemma, quantifying the difference between
P̂ and P when projected in the direction of the value function.

Lemma 3 Instate the assumptions in Theorem 1. Consider any vector V ∈ RS with ∥V ∥∞ ≤ H
for all (h, s, a, b) ∈ [H] × S × A × B satisfying Nh (s, a, b) > 0. With probability at least 1 − δ,
one has∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣≤C4

√
1

Nh(s,a,b)
VarP̂ 0

h,s,a,b

(
V
)
log

KH

δ
+C4

H logKH
δ

Nh (s,a,b)

(34)

for some sufficiently large constant C4 > 0, and

VarP̂ 0
h,s,a,b

(
V
)
≤ 2VarP 0

h,s,a,b

(
V
)
+O

(
H2

Nh (s, a, b)
log

KH

δ

)
. (35)

Proof can be found in Appendix C.3.

In simple terms, (34) provides a Bernstein-type concentration bound, while (35) ensures that the
empirical variance estimate (i.e., the plug-in estimate) closely matches the true variance. Notably,
Lemma 3 does not require V to be statistically independent of P̂ 0

h,s,a,b, which is essential given the
complex statistical dependencies in our iterative algorithm. Under the leave-one-out analysis (see,
e.g., Agarwal et al. (2020); Chen et al. (2021); Li et al. (2024a;b)), we prove Lemma 3 to decouple
statistical dependencies, as illustrated in Appendix C.3. With Lemma 3, we can now have∣∣∣∣∣ inf

P∈Uσ+ (P̂ 0
h,s,a,b)

PV − inf
P∈Uσ+ (P 0

h,s,a,b)
PV

∣∣∣∣∣ ≤ βh (s, a, b, V ) (36)

for any (h, s, a, b) ∈ [H]× S ×A× B satisfying Nh(s, a, b) ≥ 1.

Therefore, we conclude that Q̂+
h (s, a, b) is an optimistic estimation of Q̂µ,ν,σ+

h (s, a, b), which is
summarized below.

Lemma 4 With probability exceeding 1− δ, it holds that

Q̂+
h (s, a, b) ≥ Q⋆,ν̂,σ+

h (s, a, b) and V̂ +
h (s) ≥ V ⋆,ν̂,σ+

h (s); (37)

See Appendix C.4 for detail proofs.

Besides, we introduce another key lemma highlighting the difference between RTZMGs and
standard TZMGs from the same idea by Shi et al. (2024b, Lemma 3). The range of the robust
value function narrows as the uncertainty level σ+ of its uncertainty set increases, as shown below.
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Lemma 5 Consider the uncertainty set Uσ+

(·) with TV distance and any RTZMG MGr ={
S,A,B,Uσ+

(P ),Uσ−
(P ), r,H

}
. The optimistic robust value function estimate V̂ +

h :

∀h ∈ [H] : max
s∈S

V̂ +
h −min

s∈S
V̂ +
h ≤ min

{
(H + 1)

(
1− (1− σ+)H−h

)
σ+

, H

}
.

See Appendix C.5 for detail proofs.

B.2 STEP 2: DECOMPOSING THE ERROR Gap(µ̂, ν̂)

The goal of our algorithm is to output an ε-robust NE policy (µ̂, ν̂) satisfying Gap(µ̂, ν̂) in (11),
i.e.,

Gap(µ̂, ν̂) := max
{
V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ), V ⋆,σ−

1 (ϱ)− V µ̂,⋆,σ−

1 (ϱ)
}
≤ ε.

Due to the symmetry between max-player and min-player, we assume without loss of generality
that V ⋆,ν̂,σ+

1 (ϱ) − V ⋆,σ+

1 (ϱ) is larger than V ⋆,σ−

1 (ϱ) − V µ̂,⋆,σ−

1 (ϱ), leading to Gap(µ̂, ν̂) ≤{
V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ)
}

.

According to the relationship in Lemma 4, we obtain

V ⋆,ν̂,σ+

h (s) ≤ V̂ +
h (s) = max

µ∈∆(A)
min

ν∈∆(B)
E(a,b)∼(µ(s),ν(s))

[
Q̂+

h (s, a, b)
]

≤ max
µ∈∆(A)

E(a,b)∼(µ(s),ν⋆(s))

[
Q+

h (s, a, b)
]
, (38)

where the first equality comes from line 6 in Algorithm 2. Therefore, there exists a deterministic
policy µd : S ← ∆(A) satisfying that for any s ∈ S

µd(s) := arg max
µ∈∆(A)

E(a,b)∼(µ(s),ν⋆(s))

[
Q+

h (s, a, b)
]
. (39)

Before starting, we introduce several useful notations:

• The state-action space covered by the behavior policy (µn, νn) in the nominal transition
kernel P 0 is denoted as

Cn = {(h, s, a, b) : dnh(s, a, b) > 0} . (40)

• The set of potential state occupancy distributions w.r.t. the policy (µd(s), ν⋆(s)) in a model
within the uncertainty set P ∈ Uσ+ (

P 0
)

for any time step h ∈ [H] is denoted as

Dp
h :=

{[
d
µd(s),ν⋆(s),P
h (s)

]
s∈S

: P ∈ Uσ+ (
P 0
)}

; (41)

Dpa
h :=

{[
d
µd(s),ν⋆(s),P
h (s, a, b)

]
(s,a,b)∈S×A×B

: P ∈ Uσ+ (
P 0
)}

. (42)

• For convenience and without ambiguity, we introduce an additional notation for h ∈ [H]
as

βµd,ν⋆

h (s) = E(a,b)∼(µd(s),ν⋆(s))βh

(
s, a, b, V̂ +

h+1

)
.

In particular, the vector βµd,ν⋆

h ∈ RS is defined with its s-th item given by βµd,ν⋆

h (s).

• Similarly, we can define the notation related to rewards for h ∈ [H] as

r̂µ
d,ν⋆

h (s) = E(a,b)∼(µd(s),ν⋆(s))r̂h (s, a, b) .
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According to the update rule in line 4 in Algorithm 2 and robust Bellman equality (31), we derive

V ⋆,ν̂,σ+

h (s)− V ⋆,σ+

h (s)

≤V̂ +
h (s)− V µd,ν⋆,σ+

h (s)

≤E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1 + βµd,ν⋆

h (s)

− E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+(P 0

h,s,a,b)
PV µd,ν⋆,σ+

h+1

≤E(a,b)∼(µd(s),ν⋆(s))

[
inf

P∈Uσ+
(
P 0

h,s,a,b

)PV̂ +
h+1 − inf

P∈Uσ+(P 0
h,s,a,b)

PV µd,ν⋆,σ+

h+1

+

∣∣∣∣∣∣ inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 − inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1

∣∣∣∣∣∣
]
+ βµd,ν⋆

h (s)

(i)

≤E(a,b)∼(µd(s),ν⋆(s))

 inf
P∈Uσ+

(
P 0

h,s,a,b

)PV̂ +
h+1 − inf

P∈Uσ+(P 0
h,s,a,b)

PV µd,ν⋆,σ+

h+1

+ 2βµd,ν⋆

h (s)

(ii)

≤E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
h,s,a,b

(
V̂ +
h+1 − V µd,ν⋆,σ+

h+1

)]
+ 2βµd,ν⋆

h (s). (43)

Here, (ii) is valid under the notation

P inf,V
h,s,a,b := argmin

P∈Uσ+
(
P 0

h,s,a,b

)PV µd,ν⋆,σ+

h+1 (44)

and consequently,

inf
P∈Uσ+(P 0

h,s,a,b)
PV µd,ν⋆,σ+

h+1 = P inf,V
h,s,a,bV

µd,ν⋆,σ+

h+1 , and inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 ≤ P inf,V
h,s,a,bV̂

+
h+1.

Besides, (i) in (43) exists due to (36) in Lemma 3 for Nh(s, a, b) > 0 and∣∣∣∣∣∣ inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1 − inf
P∈Uσ+

(
P̂ 0

h,s,a,b

)PV̂ +
h+1

∣∣∣∣∣∣ ≤ H = βµd,ν⋆

h (s) (45)

for Nh(s, a, b) = 0.

For ease of proof, we introduce a notation as P̃ inf,V
h,s := E(a,b)∼(µd(s),ν⋆(s))P

inf,V
h,s,a,b. Furthermore,

we define a sequence of matrices P̃ inf,V
h ∈ RS×S . We can utilizing (43) recursively over the time

steps h, h+ 1, · · · , H and derive

V ⋆,ν̂,σ+

h (s)− V ⋆,σ+

h (s) ≤ V̂ +
h (s)− V µd,ν⋆,σ+

h (s)

≤ P̃ inf,V
h

(
V̂ +
h+1 − V µd,ν⋆,σ+

h+1

)
+ 2βµd,ν⋆

h (s)

≤ P̃ inf,V
h P̃ inf,V

h+1

(
V̂ +
h+2 − V µd,ν⋆,σ+

h+2

)
+ 2P̃ inf,V

h βµd,ν⋆

h+1 + 2βµd,ν⋆

h (s)

≤ · · · ≤ 2

H∑
i=h

i−1∏
j=h

P̃ inf,V
j

βµd,ν⋆

i , (46)

where we define
(∏i−1

j=h P̃
inf,V
j

)
= I for convenience.
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For any dµ
d,ν⋆

h ∈ Dp
h (cf. (41)), taking inner product with (46) yields〈

dµ
d,ν⋆

h , V ⋆,ν̂,σ+

h (s)− V ⋆,σ+

h (s)
〉
≤

〈
dµ

d,ν⋆

h , 2

H∑
i=h

i−1∏
j=h

P̃ inf,V
j

βµd,ν⋆

i

〉

= 2

H∑
i=h

〈
dp,µ

d,ν⋆

i , βµd,ν⋆

i

〉
, (47)

where

dp,µ
d,ν⋆

i :=

(dµd,ν⋆

h

)⊤i−1∏
j=h

P̃ inf,V
j

⊤

∈ Dp
i (48)

by the definition of Dp
i (cf. (41)) for all i = h+ 1, · · · , H .

Next, we control ⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩ utilizing concentrability. First of all, according to (20) in
Lemma 3, we demonstrate that the pessimistic penalty satisfies

βi(s, a, b, V̂ ) ≤ max


√

Cn log
KH
δ

Ni (s, a, b)
VarP̂ 0

i,s,a,b
(V̂ ),

2CnH log KH
δ

Ni (s, a, b)


≤

√
Cn log

KH
δ

Ni (s, a, b)
VarP̂ 0

i,s,a,b
(V̂ ) +

2CnH log KH
δ

Ni (s, a, b)

(i)

≤

√
Cn log

KH
δ

Ni (s, a, b)

(
2VarP 0

i,s,a,b

(
V̂
)
+

C0H2

Ni (s, a, b)
log

KH

δ

)
+

2CnH log KH
δ

Ni (s, a, b)

(ii)

≤

√
2Cn log

KH
δ

Ni (s, a, b)
VarP 0

i,s,a,b

(
V̂
)
+

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s, a, b)
(49)

where (i) holds by applying (35) for some sufficiently large C0 and (ii) exists follows from the
Cauchy-Schwarz inequality. Therefore, combining the definition of βµd,ν⋆

i (s), we obtain

⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩ =
∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

dp,µ
d,ν⋆

i (s)E(a,b)∼(µd(s),ν⋆(s))βi(s, a, b, V̂ )

=
∑

(s,a,b)∈S×A×B

dp,µ
d,ν⋆

i (s)1{a = µd(s)}ν⋆(b|s)βi(s, a, b, V̂ )

=
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ), (50)

where the last equation holds due to the definition in (7b). Then, we observe dp,µ
d,ν⋆

h (s, a, b) ∈ Dpa
h

(cf. (42)). Thereafter, we divide the bound (50) into two cases.

For the first case, i.e., s ∈ S where maxP∈Uσ+ (P 0) d
µd,ν⋆,P
i

(
s, µd(s), b

)
= 0, it follows from the

definition (cf. (41)) that for any dp,µ
d,ν⋆

i (s, µd(s), b) ∈ Dpa
i , it satisfies that

dp,µ
d,ν⋆

i (s, µd(s), b) = 0. (51)

For the second case, i.e., s ∈ S where maxP∈Uσ+ (P 0) d
µd,ν⋆,P
i

(
s, µd(s), b

)
> 0, by the assumption

in (22)

max
P∈Uσ+ (P 0)

min
{
dµ

d,ν⋆,P
i

(
s, µd(s), b

)
, 1
S(A+B)

}
dni
(
s, µd(s), b

) ≤ C⋆
r <∞.
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It implies that

dni
(
s, µd(s), b

)
> 0 and

(
i, s, µd(s), b

)
∈ Cn. (52)

Lemma 1 tells that with probability at least 1− 8δ,

Ni

(
s, µd(s), b

)
≥

Kdni
(
s, µd(s), b

)
8

− 5

√
Kdni

(
s, µd(s), b

)
log

KH

δ
(i)

≥
Kdni

(
s, µd(s), b

)
16

(ii)

≥
KmaxP∈Uσ(P 0) min

{
dµ

d,ν⋆,P
i

(
s, µd(s), b

)
, 1
S(A+B)

}
16C⋆

r

≥
Kmin

{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
16C⋆

r

, (53)

where (ii) comes from Assumption 1 and (i) holds due to

Kdni
(
s, µd(s), b

)
≥ c0

HS(A+B)

dnm
log

KH

δ
f(σ+, σ−, H)dni

(
s, µd(s), b

)
≥ c0HS(A+B) log

KH

δ
f(σ+, σ−, H) ≥ 1600 log

KH

δ
, (54)

where f(σ+, σ−, H) = min
{

Hσ++1−(1−σ+)H

(σ+)2 , Hσ−+1−(1−σ−)H

(σ−)2 , H
}

, the first inequality follows
from condition (24), and the second inequality follows from

dnm = min
h,s,µd(s),b

{
dnh(s, µ

d(s), b) : dnh(s, µ
d(s), b) > 0

}
≤ dni

(
s, µd(s), b

)
. (55)

Combining the results in (49) and (50), we arrive at

⟨dp,µ
d,ν⋆

i , βµd,ν⋆

i ⟩

=
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

≤
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√
2Cn log

KH
δ

Ni (s, µd(s), b)
VarP 0

i,s,µd(s),b

(
V̂
)

+
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s, µd(s), b)

(i)

≤
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√√√√ 32C⋆
r Cn log

KH
δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}VarP 0

i,s,µd(s),b

(
V̂
)

︸ ︷︷ ︸
B1

+
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)
16C⋆

r

(
2Cn +

√
CnC0

)
H log KH

δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
︸ ︷︷ ︸

B2

. (56)

Therefore, according to (47), we just need to bound
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1 and∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2, which is introduced as follows.
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Part 1: Bounding
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1 Combining the result in (54) with∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B1 yields

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)B1

=

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√√√√ 32C⋆
r Cn log

KH
δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}VarP 0

i,s,µd(s),b

(
V̂
)

≤
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)×

max

{√
32C⋆

r Cn log
KH
δ

Kdp,µ
d,ν⋆

i (s, µd(s), b)
VarP 0

i,s,µd(s),b

(
V̂
)
,

√
32C⋆

r CnS(A+B) log KH
δ

K
VarP 0

i,s,µd(s),b

(
V̂
)}

≤
H∑
i=1

∑
(s,b)∈S×B

√
32C⋆

r Cn log
KH
δ

K
dp,µ

d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)

+

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

√
32C⋆

r CnS(A+B) log KH
δ

K
VarP 0

i,s,µd(s),b

(
V̂
)

≤

√
32C⋆

r CnS(A+B) log KH
δ

K

(√√√√H

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)

+

√√√√ H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)
×

√√√√ H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

)

=

√√√√128C⋆
r CnHS(A+B) log KH

δ

K

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)
, (57)

where the last inequality follows from the Cauchy-Schwarz inequality. Then, we introduce the
following lemma about

∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)VarP
i,s,µd(s),b

(
V̂
)
, whose proof is

postponed to Appendix C.6.

Lemma 6 Considering ∀δ ∈ (0, 1), with probability at least 1− δ, one has: for any product policy
(µ̂, ν̂),

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0
i,s,a,b

(
V̂i+1

)
≤ Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

×

4

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ) + (H + 3)

 . (58)
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Armed with Lemma 6, (57) can be further bounded as

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)B1

≤

√
128C⋆

r CnHS(A+B) log KH
δ

K

√
Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

×

√√√√√
4

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µd(s), b, V̂ ) + (H + 3)

. (59)

Part 2: Bounding
∑H

i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2 Combining the result in (53) with∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)B2 yields

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)B2

=

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)
16C⋆

r

(
2Cn +

√
CnC3

)
H log KH

δ

Kmin
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
(i)

≤
32C⋆

r

(
2Cn +

√
CnC3

)
H2S(A+B) log KH

δ

K
, (60)

where the inequality holds by the trivial fact

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

min
{
dp,µ

d,ν⋆

i (s, µd(s), b), 1
S(A+B)

}
≤

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)

(
1

dp,µ
d,ν⋆

i (s, µd(s), b)
+

1

1/S(A+B)

)

=
∑

(s,b)∈S×B

1 + S(A+B)
∑

(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b) ≤ 2S(A+B). (61)

Putting all together Combining the results (59) and (60) in Part 1 and Part 2, we obtain

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

≤

√
128C⋆

r CnH2S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

×

√√√√√
4

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µd(s), b, V̂ ) + (H + 3)


+

32C⋆
r

(
2Cn +

√
CnC3

)
H2S(A+B) log KH

δ

K
, (62)
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which can further bound as
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

≤

√
128C⋆

r CnH2(H + 3)S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

+
32C⋆

r

(
2Cn +

√
CnC3

)
H2S(A+B) log KH

δ

K
+

√
512C⋆

r CnH2S(A+B) log KH
δ

K

×

√√√√min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

} H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µd(s), b, V̂ )

≤

√
128C⋆

r CnH2(H + 3)S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
+

32C⋆
r

(
2Cn +

√
CnC3

)
H2S(A+B) log KH

δ

K

+
256C⋆

r CnH
2S(A+B) log KH

δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
+

1

2

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ), (63)

where the last relation follows from the AM-GM inequality. Rearranging terms, it follows that
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

≤

√
512C⋆

r CnH2(H + 3)S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
+

64C⋆
r

(
2Cn +

√
CnC3

)
H2S(A+B) log KH

δ

K

+
512C⋆

r CnH
2S(A+B) log KH

δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

≤

√
512C⋆

r CnH2(H + 3)S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
+

C⋆
r C2H

2S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
. (64)

Along with the above result, we are ready to bound V ⋆,σ+

1 (ϱ) − V µ̂,⋆,σ+

1 (ϱ). There exists some
sufficiently large constants C1, C2, C3 > 0, and

V ⋆,ν̂,σ+

1 (ϱ)− V ⋆,σ+

1 (ϱ) ≤

√
C⋆

r C1H3S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
+

C⋆
r C2H

2S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}

≤

√
C⋆

r C3H3S(A+B) log KH
δ

K
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
,

(65)
where the last inequality follows from condition (24).
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B.3 STEP 3: SUMMING UP THE RESULTS

Consequently, we obtain the upper bound of V ⋆,ν̂,σ+

1 (ϱ)− V µ̂,ν̂,σ+

1 (ϱ) in (65). Similarly,

V ⋆,σ−

1 (ϱ)− V µ̂,⋆,σ−

1 (ϱ)

≤

√
C⋆

r C3H2S(A+B) log KH
δ

K
min

{
(H + 1)(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
, (66)

which directly leads to

Gap(µ̂, ν̂) ≤ c1

√
C⋆

r H
2S(A+B) log KH

δ

K

×

√
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
,
2(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
, (67)

for some sufficiently large c1 and

K ≥ HS(A+B) log
KH

δ
min

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
,
2(Hσ− − 1 + (1− σ−)H)

(σ−)2
, H

}
.

Discussion of (67). For the term T = min (f(σ+, σ−), H), considering the symmetry between
σ+ and σ−, we define g(σ+, H) = Hσ+ − H(1 − σ+)H − (σ+)2H . For H ≥ 2, we derive the
first derivative as ∂g(σ+,H)

∂σ+ = H + H2(1 − σ+)H−1 − 2Hσ+. Further, the second derivative is

given by ∂2g(σ+,H)
∂(σ+)2 = −H2(H − 1)(1− σ+)H−2 − 2H < 0, indicating that g(σ+, H) is concave.

By evaluating the first derivative at the boundaries, we find ∂g(σ+,H)
∂σ+ |σ+→0 → H2 + H > 0

and ∂g(σ+,H)
∂σ+ |σ+=1 = −H < 0, which shows that g(σ+, H) first increases monotonically,

reaches a maximum at some point σ⋆, and then decreases monotonically. Furthermore, since
g(σ+ → 0, H) → −H < 0 and g(σ+ = 1, H) = 0, there exists 0 < σ0 < 1 such
that g(σ0, H) = 0. Thus, when σ0 ≲ min{σ+, σ−} ≲ 1, we have T = H . Otherwise,
T = min

{
(Hσ+−1+(1−σ+)H)

(σ+)2 , (Hσ−−1+(1−σ−)H)
(σ−)2

}
.

C AUXILIARY LEMMAS FOR THEOREM 1

C.1 PROOF OF LEMMA 1

In this part, we prove Lemma 1 produced in Algorithm 1.

Before next proof, we clarify the independent property. Let us examine two distinct data-generation
mechanisms, where a sample transition quadruple (s, a, b, h, s′) represents a transition from state s
with actions (a, b) to state s′ at step h.

Step 1: Augmenting Dt to Create Dt,a. To construct the augmented dataset Dt,a, for each
(s, h) ∈ S × [H], we proceed as follows: (i). Include in Dt,a all N t

h(s) sample transitions in
Dt originating from state s at step h. (ii). If N t

h(s) > Nm
h (s), supplement Dt,a with an additional

N t
h(s)−Nm

h (s) independent sample transitions
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)}
, generated as follows:

a
(i)
h,s

i.i.d.∼ µb
h(·|s), b

(i)
h,s

i.i.d.∼ νbh(·|s), s
′ (i)
h,s

i.i.d.∼ Ph

(
· |s, a(i)h,s, b

(i)
h,s

)
, Nm

h (s) < i ≤ N t
h(s).

Step 2: Constructing Diid. For each (s, h) ∈ S × [H], generate N t
h(s) independent sample

transitions
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)}
as follows:

a
(i)
h,s

i.i.d.∼ µb
h(·|s), b

(i)
h,s

i.i.d.∼ νbh(·|s), s
′ (i)
h,s

i.i.d.∼ Ph

(
· |s, a, b

)
, 1 ≤ i ≤ N t

h(s).

The resulting dataset is defined as:

Diid :=
{(

s, a
(i)
h,s, b

(i)
h,s, h, s

′ (i)
h,s

)
| s ∈ S, 1 ≤ h ≤ H, 1 ≤ i ≤ N t

h(s)
}
.
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Establishing independent property. The dataset Dt,a deviates from Dt only when N t
h(s) >

Nm
h (s) holds. This augmentation ensures that Dt,a contains precisely N t

h(s) sample transitions
from state s at step h. Both Dt,a and Diid comprise exactly N t

h(s) sample transitions from state
s at step h, with {N t

h(s)} being statistically independent of the randomness in sample generation.
Consequently, given {N t

h(s)}, the sample transitions in Dt,a across different steps are statistically
independent. As a result, both Dt and Diid can be regarded as collections of independent samples.

Next, we begin to prove N t
h(s) ≤ Nm

h (s). Since Da is generated by half of the sample trajectories
in line 2 in Algorithm 1, there is

N a
h(s) =

K∑
k=K/2+1

1
{
skh = s

}
for each s ∈ S and 1 ≤ h ≤ H . Thus, we can view N a

h(s) as the sum of K/2 independent Bernoulli
random variables with mean dµ

n,νn

h (s). According to the Bernstein inequality and the union bound,
we derive

P
{
∃(s, h) ∈ S × [H] :

∣∣∣∣N a
h(s)−

K

2
dµ

n,νn

h (s)

∣∣∣∣ ≥ N0

}
≤

∑
s∈S,h∈[H]

P
{∣∣∣∣N a

h(s)−
K

2
dµ

n,νn

h (s)

∣∣∣∣ ≥ N0

}

≤2HS exp

(
− N2

0 /2

Nh,s +N0/3

)
, ∀N0 ≥ 0,

where

Nh,s :=
K

2
Var
(
1{sth = s}

)
=

Kdµ
n,νn

h (s)
(
1− dµ

n,νn

h (s)
)

2
≤

Kdµ
n,νn

h (s)

2
.

Therefore, with probability at least 1− 2δ, we yield that: ∀s ∈ S and ∀1 ≤ h ≤ H ,∣∣∣∣N a
h(s)−

K

2
dµ

n,νn

h (s)

∣∣∣∣ ≤
√

4Nh,s log
HS

δ
+

2

3
log

HS

δ
≤
√

2Kdµ
n,νn

h (s) log
HS

δ
+ log

HS

δ
.

(68)

As generated by the same way between Dm and Da, we similarly obtain that with probability
exceeding 1− 2δ, ∀s ∈ S and ∀1 ≤ h ≤ H ,∣∣∣∣Nm

h (s)− K

2
dµ

n,νn

h (s)

∣∣∣∣ ≤
√
2Kdµ

n,νn

h (s) log
HS

δ
+ log

HS

δ
. (69)

Combining (68) and (69), there is

|Nm
h (s)−N a

h(s)| ≤ 2

√
2Kdµ

n,νn

h (s) log
HS

δ
+ 2 log

HS

δ
(70)

for all s ∈ S and 1 ≤ h ≤ H .

Now, we complete the proof of N t
h(s) ≤ Nm

h (s), which can be divided into two cases.

The first case is N a
h(s) ≤ 100 log HS

δ . According to the definition in (15), we obtain

N t
h(s) = max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
= 0 ≤ Nm

h (s). (71)

The second case is N a
h(s) > 100 log HS

δ . Followed by (68), we obtain

K

2
dµ

n,νn

h (s) +

√
2Kdµ

n,νn

h (s) log
HS

δ
+ log

HS

δ
≥ N a

h(s),

leading to

Kdµ
n,νn

h (s) ≥ (9
√
2)2 log

HS

δ
≥ 100 log

HS

δ
. (72)
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Thus, we take (72) back to (68) and derive

N a
h(s) ≥

K

2
dµ

n,νn

h (s)−
√
2Kdµ

n,νn

h (s) log
HS

δ
− log

HS

δ
≥ K

4
dµ

n,νn

h (s). (73)

Consequently, in the case of N a
h(s) > 100 log HS

δ , we have

N t
h(s) = max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}

= N a
h(s)− 10

√
N a

h(s) log
HS

δ
(i)

≤ N a
h(s)− 5

√
Kdµ

n,νn

h (s) log
HS

δ

(ii)

≤ N a
h(s)−

{
2

√
2Kdµ

n,νn

h (s) log
HS

δ
+ 2 log

HS

δ

}
(iii)

≤ Nm
h (s), (74)

where (i) holds under condition (73), (ii) exists under the condition (72), and (iii) comes from the
inequality (70) with probability at least 1− 2δ.

Combining the results in (71) and (74) together, we establish N t
h(s) ≤ Nm

h (s).

Now, we claim the following bound with proof in Appendix C.2: ∀(s, a, b, h) ∈ S ×A× B × [H],
with probability exceeding 1− 2δ,

N t
h(s, a, b) ≥ N t

h(s)µ
n
h(a | s)νnh(b | s)−

√
4N t

h(s)µ
n
h(a | s)νnh(b | s) log

KH

δ
− log

KH

δ
. (75)

Armed with the fact N t
h(s) ≤ Nm

h (s) and claim (75), we start to prove (16). In the following, we
discuss two cases, i.e., Kdµ

n,νn

h (s, a, b) ≤ 1600 log KH
δ and Kdµ

n,νn

h (s, a, b) > 1600 log KH
δ .

For the first case of Kdµ
n,νn

h (s, a) ≤ 1600 log KH
δ , we can easily classified that

K

8
dµ

n,νn

h (s, a)− 5

√
Kdµ

n,νn

h (s, a) log
KH

δ
≤ 0 ≤ N t

h(s, a). (76)

For the second case of Kdµ
n,νn

h (s, a, b) = Kdµ
n,νn

h (s)µn
h(a | s)νnh(b | s) > 1600 log KH

δ , we obtain

N a
h(s) ≥

K

4
dµ

n,νn

h (s) ≥ 400 log
KH

δ
, (77)

which is derived by the same line of (73) with slight modification. The property in (77) and the
definition of N t

h(s) together yield

N t
h(s) ≥ N a

h(s)− 10

√
N a

h(s) log
KH

δ

≥ K

4
dµ

n,νn

h (s)− 10

√
K

4
dµ

n,νn

h (s) log
KH

δ
≥ K

8
dµ

n,νn

h (s).

As a consequent,

N t
h(s)µ

n
h(a | s)νnh(b | s) ≥

K

8
dµ

n,νn

h (s)µn
h(a | s)νnh(b | s) (78)

=
K

8
dµ

n,νn

h (s, a, b) ≥ 200 log
KH

δ
, (79)

where the last inequality holds due to the assumption of the second case. Taking the lower bound
(78) with (75) together, there is

N t
h(s, a, b) ≥

K

8
dµ

n,νn

h (s, a, b)−
√

K

2
dµ

n,νn

h (s, a, b) log
KH

δ
− log

KH

δ

≥ K

8
dµ

n,νn

h (s, a, b)− 2

√
Kdµ

n,νn

h (s, a, b) log
KH

δ
.
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Putting the result above and (76) together, according to the claim (75), we can finally complete the
proof of Lemma 1.

C.2 PROOF OF CLAIM (75).

To prove claim (75), we analyze two cases, i.e., N t
h(s)µ

n
h(a | s)νnh(b | s) ≤ 4 log KH

δ and
N t

h(s)µ
n
h(a | s)νnh(b | s) > 4 log KH

δ .

For the first case of N t
h(s)µ

n
h(a | s)νnh(b | s) ≤ 4 log KH

δ , we conclude the right-hand side of (75) is
negative, leading to the claim (75).

For the second case of N t
h(s)µ

n
h(a | s)νnh(b | s) > 4 log KH

δ , we compose a special set Dl as

Dl :=

{
(s, a, b, h) ∈ S ×A× B × [H]

∣∣∣ N t
h(s)µ

n
h(a | s)νnh(b | s) > 4 log

KH

δ

}
. (80)

With the fact of

∑
(s,a,b,h)∈S×A×B×[H]

N t
h(s)µ

n
h(a | s)νnh(b | s) =

∑
(s,h)∈S×[H]

N t
h(s)

∑
(a,b)∈A×B

µn
h(a | s)νnh(b | s)

=
∑

(s,h)∈S×[H]

N t
h(s) ≤

∑
(s,h)∈S×[H]

N a
h(s) =

KH

2
,

the cardinality of Dl can be bounded as:

∣∣Dl
∣∣ < ∑

(s,a,b,h) N
t
h(s)µ

n
h(a | s)νnh(b | s)

4 log KH
δ

≤ KH/2. (81)

Besides, we can view N t
h(s, a) as the sum of N t

h(s) independent Bernoulli random variables with
mean µn

h(a | s)νnh(b | s), which holds due to N t
h(s) ≤ Nm

h (s) with high probability and condition
on N t

h(s), N
m
h (s). Analogous to (68) based on the condition N t

h(s) ≤ Nm
h (s), we can repeat the

Bernstein-type argument and obtain that for any fixed triple (s, a, b, h), with probability at least
1− 2δ/(KH),

N t
h(s, a, b) ≥N t

h(s)µ
n
h(a | s)νnh(b | s)

−
√
4N t

h(s)µ
n
h(a | s)νnh(b | s) log

KH

δ
− log

KH

δ
. (82)

Therefore, with probability exceeding 1−δ, (82) holds for all (s, a, b, h) ∈ Dl by utilizing the union
bound of (81) over all (s, a, b, h) ∈ Dl.

Consequently, combining the results above under two cases, we derive that the property (75) holds
for all (s, a, b, h) ∈ S ×A× B × [H] with probability at least 1− δ.

C.3 PROOF OF LEMMA 3

We prove Lemma 3 similar to the proof of claim 1 by Yan et al. (2024), which is separated into two
parts as follows.
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Part 1: proof of inequality (34). According to the definition in (18), for any fixed value vector V
independent from P̂ 0

h,s,a,b, we have∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣
=
∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
P̂ 0
h,s,a,b [V ]α − σ+

(
α−min

s′
[V ]α (s′)

)}
− max

α∈[mins V (s),maxs V (s)]

{
P 0
h,s,a,b [V ]α − σ+

(
α−min

s′
[V ]α (s′)

)} ∣∣∣
≤ max

α∈[mins V (s),maxs V (s)]

∣∣∣P̂ 0
h,s,a,b [V ]α − P 0

h,s,a,b [V ]α

∣∣∣
≤ max

α∈[0,H]

∣∣∣P̂ 0
h,s,a,b [V ]α − P 0

h,s,a,b [V ]α

∣∣∣ , (83)

where the last inequality exists due to the fact that the maximum operator is 1-Lipschitz.

According to the definition of empirical transition kernel P̂ 0
h,s,a,b, we get(

P̂ 0
h,s,a,b − P 0

h,s,a,b

)
[V ]α

=
∑
s′∈S

[V (s′)]α

[∑N
i=1 1 {hi = h, si = s, ai = a, bi = b, s′i = s′}

Nh (s, a, b)
− P 0

h (s′ | s, a, b)

]
︸ ︷︷ ︸

=:Xs′

as a sum of independent random variables. Based on the relationship between P 0
h,s,a,b and P̂ 0

h,s,a,b,
we verify E[Xs′ ] = 0 and |Xs′ | ≤ H for all s′ ∈ S . Therefore, with probability exceeding 1 − δ
and for some universal constant C4 > 0, under the Bernstein inequality (Vershynin, 2018, Theorem
2.8.4), we have

(
P̂ 0
h,s,a,b − P 0

h,s,a,b

)
[V ]α ≤ C4

√
1

Nh (s, a, b)
VarP 0

h,s,a,b
([V ]α) log

KH

δ
+

C4H log KH
δ

Nh (s, a, b)

≤ C4

√
1

Nh (s, a, b)
VarP 0

h,s,a,b
(V ) log

KH

δ
+

C4H log KH
δ

Nh (s, a, b)
, (84)

where the last inequality comes from the definition of [V ]α in (19).

Let V := V −
(
P 0
h,s,a,bV

)
1, we have

VarP 0
h,s,a,b

(V ) = P 0
h,s,a,b

(
V ◦ V

)
= P̂ 0

h,s,a,b

(
V ◦ V

)
+
(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)(
V ◦ V

)
= VarP̂ 0

h,s,a,b
(V ) +

[(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)
V
]2

+
(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)(
V ◦ V

)
,

(85)

where the last equation holds since

P̂ 0
h,s,a,b

(
V ◦ V

)
= P̂ 0

h,s,a,b

([
V −

(
P 0
h,s,a,bV

)
1
]
◦
[
V −

(
P 0
h,s,a,bV

)
1
])

= P̂ 0
h,s,a,b (V ◦ V )− 2

(
P 0
h,s,a,bV

) (
P̂ 0
h,s,a,bV

)
+
(
P 0
h,s,a,bV

)2
= P̂ 0

h,s,a,b

([
V −

(
P̂ 0
h,s,a,bV

)
1
]
◦
[
V −

(
P̂ 0
h,s,a,bV

)
1
])

+
(
P̂ 0
h,s,a,bV

)2
− 2

(
P 0
h,s,a,bV

) (
P̂ 0
h,s,a,bV

)
+
(
P 0
h,s,a,bV

)2
= VarP̂ 0

h,s,a,b
(V ) +

[(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)
V
]2
.
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Analogous to (84), with probability exceeding 1− δ, there is

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)(
V ◦ V

)∣∣ ≤ C4

√
1

Nh (s, a, b)
VarP 0

h,s,a,b

(
V ◦ V

)
log

KH

δ
+

C4H
2 log KH

δ

Nh (s, a, b)

≤ C4

√
H2

Nh (s, a, b)
VarP 0

h,s,a,b

(
V
)
log

KH

δ
+

C4H
2 log KH

δ

Nh (s, a, b)
,

(86)

where the last inequation comes from the fact that

VarP 0
h,s,a,b

(
V ◦ V

)
≤ P 0

h,s,a,b

(
V ◦ V ◦ V ◦ V

)
≤ H2P 0

h,s,a,b

(
V ◦ V

)
= H2VarP 0

h,s,a,b
(V ) .

Under the result in (86), we bound (85) further as:

VarP 0
h,s,a,b

(V ) ≤VarP̂ 0
h,s,a,b

(V ) +
[(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)
V
]2

+ C4

√
H2 log KH

δ

Nh (s, a, b)
VarP 0

h,s,a,b

(
V
)
+

C4H
2 log KH

δ

Nh (s, a, b)

≤VarP̂ 0
h,s,a,b

(V ) +
[(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)
V
]2

+
C4H

2 log KH
δ

Nh (s, a, b)

+
1

2
VarP 0

h,s,a,b
(V ) +

C2
4H

2 log KH
δ

2Nh (s, a, b)
,

where the last relation holds due to the AM-GM inequality. Therefore, we obtain

VarP 0
h,s,a,b

(V ) ≤ 2VarP̂ 0
h,s,a,b

(V ) + 2
[(
P 0
h,s,a,b− P̂ 0

h,s,a,b

)
V
]2

+

(
C2

4 + 2C4

)
H2 log KH

δ

Nh (s, a, b)
. (87)

Combining (87) and (84), we derive

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣ ≤√ 2C2

4

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V ) log

KH

δ
+

√
C2

4 (C
2
4 + 2C4)H log KH

δ

Nh (s, a, b)

+

√
2C2

4

Nh (s, a, b)
log

KH

δ

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣+ C4H log KH

δ

Nh (s, a, b)
.

(88)

In the following, we consider two cases, i.e., Nh (s, a, b) ≤ 1
8C2

4
log KH

δ and Nh (s, a, b) >
1

8C2
4
log KH

δ .

For the first case of Nh (s, a, b) ≤ 1
8C2

4
log KH

δ , (34) is valid since∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣ ≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣∣

≤ 2H = O

(
H log KH

δ

Nh (s, a, b)

)
. (89)

For the second case of Nh (s, a, b) >
1

8C2
4
log KH

δ , we observe from (88) that

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣ ≤ 1

2

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣+√ 2C2

4

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V ) log

KH

δ

+
C4 +

√
C2

4 (C
2
4 + 2C4)

Nh (s, a, b)
H log

KH

δ
.
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Rearrange terms above and yield

∣∣(P̂ 0
h,s,a,b − P 0

h,s,a,b

)
V
∣∣ ≤√ 8C2

4

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V ) log

KH

δ

+ 2H
C4 +

√
C2

4 (C
2
4 + 2C4)

Nh (s, a, b)
log

KH

δ
. (90)

Putting (83) and (90) together, we get∣∣∣∣∣ inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV − inf

P∈Uσ+ (P 0
h,s,a,b)

PV

∣∣∣∣∣ ≤
√

8C2
4

Nh (s, a, b)
VarP̂ 0

h,s,a,b
(V ) log

KH

δ

+ 2H
C4 +

√
C2

4 (C
2
4 + 2C4)

Nh (s, a, b)
log

KH

δ
. (91)

Putting the above bounds for two cases together, we conclude the proof of (34).

Part 2: proof of inequality (35). In the process of proving inequality (35), we just divide the
problem into two cases, i.e., Nh (s, a, b) < 16C2

4 log
KH
δ and Nh (s, a, b) ≥ 16C2

4 log
KH
δ .

For the first case of Nh (s, a, b) < 16C2
4 log

KH
δ , the result (35) is valid since

VarP̂ 0
h,s,a,b

(V ) ≤ H2 = O

(
H2 log KH

δ

Nh (s, a, b)

)
.

For the second case of Nh (s, a, b) ≥ 16C2
4 log

KH
δ , there is

VarP̂ 0
h,s,a,b

(V )
(i)
= VarP 0

h,s,a,b
(V )−

[(
P 0
h,s,a,b − P̂ 0

h,s,a,b

)
V
]2 − (P 0

h,s,a,b − P̂ 0
h,s,a,b

)(
V ◦ V

)
(ii)
≤ VarP 0

h,s,a,b
(V ) + C4

√
H2

Nh (s, a, b)
VarP 0

h,s,a,b

(
V
)
log

KH

δ
+

C4H
2 log KH

δ

Nh (s, a, b)

(iii)
≤ 2VarP 0

h,s,a,b
(V ) +

(
C2

4/4 + C4

)
H2 log KH

δ

Nh (s, a, b)

= 2VarP 0
h,s,a,b

(V ) +O

(
H2 log KH

δ

Nh (s, a, b)

)
,

where (i) comes from (85), (ii) holds due to (86), and (iii) exists under the AM-GM inequality.

Putting the two cases together, we complete the proof of (35). Thus, Lemma 3 is finally proven.

C.4 PROOF OF LEMMA 4

Assuming that Q̂+
h (s, a, b) ≥ Q⋆,ν̂,σ+

h (s, a, b) holds, then we can easily obtain V̂ +
h (s) ≥ V ⋆,ν,σ+

h (s),
since

V̂ +
h (s) = Ea∼µ+

h (s),b∼ν+
h (s)

[
Q̂+

h (s, a, b)
]

(i)
≥ Ea∼µ⋆(s),b∼ν̂(s)

[
Q̂+

h (s, a, b)
]
≥ Ea∼µ⋆(s),b∼ν̂(s)

[
Q⋆,ν̂,σ+

h (s, a, b)
]
= V ⋆,ν̂,σ+

h (s),

where (i) holds due to the fact that ν̂ = ν+h and (µ+
h , ν

+
h ) is the Nash equilibrium of Q̂+

h (s, a, b).

Consequently, we just need to verify

Q̂+
h (s, a, b) ≥ Q⋆,ν̂,σ+

h (s, a, b), (92)

which is obtained by induction.
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It can be easily verified that (92) holds at the base case when h = H + 1 under the trivial fact
Q̂+

H+1(s, a, b) = Q⋆,σ+

H+1(s, a, b) = 0.

Suppose that (92) holds for all (s, a, b) ∈ S ×A× B at some time step h ∈ [H] next.

According to the update rule in line 4 in Algorithm 2, (92) exists if Q̂+
h (s, a, b) = H because

Q̂+
h (s, a, b) = H ≥ Q⋆,ν̂,σ+

h (s, a, b).

Besides, in the case of Nh(s, a, b) = 0, we have βh

(
s, a, b, V̂ +

h+1

)
= H , leading to Q̂+

h (s, a, b) =

H ≥ Q⋆,ν̂,σ+

h (s, a, b). Otherwise, for Nh(s, a, b) > 0, Q̂+
h (s, a, b) is updated as

Q̂+
h (s, a, b) =r̂ (s, a, b) + inf

P∈Uσ+(P̂ 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂ +

h+1

)
≥r̂ (s, a, b) + inf

P∈Uσ+(P 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂ +

h+1

)
−

∣∣∣∣∣ inf
P∈Uσ+(P̂ 0

h,s,a,b)
PV̂ +

h+1 − inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ +

h+1

∣∣∣∣∣
≥r̂ (s, a, b) + inf

P∈Uσ+(P 0
h,s,a,b)

PV̂ +
h+1 + 0

≥r̂ (s, a, b) + inf
P∈Uσ+(P 0

h,s,a,b)
PV̂ ⋆,ν̂,σ+

h+1 + 0 = Q⋆,ν̂,σ+

h (s, a, b), (93)

where the second inequality holds due to (36) in Lemma 3 and the last equality comes from the
empirical robust Bellman equation (33).

Armed with the case of h = H + 1, we complete prove Lemma 4 by induction.

C.5 PROOF OF LEMMA 5

Following the proof by Shi et al. (2024b, Lemma 3), we bound mins∈S V̂ +
h (s) and maxs∈S V̂ +

h (s),
respectively. Specifically, we have

min
s∈S

V̂ +
h (s) = min

s∈S
E(a,b)∼µ+

h ×ν+
h

[
Q̂+

h (s, a, b)
]

= min
s∈S

E(a,b)∼µ+
h ×ν+

h

[
r̂h(s, a, b) + inf

P∈Uσ+ (P̂ 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂h+1

)]
≥ 0 + min

s∈S
V̂ +
h+1(s) + 0, (94)

where the middle equality is valid due to the update rule in line 4 in Algorithm 2. Similarly, there is

max
s∈S

V̂ +
h = max

s∈S
E(a,b)∼µ+

h ×ν+
h

[
Q̂+

h (s, a, b)
]

= max
s∈S

E(a,b)∼µ+
h ×ν+

h

[
r̂h(s, a, b) + inf

P∈Uσ+ (P̂ 0
h,s,a,b)

PV̂ +
h+1 + βh

(
s, a, b, V̂h+1

)]
≤ 1 + max

(s,a,b)∈S×A×B
inf

P∈Uσ+ (P̂h,s,a,b)
PV̂ +

h+1 +H. (95)

In order to prove Lemma 5, we here introduce several useful notations. For any h ∈ [H], there exists
at least one state s⋆h that satisfies V̂ +

h (s⋆h) = mins∈S V̂ +
h (s).

Furthermore, for any accessible uncertainty set σ+ > 0 and (s, a, b) ∈ S × A × B, we define an
auxiliary vector P̂ ′

h,s,a,b ∈ RS by reducing the values of several elements of P̂ 0
h,s,a,b strictly, namely,

0 ≤ P̂ ′
h,s,a,b ≤ P̂ 0

h,s,a,b and
∑
s′∈S

P̂ 0
h,s,a,b(s

′)− P̂ ′
h,s,a,b(s

′) =
∥∥∥P̂ ′

h,s,a,b − P̂ 0
h,s,a,b

∥∥∥
1
= σ+.

(96)
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We use ls⋆h to represent a S-dimensional standard basis under s⋆h, we can derive that

1

2

∥∥∥P̂ ′
h,s,a,b + σ+

[
ls⋆h
]⊤ − P̂ 0

h,s,a,b

∥∥∥
1
≤ 1

2

∥∥∥P̂ ′
h,s,a,b − P̂ 0

h,s,a,b

∥∥∥
1
+

1

2

∥∥∥σ+
[
ls⋆h
]⊤∥∥∥

1
≤ σ+, (97)

where the first inequality is valid since the ‘distance’ function (e.g., TV distance) satisfies the triangle
inequality.

Therefore, we can conclude that P̂ ′
h,s,a,b + σ+

[
ls⋆h
]⊤ ∈ Uσ+

(P̂ 0
h,s,a,b) and P̂ ′

h,s,a,b + σ+
[
ls⋆h
]⊤

is a
distribution vector based on (97), leading to

inf
P∈Uσ+ (P̂ 0

h,s,a,b)
PV̂ +

h+1 ≤
(
P̂ ′
h,s,a,b + σ+

[
ls⋆i,h

]⊤)
V̂ +
h+1

≤
∥∥P̂ ′

h,s,a,b

∥∥
1

∥∥V̂ +
h+1

∥∥
∞ + σ+V̂ +

h+1(s
⋆
h+1)

≤
(
1− σ+

)
max
s∈S

V̂ +
h+1(s) + σ+ min

s∈S
V̂ +
h+1(s), (98)

where the last inequality holds since∥∥P ′
h,s,a,b

∥∥
1
=
∑
s′

P ′
h,s,a,b(s

′) = −
∑
s′

(
P 0
h,s,a,b(s

′)− P ′
h,s,a,b(s

′)
)
+
∑
s′

P 0
h,s,a,b(s

′) = 1− σ+.

(99)

Putting (98) and (95) together shows

max
s∈S

V̂ +
h (s) ≤ 1 + max

(s,a,b)∈S×A×B
inf

P∈Uσ+ (P 0
h,s,a,b)

PV̂ +
h+1 +H

≤ H + 1 +
(
1− σ+

)
max
s∈S

V̂ +
h+1(s) + σ+ min

s∈S
V̂ +
h+1(s). (100)

Taking the result (100) with (94), we obtain

max
s∈S

V̂ +
h −min

s∈S
V̂ +
h

≤H + 1 +
(
1− σ+

)
max
s∈S

V̂ +
h+1(s) + σ+ min

s∈S
V̂ +
h+1(s)−min

s∈S
V +
h+1(s)

=H + 1 + (1− σ+)

(
max
s∈S

V̂ +
h+1(s)−min

s∈S
V̂ +
h+1(s)

)
≤H + 1 + (1− σ+)

[
H + 1 + (1− σ+)

(
max
s∈S

V̂ +
h+2(s)−min

s∈S
V̂ +
h+2(s)

)]
≤ · · · ≤

(H + 1)
(
1− (1− σ+)H−h

)
σ+

. (101)

Combining this result with maxs∈S V̂ +
h (s)−mins∈S V̂ +

h (s) ≤ H , we complete the proof.

C.6 PROOF OF LEMMA 6

First of all, we introduce some auxiliary values and reward functions to control∑H
i=1

∑
(s,b)∈S×B dp,µ

d,ν⋆

i (s, µd(s), b)VarP 0

i,s,µd(s),b

(
V̂
)

as below: for any time step i

• V̂ m
i := mins∈S V̂ +

i (s): the minimum value of all the entries in vector V̂ +
i .

• V̂ ′
i := V̂ +

i − V̂ m
i 1: truncated value function.

• r̂µ
d,ν⋆

i (s) = E(a,b)∼(µd(s),ν⋆(s))r̂i(s, a, b): average reward function.

• r̂mi = rµ
d,ν⋆

i +
(
V̂ m
i+1 − V̂ m

i

)
1: truncated reward function.
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Then applying the robust Bellman’s consistency equation in (33) gives

V̂ ′
i = V̂ +

i − V̂ m
i 1

(i)
≤ r̂µ

d,ν⋆

i + P̃ inf,V̂
i V̂ +

i+1 + 2βµd,ν⋆

i − V̂ m
i 1

= r̂µ
d,ν⋆

i + P̃ inf,V̂
i V̂ +

i+1 +
(
V̂ m
i+11− V̂ m

i 1
)
− V̂ m

i+11 + 2βµd,ν⋆

i

= r̂mi + P̃ inf,V̂
i V̂ +

i+1 − V̂ m
i+11 + 2βµd,ν⋆

i

= r̂mi + P̃ inf,V̂
i V̂ ′

i+1 + 2βµd,ν⋆

i , (102)

where (i) follows from the fact that

V̂ +
i (s) ≤r̂µ

d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s)) inf
P∈Uσ+

(
P̂ 0

i,s,a,b

)PV̂ +
i+1 + βµd,ν⋆

i (s)

(i)

≤r̂µ
d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s))

[
inf

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1

+

∣∣∣∣∣∣ inf
P∈Uσ+

(
P̂ 0

i,s,a,b

)PV̂ +
i+1 − inf

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1

∣∣∣∣∣∣
]
+ βµd,ν⋆

i (s)

(ii)

≤ r̂µ
d,ν⋆

i (s) + E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V̂
i,s,a,bV̂

+
i+1

]
+ 2βµd,ν⋆

i (s)

(iii)
= r̂µ

d,ν⋆

i (s) + P̃ inf,V̂
i,s V̂ +

i+1 + 2βµd,ν⋆

i (s). (103)

Here, (ii) is valid under the notation

P inf,V̂
i,s,a,b := argmin

P∈Uσ+
(
P 0

i,s,a,b

)PV̂ +
i+1 (104)

and (iii) holds under the notation as P̃ inf,V̂
i,s := E(a,b)∼(µd(s),ν⋆(s))P

inf,V̂
i,s,a,b and the sequence as

P̃ inf,V
i ∈ RS×S Besides, (i) in (103) exists due to (36) in Lemma 3 for Ni(s, a, b) > 0 and∣∣∣∣∣∣ inf

P∈Uσ+(P 0
i,s,a,b)

PV̂ +
i+1 − inf

P∈Uσ+
(
P̂ 0

i,s,a,b

)PV̂ +
i+1

∣∣∣∣∣∣ ≤ H = βµd,ν⋆

i (s) (105)

for Ni(s, a, b) = 0.

The above fact leads to

E(a,b)∼(µd(s),ν⋆(s))VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
(i)
=E(a,b)∼(µd(s),ν⋆(s))VarP inf,V

i,s,a,b

(
V̂ ′
i+1

)
=E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
i,s,a,b

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P inf,V
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V
i,s,a,bV̂

′
i+1

)]
≤E(a,b)∼(µd(s),ν⋆(s))

[
P inf,V
i,s,a,b

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P inf,V̂
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
(ii)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
−
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
◦
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
=P̃ inf,V

i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) + V̂ ′

i (s) ◦ V̂ ′
i (s)−

(
P̃ inf,V̂
i,s V̂ ′

i+1

)
◦
(
P̃ inf,V̂
i,s V̂ ′

i+1

)
=P̃ inf,V

i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(
V̂ ′
i (s)−

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
◦
(
V̂ ′
i (s) +

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
(iii)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(
r̂mi (s) + 2βµd,ν⋆

h (s)
)
◦
(
V̂ ′
i (s) +

(
P̃ inf,V̂
i,s V̂ ′

i+1

))
(iv)

≤ P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)(
2βµd,ν⋆

i (s) + 1
)
, (106)
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where (i) follows from the fact that VarP inf,V
i,s

(V −b1) = VarP inf,V
i,s

(V ) for any value vector V ∈ RS

and scalar b, (ii) holds with the fact

E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)
◦
(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
≥E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
◦ E(a,b)∼(µd(s),ν⋆(s))

[(
P inf,V̂
i,s,a,bV̂

′
i+1

)]
,

(iv) arises from r̂mi ≤ ri ≤ 1 due to V̂ m
i+1 − V̂ m

i ≤ 0 by definition, and (iii) comes from (102).

Consequently, combining (48), we arrive at

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
=
∑
s∈S

dp,µ
d,ν⋆

i (s)E(a,b)∼(µd(s),ν⋆(s))VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
≤
∑
s∈S

dp,µ
d,ν⋆

i (s)
(
P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s) +

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)(
2βµd,ν⋆

i (s) + 1
))

≤
∑
s∈S

dp,µ
d,ν⋆

i (s)
(
P̃ inf,V
i,s

(
V̂ ′
i+1 ◦ V̂ ′

i+1

)
− V̂ ′

i (s) ◦ V̂ ′
i (s)

)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

(
dp,µ

d,ν⋆

i+1 (s)
(
V̂ ′
i+1(s)◦V̂ ′

i+1(s)
)
−dp,µ

d,ν⋆

i (s)V̂ ′
i (s) ◦ V̂ ′

i (s)
)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s)

=
∑
s∈S

(
dp,µ

d,ν⋆

i+1 (s)
(
V̂ ′
i+1(s)◦V̂ ′

i+1(s)
)
−dp,µ

d,ν⋆

i (s)V̂ ′
i (s) ◦ V̂ ′

i (s)
)
+
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+ 2

(∥∥∥V̂ ′
i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

) ∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ ). (107)

Besides, under TV distance, we have

∣∣∣VarP 0
i,s,a,b

(
V̂ +
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ +
i+1

)∣∣∣ = ∣∣∣VarP 0
i,s,a,b

(
V̂ ′
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ ′
i+1

)∣∣∣
≤
∥∥∥P 0

i,s,a,b − P inf,V
i,s,a,b

∥∥∥
1

∥∥∥V̂ ′
i+1

∥∥∥2
∞

≤σ+
∥∥∥V̂ ′

i+1

∥∥∥2
∞
≤ (H + 1)

∥∥∥V̂ ′
i+1

∥∥∥
∞

, (108)

where the last inequality comes from Lemma 5.
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Therefore, we derive
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP 0
i,s,a,b

(
V̂ +
i+1

)
≤

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)VarP inf,V
i,s,a,b

(
V̂ +
i+1

)
+

H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)
∣∣∣VarP 0

i,s,a,b

(
V̂ +
i+1

)
− VarP inf,V

i,s,a,b

(
V̂ +
i+1

)∣∣∣
≤

H∑
i=1

2
(∥∥∥V̂ ′

i

∥∥∥
∞

+
∥∥∥V̂ ′

i+1

∥∥∥
∞

)∑
s∈S

dp,µ
d,ν⋆

i (s)βµd,ν⋆

i (s) +

H∑
i=1

(∥∥∥V̂ ′
i

∥∥∥
∞

+ (H + 2)
∥∥∥V̂ ′

i+1

∥∥∥
∞

)
+
∑
s∈S

dp,µ
d,ν⋆

H+1 (s)V̂ ′
H+1(s) ◦ V̂ ′

H+1(s)

≤4
H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

} ∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
(i)
≤4

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)

H∑
i=1

min

{
(H + 1)

(
1− (1− σ+)H−i

)
σ+

, H

}
(ii)
≤4Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

} H∑
i=1

∑
(s,b)∈S×B

dp,µ
d,ν⋆

i (s, µd(s), b)βi(s, µ
d(s), b, V̂ )

+ (H + 3)Hmin

{
2(Hσ+ − 1 + (1− σ+)H)

(σ+)2
, H

}
, (109)

where (i) comes from Cauchy-Schwarz inequality and the (ii) holds since
H∑
i=1

(H + 1)
(
1− (1− σ+)H−i

)
σ+

=
H(H + 1)

σ+
−

H−1∑
i=0

(H + 1)(1− σ+)i

σ+

=
H(H + 1)

σ+
− (H + 1)(1− (1− σ+)H)

(σ+)2

=
(H + 1)(Hσ+ − 1 + (1− σ+)H)

(σ+)2

≤2H(Hσ+ − 1 + (1− σ+)H)

(σ+)2
.

D PROOF OF THEOREM 2

In this section, we focus on a simpler class of RTZMGs: robust Markov decision processes (MDPs),
which are single-agent versions of RTZMGs.

Before proceeding, we briefly define a Robust MDP (RMDP) in the finite-horizon episodic
setting. Recall that an RTZMG with an uncertainty set is represented as MG =

{S,A,B,Uσ+

(P 0),Uσ−
(P 0), r,H}. For simplicity, we assume A ≥ B, and set |B| = 1,

meaning the min-player’s actions do not affect transitions or rewards. Thus, finding a robust NE
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in such RTZMGs reduces to finding the max-player’s optimal policy in a corresponding RMDP
Mr = {S,A,Uσ+

(P 0), r,H}.
Thus, in this section, we construct the lower bound for finding the optimal policy in RTZMGs, which
also implies a lower bound for finding robust NE in RTZMGs. We first highlight a useful property
about KL divergence from Tsybakov (2008, Lemma 2.7), which can be helpful in this section.

Lemma 7 For any p, q ∈ (0, 1), it holds that

KL(p ∥ q) ≤ (p− q)2

q(1− q)
. (110)

D.1 STEP 1: CONSTRUCTING A FAMILY OF HARD MARKOV GAME INSTANCES

The hard instances developed here differ from standard MDP since we need to consider that the
transition kernel can be perturbed in robust MDPs.

Constructing hard robust MDP instances. To begin with, we first introduce an auxiliary
collection Φ ⊆ {0, 1}H , consisting of H-dimensional vectors. In addition, resorting to the Gilbert-
Varshamov lemma (Gilbert, 1952), we notice that there exists a set Φ ⊆ {0, 1}H such that:

for any ϕ, ϕ̃ ∈ Φ obeying ϕ ̸= ϕ̃ : ∥ϕ− ϕ̃∥1 ≥
H

8
and |Φ| ≥ eH/8. (111)

With this in mind, we construct a set of RMDPs as below:

M(F ,Φ) :=

{
Mϕ

f =
(
S,A,Uσ+

(P f,ϕ), r,H
)
|f ∈ F = {0, 1, · · · , SA− 1},

ϕ = [ϕh]1≤h≤H ∈ Φ

}
, (112)

where

S = {0, 1, . . . , S − 1}, and A = {0, 1, · · · , A− 1},

and σ+ will be introduced momentarily.

In simple terms, the collection M(F ,Φ) consists of SA subsets, each containing |Φ| different
RMDPs associated with some f ∈ F . The state space for each RMDPMϕ

f ∈ M(F ,Φ), denoted
as Sone, includes two types of states: M = {mi | i ∈ F} and N = {ni | i ∈ F}. Each state in
M and N has two possible actions, Aone = {0, 1}. Thus, there are a total of 2SA states and 4SA
state-action pairs.

With these notations, we define the transition kernels for M(F ,Φ). For any RMDP Mϕ
f ∈

M(F ,Φ), the transition kernel P f,ϕ = {P f,ϕ
h }Hh=1 is defined as follows, for any (s, a, s′, h) ∈

Sone ×Aone × Sone × [H],

P f,ϕ
h (s′ | s, a) =

{
p1(s′ = nf ) + (1− p)1(s′ = s) if s = mf , a = ϕh

q1(s′ = nf ) + (1− q)1(s′ = s) if s = mf , a = 1− ϕh

1(s′ = s) otherwise
(113)

where p and q follow p > q ≥ 1
2 .

In addition, the reward function is defined as

∀(h, s, a) ∈ [H]× Sone ×Aone : rh(s, a) =

{
1 if s ∈ N
0 otherwise. (114)

Uncertainty set of the transition kernels. Denote the transition kernel vector as

∀(h, s, a) ∈ [H]× Sone ×Aone : P f,ϕ
h,s,a := P f,ϕ

h (· | s, a) ∈ ∆(S). (115)
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Recalling the uncertainty set defined in (1), we know that Uσ+

(P f,ϕ) represents:

Uσ+

(P f,ϕ) := ⊗ Uσ+

(P f,ϕ
h,s,a), U

σ+

(P f,ϕ
h,s,a) :=

{
P̃ f,ϕ
h,s,a ∈ ∆(S) : ρ

(
P̃ f,ϕ
h,s,a − P f,ϕ

h,s,a

)
≤ σ+

}
,

where ⊗ represents the Cartesian product over (h, s, a) ∈ [H]× Sone ×Aone.

For the convenience of the subsequent proof, we analyze the TV distance as an uncertainty set for
example, which means

Uσ+

(P f,ϕ
h,s,a) :=

{
P̃ f,ϕ
h,s,a ∈ ∆(S) : 1

2

∥∥∥P̃ f,ϕ
h,s,a − P f,ϕ

h,s,a

∥∥∥ ≤ σ+
}
. (116)

Next, we introduce useful notations and facts for this section. For any RMDPMϕ
f ∈M(F ,Φ) and

any (h, s, a, s′) ∈ [H] × Sone × Aone × Sone, we define the minimum transition probability from
(s, a) to s′, determined by any perturbed transition kernel Ph,s,a ∈ Uσ+

(P f,ϕ
h,s,a), as:

P inf,f,ϕ
h (s′ | s, a) := inf

Ph,s,a∈Uσ+ (P f,ϕ
h,s,a)

Ph(s
′ | s, a) = max{Ph(s

′ | s, a)− σ+, 0}, (117)

where the last equation follows directly from the definition of Uσ+

(·) in (116), with the remaining
probability distributed to other states.

For convenience, we also define the transition from each s ∈M to the corresponding state sm→n ∈
N for anyMϕ

f , which is crucial in our analysis: for all h ∈ [H],

for mf : pinfh := P inf,f,ϕ
h (nf |mf , ϕh) = p− σ+,

qinfh := P inf,f,ϕ
h (nf |mf , 1− ϕh) = q − σ+. (118)

Then it is obvious that

pinf1 = pinf2 = · · · pinfH , qinf1 = qinf2 = · · · qinfH , (119)

which motivates us to abbreviate them consistently as pinf := pinf1 and qinf := qinf1 later.

Robust value functions and optimal policies. We now define the robust value functions and
identify the optimal policies for RMDP instances. For any RMDPMϕ

f ∈ M(F ,Φ), let µ̃⋆,f,ϕ =

{µ⋆,f,ϕ
h }Hh=1 represent the optimal policy, given that ν is deterministic. At each step h, we use

V µ̃,σ+,f,ϕ
h and V ⋆,σ+,f,ϕ

h to denote the robust value function of any policy µ̃ and the optimal policy
µ̃⋆,f,ϕ, respectively, under uncertainty level σ+. The following lemma highlights key properties of
robust value functions and optimal policies; the proof is deferred to Appendix E.1.

Lemma 8 Consider anyMϕ
f ∈M(F ,Φ) and any policy µ̃. Defining

mµ̃,f,ϕ
h = pinf µ̃h(ϕh |mf ) + qinf µ̃h(1− ϕh |mf ), (120)

it holds that

∀h ∈ [H] : V µ̃,σ+,f,ϕ
h (mf ) = mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ),

(121a)

∀(s, h) ∈ N × [H] : V µ̃,σ+,f,ϕ
h (s) = 1 + (1− σ+)V µ̃,σ+,f,ϕ

h+1 (s) + σ+V µ̃,σ+,f,ϕ
h+1 (mf ). (121b)

In addition, for all h ∈ [H], the optimal policy and the optimal value function obey

µ̃⋆,f,ϕ
h (ϕh |mf ) = µ̃⋆,f,ϕ

h (ϕh |nf ) = 1, (122)

V ⋆,σ+,f,ϕ
h (mf ) = pinfV µ̃,σ+,f,ϕ

h+1 (nf ) + (1− pinf)V µ̃,σ+,f,ϕ
h+1 (mf ). (123)
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Construction of the history/batch dataset. In the nominal environmentMϕ,n
f , a batch dataset is

generated with K independent sample trajectories, each of length H , according to (5) and based on
the initial state distribution ϱn and behavior policy µ̃n = {µn

h}Hh=1 satisfying

ϱn(s) = ϱ(s) and µ̃n
h(a | s) =

1

2
, ∀(s, a, h) ∈ Sone ×Aone × [H]. (124)

We define the nominal transition kernels forMϕ,n
f , where any state mi ∈ M transitions only to the

corresponding ni ∈ N or remains at itself. For simplicity, for any s = mi ∈ M, we denote the
corresponding state ni ∈ N as sm→n. The basic nominal transition kernel is defined as follows for
all (h, s, a) ∈ [H]× Sone ×Aone:

P ⋆
h (s

′ | s, a) =

{
(p+∆)1(s′ = sm→n) + (1− p−∆)1(s′ = s) if s ∈M, a = ϕh

p1(s′ = sm→n) + (1− p)1(s′ = s) if s ∈M, a = 1− ϕh

1(s′ = s) if s ∈ N .
(125)

In words, the transition kernel of eachMϕ
f ∈M(F ,Φ) only differs slightly from the basic nominal

transition kernelMϕ,n
f when s = mf , which makes all the components withinM(F ,Φ) close to

each other.

Specifically, p and q are set according to

0 ≤ p ≤ p+∆ ≤ 1 and 0 ≤ q = p−∆ (126)

for some p and ∆ > 0. Without loss of generality, let the uncertainty level be σ+ ∈ (0, 1 − c0] for
some 0 < c0 < 1. Then taking c2 ≤ 1

4 and c1 := c0
2 ≤

1
4 , p and ∆ are set as

p =

{
c2
H , if σ+ ≤ c2

2H(
1 + c1

H

)
σ+ otherwise

and ∆ ≤
{

c2
2H , if σ+ ≤ c2

2H
c1
H σ+ otherwise

(127)

which establishes the fact that

p+∆ ≥ p ≥ q = p−∆ ≥ max
{ c2
2H

,σ+
}
. (128)

Combined with H ≥ 2, it is easily verified that 0 ≤ p+∆ ≤ 1 as follows:

when σ+ >
c2
2H

:
(
1 +

c1
H

)
σ+ +

c1
H

σ+ ≤ 1− c0 +
2c1
H

σ+ ≤ 1− c0(H − 1)

H
< 1,

when σ+ ≤ c2
2H

:
3c2
2H
≤ 1. (129)

In addition, let ϱ(s) represents a state distribution supported on the state subset (mf , nf ) ∈M×N :

ϱ(s) =
1

CSA
1(s = mf ) +

(
1− 1

CSA

)
1(s = nf ), (130)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the
concentrability coefficient C⋆

r (as we shall detail momentarily) and obeys

1

CSA
≤ 1

4
. (131)

As it turns out, for any MDP Mf
ϕ, the occupancy distributions of the above batch dataset are the

same (due to symmetry) and admit the following simple characterization:

∀(s, a) ∈ Sone ×Aone, dn,P
ϕ,f

1 (s, a) =
1

2
ϱ(s), (132a)

∀(s, a, h) ∈ Sone ×Aone × [H],
ϱ(s)

2
≤ dn,P

ϕ,f

h (s) ≤ 2ϱ(s),
ϱ(s)

4
≤ dn,P

ϕ,f

h (s, a) ≤ ϱ(s).

(132b)
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In addition, we choose the following initial state distribution

ϱ(s) =

{
1

CSA , if s ∈M
0, if s ∈ N .

(133)

With this choice of ϱ, the single-policy clipped concentrability coefficient C⋆
r and the quantity C are

intimately connected as follows:
C ≤ C⋆

r ≤ 2C. (134)

The proof of the claim (132) and (134) are postponed to Appendix E.2.

D.2 STEP 2: ESTABLISHING THE MINIMAX LOWER BOUND

Recall our goal: for any policy estimator µ̃ computed based on the empirical dataset, we plan to
control the quantity

max
(f,ϕ)∈F×Φ

{
V ⋆,σ+,f,ϕ
1 (ϱ)− V µ̃,σ+,f,ϕ

1 (ϱ)
}

(135)

with initial state distribution defined in (133).

Step 1: converting the goal to estimate (f, ϕ). Towards this, we make the following essential
claim which shall be verified in Appendix E.3: letting

ε ≤
{

c2
H , if σ+ ≤ c2

2H

1 otherwise
(136)

and

∆ = c5

{
ε

H2 , if σ+ ≤ c2
2H

σ+ε
H otherwise

(137)

which satisfies (127), it leads to that for any policy µ̃ obeying
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
≥ H

8
, (138)

one has

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) > ε. (139)

We are now ready to convert the task of estimating an optimal policy to estimating (f, ϕ). For this,
let Pf,ϕ represent the probability distribution when the RMDP isMϕ

f for any (f, ϕ) ∈ F×Φ. Then,
for any (f, ϕ) ∈ F × Φ, suppose that there exists a policy µ̃ achieving

Pf,ϕ

{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≤ ε
}
≥ 3

4
, (140)

which in view of (139) indicates that we necessarily have

Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (141)

Consequently, taking ϕ̃ = argminϕ∈Φ

∑H
h=1

∥∥µ̃h(· |mf ) − µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
, we are motivated to

construct the estimate of ϕ as ϕ̂ = ϕ̃. Namely, if
∑H

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 holds
for some ϕ ∈ Φ, then for any ϕ′ ∈ Φ obeying ϕ′ ̸= ϕ, one has

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1

≥
H∑

h=1

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1
−

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1

>
H

4
− H

8
=

H

8
, (142)
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where the first inequality holds by the triangle inequality, and the last inequality follows from the
assumption

∑H
h=1

∥∥µ̃h(· |mf ) − µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 and the separation property of ϕ ∈ Φ (see
(111)). Similarly, it shows that we have ϕ̂ = ϕ if

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8
<

H∑
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ′

h (· |mf )
∥∥
1

(143)

holds for all ϕ′ ∈ Φ that ϕ′ ̸= ϕ. It is clear that the above equation can be directly achieved when∑H
h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
< H

8 , which gives

Pf,ϕ

[
ϕ̂ = ϕ

]
≥ Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (144)

Step 2: developing the probability of error in testing multiple hypotheses. Next, we address
the hypothesis testing problem over ϕ ∈ Φ and derive the information-theoretic lower bound for the
probability of error. Specifically, we define the minimax probability of error as:

pe := inf
(f̂ ,ϕ̂)

max
(f,ϕ)∈F×Φ

Pf,ϕ

(
ϕ̂ ̸= ϕ

)
,

where the infimum is taken over all possible tests ϕ̂ constructed from the available batch dataset.

Given the dataset D0 with K independent trajectories, let ϱn,ϕ (and ϱn,ϕh (s, a)) represent the
distribution vector (and distribution) of each sample tuple (sh, ah, s

′
h) at time step h under the

nominal transition kernel P ⋆ for Mϕ,n
f . Using this, along with Fano’s inequality (Tsybakov,

2008, Theorem 2.2) and the additivity of KL divergence (Tsybakov, 2008, Page 85), we derive
the following result:

pe ≥ 1−K
max(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃ KL

(
ϱn,ϕ | ϱn,ϕ̃

)
+ log 2

log |Φ|
(i)

≥ 1− 8K

H
max

(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃
KL
(
ϱn,ϕ | ϱn,ϕ̃

)
− 8 log 2

H

(ii)

≥ 1

2
− 8K

H
max

(ϕ,ϕ̃)∈Φ,ϕ̸=ϕ̃
KL
(
ϱn,ϕ | ϱn,ϕ̃

)
, (145)

where (i) holds by |Φ| ≥ eH/8 and (ii) follows from H ≥ 16 log 2.

Since the occupancy state distribution dnh is the same for any MDP Mϕ
f for ϕ ∈ Φ, we apply

the chain rule of KL divergence (Duchi, 2018, Lemma 5.2.8) and the Markov property of the
independent sample trajectories to obtain:

KL
(
ϱn,ϕ | ϱn,ϕ̃

)
=

H∑
h=1

E
s∼dn

h(s)

[
KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)]

(i)
=

1

2
ϱ(mf )

H∑
h=1

∑
a∈{0,1}

[
KL
(
Pϕ
h (· |mf , a) ∥ P ϕ̃

h (· |mf , a)
)]

, (146)

where (i) follows from applying (132) and obtaining the fact as

E
s∼dn

h(s)

[
KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)]

=
∑
s

dnh(s)

∑
a,s′

µ̃n
h(a | s)P

ϕh

h (s′ | s, a) log
µ̃n
h(a | s)P

ϕh

h (s′ | s, a)

µ̃n
h(a | s)P

ϕ̃h

h (s′ | s, a)


=
1

2
ϱ(mf )

∑
a

∑
s′

Pϕh

h (s′ |mf , a) log
Pϕh

h (s′ |mf , a)

P ϕ̃h

h (s′ |mf , a)

=
1

2
ϱ(mf )

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)
.
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Consequently, combining (145) and (146) leads to

pe ≥
1

2
− 4K

H
max

(ϕ,ϕ̃)∈Φ,ϕ̸=ϕ̃

[
ϱ(mf )

H∑
h=1

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)]

. (147)

Thus, we turn to focus on terms in (147) now in different cases of the uncertainty level σ+.

• For 0 < σ+ ≤ c2
2H : If ϕh = ϕ̃h, it is obvious that∑

a∈{0,1}

KL
(
P ⋆,ϕ
h (· | s, a) ∥ P ⋆,ϕ̃

h (· | s, a)
)
= 0. (148)

Therefore, we consider the case of ϕh ̸= ϕ̃h. Without loss of generality, we suppose ϕh = 0

and ϕ̃h = 1, which indicates

KL
(
P ⋆,ϕ
h (0 |mf , 0) ∥ P ⋆,ϕ̃

h (0 |mf , 0)
)
≤ (p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2ε2

H4q(1− q)
≤ 4(c5)

2ε2

c2H3
, (149)

where the first inequality exists by applying Lemma 7, (i) follows from the definitions in
(126), (ii) holds due to the definition in (137), and the last inequality arises from q =
p−∆ ≥ c2

2H (see (127)) and 1− q ≥ 1− p ≥ 1− c2
H ≥

1
2 .

Similarly, we can establish the same bound for KL
(
P ⋆,ϕ
h (0 |mf , 1) ∥ P ⋆,ϕ̃

h (0 |mf , 1)
)
.

Summing up the results with the fact in (149), we arrive at∑
a∈{0,1}

KL
(
P ⋆,ϕ
h (· |mf , a) ∥ P ⋆,ϕ̃

h (· |mf , a)
)
≤ 16(c5)

2ε2

c2H3
. (150)

• For c2
2H < σ+ ≤ 1 − c0: Following the same pipeline, it then boils down to control the

main term as below:

KL
(
P ⋆,ϕ
h (0 |mf , 0) ∥ P ⋆,ϕ̃

h (0 |mf , 0)
)
≤ (p− q)2

q(1− q)

(i)
=

∆2

q(1− q)

(ii)
=

(c5)
2σ+2

ε2

H2q(1− q)
≤ 2(c5)

2σ+ε2

c0H2
, (151)

where (i) and (ii) follow from the definitions in (126) or (137). Here, the last inequality
arises from

1− q ≥ 1− p = 1− (1 +
c1
H

)σ+
(i)

≥ c0 −
c1
H

(ii)

≥ c0
2

p ≥ q = p−∆
(iii)

≥ σ+, (152)

where (ii) holds by the definition of c1 = c0
2 , and (iii) follows from (128). Consequently,

we arrive at ∑
a∈{0,1}

KL
(
P ⋆,ϕ
h (· | , s, a) ∥ P ⋆,ϕ̃

h (· | , s, a)
)
≤ 8(c5)

2σ+ε2

c0H2
. (153)

Summing up (150) and (153), we achieve for any (ϕ, ϕ̃) ∈ Φ with ϕ ̸= ϕ̃ and any time step h ∈ [H]∑
a∈{0,1}

KL
(
P ⋆,ϕ
h (· |mf , a) ∥ P ⋆,ϕ̃

h (· |mf , a)
)
≤ 16(c5)

2ε2

c0c2H2
max{σ+, 1/H}. (154)
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Plugging (154) back to (147), under the definition in (133), we obtain

pe ≥
1

2
− 4K

H
max

(ϕ,ϕ̃)∈Φ,ϕ ̸=ϕ̃

[
ϱ(mf )

H∑
h=1

∑
a

KL
(
Pϕh

h (· |mf , a) ∥ P ϕ̃h

h (· |mf , a)
)]

≥ 1

2
− 4K

H
ϱ(mf )

H∑
h=1

16(c5)
2ε2

c0c2H2
max{σ+, 1/H}

≥ 1

2
− 64K(c5)

2ε2

c0c2CSAH2
max{σ+, 1/H} ≥ 1

4
, (155)

as long as the sample size T = KH of the dataset is selected as

T ≤ c0c2CSAH3 min{1/σ+, H}
256(c5)2ε2

≤ c0c2C
⋆
r SAH3 min{1/σ+, H}

256(c5)2ε2
. (156)

Step 3: summing up the results together. We suppose that there exists an estimator µ̃ such that

max
(f,ϕ∈F)×Φ

Pf,ϕ

[{
V ⋆,σ+,f,ϕ
1 (ϱ)− V µ̃,σ+,f,ϕ

1 (ϱ)
}
≥ ε
]
<

1

4
. (157)

Then according to (135), we need

∀w ∈ F : max
ϕ∈Φ

Pf,ϕ

[{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )
}
≥ ε
]
<

1

4
. (158)

To meet (158) for any w ∈ F , we require

∀ϕ ∈ Φ : Pf,ϕ

{
V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) < ε
}
≥ 3

4
, (159)

which in view of (139) indicates that we necessarily have

∀ϕ ∈ Φ : Pf,ϕ

{
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
<

H

8

}
≥ 3

4
. (160)

As a consequence, (144) indicates

∀ϕ ∈ Φ : Pf,ϕ

[
ϕ̂ = ϕ

]
≥ 3

4
. (161)

To achieve (157), we here apply the fact in (161) to all w ∈ F , which leads to the fact that one
necessarily has

∀(f, ϕ) ∈ F × Φ : Pf,ϕ

[
(f̂ , ϕ̂) = (f, ϕ)

]
≥ 3

4
. (162)

However, this would contract with (155) as long as the sample size condition in (156) is satisfied.
Thus, if the sample size obeys the condition (156), we can’t achieve an estimate µ̃ that satisfies
(157), which completes the proof.

E AUXILIARY FACTS FOR THEOREM 2

E.1 PROOF OF LEMMA 8

Since all RMDPs inM(F ,Φ) are constructed similarly for each w ∈ F and ϕ ∈ Φ, we will focus
on a specific RMDPMϕ

f ∈M(F ,Φ), with the results applicable to all other RMDPs inM(F ,Φ).
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Part 1: ordering the robust value function over different states. Before proceeding, we
introduce several facts and notations that will be useful throughout this section. First, for anyMϕ

f

and any policy µ̃, we observe the following at the final step H + 1:

∀s ∈M∪N : V µ̃,σ+,f,ϕ
H+1 (s) = 0. (163)

Then for step H , we can easily verify that

∀s ∈ N : V µ̃,σ+,f,ϕ
H (s) = Ea∼µ̃H(· | s)

[
rH(s, a) + inf

P∈Uσ+ (P f,ϕ
H,s,a)

PV µ̃,σ+,f,ϕ
H+1

]
= 1 (164a)

∀s ∈M : V µ̃,σ+,f,ϕ
H (s) = Ea∼µ̃H(· | s)

[
rH(s, a) + inf

P∈Uσ+ (P f,ϕ
H,s,a)

PV µ̃,σ+,f,ϕ
H+1

]
= 0, (164b)

which holds by (163) and the definition of the reward function (see (114)). The above fact directly
indicates that

∀(s, s′) ∈M×N : min
s̃∈S

V µ̃,σ+,f,ϕ
H (s̃) = V µ̃,σ+,f,ϕ

H (mf ) ≤ V µ̃,σ+,f,ϕ
H (s) < V µ̃,σ+,f,ϕ

H (s′),

(165a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
H (s) = V µ̃,σ+,f,ϕ

H (s′). (165b)

Then we introduce a claim which we will prove by induction in a moment as below:

∀(h, s, s′) ∈ [H]×M×N : V µ̃,σ+,f,ϕ
h (mf ) ≤ V µ̃,σ+,f,ϕ

h (s) < V µ̃,σ+,f,ϕ
h (s′) (166a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h (s) = V µ̃,σ+,f,ϕ

h (s′). (166b)

Note that the base case when the time step is H + 1 is verified in (165). Assume that the following
fact at time step h+ 1 holds

∀(s, s′) ∈M×N : min
s̃∈S

V µ̃,σ+,f,ϕ
h+1 (s̃) = V µ̃,σ+,f,ϕ

h+1 (mf ) ≤ V µ̃,σ+,f,ϕ
h+1 (s) < V µ̃,σ+,f,ϕ

h+1 (s′),

(167a)

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h+1 (s) = V µ̃,σ+,f,ϕ

h+1 (s′). (167b)

Therefore, the rest of the proof focuses on proving the same property for time step h. For RMDP
Mϕ

f ∈ M(F ,Φ) and any policy µ̃, we characterize the robust value function of different states
separately:

• For state s ∈ N : we observe that for any s ∈ N ,

V µ̃,σ+,f,ϕ
h (s) = Ea∼µ̃h(· | s)

[
rh(s, a) + inf

P∈Uσ+ (P f,ϕ
h,s,a)

PV µ̃,σ+,f,ϕ
h+1

]
(i)
= 1 + Ea∼µ̃h(· | s)

[
P inf,f,ϕ
h (s | s, a)V µ̃,σ+,f,ϕ

h+1 (s)
]
+ σ+V µ̃,σ+,f,ϕ

h+1 (mf )

= 1 + (1− σ+)V µ̃,σ+,f,ϕ
h+1 (s) + σ+V µ̃,σ+,f,ϕ

h+1 (mf ), (168)

where (i) holds by rh(s, a) = 1 for all s ∈ N (see (114)), the fact that
mins̃∈S V µ̃,σ+,f,ϕ

h+1 (s̃) = V µ̃,σ+,f,ϕ
h+1 (mf ) induced by the induction assumption (cf. (167))

and the definition of P inf,f,ϕ
h (s | s, a) in (117), and the last equality follows from

P f,ϕ(s | s, a) = 1 for all (s, a) ∈ N × Aone. Resorting to the induction assumption in
(167), we have

∀(s, s′) ∈ N ×N : V µ̃,σ+,f,ϕ
h (s) = V µ̃,σ+,f,ϕ

h (s′). (169)
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• For state mf : first, the robust value function at state mf obeys

V µ̃,σ+,f,ϕ
h (mf )

= Ea∼µ̃h(· |mf )

rh(mf , a) + inf
P∈Uσ+ (P f,ϕ

h,mf ,a)
PV µ̃,σ+,f,ϕ

h+1


(i)
= 0 + µ̃h(ϕh |mf ) inf

P∈Uσ+ (P f,ϕ
h,mf ,ϕh

)
PV µ̃,σ+,f,ϕ

h+1

+ µ̃h(1− ϕh |mf ) inf
P∈Uσ+ (P f,ϕ

h,mf ,1−ϕh
)
PV µ̃,σ+,f,ϕ

h+1

(ii)
= µ̃h(ϕh |mf )

[
pinfV µ̃,σ+,f,ϕ

h+1 (nf ) +
(
1− pinf

)
V µ̃,σ+,f,ϕ
h+1 (mf )

]
+ µ̃h(1− ϕh |mf )

[
qinfV µ̃,σ+,f,ϕ

h+1 (nf ) +
(
1− qinf

)
V µ̃,σ+,f,ϕ
h+1 (mf )

]
(iii)
= mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ) (170)

≤ (1− σ+)V µ̃,σ+,f,ϕ
h+1 (nf ) + σ+V µ̃,σ+,f,ϕ

h+1 (mf ). (171)

where (i) uses the definition of the robust value function and the reward function in (114),
(ii) uses the induction assumption in (167) so that the minimum is attained by picking
the choice specified in (118) to absorb probability mass to state mf , and (iii) holds by
plugging in the definition (120) of mµ̃,f,ϕ

h . Finally, the last inequality follows from the

fact that function f(m) := mV µ̃,σ+,f,ϕ
h+1 (nf ) + (1 − m)V µ̃,σ+,f,ϕ

h+1 (mf ) is monotonically

increasing with m since V µ̃,σ+,f,ϕ
h+1 (nf ) > V µ̃,σ+,f,ϕ

h+1 (mf ) (see the induction assumption
(167)), and the fact mµ̃,f,ϕ

h ≤ 1− σ+.

Combining the above results with (169), we confirm the claim in (166).

Part 2: deriving the optimal policy and optimal robust value function. We shall characterize
the optimal policy and corresponding optimal robust value function for different states separately:

• For states inM: Recall (170)

V µ̃,σ+,f,ϕ
h (mf ) = mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) + (1−mµ̃,f,ϕ

h )V µ̃,σ+,f,ϕ
h+1 (mf ) (172)

and the fact V µ̃,σ+,f,ϕ
h+1 (nf ) > V µ̃,σ+,f,ϕ

h+1 (mf ) in (166). We observe that (172)
is monotonicity increasing with respect to mµ̃,f,ϕ

h , and mµ̃,f,ϕ
h is also increasing in

µ̃h(ϕh |mf ) (refer to the fact pinf ≥ qinf since p ≥ q; see (126) and (118)). Consequently,
the optimal policy and optimal robust value function in state mf thus obey

∀h ∈ [H] : µ̃⋆,f,ϕ
h (ϕh |mf ) = 1,

V ⋆,σ+,f,ϕ
h (mf ) = pinfV ⋆,σ+,f,ϕ

h+1 (nf ) +
(
1− pinf

)
V ⋆,σ+,f,ϕ
h+1 (mf ). (173)

• For states s ∈ N : Recall the transitions in (125) and (113). Considering that the action
does not influence the state transition for all states s ∈ N , without loss of generality, we
choose the robust optimal policy obeying

∀s ∈ N : µ̃⋆,f,ϕ
h (ϕh | s) = 1. (174)

E.2 PROOF OF CLAIM (132) AND (134)

Proof of the claim (132). With the initial state distribution and behavior policy defined in (124),
we have for any MDPMf

ϕ,

dn,P
ϕ,f

1 (s) = ϱn(s) = ϱ(s),
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which leads to

∀(mf , a) ∈M×Aone : dn,P
ϕ,f

1 (mf , a) =
1

2
ϱ(mf ). (175)

Along with dn,P
ϕ,f

1 (nf , a) =
1
2ϱ(nf ) = 0, the claim (132a) is proved.

In view of (125), the state occupancy distribution at any step h = 2, 3, · · · , H obeys

dn,P
ϕ,f

h (mf ) ≥ P {sh = s′ | sh−1 = mf ; µ̃
n}

≥ dn,P
ϕ,f

h−1 (mf )
[
µ̃n
h−1(ϕh−1 |mf )(1− p−∆) + µ̃n

h−1(1− ϕh−1 |mf )(1− p)
]

≥ dn,P
ϕ,f

h−1 (mf )(1− p−∆) ≥ · · · ≥ dn,P
ϕ

1 (mf )

h−1∏
j=0

(1− p−∆)

≥ dn,P
ϕ

1 (mf )
(
1− p−∆

)H
>

ϱ(mf )

2
, (176)

where the last line makes use of the properties p and ∆ in (128) and(
1− p−∆

)H
≥
(
1− c2

2H

)H
≥
(
1− 1

2H

)H
≥ 1

2
,

provided that 0 < c2 < 1. In addition, as state nf is an absorbing state and state mf will only
transfer to itself or state nf at each time step, we directly achieve that

dn,P
ϕ,f

h (mf ) ≤ dn,P
ϕ,f

h−1 (mf ) ≤ · · · ≤ dn,P
ϕ,f

1 (mf ) ≤ ϱ(mf ). (177)

For state nf , as it is absorbing, we directly have

dn,P
ϕ,f

h (nf ) = P {sh = nf | sh−1 = nf ; µ̃
n} ≥ dn,P

ϕ,f

h−1 (nf ) ≥ · · · ≥ dn,P
ϕ,f

1 (nf ) = ϱ(nf ).

(178)

According to the assumption in (131), it is easily verified that

dn,P
ϕ,f

h (nf ) ≤ 1 ≤ 2ϱ(nf ). (179)

Finally, combining (176), (177, 178), (179), the definitions of P ⋆
h (· | s, a) in (125) and the Markov

property, we arrive at for any (h, s) ∈ [H]× S ,
ϱ(s)

2
≤ dn,P

ϕ,f

h (s) ≤ 2ϱ(s), (180)

which directly leads to
ϱ(s)

4
≤ dn,P

ϕ,f

h (s, a) = µ̃n
1(a | s)d

n,Pϕ,f

h (s) ≤ ϱ(s). (181)

Proof of the claim (134). Examining the definition of C⋆
r in (22), we make the following

observations.

• For h = 1, we have

max
(s,a,P )∈Sone×Aone×Uσ(Pϕ)

min
{
d⋆,P1 (s, a), 1

4SA

}
dn,P

ϕ,f

1 (s, a)

(i)
= max

(s,P )∈M×Uσ(Pϕ)

min
{
d⋆,P1 (s, ϕ1),

1
4SA

}
dn,P

ϕ,f

1 (s, ϕ1)

(ii)
= max

(s,P )∈M×Uσ(Pϕ)

1

4SAdn,P
ϕ,f

1 (s, ϕ1)

(iii)
= max

s∈M

1

2SAϱ(s)
= C, (182)

where (i) holds by d⋆,P1 (s) = ρ(s) = 0 for all s ∈ N (see (133)) and µ̃⋆,ϕ
h (ϕh | s) = 1 for

all (s, h) ∈M× [H] (see (122)), (ii) follows from the fact d⋆,P1 (s, ϕ1) = 1 for all s ∈M,
(iii) is verified in (132), and the last equality arises from the definition in (130).
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• Similarly, for h = 2, 3, · · · , H , we arrive at

max
(s,a,P )∈Sone×Aone×Uσ(Pϕ)

min
{
d⋆,Ph (s, a), 1

4SA

}
dn,P

ϕ,f

h (s, a)

(i)
= max

(s,P )∈S×Uσ(Pϕ)

min
{
d⋆,Ph (s, ϕh),

1
4SA

}
dn,P

ϕ,f

h (s, ϕh)

≤ max
(s,P )∈M×Uσ(Pϕ)

1

4SAdn,P
ϕ,f

h (s, ϕh)

(ii)

≤ max
s∈M

1

2SAϱ(s)
= 2C, (183)

where (i) holds by the optimal policy in (122) and the trivial fact that d⋆,Ph (s) = 0 for all
s ∈ N (see (133) and (125)), (ii) arises from (132), and the last equality comes from (130).

Combining the above cases, we complete the proof by

C

2
≤ C⋆

r = max
(h,s,a,P )∈[H]×Sone×Aone×Uσ(Pϕ)

min
{
d⋆,Ph (s, a), 1

4SA

}
dn,P

ϕ,f

h (s, a)
≤ C.

E.3 PROOF OF CLAIM (139)

Recalling (121a) and (123), we first consider a more general form

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

=pinfV ⋆,σ+,f,ϕ
h+1 (nf ) + (1− pinf)V ⋆,σ+,f,ϕ

h+1 (mf )

−
(
mµ̃,f,ϕ

h V µ̃,σ+,f,ϕ
h+1 (nf ) +

[
1−mµ̃,f,ϕ

h

]
V µ̃,σ+,f,ϕ
h+1 (mf )

)
=
(
pinf −mµ̃,f,ϕ

h

)
V ⋆,σ+,f,ϕ
h+1 (nf ) +mµ̃,f,ϕ

h

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V µ̃,σ+,f,ϕ

h+1 (nf )
)

+ (1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)
−
(
pinf −mµ̃,f,ϕ

h

)
V µ̃,σ+,f,ϕ
h+1 (mf )

=mµ̃,f,ϕ
h

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V µ̃,σ+,f,ϕ

h+1 (nf )
)
+ (1− pinf)

(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
(
pinf −mµ̃,f,ϕ

h

)(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
(
pinf −mµ̃,f,ϕ

h

)(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)
, (184)

where the last inequality holds since

pinf −mµ̃,f,ϕ
h =

(
pinf − qinf

)(
1− µ̃h(ϕh |mf )

)
= (p− q)

(
1− µ̃h(ϕh |mf )

)
=

1

2
(p− q)

(
1− µ̃h(ϕh |mf ) + µ̃h(1− ϕh |mf )

)
=

1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1
, (185)

with the first equality holding by (120) and the second existing by (118).
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To further control (184),

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf )

(i)
=1 + (1− σ+)V ⋆,σ+,f,ϕ

h+1 (nf ) + σ+V ⋆,σ+,f,ϕ
h+1 (mf )

−
(
pinfV ⋆,σ+,f,ϕ

h+1 (nf ) + (1− pinf)V ⋆,σ+,f,ϕ
h+1 (mf )

)
=1 + (1− pinf − σ+)

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

(ii)
=1 + (1− p)

(
V ⋆,σ+,f,ϕ
h+1 (nf )− V ⋆,σ+,f,ϕ

h+1 (mf )
)

= · · · =
H−h∑
j=0

(1− p)j , (186)

where (i) follows from Lemma 8 and (ii) holds by (118). Then, we consider two cases w.r.t. the
uncertainty level σ+ to control (186), respectively:

• When 0 < σ+ ≤ c2
2H : Recall p = c2

H if σ+ ≤ c2
2H . In this case, applying (186), we have

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf )

=

H−h∑
j=0

(1− p)j ≥
H−h∑
j=0

(
1− c2

H

)j
=

1−
(
1− c2

H

)H−h+1

c2/H
≥ 2c2(H − h+ 1)

3
. (187)

Here, the final inequality holds by observing(
1− c2

H

)H−h+1

≤ exp

(
−c2(H − h+ 1)

H

)
≤ 1− 2c2(H − h+ 1)

3H
, (188)

where the first inequality holds by noticing c2 < 1
2 and then 1−x ≤ exp(−x), and the last

inequality holds by exp(−x) ≤ 1− 2x
3 for any 0 ≤ x ≤ 1

2 .
Plugging above fact in (187) back to (184), we arrive at

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

2c2(H − h+ 1)

3
. (189)

Then invoking the assumption
H∑

h=1

∥∥µ̃h(· |mf )− µ̃⋆,f,ϕ
h (· |mf )

∥∥
1
≥ H

8
(190)

in (138) and applying (189) recursively for h = 1, 2, · · · , H yields

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )

≥c2
3

H∑
h=1

(1− pinf)h−1(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(i)

≥ c2
3

H∑
h=1

(1− c2
H

)h−1(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(ii)

≥ c2
6

H∑
h=1

(p− q)(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(iii)
=

c2∆

6

H∑
h=1

h
∥∥µ̃⋆,f,ϕ

H−h+1(· |mf )− µ̃H−h+1(· |mf )
∥∥
1

(iv)

≥ c2∆

6

⌊H/16⌋∑
h=1

2h ≥ c2∆

6
⌊H/16⌋ (⌊H/16⌋+ 1) , (191)
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where (i) follows from 1− pinf ≥ 1− p = 1− c2
H , and (ii) holds by

∀h ∈ [H] : (1− c2
H

)h−1 ≥ (1− c2
H

)H ≥ 1

2
b (192)

as long as c2 ≤ 1
2 . Here, (iii) arises from the definition of p, q in (126); (iv) can be verified

by the fact that for any series 0 ≤ m1,m2, · · · ,mH ≤ mmax that obeys
∑H

h=1 mh ≥ y,
one has

H∑
h=1

mhh ≥
⌊mmax/n⌋∑

h=1

mmaxh, (193)

and taking mh =
∥∥µ̃H−h+1(· |mf )− µ̃⋆,f,ϕ

H−h+1(· |mf )
∥∥
1
≤ 2 = mmax and n = H

8 .
Consequently, observed from (191), the following inequality holds

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≥
c2∆

6
⌊H/16⌋ (⌊H/16⌋+ 1) ≥ c3∆H2 > ε (194)

for some small enough constant c3 and letting ∆ = ε
c3H2 .

• When c2
2H < σ+ ≤ 1− c0: Similarly, recalling p =

(
1 + c1

H

)
σ+ if σ+ > c2

2H and invoking
(186) gives

V ⋆,σ+,f,ϕ
h (nf )− V ⋆,σ+,f,ϕ

h (mf ) =

H−h∑
j=0

(1− p)j =

H−h∑
j=0

(
1−

(
1 +

c1
H

)
σ+
)j

≥
1−

(
1− (1 + c1

H )σ+
)H−h+1

(1 + c1
H )σ+

≥c2(H − h+ 1)

3σ+H
, (195)

where the final inequality holds by observing(
1−

(
1 +

c1
H

)
σ+
)H−h+1

≤ exp
(
−
(
1 +

c1
H

)
σ+(H − h+ 1)

)
(i)

≤ exp
(
− c2
2H

(
1 +

c1
H

)
(H − h+ 1)

)
≤ 1−

(
1 +

c1
H

) c2(H − h+ 1)

3H
. (196)

Here, (i) holds by observing c2
2H < σ+, and the last inequality holds by

(
1 + c1

H

)
≤ 2,

c2 ≤ 1
2 , and the fact exp(−x) ≤ 1− 2x

3 for any 0 ≤ x ≤ 1
2 .

Plugging above fact in (195) back to (184) gives

V ⋆,σ+,f,ϕ
h (mf )− V µ̃,σ+,f,ϕ

h (mf )

≥(1− pinf)
(
V ⋆,σ+,f,ϕ
h+1 (mf )− V µ̃,σ+,f,ϕ

h+1 (mf )
)

+
1

2
(p− q)

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

c2(H − h+ 1)

3σ+H
. (197)

Following the same routine to achieve (191), applying (197) recursively for h =
1, 2, · · · , H gives

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf )

≥
H∑

h=1

(1− pinf)h−1(p− q)
c2(H − h+ 1)

6σ+H

∥∥µ̃⋆,f,ϕ
h (· |mf )− µ̃h(· |mf )

∥∥
1

(i)
=
c2(p− q)

6σ+H

H∑
h=1

(1− c1
H

)h−1(H − h+ 1)
∥∥µ̃⋆,f,ϕ

h (· |mf )− µ̃h(· |mf )
∥∥
1

(ii)

≥ c2∆

12σ+H
⌊H/16⌋ (⌊H/16⌋+ 1) , (198)
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where (i) follows from 1 − pinf = 1 − (p − σ+) = 1 − c1
H σ+, and (ii) holds by letting

c1 ≤ 1
2 and following the same routine of (191).

Consequently, (198) yields

V ⋆,σ+,f,ϕ
1 (mf )− V µ̃,σ+,f,ϕ

1 (mf ) ≥
c2∆

12σ+H
⌊H/16⌋ (⌊H/16⌋+ 1) ≥ c4∆H

σ+
> ε,

(199)

which holds for some small enough constant c4 and letting ∆ = σ+ε
c4H

.

F MULTIPLAYER GENERAL-SUM MARKOV GAMES

In this section, we extend RTZ-VI-LCB to the setting of multi-player general-sum Markov games
and present the corresponding theoretical guarantees.

F.1 PROBLEM FORMULATION

A robust general-sum Markov game is a tupleM(S, {Ai}mi=1, H, {Uσi
ρ (P 0)}mi=1, {ri}mi=1) with m

players, where S denotes the state space and H is the horizon length. We have m different action
spaces, where Ai is the action space for the ith player and |Ai| = Ai. We let A = A1 × · · · × Am

denote the joint action space, and let a := (a1, · · · , am) ∈ A denote the (tuple of) joint actions
by all m players. A notable deviation from standard MGs is that: for 1 ≤ i ≤ m, instead of
assuming a fixed transition kernel, each ith player anticipates that the transition kernel is allowed to
be chosen arbitrarily from a prescribed uncertainty set Uσi

ρ (P 0). Here, the uncertainty set Uσi
ρ (P 0)

is constructed centered on P 0(·|s,a), with its size and shape defined by a certain distance metric
ρ and a radius parameter σi > 0. ri = {rh,i}h∈[H] is a collection of reward functions for the ith

player, so that rh,i(s,a) gives the reward received by the ith player if actions a are taken at state s
at step h.

The policy of the ith player is denoted as πi :=
{
πh,i : S → ∆Ai

}
h∈[H]

. We denote the product

policy of all players as π := π1 × · · · × πM , and denote the policy of all players except the ith

player as π−i. We define V π
h,i(s) as the expected cumulative reward that will be received by the

ith player if starting at state s at step h and all players follow policy π. For any strategy π−i,
there also exists a robust best response of the ith player, which is a policy µ⋆(π−i) satisfying
V

µ⋆(π−i),π−i,σi

h,i (s) = supπi
V

πi,π−i,σi

h,i (s) for any (s, h) ∈ S × [H]. For convenience, we denote

V
⋆,π−i,σi

h,i := V
µ⋆(π−i),π−i,σi

h,i . The Q-functions of the robust best response can be defined similarly.

Similar to the definition of behavior policy (µn, νn), we use the short-hand notation for the
occupancy distribution w.r.t. the behavior policy πn = (πn

i , π
n
−i) as: ∀(h, s,a) ∈ [H]× S ×A,

dn,P
0

h (s) = dπ
n,P 0

h (s) := P(sh = s | s1 ∼ ϱn, πn, P 0); (200a)

dn,P
0

h (s,a) = dπ
n,P 0

h (s,a) := P(sh = s | s1 ∼ ϱn, πn, P 0)πn(a | s). (200b)

Similarly, for any product policy π = (πi, π−i), there is, ∀(h, s,a) ∈ [H]× S ×A

d
πi,π−i,P
h (s) := P(sh = s | s1 ∼ ϱ, π, P ); (201a)

d
πi,π−i,P
h (s,a) := P(sh = s | s1 ∼ ϱ, π, P )πi,h(ai | s)π−i,h(a−i | s). (201b)

Therefore, the robust variant of standard solution concepts—robust NE for Robust multi-player
general-sum MGs is introcuded as follows: A product policy π is considered a robust NE if

∀(s) ∈ S, V π,σi

1 (s) = V
⋆,π−i,σ

+

h (s). (202)

A robust NE signifies that given the product policy (π) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Uσi

ρ (P 0) for all i = 1, 2, · · · ,m.
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Since finding exact robust equilibria can be complex and may not always be feasible, practitioners
often seek approximate equilibria. In this context, a product policy π ∈ ∆(A) can be termed an
ε-robust NE if

Gap(π) := max
{{

V
⋆,π−i,σi

i,1 (ϱ)− V π,σi

i,1 (ϱ)
}m
i=1

}
≤ ε, (203)

where

V
⋆,π−i,σi

1 (ϱ) = Es∼ϱV
⋆,π−i,σi

1 (s), and V ⋆,σi

1 (ϱ) = Es∼ϱV
⋆,σi

1 (s).

The existence of robust NE has been established for general divergence functions used in the
uncertainty set by Blanchet et al. (2024).

Learning objective With a dataset collected from the nominal environment, our objective is to find
a solution among the ε-robust NEs for the robust multi-player general-sum MGMGr with respect
to a specified uncertainty set U(P 0) around the nominal kernel, while minimizing the number of
samples required under partial coverage of the state-action space.

F.2 MULTI-RTZ-VI-LCB

Here we present the Multi-RTZ-VI-LCB algorithm in Algorithm 4, which is an extension of
Algorithm 2 for multi-player general-sum Markov games.

According to the empirical frequencies of state transitions, we can naturally construct an empirical
estimate P̂ 0 = {P̂ 0

h}Hh=1 of P 0, where

P̂ 0
h (s′ | s,a) =

{
1

Nh(s,a)

∑N
j=1 1

{(
sj ,aj , s

′
j

)
= (s,a, s′)

}
, if Nh (s,a) > 0;

1
S , if Nh (s,a) = 0,

(204)

r̂i,h (s,a) =

{
ri,h (s,a) , if Nh (s,a) > 0;

0, if Nh (s,a) = 0,
(205)

for any (i, h, s,a, s′) ∈ [m]× [H]×S ×A×B×S . Besides, Nh(s,a) represents the total number
of sample transitions from (s,a) at step h, and

Nh(s,a) :=

N∑
j=1

1
{
(sj ,aj) = (s,a)

}
. (206)

Before the details of Multi-RTZ-VI-LCB, we extend Algorithm 1 as Algorithm 3, which reduces
statistical dependencies and produces a distributionally equivalent dataset D0 with independent
samples. Similar to Lemma 1, we present the following lemma concerning the dataset D0, whose
proof is similar to the context in Appendix C.1.

Algorithm 3: Two-stage subsampling technique for Multi-RTZ-VI-LCB.
1 Input: Dataset D, probability δ.
2 Step 1: Data Partitioning. Split D into two equal-sized subsets, Dm and Da, each containing

K/2 trajectories.
3 Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions

from Dm (resp. Da) as Nm
h (s) (resp. N a

h(s)). Construct the trimmed count as:

N t
h(s) := max

{
N a

h(s)− 10

√
N a

h(s) log
HS

δ
, 0

}
.

4 Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the
form (s,a, h, s′)) from Dm uniformly. For each (s, h) ∈ S × [H], include
min{N t

h(s), N
m
h (s)} transitions in the new dataset Dt.

5 Output: Set D0 = Dt.
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Lemma 9 The dataset produced by the two-stage subsampling method is distributionally identical
to D0 with probability at least 1− 8δ, where {Nh(s,a)} are independent of the sample transitions
in D0 and obey: ∀(h, s,a) ∈ [H]× S ×A,

Nh(s,a) ≥
Kdnh(s,a)

8
− 5

√
Kdnh(s,a) log

KH

δ
. (207)

Algorithm 4: Multi-RTZ-VI-LCB.

1 Initialization: Set uncertainty levels σi for i = 1, 2, · · · ,m; set V̂ σi

i,h(s) = H and

Q̂σi

i,h(s,a) = H for all (i, s,a, h) ∈ [m]× S ×A× [H + 1].

2 Compute the empirical reward function r̂ using (13) and the empirical transition kernel P̂0

using (12).
3 for h = H,H − 1, . . . , 1 do
4 for player i = 1, 2, . . . ,m do
5 Update the robust Q-value estimate as

Q̂σi

i,h (s,a) = min

{
r̂i,h (s,a) + inf

P∈Uσi(P̂ 0
h,s,a)

PV̂ σi

i,h+1 + βi,h

(
s,a, V̂ σi

i,h+1

)
, H

}
,

with βi,h (s,a, V ) = min

{
max

{√
Cn log

KH
δ

Nh(s,a)
VarP̂ 0

h,s,a
(V ),

2CnH log KH
δ

Nh(s,a)

}
, H

}
.

6 Compute Nash policy for each s ∈ S as

πh (s) = (πi,h (s) , π−i,h (s)) = ComputNash
(
Q̂σi

i,h (s, ·)
)
,

7 Update the robust value estimate for each s ∈ S as

V̂ σi

i,h (s) = Ea∼πh(s)

[
Q̂σi

i,h (s,a)
]
.

8 Output: The product policy π̂ (s) = {πh (s)}Hh=1 with πh (s) =
∏m

i=1 πi,h (s).

Based on Algorithm 4, we propose a model-based approach for solving robust multi-player general-
sum MGs using an approximate P̂ 0 for P 0, as summarized in Algorithm 4.

Similar to (18), we can tackle the multi-player general-sum MGs problem as:

inf
P∈Uσi(P̂ 0

h,s,a)
PV̂ σi

i,h+1= max
α∈[mins V̂

σi
i,h+1,maxs V̂

σi
i,h+1]

{
P̂ 0
h,s,a

[
V̂ σi

i,h+1

]
α
−σi

(
α−min

s′

[
V̂ σi

i,h+1

]
α
(s′)
)}

.

(208)

where
[
V̂ σi

i,h+1

]
α

respectively denote the clipped versions of V̂ σi

i,h+1 ∈ RS based on some level
α ≥ 0, as follows. [

V̂ σi

i,h+1

]
α
(s) :=

{
V̂ σi

i,h+1(s), if V̂ σi

i,h+1(s) > α;

α. otherwise;
(209)

F.3 ANALYSIS OF MULTI-ME-NASH-QL

In this subsection, we prove Theorem 3, which can separated into three steps as the proof of
Theorem 1.

First of all, similar to Assumption 1, we measure the distributional discrepancy between the
historical data and the target data to assess the effectiveness of the historical dataset for achieving
the desired goal. We propose a novel assumption for robust multi-agent general-sum MGs as:
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Assumption 2 (Robust multiple clipped concentrability) The behavior policies of the historical
dataset D satisfies

max


 sup

(π−i,s,a,h,P )∈∆(A−i)×S×A×[H]×Uσi (P 0)

min
{
d
π⋆
i ,π−i,P

h (s,a), 1
S
∑m

i=1 Ai

}
dn,P

0

h (s,a)


m

i=1

 ≤ C⋆
mr

(210)

Step 1: decoupling statistical dependency Before bounding Gap(π̂), we introduce an important
lemma whose proof is similar to Lemma 3 in Appendix C.3, quantifying the difference between P̂
and P when projected in the direction of the value function.

Lemma 10 Instate the assumptions in Theorem 3. Consider any vector V ∈ RS with ∥V ∥∞ ≤ H
for all (i, h, s,a) ∈ [m] × [H] × S × A satisfying Nh (s,a) > 0. With probability at least 1 − δ,
one has∣∣∣∣∣ inf
P∈Uσi (P̂ 0

h,s,a)
PV − inf

P∈Uσi (P 0
h,s,a)

PV

∣∣∣∣∣ ≤ C4

√
1

Nh (s,a)
VarP̂ 0

h,s,a

(
V
)
log

KH

δ
+ C4

H log KH
δ

Nh (s,a)

(211)
for some sufficiently large constant C4 > 0, and

VarP̂ 0
h,s,a

(
V
)
≤ 2VarP 0

h,s,a

(
V
)
+O

(
H2

Nh (s,a)
log

KH

δ

)
. (212)

With Lemma 10, we can now have∣∣∣∣∣ inf
P∈Uσi (P̂ 0

h,s,a)
PV − inf

P∈Uσi (P 0
h,s,a)

PV

∣∣∣∣∣ ≤ βh (s,a, V ) (213)

for any (i, h, s,a) ∈ [m]× [H]× S ×A satisfying Nh(s,a) ≥ 1.

Therefore, we conclude that Q̂σi

i,h(s,a) is an optimistic estimation of Q̂π,σi

i,h (s,a) for any i =
1, 2, · · · ,m, which is summarized below, whose proof is similar to Lemma 4 in Appendix C.4.

Lemma 11 With probability exceeding 1− δ, it holds that

Q̂σi

i,h(s,a) ≥ Q
⋆,π̂−i,σi

i,h (s,a) and V̂ σi

i,h(s) ≥ V
⋆,π̂−i,σi

i,h (s). (214)

Besides, we introduce another key lemma highlighting the difference between robust multi-player
general-sum MGs and standard multi-player general-sum MGs from the same idea of Lemma 5, as
shown below.

Lemma 12 Consider any multi-player general-sum MGs MGr ={
S, {Ai}mi=1, H, {Uσi

ρ (P 0)}mi=1, {ri}mi=1

}
and the uncertainty set {Uσi

ρ (P 0)}mi=1(·) with TV
distance. The optimistic robust value function estimate V̂ σi

i,h:

∀(i, h) ∈ [m]× [H] : max
s∈S

V̂ σi

i,h −min
s∈S

V̂ σi

i,h ≤ min

{
(H + 1)

(
1− (1− σi)

H−h
)

σi
, H

}
.

Step 2: decomposing the error Gap(π̂) The goal of our algorithm is to output an ε-robust NE
policy (π̂) satisfying Gap(π̂) in (203), i.e.,

Gap(π̂) := max
{{

V
⋆,π−i,σi

i,1 (ϱ)− V π,σi

i,1 (ϱ)
}m
i=1

}
≤ ε.

According to the relationship in Lemma 11, under the definition of A−i := A1 × · · · × Ai−1 ×
Ai+1 × · · · × Am, we obtain

V
⋆,π̂−i,h,σ

+

h (s) ≤ V̂ σi

i,h(s) = max
πi∈∆(Ai)

min
π−i∈∆(A−i)

Ea∼π

[
Q̂σi

i,h(s,a)
]

≤ min
maxπ−i∈∆(A−i)

Ea∼(π⋆
i (s),π−i(s))

[
Qσi

i,h(s,a)
]
, (215)
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where the first equality comes from line 8 in Algorithm 4. Therefore, there exists a deterministic
policy πd

−i : S ← ∆(A−i) satisfying that for any s ∈ S

πd
−i(s) := arg min

π−i∈∆(Ai)
Ea∼(π⋆

i (s),π−i(s))

[
Qσi

i,h(s,a)
]
. (216)

Before starting, we introduce several useful notations:

• The state-action space covered by the behavior policy πn in the nominal transition kernel
P 0 is denoted as

Cn = {(h, s,a) : dnh(s,a) > 0} . (217)

• The set of potential state occupancy distributions w.r.t. the policy (π⋆
i (s), π

b
−i(s)) in a

model within the uncertainty set P ∈ Uσi
(
P 0
)

for any (i, h) ∈ [m]× [H] is denoted as

Dpi
i,h :=

{[
d
π⋆
i (s),π

b
−i(s),P

h (s)

]
s∈S

: P ∈ Uσi
(
P 0
)}

; (218)

Dpai
i,h :=

{[
d
π⋆
i (s),π

b
−i(s),P

h (s,a)

]
(s,a)∈S×A

: P ∈ Uσi
(
P 0
)}

. (219)

• For convenience and without ambiguity, we introduce an additional notation for (i, h) ∈
[m]× [H] as

β
π⋆
i ,π

b
−i

i,h (s) = Ea∼(π⋆
i (s),π

b
−i(s))

βi,h

(
s,a, V̂ σi

i,h+1

)
.

In particular, the vector β
π⋆
i ,π

b
−i

i,h ∈ RS is defined with its s-th item given by β
π⋆
i ,π

b
−i

i,h (s).

• Similarly, we can define the notation related to rewards for (i, h) ∈ [m]× [H] as

r̂
π⋆
i ,π

b
−i

i,h (s) = Ea∼(π⋆
i (s),π

b
−i(s))

r̂i,h (s,a) .

According to the update rule in line 4 in Algorithm 4 and robust Bellman equality similar to (31),
we derive

V
⋆,π̂−i,σ

+

i,h (s)− V π̂,σ+

i,h (s)

≤V̂ σi

i,h(s)− V
π⋆
i ,π

b
−i,σ

+

h (s)

≤Ea∼(π⋆
i (s),π

b
−i(s))

inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1 + β
π⋆
i ,π

b
−i

i,h (s)

− Ea∼(π⋆
i (s),π

b
−i(s))

inf
P∈Uσi(P 0

h,s,a)
PV

πd
i ,π−i

⋆,σ+

i,h+1

≤Ea∼(π⋆
i (s),π

b
−i(s))

[
inf

P∈Uσi

(
P 0

h,s,a

)PV̂ σi

i,h+1 − inf
P∈Uσi(P 0

h,s,a)
PV

πd
i ,π−i

⋆,σ+

i,h+1

+

∣∣∣∣∣∣ inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 − inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1

∣∣∣∣∣∣
]
+ β

π⋆
i ,π

b
−i

i,h (s)

(i)

≤Ea∼(π⋆
i (s),π

b
−i(s))

 inf
P∈Uσi

(
P 0

h,s,a

)PV̂ σi

i,h+1 − inf
P∈Uσi(P 0

h,s,a)
PV

πd
i ,π−i

⋆,σi

i,h+1

+ 2β
π⋆
i ,π

b
−i

i,h (s)

(ii)

≤Ea∼(π⋆
i (s),π

b
−i(s))

[
P inf,V
i,h,s,a

(
V̂ σi

i,h+1 − V
πd
i ,π−i

⋆,σi

i,h+1

)]
+ 2β

π⋆
i ,π

b
−i

i,h (s). (220)

Here, (ii) is valid under the notation

P inf,V
i,h,s,a := argmin

P∈Uσ+
(
P 0

h,s,a

)PV
πd
i ,π−i

⋆,σ+

i,h+1 (221)
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and consequently,

inf
P∈Uσi(P 0

h,s,a)
PV

πd
i ,π−i

⋆,σ+

i,h+1 = P inf,V
i,h,s,aV

πd
i ,π−i

⋆,σ+

i,h+1 , and inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 ≤ P inf,V
i,h,s,aV̂

σi

i,h+1.

Besides, (i) in (220) exists due to (213) in Lemma 10 for Nh(s,a) > 0 and∣∣∣∣∣∣ inf
P∈Uσi(P 0

h,s,a)
PV̂ σi

i,h+1 − inf
P∈Uσi

(
P̂ 0

h,s,a

)PV̂ σi

i,h+1

∣∣∣∣∣∣ ≤ H = β
π⋆
i ,π

b
−i

i,h (s) (222)

for Nh(s,a) = 0.

For ease of proof, we introduce a notation as P̌ inf,V
i,h,s := Ea∼(π⋆

i (s),π
b
−i(s))

P inf,V
i,h,s,a. Furthermore, we

define a sequence of matrices P̌ inf,V
i,h ∈ RS×S . We can utilizing (220) recursively over the time

steps h, h+ 1, · · · , H and derive

V
⋆,π̂−i,σi

i,h (s)− V ⋆,σi

i,h (s) ≤ V̂ σi

i,h(s)− V
πd
i ,π−i

⋆,σi

i,h (s)

≤ P̌ inf,V
i,h

(
V̂ σi

i,h+1 − V
πd
i ,π−i

⋆,σi

i,h+1

)
+ 2β

π⋆
i ,π

b
−i

i,h (s)

≤ P̌ inf,V
i,h P̌ inf,V

i,h+1

(
V̂ σi

i,h+2 − V
πd
i ,π−i

⋆,σ+

i,h+2

)
+ 2P̌ inf,V

i,h β
πd
i ,π−i

⋆

i,h+1 + 2β
π⋆
i ,π

b
−i

i,h (s)

≤ · · · ≤ 2

H∑
i′=h

i′−1∏
j=h

P̌ inf,V
i,j

β
π⋆
i ,π

b
−i

i,i′ , (223)

where we define
(∏i′−1

j=h P̌ inf,V
i,j

)
= I for convenience.

For any d
π⋆
i ,π

b
−i

h ∈ Dpi
h (cf. (41)), taking inner product with (46) yields〈

d
π⋆
i ,π

b
−i

h , V
⋆,π̂−i,σi

i,h (s)− V ⋆,σi

i,h (s)

〉
≤

〈
d
π⋆
i ,π

b
−i

h , 2

H∑
i′=h

i′−1∏
j=h

P̌ inf,V
i,j

β
π⋆
i ,π

b
−i

i,i′

〉

= 2

H∑
i′=h

〈
d
p,π⋆

i ,π
b
−i

i′ , β
π⋆
i ,π

b
−i

i,i′

〉
, (224)

where

d
p,πd

i ,π
⋆
−i

i′ :=

(dπ⋆
i ,π

b
−i

h

)⊤i′−1∏
j=h

P̌ inf,V
i,j

⊤

∈ Dpi
i′ (225)

by the definition of Dpi
i′ (cf. (218)) for all i′ = h+ 1, · · · , H .

Next, we control ⟨dp,π
⋆
i ,π

b
−i

i′ , β
π⋆
i ,π

b
−i

i,i′ ⟩ utilizing concentrability. First of all, according to the
definition of penalty, we demonstrate that the pessimistic penalty satisfies

βi,i′(s,a, V̂ ) ≤ max


√

Cn log
KH
δ

Ni (s,a)
VarP̂ 0

i,s,a
(V̂ ),

2CnH log KH
δ

Ni (s,a)


≤

√
Cn log

KH
δ

Ni (s,a)
VarP̂ 0

i,s,a
(V̂ ) +

2CnH log KH
δ

Ni (s,a)

(i)

≤

√
Cn log

KH
δ

Ni (s,a)

(
2VarP 0

i,s,a

(
V̂
)
+

C0H2

Ni (s,a)
log

KH

δ

)
+

2CnH log KH
δ

Ni (s,a)

(ii)

≤

√
2Cn log

KH
δ

Ni (s,a)
VarP 0

i,s,a

(
V̂
)
+

(
2Cn +

√
CnC0

)
H log KH

δ

Ni (s,a)
(226)
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where (i) holds by applying (212) for some sufficiently large C0 and (ii) exists follows from the

Cauchy-Schwarz inequality. Therefore, combining the definition of β
π⋆
i ,π

b
−i

i,i′ (s), we obtain

⟨dp,π
⋆
i ,π

b
−i

i′ , β
π⋆
i ,π

b
−i

i,i′ ⟩ =
∑
s∈S

d
p,π⋆

i ,π
b
−i

i′ (s)β
π⋆
i ,π

b
−i

i,i′ (s)

=
∑
s∈S

d
p,π⋆

i ,π
b
−i

i′ (s)Ea∼(π⋆
i (s),π

b
−i(s))

βi,i′(s,a, V̂ )

=
∑

(s,a)∈S×A×B

d
p,π⋆

i ,π
b
−i

i′ (s)1{ai = π⋆
i (s)}πd

−i(a−i|s)βi,i′(s,a, V̂ )

=
∑

(s,ai)∈S×A

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s))βi,i′(s, π

d
i (s),a−i, V̂ ), (227)

where the last equation holds due to the definition in (201b). Then, we observe d
p,π⋆

i ,π
b
−i

h (s,a) ∈
Dpai

h (cf. (219)). Thereafter, we divide the bound (227) into two cases.

For the first case, i.e., s ∈ S where maxP∈Uσi (P 0) d
π⋆
i ,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
= 0, it follows from

the definition (cf. (218)) that for any d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s)) ∈ D

pai
i , it satisfies that

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s)) = 0. (228)

For the second case, i.e., s ∈ S where maxP∈Uσ+ (P 0) d
π⋆
i ,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
> 0, by the

assumption in (210)

max
P∈Uσi (P 0)

min
{
d
π⋆
i ,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
, 1
S
∑

i=1 Ai

}
dni′
(
s, ai, πb

−i(s)
) ≤ C⋆

r <∞.

It implies that

dni′
(
s, ai, π

b
−i(s)

)
> 0 and

(
i′, s, ai, π

b
−i(s)

)
∈ Cn. (229)

Lemma 9 tells that with probability at least 1− 8δ,

Ni′
(
s, ai, π

b
−i(s)

)
≥

Kdni′
(
s, ai, π

b
−i(s)

)
8

− 5

√
Kdni′

(
s, ai, πb

−i(s)
)
log

KH

δ
(i)

≥
Kdni′

(
s, ai, π

b
−i(s)

)
16

(ii)

≥
KmaxP∈Uσi (P 0) min

{
d
π⋆
i ,π

b
−i,P

i′

(
s, ai, π

b
−i(s)

)
, 1
S
∑

i=1 Ai

}
16C⋆

r

≥
Kmin

{
d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s)),

1
S
∑

i=1 Ai

}
16C⋆

r

, (230)

where (ii) comes from Assumption 2 and (i) holds due to

Kdni′
(
s, ai, π

b
−i(s)

)
≥ c0

HS
∑

i=1 Ai

dnm
log

KH

δ
f({σi}mi=1, H)dni′

(
s, ai, π

b
−i(s)

)
≥ c0HS

∑
i=1

Ai log
KH

δ
f({σi}mi=1, H) ≥ 1600 log

KH

δ
, (231)

where f({σi}mi=1, H) = min
{{

(Hσi−1+(1−σi)
H)

(σi)2

}m

i=1
, H
}

, the first inequality follows from
condition (29), and the second inequality follows from

dnm = min
h,s,ai,πb

−i(s)

{
dnh(s, π

d
i (s),a−i) : d

n
h(s, π

d
i (s),a−i) > 0

}
≤ dni′

(
s, ai, π

b
−i(s)

)
. (232)
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Combining the results in (49) and (50), we arrive at

⟨dp,π
⋆
i ,π

b
−i

i′ , β
π⋆
i ,π

b
−i

i,i′ ⟩

=
∑

(s,ai)∈S×Ai

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s))βi,i′(s, ai, π

b
−i(s), V̂ )

≤
∑

(s,ai)∈S×Ai

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s))

√
2Cn log

KH
δ

Ni

(
s, ai, πb

−i(s)
)VarP 0

i,s,ai,π
b
−i

(s)

(
V̂
)

+
∑

(s,ai)∈S×Ai

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s))

(
2Cn +

√
CnC0

)
H log KH

δ

Ni

(
s, ai, πb

−i(s)
)

≤
∑

(s,ai)∈S×Ai

d
p,π⋆

i ,π
b
−i

i′ (s, ai, π
b
−i(s))

(
16C⋆

r

(
2Cn +

√
CnC0

)
H log KH

δ

Kmin
{
d
p,π⋆

i ,π
b
−i

i′ (s, ai, πb
−i(s)),

1
S
∑

i=1 Ai

}
+

√√√√ 32C⋆
r Cn log

KH
δ

Kmin
{
d
p,π⋆

i ,π
b
−i

i′ (s, ai, πb
−i(s)),

1
S
∑

i=1 Ai

}VarP 0

i,s,ai,π
b
−i

(s)

(
V̂
))

. (233)

Similar to the proof in Appendix B.2, we are ready to bound V ⋆,σi

i,1 (ϱ) − V π̂i,⋆,σi

i,1 (ϱ). There exists
some sufficiently large constants C1, C2, C3 > 0, and

V
⋆,π̂−i,σi

i,1 (ϱ)− V ⋆,σi

i,1 (ϱ) ≤

√
C⋆

r C1H3S
∑

i=1 Ai log
KH
δ

K
min

{
2(Hσi − 1 + (1− σi)H)

(σi)2
, H

}
+

C⋆
r C2H

2S
∑

i=1 Ai log
KH
δ

K
min

{
2(Hσi − 1 + (1− σi)

H)

(σi)2
, H

}

≤

√
C⋆

r C3H3S
∑

i=1 Ai log
KH
δ

K
min

{
2(Hσi − 1 + (1− σi)H)

(σi)2
, H

}
,

(234)

where the last inequality follows from condition (29).

Step 3: summing up the results Consequently, we obtain the upper bound of V ⋆,π̂−i,σi

i,1 (ϱ) −
V π̂,σi

i,1 (ϱ) in (234). which directly leads to

Gap(π̂) ≤ c1

√
C⋆

r H
2S
∑m

i=1 Ai log
KH
δ

K
min

{{
2(Hσi − 1 + (1− σi)H)

(σi)2

}m

i=1

, H

}
, (235)

for some sufficiently large c1 and

K ≥ HS
∑
i=1

Ai log
KH

δ
min

{{
2(Hσi − 1 + (1− σi)

H)

(σi)2

}m

i=1

, H

}
.
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