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ABSTRACT

Multi-agent reinforcement learning (MARL), as a thriving field, explores how
multiple agents independently make decisions in a shared dynamic environment.
Due to environmental uncertainties, policies in MARL must remain robust to
tackle the sim-to-real gap. Although robust RL has been extensively explored in
single-agent settings, it has seldom received attention in self-play, where strategic
interactions heighten uncertainties. We focus on robust two-player zero-sum
Markov games (TZMGs) in offline RL, specifically on tabular robust TZMGs
(RTZMGs) with a given uncertainty set. To address sample scarcity, we introduce
a model-based algorithm (RTZ-VI-LCB) for RTZMGs, which integrates robust
value iteration considering uncertainty level and applies a data-driven penalty to
the robust value estimates. We establish the finite-sample complexity of RTZ-VI-
LCB by accounting for distribution shifts in the historical dataset. Our algorithm
is capable of learning under partial coverage and environmental uncertainty. An
information-theoretic lower bound is developed to show that learning RTZMGs is
at least as difficult as standard TZMGs when the uncertainty level is sufficiently
small. This confirms the tightness of our algorithm’s sample complexity, which
is optimal regarding both state and action spaces. To the best of our knowledge,
our algorithm is the first to attain this optimality and establishes a new benchmark
for offline RTZMGs. We also extend our algorithm to multi-agent general-sum
Markov games, achieving a breakthrough in breaking the curse of multiagency.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), which aims to develop algorithms for multiple agents
to learn and make decisions in dynamic environments, has gained significant attention in areas
such as game playing (Silver et al.| |2017), autonomous driving (Bhalla et al.| 2020), and Path
Planning (Cao et al.| | 2020). Under the constraints on time or resources, a key challenge in applying
MARL to real-world scenarios is the restricted ability to interact or explore the environment. Offline
MARL, also named as batch MARL, addresses this issue by utilizing historical data collected from
past interactions, often generated by unknown behavior policies. Researchers hope that this data
can offer valuable insights into the optimal policy without the need for further exploration (Lambert;
et al., 2022). Beyond seeking to maximize the expected total rewards, a critical challenge lies
in addressing environmental uncertainties stemming from model mismatches, system noise, and
the gap between simulation and real-world situations. Standard MARL algorithms that train in
ideal conditions are highly sensitive and prone to catastrophic failure when faced with even small
adversarial perturbations in the deployment environment (Zhang et al.| |2020; Yeh et al.l 2021} Zeng
et al., [2022). However, historical data is often gathered under the assumption of model stability,
which is unrealistic due to the time-varying and non-stationary nature of real-world systems. Thus,
the robust guarantee is critical in offline settings, leading to the formulation of offline robust MARL.

As a specific setting of MARL, two-player zero-sum Markov games (TZMGs) are a fascinating
area of research, thus leading the field of robust TZMGs (RTZMGs) following from robust MARL.
The inherent solution concepts for RTZMGs encompass equilibria not just between the two players
but also between their adversaries, who select the worst-case environments from a predefined
uncertainty set for each player. This structure inherently offers greater robustness and stability when
facing unmodeled disruptions. Despite recent efforts (Kardes et al., [2011; Blanchet et al.| 2024;
Zhang et al.,2020; Ma et al.,[2023)), there is still a lack of fundamental understanding in learning for
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RTZMGs. For a tabular RTZMG with horizon length H, states S, actions { A, B}, and uncertainty
sizes {o+, o~} for the two players, the best sample complexity for offline setting so far is achieved
by P2M?PO (Blanchet et al.,2024) with a near-optimal sample complexity on H, S, { A, B}, where
however the influence of uncertainty levels is overlooked. Notably, historical data often only offers
partial and limited coverage of the state-action space, leading to poor estimates of model parameters
and, in turn, unreliable policy learning outcomes. We summarize previous works and present them
along with our results in Table [I] Consequently, current solutions lack an algorithm with optimal
sample complexity under partial coverage. Thus, we explore the unresolved question as follows:

Can we achieve effective sample complexity with robustness to learn Nash policy
under partial and limited coverage in TZMGs simultaneously?

Table 1: A comparison between RTZ-VI-LCB and P2M?PO (Blanchet et al., 2024) on finding
an g-optimal robust Nash policy in finite-horizon offline RTZMGs with f(oc™,07,H) =
min { (Ha+,1+(1—g+>H)7 (Hg*7(10+7()1;a*)

b H }, where the uncertainty set is quantified by total

ot)?
variation (TV() di)stance. The sample complexities omit all logarithmic factors.
Algorithm Sample complexity Uncertainty level
P2M2PO Cr}iﬁ not consider
RTZ-VI-LCB (Ours) | S5 ¢(5t o ) full range
Lower bound w min{o", 07} <%
Lower bound % min{o", 07} 2> %

1.1 CONTRIBUTION

We aim to understand and achieve effective sample complexity under partial convergence in
RTZMGs. Our contributions are outlined as follows.

* We introduce a concept to evaluate the quality of historical data, which is the robust
unilateral clipped concentrability coefficient Cf € [543y, 00). This coefficient captures

the distribution shift between the behavior policy (u",2") and the single optimal robust
policies (u,v*) and (p*, v) under model perturbations, without requiring full coverage of
the state-action space by the behavior policy. In contrast, P2M2?PO (Blanchet et al., [2024)
measures distribution mismatch using the maximum density ratio C;, which is less tight
than our robust unilateral clipped concentrability coefficient C.

* We design a new model-based algorithm for offline RTZMGs, an optimistic variant
of robust value iteration (VI) for RTZMGs named RTZ-VI-LCB. Specifically, RTZ-
VI-LCB incorporates a plug-in estimator of the nominal transition kernel (Iyengar,
2005) and introduces a data-informed penalty to the robust value estimates. armed
with TV distance, we show that this algorithm achieves an e-optimal robust Nash
equilibrium (NE) policy up to some logarithmic factor as long as the sample size exceeds
0] (cf H4f2(A+B) (H”+_(1;’+()12_”+)H), (Ho _(1;_()12_0 ™) , H}) after a burn-in cost

independent of €. To the best of our knowledge, this is the first time optimal dependency

on state S and actions { A, B} has been achieved for offline RTZMGs.

* In addition to the upper bound, we derive information-theoretic lower bounds across

various uncertainty levels, independent of the specific distance metric applied. We show

C*SH*(A+B)
52

min

that there exists an algorithm requiring at least 2 ( ) samples to find an e-

optimal robust NE policy when the uncertainty level min {oT, 07} < %, and at least
* 3

Q (%) samples when min{o",0~} > . This indicates that learning

RTZMGs is at least as challenging as standard TZMGs (Jin et al., |2022) when the

uncertainty is sufficiently small. Besides, we confirm the optimality of RTZ-VI-LCB across

different uncertainty levels of the critical parameters, i.e., state S and actions {A, B},

except for the finite-horizon H.
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* We design an extended algorithm of RTZ-VI-LCB for robust multi-player general-sum
Markov games (named Multi-RTZ-VI-LCB) and achieve an e-optimal robust NE policy in
~ * 4 m m
(0] (%min {{W} ,H}) samples with M players and A;

i i=1
actions and uncertainty size o; per player.

1.2 RELATED WORK

In this section, we review a curated selection of related research, with an emphasis on provably
efficient RL algorithms in the tabular setting, as these are the most pertinent to our work.

Finite-sample studies of standard TZMGs. Markov games (MGs), or called stochastic games,
were first proposed in the early 1950s (Shapley, |1953). Since then, extensive research has been
conducted, and MARL has gained significant attention (Oroojlooy & Hajinezhad}[2023)), particularly
around Nash equilibrium (Littman, [1994; [Lee et al., 2020). Numerous MARL algorithms with
provable convergence and asymptotic guarantees have been developed (Rashid et al.| 2020). More
recent work has focused on creating algorithms for standard MARL with non-asymptotic guarantees
through finite-sample analysis. In this area, most efforts to compute Nash equilibria are focused on
TZMGs. The studies in (Bai & Jin, [2020) and (Xie et al., Jun. 2022) were the first to provide
non-asymptotic sample complexity guarantees for model-based (e.g., VI-Explore and VI-ULCB)
and model-free algorithms (e.g., OMNI-VI). Further improvements in sample complexity have been
explored (Cui et al., 2023} |Chen et al., [2022; [Liu et al., July 2021} [Feng et al.,[2023} L1 et al., 2024c).

Robustness in MARL. Although progress has been made in standard MARL, existing algorithms
may struggle when faced with environmental disturbances or uncertainties, leading to significantly
deviated equilibria. Increasing research now focuses on enhancing MARL robustness against
uncertainties in different parts of MGs (Vial et al,, 2022), including state (Zhou & Liul [2023)),
environment (reward and transition dynamics), agent types (Zhang et al.,|2021), and other agents’
policies (Kannan et al) 2023). A typical method to address robustness against uncertainties of
the environment is distributionally robust optimization (DRO), which is a method predominantly
explored in supervised learning (Bertsimas et al., [2018};|Gao, 2023} Blanchet & Murthy} 2019). The
application of DRO to manage model uncertainty in single-agent RL (Iyengar, [2005) has attracted
considerable attention. However, when extended to MARL, researchers formulated the problem as
robust MGs armed with DRO and developed a relatively understudied field with only a few proven
algorithms (Blanchet et al.l [2024; [Kardes et al., 2011; [Ma et al., 2023} |[Zhang et al.| 2020} |Shi
et al.,[2024b). Thus, relevant algorithms based on partial coverage of datasets while considering the
uncertainty level are lacking.

Single-agent robust RL. In single-agent RL, addressing uncertainties of environments using
DRO—such as robust Markov decision processes (MDPs) and distributionally robust dynamic
programming—has attracted considerable interest in both theoretical research and practical
applications (Badrinath & Kalathil,|2021;|Goyal & Grand-Clement,|2023)). Recent work has focused
on the finite-sample performance of provable robust RL algorithms, exploring different divergence
functions for uncertainty sets, various sampling mechanisms, and related challenges (Yang et al.,
2023; Blanchet et al.l 2024; Shi et al., 2024a). Studies on robust MDPs, particularly relevant
here, use uncertainty sets based on TV distance (Liu & Xu, 2024) or Kullback-Leibler (KL)
divergence (Shi & Chil [2024) in tabular settings. It has been shown that addressing robust MDPs
does not demand more samples compared with those needed for standard MDPs (Shi et al., 2024a).
However, RTZMGs present additional complexities beyond those in robust single-agent RL.

2 PROBLEM FORMULATION

We focus on offline RTZMGs in this paper, which is a robust version of standard TZMGs taking
environmental uncertainties into consideration. RTZMGs form a broader class than standard
TZMGs, accommodating various prescribed environmental uncertainty sets. Along with this setting,
we investigate an efficient algorithm to achieve robustness and optimal sample complexity on
action {A, B} without requiring full coverage of the state-action space. An RTZMG under the

finite-horizon setting can be defined as MG, = {S,.A,B,Z/l;)’+ (P°),ug (P°),r,H}, where
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S = {1,---,S} is the state space of size S; (A = {1,---,A}, B :== {1,---, B}) denotes the
action spaces of the max-player and the min-player with sizes A and B, respectively; H is the

horizon length; r = {rh}f:l represents the immediate reward obtained at time step h. Specifically,
ri(s,a,b) is assumed to be deterministic on a state-action pair (s, a, b) and falls within the range
[0, 1]. In RTZMG:s, this reward can represent both the gain of the max-player and the loss of the min-
player. A crucial difference from standard TZMGs is that, rather than assuming a fixed transition
kernel, both players in RTZMGs expect that the transition kernel could be chosen arbitrarily from

specified uncertainty sets, U7 T(P%) and U @ (PY), respectively. These uncertainty sets are centered

on a nominal kernel P° : S x Ax B+ A(S), with their size and shape defined by a distance metric p
and radius parameters o+ > 0 and 0~ > 0. To accommodate individual robustness preferences, the

max-player and min-player can independently define their uncertainty sets Z/I;,7+ (P°) and U3 (PY),

selecting different sizes (o > 0 and o~ > 0) and potentially different divergence functions (p) for
shaping the sets. In this paper, we consider the same divergence function for both players.

Uncertainty set with two-player-wise (s, a,b)-rectangularity. We define the transition kernel

uncertainty sets Ug+ (P%) andUg (P°) for RTZMGs. Inspired by the rectangularity condition used
in robust single-agent RL (Shi et al., [2024a; [yengar, 2005), we adapt this concept to a two-player
setting, termed two-player-wise (s, a,b)-rectangularity. The adaptation enhances computational
tractability and facilitates the robust version of Bellman recursions. It permits each player to select
its uncertainty set independently, which can be decomposed for each state-action pair into a product

of subsets. Consequently, the uncertainty sets 7 "(P%) and Ug (P?) for the two players, adhering
to two-player-wise (s, a, b)-rectangularity, are mathematically defined as:

U (P =Ul (PLaay), U (PY)=0U (PLay) (1)

where
U (P o) = {Prsan € AS) : p (Phsaips P ay) < 0T}

Here, ® represents the Cartesian product. The uncertainty set for min-player can be defined
similarly. We define a vector of the transition kernel P or P at any state-action pair (s, a, b) as

Phsab = Pu(-|s,a,b) € RV, P api=Pl(]s,a,b) € R™S. )

Here, the distance function p for each player’s uncertainty set can be selected from various options
that quantify differences between probability vectors. These include f-divergences (such as KL
divergence, TV distance, and chi-square) (Yang et al., 2022)), the Wasserstein distance (Xu et al.,
2023), and ¢, norms (Clavier et al., 2023).

Robust value functions. In RTZMGs, players seek to optimize their worst-case performance
across all possible transition kernels within their respective uncertainty sets Z/{;’+ (PO) and

us (P?). For any product policy (1 x v) € A(A x B), the max-player’s worst-case performance

at time step h is quantified by the robust value function V}}* 7" and the robust QO-function QZ’"’J+
for all (h,s,a,b) € [H] x § x A x B, defined as:

V}f“/"’+ (s):== inf  V"F(s) and QZ’V’U+ (s,a,b) == inf QT (3)
Peugt (Po) Peust (PY)
V,{"”’”i(s) = sup V}{L’”’P(s) and Q’,f’”’”i(s,a,b) = sup QZ’"’P, 4)
PeuUg™ (P°) Peug™ (P°)
where

H
V}ﬁt,y,P(s) = E},L,IJ,P [Z ’I“t(St,Clt,bt) | Sp = S] ;

H
QZ’V’P(Sv (Z,b) = E,u,u,P [Z Tt (St7at7bt) | Shp = S,ap = aQ, bh - b‘| .
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Offline dataset. Let D be a dataset consisting of K episodes under independence, with
each episode produced by implementing a behavior policy {u},v2} | in a nominal MDP

M = (S,AB H P = {PYHL {r}f)). For1 < k < K, the k-th episode
(sh,af, bf, ... sk, ak, bY, sk, ) is generated as follows:

Slf ~ 0", a’izNM?L('|SZ)7 blfi NV;:('l‘SZ)v SZJrl NP;?(-|S§,G§,Z)Z), I<h<H (5
Throughout this paper, let o" denote the initial distribution related to a historical dataset. We
use the short-hand notation for the occupancy distribution w.r.t. the behavior policy (u",v") as:
V(h,s,a,b) € [H] x S x Ax B,

d2’PO (s) = d‘,fn’”n’PO (5) =P(sp, = 5|81 ~ 0", u", ", P%); (62)

dZ’PO(s, a,b) = d‘gn’”n’PO (5,a,b) ==P(s, = 5|51 ~ 0", u", ", PO) i} (a | s) v} (b| s).  (6b)
Similarly, for any product policy (u, v), there is, V(h, s,a,b) € [H] x S x A x B

dy" (s) = P(sn = s| 51~ 0, p,v, P); (7a)

dp"(s,0,0) == P(sp = s|s1 ~ 0,1, P) pn(a| s) vi (b 5). (7b)

Robust Bellman equations. RTZMGs include a robust version of the Bellman equation, referred

to as the robust Bellman equation. The robust value functions V}' ’”’0+(s) for max-player in
RTZMGs, associated with any product policy (u, v), satisfy: V(h, s) € [H] x S,

v,ot i vt
V}fh 7 (s) = Ea’\/ﬂh(a)7b~l/h((l) ru(s,a,b) + Jrlnf Pviiﬁ-l’ ’ ®)
PeUsT (P . 1)

V}“¥? (s) for min-player can be obtained similarly. We highlight that the robust Bellman equations
are intrinsically connected to the two-player-wise (s, a, b)-rectangularity condition (see ) applied
to the uncertainty set. This condition separates the dependencies of uncertainty subsets among
different time steps, the players, and state-action pairs, thus leading to the Bellman recursion.

Optimal robust policy. We further define the maximum robust value function with fixed opponent
policy for each player as: V(h, s) € [H] x S,
VA" (s) = max inf  VAP(s). ()

V* v (7+ ( )
TTT(8) =
" w:SX[H]=A(A) Peys™ (P0)

max
w:SX[H]—A(A)
Optimal robust policy for min-player can be obtained similarly. As proved by Blanchet et al.|(2024),

there is at least one policy referred to as pj(s) : S x [H] — A(A) (for the max-player) and
vi(s) : S x [H] — A(B) (for the min-player), corresponding to as the robust best-response policy.

These policies can simultaneously achieve V,* vt (s) (for the max-player) and V"7 (s) (for the
min-player) for all s € S and h € [H].

Robust Nash equilibrium. In RTZMGs, the dynamics expand beyond traditional TZMGs to
involve four participants: two players and two adversaries determining the worst-case transitions.
Therefore, finding an equilibrium becomes central in RTZMGs due to potentially conflicting
objectives. We introduce the robust variant of standard solution concepts—robust NE for RTZMGs.
A product policy (u, v) is considered a robust NE if

Y(s) €S, Vi (s) =V (s); VIR (s) = VO (s). (10)
A robust NE signifies that given the product policy (1, v) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Ug+ (P°)or s (P°).
Since finding exact robust equilibria can be complex and may not always be feasible, practitioners

often seek approximate equilibria. In this context, a product policy (1 X v) € A(A x B) can be
termed an e-robust NE if

*,v,0T *,0T *,0 Jk,0
Gap(p,v) = max {117 (o) =17 (o). Vi*7 (@) =V (9} <&, (D)
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where
1/0'+ * l/O'+ * O'+ O-+
Vo7 (0) = B g V™7 (s), and V7 (0) = Es g V™7 (s).

The definitions of V/*** () and V;" () can be obtained similarly. The existence of robust NE
has been proved for general divergence functions in the uncertainty set by [Blanchet et al.| (2024).

Learning objective With a dataset collected from the nominal environment, our objective is to find
a solution among the e-robust NEs for the RTZMG MG, with respect to a specified uncertainty set
U(P?) around the nominal kernel, while minimizing the number of samples required under partial
coverage of the state-action space.

3 ALGORITHM DESIGN

In this section, we propose an efficient model-based algorithm RTZ-VI-LCB to achieve robustness
and optimal sample complexity on action { A, B}. This algorithm is designed for offline RTZMGs
within the finite-horizon setting.

3.1 BUILDING AN EMPIRICAL NOMINAL MDP

According to the empirical frequencies of state transitions, we can naturally construct an empirical
estimate P° = {PP}/L | of P° where

N .
ﬁ}? (Sl |s,a,b) = Nh(;,a,b) Zi:l 1 {(Siv @i, bi, 5;) = (s,a,b, s/)}v if Np, (s,a,b) > 0; 12)
s %7 if Ni (s,a,b) =0,
~ ry (s,a,b), if Ny (s,a,b) > 0;
b) = 13
h (s,a,b) {o, if Ny, (s, a,b) = 0, (13)

for any (h, s,a,b,s") € [H] x S x A x B x S. Besides, N, (s, a,b) represents the total number of
sample transitions from (s, a, b) at step h, and

N

Np(s,a,b) = Z]l{(si,ai,bi) = (s,a,b)}. (14)

=1

Algorithm 1: Two-stage subsampling technique for RTZ-VI-LCB.

Input: Dataset D, probability §.

Step 1: Data Partitioning. Split D into two equal-sized subsets, D™ and D?, each containing
K /2 trajectories.

Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions
from D™ (resp. D?) as N;"(s) (resp. N3(s)). Construct the trimmed count as:

Nj(s) = maX{N;‘;(s)10\/Nf;(s)loghgs,0}; (15)

Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the
form (s, a, b, h, s)) from D™ uniformly. For each (s, h) € S x [H], include
min{Nj (s), Nj"(s)} transitions in the new dataset D*.

Output: Set Dy = Dt

Although it is feasible to decompose the historical dataset D into sample transitions, the
dependencies between transitions within the same episode introduce complexities in our analysis. To
address this issue, |Li et al.{(2024a) introduced a two-fold subsampling method for single-agent RL to
preprocess D, thereby reducing statistical dependencies and producing a distributionally equivalent
dataset Dy with independent samples. We adapt this method to TZMGs, as outlined in Algorithm [I]
We present the following lemma concerning the dataset Dy, which is proved in Appendix
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Lemma 1 The dataset produced by the two-stage subsampling method is distributionally identical
to Dg with probability at least 1 — 85, where { Ny, (s, a,b)} are independent of the sample transitions
in D° and obey: ¥(h, s,a,b) € [H] x S x A x B,

W —5\/Kdg(s,a,b) log % (16)

Nh(87a,b) 2

By applying the two-fold sampling method, we can treat the dataset Dy as having independent
samples, simplifying the analysis significantly as supported by Lemmal[I]

3.2 AN OPTIMISTIC VARIANT OF ROBUST VI WITH LOWER CONFIDENCE BOUNDS.

We propose a model-based approach for solving RTZMGs using an approximate PO for PO, which
is the nominal transition kernel. Specifically, we introduce VI with lower confidence bounds (LCBs)
for RTZMGs (RTZ-VI-LCB) to compute a robust NE for two players, as summarized in Algorithm[2]

Our algorithm begins at the final time step i = H and proceeds backward through h = H — 1, H —
2,...,1. Drawing from the principle of pessimism in single-agent offline RL (Li et al.| [2024a} Jin
et al., 2021), we design an optimistic robust Q-value to estimate the robust Q-function at time step

h € [H] as @Z and @g for all (h,s,a,b) € [H] x S x A x B, that is,

@"’ s,a,b) =7y, (s,a,b) + inf PVt + Bn S,a,b,‘A/+ ; (17a)
h h+1 h+1
Peuo+(ﬁ£,s,a,b) * *

@; (s,a,b) =7y (s,a,b) + sup P‘7h_+1 — B (s, a, b, ‘A/h__H) . (17b)
peus™ (B, ..)
Dual problem. Solving directly is computationally intensive because it requires optimizing
over an S-dimensional probability simplex, which becomes exponentially more difficult as the state
space size S increases. In fortunate, strong duality for TV distance allows us to tackle this problem
by solving its dual (Iyengar, 2005):
inf P\A/htl = _max ]{ﬁ,‘%s)a)b [‘7};:1} a—a+ (oz—rr;i/n {‘7;“} a(s’)) }

pPeyet (ﬁ}?,&a,b) a€[ming V,j;wmaxs Vhtrl
(18)

where [‘A/htrl} denotes the clipped versions of XA/h_H € R® and ‘7h++1 € R¥ based on some level
«

a > 0, as follows. sup ;.- (B )PXA/,;_I can be defined similarly. See Appendixfor details.

h,s,a,b

- Vit (s), itV (s) >

+ — ) V() ht1 ) 19
[VhHL(S) {047 otherwise; (19)

Penalty term. The optimistic robust Q-function estimate is refined by Gy, (s, a, b, ‘7) which is a
data-driven penalty term and includes the uncertainty in value estimates. We adopt the Bernstein-
style penalty to better capture the variance structure over time. In particular, for any (s,a,b,h) €

S x Ax B x[H]andd € (0, 1), the penalty term S5 (s, a, b, ‘A/) is defined as:

5.7 — mi CnlogKTHV 7 QCnHlog% I 20
Bn (s,a, , ) = min { max N (5.ab) arﬁ}?‘sya,b( )s Nasab) [ o (20)
where C,, is some universal constant, and

Vargs (V) = P a2 = (P sV @1

Note that we choose PY, as opposed to PO (.e., Var Bo (V)) in the variance term, since we
h,s,a,b

have no access to the true transition kernel PY. This penalty term is distinct from those used
in standard offline TZMGs (Cui et al., 2023} |Li et al., 2024a), as it accounts for the unique
structure of robust self-play MDPs. Specifically, it provides a tight upper bound on statistical
uncertainty, considering the non-linear and implicit dependency introduced by the uncertainty set
U(P?), addressing challenges not present in standard MDP scenarios.
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Policy estimation. We update the policies using the estimated ()-functions with uncertainty as line
6 in Algorithm [2| Specifically, for any matrix N € R4* 5, the function ComputNash(IN) returns
a solution (@, Z) to the minimax problem max,,e A (4) Min.ea(B) w " Nz. In other words, for each

s € 8, we compute the NE policies (pf (s), 15 (s)) and (u;, (s), v;, (s)) € A(A) x A(B) for the
zero-sum matrix games with payoff matrices @z (s,-,) and @g (s,-,-), respectively. Solving these
robust matrix games is generally PPAD-hard due to the potential for players to choose different
worst-case transition kernels.

Algorithm 2: Value iteration with lower confidence bounds for RTZMGs (RTZ-VI-LCB).

Initialization: Set uncertainty levels ¢~ and o™ ; set 17,; (s) =0and I7h+(s) = H for all
(s,h) € S x [H + 1]; set @;(s,a,b) = 0 and @Z(s,a, b) = H for all
(s,a,b,h) € S x Ax Bx [H+1].

Compute the empirical reward function 7 using and the empirical transition kernel Fy

using (12).
forh=H,H—-1,...,1do
Update the robust Q-value estimate as

@Z (s,a,b) = min {?h (s,a,b) + inf P‘A/htl + Bn (8, a, b, IA/,:CH) , H} ;

PEUG+ (ﬁlg,s,a,b)

Qy (s.a,b) =max{ 7 (s,a,b)+  sup PV, — B (s,a,b,ml),o :

PEU”_ (};}?,s,a,b
. . Chy log £H 2C, H log £
with 3, (s,a,b,V) = min {max {\/ Np(s,a,b) VarPB,S,a,b V), ~ Nu(s,ab) H o

Compute Nash policy for each s € S as
(13t (s), vy (s)) = ComputNash (@; (s, -, )) :
(15, (s),v, (s)) = ComputNash (@}: (s, )) ,
Update the robust value estimate for each s € S as

Vi, (s) = EGNM;(S)J)NV;(S) {Qi: (s, a, b)} ) Vh+ (s) = ]anp}t(s),bwl/;r(s) [Q;{ (s, a, b)} .

Output: The policy pair (i, 7), where i = {u; }_, and U = {1, }L .

4 PERFORMANCE GUARANTEES

Robust unilateral clipped concentrability. To assess the effectiveness of the historical dataset
for achieving the desired goal, it is essential to measure the distributional discrepancy between the
historical data and the target data. Drawing on the single-policy clipped concentrability assumption
in the single-agent RL (L1i et al., 2024a)), we propose a novel assumption for RTZMGs as:

Assumption 1 (Robust unilateral clipped concentrability) The behavior policies of the historical
dataset D satisfies

{ min {dﬁ"’ ’P(s, a,b), 7S(A1+B) }
max
(

sup 5
n,P
11,5,a,b,h, P)EA(A) xS x Ax Bx [H] xU ™ (PO) dy (s,a,b)

)

min {d’}f*’y’P(s7 a,b),

sup

1
S(A+B)}} <o @
0 — T
(,5,0,b,h, PYEA(B) xS x Ax Bx [H] xU+ (PO) Ay (s, a,b)
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for some quantity C; € [m7 oo] We define C} as the smallest value that satisfies ,
referring to it as the robust unilateral clipped concentrability coefficient. For consistency, we adopt

the convention 0/0 = 0.

Notably, if dZ’V*’P(s, a,b) or dZ*’”’P(s, a,b) is larger than m, the robust unilateral clipped

concentrability assumption above do not require the data distribution d;’l’PO(s7 a,b) to scale with
A" F (s,a,b) or d """ (s, a, b) proportionally. We here outline the principal theoretical findings
concerning the sample complexity of learning robust NE in RTZMGs, including an upper bound for
the RTZ-VI-LCB algorithm (Algorithm [2) and an information-theoretic lower bound. Initially, we
present the finite-sample guarantee for RTZ-VI-LCB, with detailed proof provided in Appendix

Theorem 1 (Upper bound for RTZ-VI-LCB) Under the TV uncertainty set U°" (-) and U° " (-)
defined in @) with o™, o= € (0,1]. Define dy, = miny, 5 4.5 {d}(s,a,b) : d} (s,a,b) > 0}. Define

f(o*,07) = min { (HU+7(1;+()1;U+)H)7 (Ha_f(ljf(;r;g_)H) , H} Consider any 0 € (0, 1) and any

RTZMG MG, = {S, A, B,U"+ (PY),u° (P%),r, H} For sufficient large constants cy,cy > 0,
with probability at least 1 — §, we can achieve

CrH3S(A+B)log £
Gap(ﬁ,ﬁ>Sc1\/ LSBT ot o ), 23)

with the total number of samples T exceeding

2
HSALB) o0 KH pot oo ), (24)

T—=KH>
= dn 5

Now, we introduce a lower bound of sample complexity in RTZMGs, whose proof is in Appendix D}

Theorem 2 (Lower bound for solving robust MGs) Consider — any  tuple MG, =
{S,.A,B,Z/{H(PO),U‘f (P°),r,H} obeying H > 16log2 and o, o= € (0,1 — co] with
any small efficiently positive constant 0 < ¢y < %. Let

o [5 max{otoTh< g, 05
1 otherwise

for any co < i. With an initial state distribution o, we can construct a set of RTZMGs

{M;ﬂf e F={0,1,--- ,SA—1},¢ = [¢n)i<n<m € ® C {0, I}H} such that for any dataset

with K independent samples trajectories and H lengths per trajectories satisfying C < Cr < 2C,
such that

. R 1
%?g(f’gg;gx(p {Py(Gap(ii,v) >¢)} > 3 (26)

provided that

CQC:HBS A+B)m1n W7H
T=KH< ( (ST G } 27)

e2

Here, cy denotes an efficiently small constant. The infimum is obtained over all estimators ([i,D).

Moreover, our algorithm can be extended to multi-player general-sum Markov games with m players
and A; actions and uncertainty size o; per player with details provided in Appendix [F i.e., Multi-
RTZ-VI-LCB. Specifically, we obtain the following theoretical guarantee of Multi-RTZ-VI-LCB:

Theorem 3 (Upper bound for Multi-RTZ-VI-LCB) Consider any 6 € (0,1) and any robust
multi-player general-sum MGs MG, = M(S,{A;}7~,, H,{UT (P°)};,{r:}i~,). Under the
TV uncertainty set Ui (-) defined in @) with o; € (0,1] for i = 1,2,--- ,m. Define dj, =
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(1o ™
ming, s q {4} (s,a) : dj(s,@) > 0}, and f({o:}y, H) = min {{TepthzoD " g,

For sufficient large constants cy, c1 > 0, with probability of at least 1 — §, we can achieve

~ C:HSS ni AZIO EH
Gap(w)Scl\/ Zg{l S5 f({oib, H), (28)

with the total number of samples T' exceeding
H2SS ™ A, KH
%’2‘171 log )

m

T:KHZCO

({oiyiZy, H). (29)

Here are the key implications of these theorems:

* Theorem |I|demonstrates that the proposed RTZ-VI-LCB algorithm can attain an e-robust
NE solution when the total sample size exceeds:

~ (C*H*S(A+ B Hot —14+(1—-0M)) (Ho= -1+ (1—-07)#

5 (CHH'SALB) L [(Hot —14(1—o")) (Ho™ —14(1-0)") 1\
e? (0F)? (07)?

suggesting that the sample efficiency for robust offline TZMGs is strongly influenced by the

dataset quality (quantified by C}) and the problem structure of RTZMGs (reflected in the
occupancy distributions df). If C} is as small as m, the upper bound of the sample

complexity exhibits a weaker dependency on actions {A, B} and state S. Combining
this upper bound with the lower bound in Theorem [2| shows that RTZ-VI-LCB’s sample
complexity is optimal w.r.t. key factors S, A, B and €. This is the first optimal sample
complexity upper bound for offline RTZMGs, regarding state .S and actions {4, B}.

* Theorem [2| conveys two important points. When the uncertainty level is small (i.e.,
min{o™,07} < %), no algorithm can find an e-optimal robust policy with fewer than

* 4
Q W) samples, matching the complexity requirement for non-robust offline

TZMGs (Jin et al., [2022). This implies that robust TZMGs are at least as challenging as

standard TZMGs for low uncertainty. When the uncertainty level satisfies min{c*, o~} >

%, no algorithm can find an e-optimal robust policy with the numbers of samples fewer

than ) (m%) Thus, RTZ-VI-LCB is the first provably near-optimal algorithm
on S and { A, B} for RTZMGs without requiring full coverage assumptions.

* Theorem [3| demonstrates that the proposed Multi-RTZ-VI-LCB algorithm can attain an e-
robust NE solution when the total sample size exceeds:

oSt (e Th =Y a}),

suggesting that the algorithm can break the curse of multiagency.

5 CONCLUSION

To balance model robustness with sample efficiency, we design an efficient robust model-based
algorithm for offline RTZMGs, which is value iteration with lower confidence bounds for RTZMGs
(RTZ-VI-LCB). Our algorithm integrates robust VI with the principle of pessimism. By imposing a
tailored and mild assumption (robust unilateral clipped concentrability) on the historical dataset to
account for the distribution shift, we do not require full state-action space coverage. We address
robustness against the distribution shifts in the worse-case scenario of the shared environment,
analyze the finite-sample complexity of the proposed RTZ-VI-LCB algorithm, and establish an
information-theoretic lower bound to evaluate its optimality across various uncertainty levels.

To the best of our knowledge, this is the first provably optimal algorithm for offline RTZMGs that
addresses the dependency on states S and actions { A, B}, while accounting for model perturbations
and partial coverage. Furthermore, we extend RTZ-VI-LCB to multi-agent general-sum MGs,
demonstrating a breakthrough in breaking the curse of multiagency. Our algorithm opens up several
intriguing questions, such as designing efficient model-free algorithms for robust offline TZMGs
with partial coverage and exploring ways to adjust the size and metric of the uncertainty set to
complete the algorithmic design.

10
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A PRELIMINARIES

Dual equivalence of robust Bellman. We can compute the robust Bellman operator by solving its
dual formulation rather than the original form, as long as the predefined uncertainty set is in a benign
form (e.g., utilizing TV distance as the divergence function) (Iyengar, 2005; |Shi et al., 2024a).
Taking TV distance as an example, we describe the equivalence under strong duality between the
robust Bellman operator and its dual form as Lemma[2]

Lemma 2 Consider any TV uncertainty setU°" (P) andU° (P) associated with fixed uncertainty
levels ot and o~ € (0,1] and any probability vector P € A(S), respectively. For any vector
V € RS obeying V > 0, one has

inf PV = max {PIV], =" (a=min[V],(s))}: (o
Peuet (P) a€[ming V(s),maxs V(s)] s’

sup PV = max PV, —o" (a—min V], (s’ )} (30b)
PcUe (P) a€[min, V(s),max; V(s)] vl s’ Vla ()

where [V, is defined in

The proof of Lemma[2]is similar to Iyengar| (2005, Lemma 4.3). Therefore, comparing the standard
Bellman operator, the lemma above guarantees that no more computation cost is required when
applying the robust Bellman operator, ignoring some logarithmic factors (Iyengar, 2005).

Facts of RTZMGs and empirical RTZMGs. Recall the definition of any RTZMG MG, =
{S, A, B, Z/{,‘j+ (PO),U;f (PY),r, H} According to robust Bellman equations in , one has: for
any product policy (u, v) and any (h, s,a,b) € [H] x S x A x B,

Z’”’a+(s,a, b) = rn(s,a,b) + inf PVh‘:’_li’aJr; (31a)
PeUsT (P . .4)

QUM (s,0,b) = ru(s,ab)+  sup PV (31b)
Peug_(P}?,s.a,b)

where
A,V,(T+ U, 0—
V}i (3) = Ea~ﬂh(s ),b~vp (s) {QM (87 a, b)} ;

Va7 (8) = Bamp(o) ) | Q4 (5,0.0)]

Considering the offline setting, we use /T/l\gr = {S, A, B,L{,‘,’+ (]30), Ug_ (]30), 7 H} to represent
the empmcal RTZMG, which is establishing along with the estimated nominal distribution po
in Therefore, for any product pohcy (4, V), we define the empirical robust value function
(resp emplrlcal robust Q-function) in MG, as V” v and Vh Y7 (resp. @ﬁ’”’ﬁ and Q” v,
which are analogous to (). Moreover, we can 51m11arly define the optimal of the empmcal robust
value function for both player over MG,, which is: for Vs € S,

~ + Spt ot v - V
Voo (s) = VE T (s) = max VT (s) = max inf VP (s);
h (s) h (s) w:SX[H]—A(A) h () w:Sx[H]=A(A) peyet (P0) " )
(32a)
VAT (§) = VY7 () == max VYo (s) = inf VP (s).
h (s) h (5) vSx[H|=AB) " (5) VSX[HHA(B) Peu~ (P0) " )
(32b)

Notably, for all s € &, there exists at least one robust best-response policy that can achieve
XA/h*’”’”Jr (s) and V,*° (s), as proved by [Blanchet et al{(2024).

14
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Therefore, we can obtain the empirical robust Bellman equation similar to (8) as: for any product
policy (u,v),

Q\Z’V’UJF <S7 a, b) _ ’I“h<57 a, b) + inf P‘?}f?iao*; (33a)
PeUgt (P, op) "

Q17 (s,a,b) = r4(s,a,b) + sup PV o
PeUs™ (PP, .4)

where

AR N
Earpun () o () [@7 (5,0, D)];
E

Vhlu?%oi (3) = Laropp (s),b~vp(s) [QZ7V707 (57 a, b)]

B PROOF OF THEOREM [II

The proof of Theorem [I]can be separated into three steps, as outlined below.

B.1 STEP 1: DECOUPLING STATISTICAL DEPENDENCY

Before bounding Gap(ji, V), we introduce an important lemma, quantifying the difference between
P and P when projected in the direction of the value function.

Lemma 3 [nstate the assumptions in Theorem Consider any vector V € R with |V < H
forall (h,s,a,b) € [H] x S x A x B satisfying Ny, (s,a,b) > 0. With probability at least 1 — 6,
one has

KH _ HloghHl

1
inf PV — inf PV |<Cyy| —=——Var; V)lo +C
peust (P, . ,) Peust (P, ) 4\/Nh(57a7b) P’?M’g Jles o YN, (s.a.b)
(34)
for some sufficiently large constant Cy > 0, and
H? KH
Varﬁ}?,S’(l’b(V) < 2Varp}<3,sya,b(V) +0 (Nh o) log 5 ) (35)

Proof can be found in Appendix[C.3]

In simple terms, provides a Bernstein-type concentration bound, while ensures that the
empirical variance estimate (i.e., the plug-in estimate) closely matches the true variance. Notably,
Lemmadoes not require V' to be statistically independent of ﬁﬁs% »» Which is essential given the
complex statistical dependencies in our iterative algorithm. Under the leave-one-out analysis (see,
e.g.,/Agarwal et al.| (2020); Chen et al.|(2021); L1 et al.|(2024a3b)), we prove Lemmato decouple
statistical dependencies, as illustrated in Appendix |C.3] With Lemma[3] we can now have

inf PV — inf PV | < By (s,a,b, V) (36)
Peust (PP, ) Peust (P, . 4)

for any (h,s,a,b) € [H] x S x A x B satisfying Np,(s,a,b) > 1.

~ . e Aot .
Therefore, we conclude that Q; (s, a,b) is an optimistic estimation of Q47 (s, a,b), which is
summarized below.

Lemma 4 With probability exceeding 1 — 9, it holds that
@;(8, a,b) > QZ’a’UJr(&a, b) and 17h+(s) > Vh*’a"7+ (s); 37
See Appendix [C.4]for detail proofs.

Besides, we introduce another key lemma highlighting the difference between RTZMGs and
standard TZMGs from the same idea by [Shi et al.| (2024b, Lemma 3). The range of the robust
value function narrows as the uncertainty level o™ of its uncertainty set increases, as shown below.
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Lemma 5 Consider the uncertainty set Z/{”+(-) with TV distance and any RTZMG MG, =
{S, A, B, ue* (P), U’ (P),r, H} The optimistic robust value function estimate Vth:

~ - H+1)(1-1—gt)H-h
Vh e [H]: maXVth—mithJrgmin{( + )( ( o) ),H}

seS seS ot

See Appendix [C.3|for detail proofs.

B.2 STEP 2: DECOMPOSING THE ERROR Gap(i, D)

The goal of our algorithm is to output an e-robust NE policy (fi, V) satisfying Gap(i, ) in (11,
i.e.,

+

~ *U,0 x0T *,0 yx,0~
Gap(ji,7) = max { V""" (0) = V"7 (0), ™7 (o) = VI (o)) <e.

Due to the symmetry between max-player and min-player, we assume without loss of generality
that Vl*’”’”+(g) — Vf‘"’+ (0) is larger than V;"7 (o) — V/**7 (o), leading to Gap(fi,?) <

i@ - o).

According to the relationship in Lemmad] we obtain

e -
Vi () < Vi (s) = i Ea ) uts)(e)) | QF (5,0,0)]
() S V() = max mit B~ ue).v) [@n(5:0,0)

< E(a.b)~(u(s).0* (s +(s,a,b)], 38
< max Bo (s o)) (@1 (5,0,0)] 38)

where the first equality comes from line 6 in Algorithm |2| Therefore, there exists a deterministic
policy pd : S < A(A) satistying that for any s € S

d(g) = By e +(s.a.b)]. 39
pe(s) = arg max Bapyu().n(s) [Q5r (s,a,b)] (39)

Before starting, we introduce several useful notations:

* The state-action space covered by the behavior policy (u", ") in the nominal transition
kernel PY is denoted as

C" ={(h,s,a,b) : dj(s,a,b) > 0}. (40)

* The set of potential state occupancy distributions w.r.t. the policy (u4(s), 7*(s)) in a model
within the uncertainty set P € 4% (PP) for any time step h € [H] is denoted as

d *
po — |:dlt (8),v*(s),P ]
h { h (8) sES

Dy = {[dﬁd(s)’y*(s)’P(s,a,b)}

cPeu” (PO)} ; (41)

Pecu’’ (PO)} : (42)
(s,a,b)ESXAXB

* For convenience and without ambiguity, we introduce an additional notation for h € [H]
as

d v* o~
h T (8) = Eabym(ud(s),vr (s)) B (Svaab7 Vfiu) .

In particular, the vector B,‘fd’”* € R¥ is defined with its s-th item given by B,’fd’”* ().
* Similarly, we can define the notation related to rewards for h € [H]| as

W * ~
7" (8) = Ea )~ (ud ()00 (s))Th (8,0, D) .
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According to the update rule in line 4 in Algorithm [2]and robust Bellman equality (3T), we derive

*x 0,07 *,0F
Vi, 7 (s) =V (s)

~ d v* 0_+
<V () =V (s)

~ d ])*
<E(a,b)~ ()07 (5)) inf PV 480" (s)
PEUU+ (Pi?,s,a,b
E inf Py
— L(a,b)~(pd(s),r* (s mn 1
(a,b)~(pd(s),v*(s)) peust(Po. ., h+1
<E( b)~(ud(s),0* (s)) inf P‘/}h-i_ 1 inf PVALd’lu*’UJr
) He(s)s Peuot (P}Q,s,a,b) + pPeust (P2 ) +
~ ~ d x
+ inf PV, — inf PVE L4807 (s)
peurt(£p.,) T peurt (B, ,,)
gE(mb)N(#d(S),u*(s)) inf  PUF, - inf - PV 288 (s)
peurt(ry. ,,) PeuTt (P, ..)
(11) inf.V ~ d v* 0_+ d v*
S Eap)m(pet ()0 (9)) {Ph,s:a,b (Vhil Vi )} +28, " (s)- (43)
Here, (ii) is valid under the notation
PV aremin pypve” (44)
h,s,a,b Peuet (PI?,s,a,b) h+1
and consequently,
inf PV}Z‘:,{/*,H = P}izn?;/bvfﬂ’ly*’oJra and inf P‘A/htrl < Pliznsf,;/b‘/}h—:l'
Peua+(P}?,s,a,b) o Peua+(P}?,s,a,b) o
Besides, (i) in exists due to in Lemma 3|for Ny, (s, a,b) > 0 and
inf PV, — inf PV, <H=p8"(s) (45)
PEUTT (P, ) peust (B, .,

for Ni,(s,a,b) =0.
pinf.V

inf,V
s = Eab)m(ud(s).0 (s)) Phs e Furthermore,

For ease of proof, we introduce a notation as

we define a sequence of matrices ]S;Infv € RS%5, We can utilizing l| recursively over the time
steps h,h 4+ 1,--- | H and derive

+ *,ot O+ ul vt ot
(s) =V, () <V, (s) =V (s)

~

~ d _* _+ d %
< B (Bl - Vi) 280 ()

*,U,0
Vh

Hin Sin 17 dv* ot Sin d v v
< P £,V pinf,V (V+ _yHre ) + 2P} f,Vﬁ}lervl + 2617 (s)

h+1 h+2 h+2
H i—1 4

<--<2y (I ) s, (46)
i=h \j=h

R )
where we define (H;Z h P;nf’v) = [ for convenience.
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For any d‘}fd’”* € D} (cf. ), taking inner product with 1i yields

H i—1
d  * —~ d  x ~ d %
(e ’”,v,:v”’“<s>v,:’“+<s>>§<dﬁ w2y (TIA ) o >
i=h \j=h

H
=23 (@ ), “7)
i=h
where
-1 T
poud vt pd o\ T Binf,V p
P = | (@) P € Df (48)
j=h

by the definition of DY (cf. @#1)) foralli =h+1,---, H.

d o * d %
Next, we control (""" ,p"" ) utilizing concentrability. First of all, according to 1} in
Lemma 3] we demonstrate that the pessimistic penalty satisfies

. Cylog £H ~. 2C,Hlog &2
: b1 < 0575 \ar- e 8
ﬂ(svaa ,V)_max \/Ni(s’a,b) arpio,s,a,b(v)7 Ni(s,a,b)

< JCloB Ty 2t e
- N7 (S, a, b) Pi(;:s,a,b N’L (S, a, b)
0 [Cylog K2 o, CoH?  KHY  2C,Hlog &
< [T (hy v 1 2
_\/Ni(s,a,b)< 80V F o058 75 > N; (s, a,0)
Q [2loets () 4 RtV o T )
S\ Moty N (s.0.0

where (i) holds by applying (35) for some sufficiently large Cy and (ii) exists follows from the
d %
Cauchy-Schwarz inequality. Therefore, combining the definition of B! " (s), we obtain

d % d o * d  * d  *
(R, By =) AP ()BT (s)

sES
o -
:Zd?’l ’ (S)E(a)b)N(Md(S)W*(S))ﬁi(s,CL,b, V)

seS

= 3 @) L{a = p(s)r (Bls)Bils, a,b,T)

(s,a,b)eSXAXB

d * N
= A (s, 1%(s),b)Bils, 1 (s),b, V), (50)
(s,b)ESXB

where the last equation holds due to the definition in . Then, we observe dZ’“d’”* (s,a,b) € D}?
(cf. @2). Thereafter, we divide the bound (50) into two cases.

For the first case, i.e., s € S where max .+ (Po) dfd’y*’P(s, pd(s), b) = 0, it follows from the
d  *
definition (cf. ) that for any d* " (s, u4(s),b) € DP?, it satisfies that
AP (s, 18(s), b) = 0. (51)
For the second case, i.c., s € S where MAX peygot (poy dyd»l'* P (57 pd (s), b) > 0, by the assumption
in
. 4P d 1
- min {d!' (s,19(s),b), m}

Peuet (Po) 3 (s, n4(s),b)

< CF < 0.

18
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It implies that

d; (s,ud(s),b) >0 and (i,s,ud(s),b) eCn. (52)

Lemmal I]tells that with probability at least 1 — 84,

Kdn KH
Ni(g,ud(s),b)zw—f’\/l(d" su )log 5
= 16
. udv* P d 1
(;) K maXPeua(pO) min {d1 (37 1% (3)7 b)’ m}
2 16C*
. p,/,;,d,l/* d __1
N K min {di (s,1%(s),b), S(A+B)} (53)
Z 16C ’
where (ii) comes from Assumption[T]and (i) holds due to
HSA+ B KH
Kd?(S,Hd(S)7b) > ¢o (dn+ )IOg ) f(0+a0_7H)d?(s’Md(s)7b)
KH KH
ZCOHS(A+B)IOng(0+’U_’H)2160010gT, (54)

where f(oT,07, H) = min H0++g;+()1{”+)H, H07+(1;,()12707)H , H}, the first inequality follows

from condition (24)), and the second inequality follows from

dp= min {dh (s, 1%(5),b) : diy (5, p(s),0) > 0} < df (s,1%(5), b). (55)
28,10 (s),

Combining the results in and (50), we arrive at
<d§v#d7u* : /Béu'dvl/*>
= > @ (). D)8, 1(5), 0. V)

(s,b)eSxB
d . 20, log £H ~
< dPHr d b —5V \
7(5 b);S‘XB (] (SﬂlLL (8)7 )\/Nt (S"U,d(s)’b) angsy“d(s)yb< )
KH
S e 1y 20 VOO Hog
(s,b)eSxB ' ’ ’ Ni (S,ud(s),b)

) o 320%C, log KE ~
S Z dll‘)’/ ’ (Saﬂd(s)7b) " [ : Varpo p (V)
(s,b)eSxB Kmin{d;”“ ’ (S,,ud(S),b), m} i,s,u9(s),b

B
1607 (2Cy + v/CrCh) H log K
b (s (o)) o POt VCCh) Hlos o
(s,b)ESXB Kmin{d?# ’ (s,,ud(s),b)7 S(A+B)}

B>

Therefore, according to (47), we just need to bound 37 2 (s.)ESXB o (s,19(s),b) By and

K2

PO 2 (s.b)eSxB df’“ ¥ (s, n4(s), b) By, which is introduced as follows.
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Part 1: Bounding Zil 2 (s.h)ESXB d?’“d’"* (s,14(s),b)B; Combining the result in with
H El d7l/* M
izt Z(s,b)ESxB d? (s, Md (s),b)By yields

H
SO @ (s ). 0)By

=1 (s,b)eSxB

H KH
x 32CFCy, log =+ ~
— § E d?vud,l/ (S, ,U/d(S), b) - : 0g =5 - Varp_o ) (V)
i=1 (s,b)eSXB K min {d’?’/‘ ’ (81 ;U'd(s)» b)v S(A+B) } Bt

H
<3N @ (s, (s), b) %

i=1 (s,b)eSXB

320 Cylog B2 =\ [32C3C,S(A+ B)log B2 -
max L %85 Var po (V),\/ r (A+ B)log 75 Var po (V)
K (5 (5),5) ot K et

~

(V)

H KH
32CrC, log =+ 4
<22 A (s, 19(s), b)Varpo

i,s,ud(s),b
i=1 (s,b)eSXB ’

" KH

i 32C*C,S(A + B)log £ %

e e
i=1 (s,b)eSXB

320%C,S(A + B)log KX ul s ~
S\/ I J HZ Z dPtr (s, pd(s), b)Var po (V)

i,5,ud(s),b
i=1 (s,b)eSxB :

H H
+ Z Z dli)’ud7’/* (3’ IU/d (3)’ b)varpiﬂwsﬁud(s%b (V) X Z Z d?»udw* (3’ lu/d (8), b))

=1 (s,b)eSxB =1 (s,b)eSxB

128C*C, HS(A + B) log K2 X *
= r~n (K+ )Og 5 Z Z d?,#d,u (S,Hd(S),b)VarPo

V), (57)
‘ i,5,09(s),b
i=1 (s,b)eSxB

where the last inequality follows from the Cauchy-Schwarz inequality. Then, we introduce the
d %
FI”M . (S, Nd(s)7 b)Varp_

? i,8, 4

following lemma about Y7 2 (smyesxs @

ao, b(‘A/), whose proof is
postponed to Appendix [C.6]

Lemma 6 Considering V§ € (0, 1), with probability at least 1 — ¢, one has: for any product policy
(1, v),

H H
o - _ (2(Hot =1+ (1—0")H)
Z Z d? (s, u%(s), b)VarPio’S’a’b (Vig1) < Hmin { ()2 ,H

i=1 (s,b)eSx B

H
X 42 Z df’“d’”*(s,,ud(s),b)ﬁi(&ud(s),b, ‘7) +(H+3)|. (58)
i=1 (s,b)ESXB
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Armed with Lemmal 6} can be further bounded as

H
> @ (s (s). 0By

i=1 (s,b)eSxB

128C*C, KH + _ _ g+\H
< 8CrC,HS(A + B)log =5 H min 2(Ho 1+(1—-07) ),H
K (o1)2

H
< 1A ST (s, 8 (s), 0)Bi(s, (), 0, V) + (H +3) | (59)
i=1 (s,b)eSxB

Part 2: Bounding Y7, D (s.h)ESXB d?’”d"’* (s,19(s),b)B2  Combining the result in l| with
H bl d7V* :
Y1 Dsmesxs G (5,1%(s), b) B yields

H
SO @ (s, 1), 0)By

i=1 (s,b)eSxB

SoY @ (s u(s).0)

16C; (2C, + v/ChC3) H log B2

= . d px
i=1 (s,b)eSxB K min {d?:ﬂ ’ (87 /J'd(s)a b)a m}
(1)32C7 (2C, 4+ v/C,C3) H*S(A+ B)log 2
< ; (60)
K
where the inequality holds by the trivial fact
a2 (5, 1 (s), b)
. d px
(s,b)eSx B Min {dﬁ)’# " (s, 19(s), b), M}
dx 1 1
< Y ar (Saud(s)7b)< T + >
(s,b)eSxB d'z‘wt ’ (Sv Md(s)a b) 1/S(A T B)
= Y 148(A+B) Y @ (s,1%(s),b) < 25(A + B). 61)
(s,b)eSXB (s,b)eSxB
Putting all together Combining the results (59) and (60) in Part 1 and Part 2, we obtain
H d % ~
Do DL A (s (). 0)Bils, 4 (5).0, V)
i=1 (s,b)ESX BB
128CrC H2S(A + B)log 2 +— —ot)H
< r (A+ B)log 75 min 2(Ho 1+(1-0%) ),H
K (o1)2
H ) R
LAY DD (s i (s),0)Bi(s 4 (5), b, V) + (H 4 3)
i=1 (s,b)eSxB
| 8207 (20, + VG,C5) H2S(A + B)log ! .

K )
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which can further bound as

H
SN @ (s, (), b)Bals, 1), b, V)

i=1 (s,b)eSxB

128C*C H?(H + 3)S(A + B)1 KH + _ _ ++H\H
<\/ *CoH2(H + 3)S(A + B) log £ min{?(Ho 1+ o—))’H}

K Gk
| 320 (2C0 + VO,05) H*S(A + B)log 51 \/512C:CHHQS(A 1 B)log K
K K

H
X \l min { 2Hot - (1;;)(21 —H)%) : H} ST @ (s, 14(5),0)Bils, (s), b, V)

i=1 (s,b)eSxB

128C*C,H2(H + 3)S(A + B) log 2 + _ g+)H
S\/ *CoH2(H + 3)S(A + B) log £ min{2(HU 1+ a))’H}

K (U+)2
N 32C; (2Cy + V/C,C3) H2S(A + B)log K2
K
256C*CoH2S(A+ B)log B2 (2(Hot —1+ (1 —ot)H)
+ T 9 min { (J+)2 , H}
1 & - N
5D D A (s n(5),0)Bils, m(5),b, V), (63)

i=1 (s,b)eSxB

where the last relation follows from the AM-GM inequality. Rearranging terms, it follows that

H
ST @ (s, 14(5),0)Bils, 1(s),0, V)

i=1 (s,b)eSxB

512CCoH2(H + 3)S(A + B)log £ +_ _oH)H
S% FCoH2(H + 3)S(A + B) log & mm{2<H" 1+ o>>7H}

K (0F)2
N 64C; (2C, + /C,C3) H2S(A+ B) log £E
K
512C;CoH2S(A+ B)log £E  (2(Hot — 1+ (1 —ot)H)
+ I mln{ (o1)? ,H}
512C*CyH2(H + 3)S(A + B)log £& + _ot)H
< : (H+3)S(A+B)log 5% . [2(Ho 1+(10))7H
K (U+)2
C*CoH?S(A+ B)log £H + - _ot)H
L GRHTSA+ B)log 77 L [2(Hot 14+ (1—0D)T) 51 (64)
K (U+)2

Along with the above result, we are ready to bound ‘/1*"7+(Q) - ‘/1‘7’*’”+(g). There exists some
sufficiently large constants C, Co, C5 > 0, and

5 CyC1H3S(A+ B)log X 2(Hot —1+(1—ot)H
Vl*,v,o'+(g)_v1*,a+(g) S\/ r 1 ( + )Og ) mln{ ( g +( g ) ),H}

K (o)
CrOyH?S(A+ B)log B2 (2(Hot —1+ (1 —ot)H)
+ = ) min { (J+)2 ,H}
CyCsH3S(A+ B)log B (2(Hot — 1+ (1—0t)H)
# K min 7 1}
(65)

where the last inequality follows from condition ([24).
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B.3 STEP 3: SUMMING UP THE RESULTS

+

Consequently, we obtain the upper bound of V;* i (0) — Vlﬁ 777 () in . Similarly,
Vl*,U (g) _ wt7*70 (Q)
*(LH2S(A log BH - _ _ +—\H
S\/C,c3 S(A + B)log £ min{(H+1)(H0 14+ (1—0) )’H},

K (07)? (66)
which directly leads to
C*H2S(A+B)log £2
Gap(,u, ) < Cl\/ r ( + ) og 1)
K
. [2(Hot =1+ (1-0t)H) 2(Ho— =14+ (1—07)H)
X \/mm{ o) , 0 )? JH 5, (67)

for some sufficiently large ¢; and

K > HS(A+ B)log % - { 2Hot — (1;)(21 — J*)H)’ 2(Ho™ — (1;)(21 - o)) , H} .

Dlscusswn of (67 . For the term 7' = min (f(o™,07), H), considering the symmetry between
+and o~, we define g(c*, H) = Hot — H(1 — o")# — (6%)2H. For H > 2, we derive the

first derivative as % = H + H*(1 — ot)#~1 — 2Ho*. Further, the second derivative is

given by %:)QH) = —H?*H - 1)(1 —0")"~2 - 2H < 0, indicating that g(¢ T, H) is concave.

o . +
By evaluating the first derivative at the boundaries, we find WLﬁ_,o — H>4+H >0

and %Z’H)Lﬁ 1 = —H < 0, which shows that g(oct, H) first increases monotonically,

reaches a maximum at some point o*, and then decreases monotonically. Furthermore, since

glet — 0,H) - —H < 0and glo* = 1,H) = 0, there exists 0 < ¢° < 1 such

that g(0°, H) = 0. Thus, when ¢ < min{o",07} < 1, we have T = H. Otherwise,
. +_ _sHH -_ __—\H

e =

C AUXILIARY LEMMAS FOR THEOREM

C.1 PRrROOF OF LEMMA[II

In this part, we prove Lemma [I] produced in Algorithm I}

Before next proof, we clarify the independent property. Let us examine two distinct data-generation
mechanisms, where a sample transition quadruple (s, a, b, h, s") represents a transition from state s
with actions (a, b) to state s at step h.

Step 1: Augmenting D' to Create D"?. To construct the augmented dataset D%?, for each
(s,h) € S x [H], we proceed as follows: (i). Include in D" all N} (s) sample transitions in
D" originating from state s at step h. (ii). If Nj(s) > N h (s), supplement D%2 with an additional

N} (s) — N (s) independent sample transitions { (s, ah - bg ' h, sh ; )} generated as follows:

i) i.i.d. i) i.i.d. 1) i.i.d. m .
apg KR Cls), b R R Cls), s R B fsoal ), N(s) < i < N(s).

s?

Step 2: Constructing D''d. For each (s,h) € S x [H], generate N} (s) independent sample

transitions { (s, ah)s, bgl)s, h, 5;1(?)} as follows:

ii.d. i) i.i.d. i.i. d .
agl)s ~ /u‘h,('|5)7 bgz,)s ~ V}?(|S)7 Sh() Ph(' |Saavb)7 1 SZSNﬁ(S)
The resulting dataset is defined as:

D = {(s.al, b0 b 0) [s €81 <h< H1<i < Ny(s)).

h,s?
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Establishing independent property. The dataset D** deviates from D° only when N} (s) >
N;*(s) holds. This augmentation ensures that D" contains precisely N} (s) sample transitions
from state s at step h. Both D%? and D' comprise exactly N £ (s) sample transitions from state
s at step h, with { NN} (s)} being statistically independent of the randomness in sample generation.
Consequently, given {N} (s)}, the sample transitions in D** across different steps are statistically
independent. As a result, both D' and D' can be regarded as collections of independent samples.

Next, we begin to prove N} (s) < Nj"(s). Since D? is generated by half of the sample trajectories
in line 2 in Algorithm[I] there is

K

Ni(s) = Z ]l{sZ:s}

k=K/2+1
foreachs € Sand 1 < h < H. Thus, we can view N} (s) as the sum of //2 independent Bernoulli

random variables with mean dj, """ (s). According to the Bernstein inequality and the union bound,
we derive

P {5 €8xl [N - a0 = o)

K

< ¥ {|ne-Fae)|zm)
s€S,he[H]
N2/2
<2HS e VNy >0
> eXP( Nh,s‘i‘NO/?))’ 0o=Y

where . - -
K Kdtv 1— g~ K-
Np,s = EVar(]l{s}fZ = s}) = h (5)(2 h (5)) < h2 (5)

Therefore, with probability at least 1 — 29, we yield that: Vs € Sand V1 < h < H,

K / HS 2. HS . HS HS
(68)

As generated by the same way between D™ and D?, we similarly obtain that with probability
exceeding 1 — 26,Vs € SandV1 < h < H,

’Nﬁ(s) - K s)

K oon n o H H
N (s) — 5d‘g Y(s)] < \/QKdZ‘ M (s) logTS + log TS (69)
Combining and (69), there is
nn HS HS
[N/ (s) — Ni(s)| < 2\/2Kd‘,f Y (s) log 5 + 2log —~ (70)

foralls€e Sand1 < h < H.

Now, we complete the proof of Ny (s) < Nj"(s), which can be divided into two cases.

The first case is N, ;’j(s) < 100log %. According to the definition in , we obtain

N} (s) = max {Nﬁ(s) — 104/ N3(s) log HTS, 0} =0 < Ny(s). (71)

The second case is Ni(s) > 100log £2. Followed by , we obtain

K oo o IS HS
leading to

n HS HS
Kdj, " (s) > (9\/5)210g = > 100log =5 (72)
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Thus, we take (72)) back to (68) and derive

N2 (s) > Edu Y (s) — \/QKdﬁ"’”"(s) logHTS “lo HTS > Ed" Y (s). (73)
Consequently, in the case of N2(s) > 1001log HTS, we have
Ni(s) = max{Nf;(s) — 104/ N3 (s) log HTS, 0}
H
= Nj(s) — 104/ N} (s) logTS
n H
— 5\/Kd“ Y (s) log — S
5
(ii) N (iii)
< Ni(s) - {2\/2Kdﬁ “(s)log 72 1 2log Hf} <N, o

where (i) holds under condition (73), (ii) exists under the condition (72), and (iii) comes from the
inequality with probability at least 1 — 2.

Combining the results in and together, we establish N} (s) < N(s).

Now, we claim the following bound with proof in Appendix[C.2} V(s,a,b,h) € S x A x B x [H],
with probability exceeding 1 — 24,

KH KH
Ni(s,a,b) = Ni(s)h(a] )R s) - \/4N2(5)u2(a |$)R(b] $)log =5~ ~log . (75)

Armed with the fact N} (s) < N(s) and claim (75), we start to prove (16). In the following, we
discuss two cases, i.e., Kd}, " (s,a,b) < 1600log &% and Kd)' " (s, a,b) > 1600log £H.

For the first case of K dJ, Ed (s,a) <1600log =5 KH e can easily classified that

—d“ V" (s,a) — 5\/Kd” (s, a)log K(SH 0 < Nj(s,a). (76)

For the second case of Kdﬁn’”n(s, a,b) = Kd“n’yn(s)MZ(a |s)vp(b]s) > 16001log £X, we obtain

KH
Ni(s) = —d" " (5) > 400 log 5 (77)

which is derived by the same line of (73) with slight modification. The property in and the
definition of N} (s) together yield

KH
Ni(s) = Ni(s) — 101/ Ni(s)log =
KH

K non K N0 K npn

As a consequent,

N

NE(s)u(als)vp(b]s) > —di " (s)up(a | s)v(b]s) (78)

—d" (s, a,b) > 200 logKfSH (79)

Noo

where the last inequality holds due to the assumption of the second case. Taking the lower bound
(78) with (73) together, there is

K KH
Nj(s,a,b) > fd”’ "(s,a,b) — \/ dy""" (s, a,b) log —— 5 —log —

KH
0

n n n n KH
gdﬁz Y (s,a,b) — 2\/Kdﬁ Y (s,a,b) logT

| V
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Putting the result above and (76) together, according to the claim (75), we can finally complete the
proof of Lemmal[I]

C.2 PROOF OF CLAIM (75).

To prove claim l| we analyze two cases, ie., Ni(s)uh(a|s)vp(b|s) < 4logZE and
N (s)ph(a] s)vp(b]s) > 4log BH.

For the first case of N (s)ub (a|s)vi(b|s) < 4log £E we conclude the right-hand side of is
negative, leading to the claim (75).

For the second case of N (s)u(a|s)v](b|s) > 4log £E, we compose a special set D' as
| t n n KH
D =< (s,a,b,h) €S x AxBx[H| ’ Ny (s)up(als)vy(b]s) >410gT . (80)

With the fact of

> Ni(uial bl = > Nils) Y uilals)i(bls)

(s,a,b,h)ESX AXBxX[H] (s,h)ESX[H] (a,b)e AxB
. KH
= Z Ny(s) < Z Ni(s) = 0
(s,h)ESX[H] (s,h)ESX[H]

the cardinality of D' can be bounded as:

> (s,ab) Na(s)up(al s)vp (bl s)
< KH
410g o

|D'| < KH/2. (81)

Besides, we can view N} (s, a) as the sum of N} (s) independent Bernoulli random variables with
mean 4 (a | s)vj(b | s), which holds due to N} (s) < N;"(s) with high probability and condition
on N} (s), Ni'(s). Analogous to based on the condition N} (s) < N;"(s), we can repeat the
Bernstein-type argument and obtain that for any fixed triple (s, a, b, h), with probability at least
1-26/(KH),

Ni(s,a,b) 2Ny, (s)uj,(a] ) (D] s)

KH KH
- \/4N}l(s)u;‘1(a|s)u,r{(b|s) logT —log 5 (82)

Therefore, with probability exceeding 1 — 9, holds for all (s, a, b, h) € D'by utilizing the union
bound of (81)) over all (s, a,b, h) € D".

Consequently, combining the results above under two cases, we derive that the property holds
forall (s,a,b,h) € S x A x B x [H] with probability at least 1 — 4.

C.3 PROOF OF LEMMA[3]

We prove Lemma 3] similar to the proof of claim 1 by|Yan et al.| (2024), which is separated into two
parts as follows.
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Part 1: proof of inequality (34). According to the definition in (I8), for any fixed value vector V

independent from Py _ . we have
Peuvjl(llggysym) Pv= Peuaf?gg)sﬁa)b) PV
~laehmin, VI?SE)L,)r(naxs V(s)] {ﬁgvsvﬂvb V], —o" (a - ms}n V1, (s/))}
" aclmin, V(s)max, V()] {P’?’S7a7b Vo =™ (O‘ —min [V], (8’)) } ‘

< max
a€[ming V (s),max, V(s)]

< P, V], — Py 1%
areng‘XH]‘ hsab[ ] h,s@,b[ ]a

ﬁf?,s,a,b [V](y - Plg,s,a,b [V]a

5 (83)

where the last inequality exists due to the fact that the maximum operator is 1-Lipschitz.

According to the definition of empirical transition kernel ]3}?

(ﬁi?,s,a,b - Pf?,s,a,b) [V]a

N

‘]lizyizv’i:7’i:7/':/
:Z[V(sl)]a [El_l {hi =h,s; = s,a; =a,b; =, s S}—P,?(s’|s,a,b)

s,a,b> WE get

ey Nh (S7a7b)

:ZXSI

as a sum of independent random variables. Based on the relationship between P _ ., and PP _ .

we verify E[Xy] = 0 and | Xy | < H for all ' € S. Therefore, with probability exceeding 1 — §
and for some universal constant C; > 0, under the Bernstein inequality (Vershynin), 2018, Theorem
2.8.4), we have

p 1 KH CyHlog ZX
(Pf?,s.,a,b Phsab)[ Jo <C4\/]\fh(sab) arpy L, ([V],) log 5 + Ny (.0 g)
1 KH CyHlog ZX
< ~ 1
= 04\/ N Gora 3y V2R (V0B =5 + e, (84)

where the last inequality comes from the definition of [V]  in .

LetV =V — (P,?’Syava> 1, we have

VarPO

h,s,a,b

(V) = Pf?,s,a,b(v © V)

= ﬁl? s,a b(V V) + (Pf?,s,a,b - ﬁi?,s,a,b) (V © V)

- VarP,? sab ( ) [(P}(L),s,a,b - ﬁi?,s,a,b)v]Q + (P}(L),s,a,b - ﬁi?,s,a,b) (VO V)’
(85)

where the last equation holds since
ﬁf?,s,a,b(vov) = ﬁf?,s,mb ([V - (P}%s,a,bv) 1] © [V - (P}97s,a,bv) 1])
= s (VoV) =2 (P V) (PlaasV) + (PoasV)
= B (V= (BeaaV) o [V = (BasV) 1)) + (Pl
~2(PusV) (PlasV) + (PLaasV)

= Varﬁ}?’sya’b (V) + [(P}(L),S,(L,b Ph s,a b)V}Q'
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Analogous to (84), with probability exceeding 1 — &, there is

~ — 1 KH CyH?*log £X
|(Phs.ab = Phsan) (Vo V)| < 04\/WV‘”PS,S,Q (VoV)log ==+~

H? KH CyH?*log £X
< COyy)| ——V V)1
B 4\/Nh (s,a,b) arP’?*S’“v”( ) log 0 + Nh(s,a,b) 7

(86)

where the last inequation comes from the fact that
Varpy (FoT) < P oy (FoV oV oT) < BP0 (Vo) = HNargy (V).
Under the result in (86)), we bound (83) further as:
= 2
VarP}?,s‘a,b (V) Svarﬁ,? ab <V) + [(Pi(l)y&%b - Pf(b),s,a,b)v]

H?1 CyH? log 1
e

Ny, (s,a,b) Ny, (s,a,b)
=~ 2 C4H2 log EH
NVargy (V) + [(Praas = Phsas) V] + W

C3H?log £
2N, (s,a,b) ’
where the last relation holds due to the AM-GM inequality. Therefore, we obtain
2 (CZ—FQC&;) Hzlog@
VarPﬁ’,s,a,h (V) < 2varﬁl?,5,a,b (V) +2 [(Ph s,0,0 Ph 56 b)v] + Ny, (s,a,b) :
Combining (87) and (84), we derive

+ 2varP}(1Js a,b (V) +

. 87

202 H 1/C3(C+2Cs) Hlog KE
P var, 1
( A5 s (V) o8~ 5 =+ Ny, (5,a,b)

’(ﬁi?,s,a,b - P}?,S,@,b)V’ < \/Nh

207 KH 0 CyHlog #5
Np,

(5.0, )log 5 |(Phsab Ph,s,a,b)v|+m'
(88)

In the following, we consider two cases, i.e., Ny (s,a,b) < log H and N, (s,a,b) >

802

802 IOg

For the first case of Ny, (s,a,b) <

< 802 log | is valid since

< max ‘ PO —p? V’
T a€[ming V(s),max, V(s)] ( h,s,a,b h,s,a,b)

inf PV — inf PV

Peust (PY i) peust (PR )

(89)

KH
§2H:0<H10g 5 )

Ny, (s,a,b)

For the second case of Ny, (s, a,b) >

3 CQ log , we observe from l) that

207 KH
|(Ph s,a,b Pl?,s,a,b)V’ + \/anrﬁ’?ys’%b (V) log T

Cy++/C2(C3 +2Cy) o
Ny (s,a,b) & 0

w\'—'

’(ﬁlg,s,a,b - Pl?,s,a,b)V’
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Rearrange terms above and yield

8C?2 KH

(PR = Phlean)V] S\/anrﬁgmm (V) log ——

Cy++/C3(C2+2Cy), KH
Ny (5, 0,0) log 5 (90)

+2H

Putting and together, we get

8C3 KH
inf PV — inf PV| < L —Varp,  (V)log ——
PeUTH (R, PEUT(RY,) Ni(s,0,0) " Pl 5
Ci++/CI(C}+2Cy), KH
2H 1 .91
+ Ny, (s,a,b) 75 O

Putting the above bounds for two cases together, we conclude the proof of (34).

Part 2: proof of inequality (35). In the process of proving inequality (33]), we just divide the
problem into two cases, i.e., N}, (s, a,b) < 16C3 log £ and N, (s, a,b) > 16C7 log £

For the first case of Ny, (s,a,b) < 16C3 log £, the result is valid since

H210gK5H>

Var » =2 1
arPD Nh (Saa7b)

h,s,a,b

(V)§H2:O<

For the second case of N, (s, a,b) > 16C% log %, there is

Varﬁo (V) 2 VarPO (V) - [(Pf(z),s,a,b - ﬁlg,s,a,b)v]Q - (Pf(z),s,a,b - ﬁi?,s,a,b) (V o V)

hys,a,b hys,a,b

(ii) H2 KH | CiH?log #5*
<V V)+Cny | w77V V)1 )
SVare e )+ 4\/Nh<s,a7b> ST B NFYR)
(iif) (02/4 + 04) H?log 55
< 2V, 14 :
— arP}?,s,a,b ( ) + Nh (37 a, b)
H210gﬁ
arpe ., (V) + <Nh(s,a,b) ’

where (i) comes from (83)), (ii) holds due to (86)), and (iii) exists under the AM-GM inequality.
Putting the two cases together, we complete the proof of (33). Thus, Lemma[3]is finally proven.

C.4 PROOF OF LEMMA [

Assuming that Q; (s, a, b) > Q;”?’H (s, a, b) holds, then we can easily obtain V,* (s) > V,;‘"’"TJr (s),

since

Vi (8) = Byt (o) i o) | @ (5:0,0)]

0 .

2 *,0,0F *,U,0
> E@NM* (s),b~D(s) |:QZ (57 a, b):| > EGNH*(S),IJNI//\(S) Qh, (57 a, b) = Vh (5)7

where (i) holds due to the fact that 7 = v;" and (u;, ;") is the Nash equilibrium of @Z (s,a,b).

Consequently, we just need to verify

Qf (s,a,0) > Q1" (s,a,b), (92)

which is obtained by induction.
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It can be easily verified that (92) holds at the base case when h = H + 1 under the trivial fact
@E_H(S, a,b) = Q;ffl(s, a,b) = 0.

Suppose that (92) holds for all (s, a,b) € S x A x B at some time step h € [H] next.

According to the update rule in line 4 in Algorithm exists if @,T (s,a,b) = H because
@Z(s, a,b)=H > Q;Wﬁ (s,a,b).

Besides, in the case of Ny (s, a,b) = 0, we have 5, (s, a,b, ‘7};;1) = H, leading to @Z(s, a,b) =
H > Q,*I’D"’+ (s, a,b). Otherwise, for Ny, (s, a,b) > 0, Q} (s, a, b) is updated as

Qf o) Float)+ st PV 46 (5.0.0, i)
h,s,a,b
2?(57 a, b) + PEZ/IUJ}?]EO th—"-_i-l + ﬂh (57 a, b? Vh—:-l)
h,s,a,b
- inf PV — inf PV
peust (B, . ) hovt peust (PR ) bt
>7(s,a,b) + inf PV 40
( ) peust (PP ., hl
~ . Sx, U0t *, 0,0t
>7r(s,a,b) + inf PV,:Ll’ +0=0Q,"° (s,a,b), (93)

pPeuyst (P,?,S,a’b)

where the second inequality holds due to (36) in Lemma [3] and the last equality comes from the
empirical robust Bellman equation (33).

Armed with the case of h = H + 1, we complete prove Lemma ] by induction.
C.5 PROOF OF LEMMA 3]

Following the proof by Shi et al.| (2024bl, Lemma 3), we bound min,es V,* (s) and max,cs V,* (s),
respectively. Specifically, we have

min ‘A/h+(s) = meigE(a,b)quy* [@Z(S,mb)}

SES h
— minE (s, a,b inf PV ( b, Vi )
Elelg (a,b)~pi v [rh(&a, )+ Pe””i?ﬁff,s,a,b h+1 + B (550,60, Vi
>0+ Isrélg ‘7,;:1(5) +0, (94)

where the middle equality is valid due to the update rule in line 4 in Algorithm[2] Similarly, there is

i+ N+
max V" = max[E [ s,a,b ]
S h €S (a7b)~u;f><u;f Qh( » & )

= max [E +
sES (a’b)N'u’h XVp PEZ/{U+(§;,)

L, 8,a,b

+ [?h(s,a, b) + inf P‘/}h-:—l +ﬂh <s,a,b, ‘7h+1)

inf PV

<1+ max f w1+ H. (95)
(s,a,b)ESXAXB P€u0+(Ph,,.§,a,b)

In order to prove Lemma we here introduce several useful notations. For any h € [H], there exists
at least one state s, that satisfies V," (s;) = minses V, (s).

Furthermore, for any accessible uncertainty set o+ > 0 and (s,a,b) € S x A x B, we define an
auxiliary vector P/ _ ., € R by reducing the values of several elements of P _  , strictly, namely,

o
1

D 50 2 : 50 / D n_ I D 50
0< Ph,s,a,b < Ph,s,a,b and Ph,s,a,b(s ) - Ph,s,a,b(s ) - th,s,a,b - Ph,s,a,b
s'eS

(96)
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We use ls; to represent a S-dimensional standard basis under s, we can derive that

1
2

where the first inequality is valid since the ‘distance’ function (e.g., TV distance) satisfies the triangle
inequality.

Al ]z o

h

HPhsab_'_U [l ]T ﬁf(b)sab‘ HPhsab Phsab

~ T NN ~ T,
/ + 0 / +
Therefore, we can conclude that P}, , , , + 0 [ls;’] eUT (P, p)and P 40 [ZSZ] isa
distribution vector based on (97)), leading to

inf PO < (Plaas ot [, ] ) T
peust(pp, ) hs,a,b s ] ) Vil

HPhsabH H h+1|| +Vh—:-1(s;+1)
+ i+
<(1-o )maxVhH( )+ ot %12Vh+1(8)7 (98)
where the last inequality holds since
H‘Pl/L,s,a,bul :Z‘Pi/L,s,a,b(S,):_Z(Pf?,s,aﬁb( ) Phsab +Z‘Phsab 1_U+'
‘ | (99)
Putting (98) and (93) together shows
< i vt
V() ST S ety PV
§H+1+(1—0+)maxVh+1( )+ot mthil() (100)
Taking the result (I00) with (94), we obtain
maX‘A/h —manJr
sES s€S
+ i+ + i UV
<H+14 (1-07) rgleagcvhﬂ(s) +o ggthH( s) — rréanh+1( s)
— + a1+
=H+1+(1-0") (meachhH( ) — grlelth+l(s)>
<H+1+(1-0") {H +1+(1—0ot) <m€a§(x7h12( ) — min Vi ,(s ))]
H+1)(1-(1—-ogt)H"

<. < g
Combining this result with max e s ‘7h+(s) — mingegs ‘A/}f(s) < H, we complete the proof.

C.6 PROOF OF LEMMA[G]

First of all, we introduce some auxiliary values and reward functions to control

Zf; D (s.b)eSxB d?’”d’”* (s, 1d(s), b)VarP:) (‘A/) as below: for any time step ¢

s,pd(s),b

+ V™ := minges V;(s): the minimum value of all the entries in vector V"
. Ai’ =V le truncated value function.

* 717 (8) = E(a,p)m(ud(s),0+ (s))Ti (8, @, b): average reward function.

o M — TZH Yo (Ai[‘;l — ‘A/Zm) 1: truncated reward function.
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Then applying the robust Bellman’s consistency equation in (33)) gives
A

(i) d x ~: fAA d _* ~
<A+ PMYVE 4280 UM

K2 7

d o * ~ U~ -~ -~ -~ d o *
=7 PO 4 (V= T - Ot 260"

_ 7/;an + ﬁiinf,v"}iil - ‘//\;T_ll 4 2/85}171/*
= 4 BV o (102)
where (i) follows from the fact that
~ d v* . ~ d v*
Vi (s) <P (8) + Eabym(u (5),0+ () inf PV + 8" (s)
peust (PO,
(i)/\ﬂ/d l/* . A+
<P (8) + By m(u(s),04 (9)) inf PV
PEM“+ (Pio,s,a,b
n mf  PVE -~ inf  PUL ||+ ()
PEU”+ (Pio‘s,a‘b) P€u0+ (Pio‘s,a,b
(ii) d o * inf \7 <5 < u*
SH (5) + Eqymtusionn o) |PrasVita| + 2817 ()
SR s+ PV 287 (0) (103)
Here, (ii) is valid under the notation
inf,V . . i+
i,8,a,b T a'rgmlnpeua+ (P'io,s.a,b)P‘/iJrl (104)
and (iii) holds under the notation as ﬁ;ff’v = E(a,b)~(ud<s),w(s))Pff,;‘,/b and the sequence as

]Biinf’v € R5*S Besides, (i) in (103) exists due to in Lemmafor N;(s,a,b) > 0and

~

inf PV

d x
o+ <H=p8""(s (105)
peust (P2, ) i (=)

; v+
Peuﬁu(l}t;gs,ayb PVHl
for N;(s,a,b) = 0.

The above fact leads to
Ea,0)m(ut()r (s Var pinsv (Vid1)

0 -
=E ()~ (s) v (s Varpiee, (Vi)

inf,V (1> 7 inf,V 1> inf,V {>
=0 iy o)) | Prns (Vi © Via ) = (PSR VL) o (PR Vi) |

<E (0 pymiuitor e ) | P (Vi © Vi) = (PREY VL) 0 (Pff,f,b@h)}

LB (Ve o V) = (BT 040) o (BT 024)

=P (V0 Vi) = Vi) 0 V() + V() 0 W (s) = (BT 0y) o (B V 944
_Pii;f’v (Az/+1 ° Ai/+1) —V/(s) o V/(s) + (‘71/(3) - ﬁ;;f"? Az/+1)> ° (7(3) + (ﬁ;r;“? Ai/+1))
B (V0 Vi) = D) 0 Vi) + (7 (0) 428 (9)) o (V15) + (BT T
BV (V0 V) - T 0 V) + (|77 + 7] ) (28 ) +1) . os)
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where (i) follows from the fact that Var pis,v (V —bl) = Var pint.v (V) for any value vector V € RS
and scalar b, (ii) holds with the fact

E ottty o)) | (Praas Viin) o (P Vi)

inf,\7 5 inf, A%
ZE(a,b)N(pd(s),u*(s)) |:(‘Pi,s,a,b zl+1)i| OE(a,b)N(/Ld(s),V*(s)) [(Pz gab z+1):| ;

(iv) arises from 7" < r; < 1 due to ‘A/ﬂl — 171-’“ < 0 by definition, and (iii) comes from (102).

Consequently, combining ([@8), we arrive at

Z d?’ﬂd’y* (s, Nd (s), b)varPE,'f,’f,b (‘Zil)

(s,b)eSxB
_ngp” $)E o, )~ (510 (5 Var pinsv, (Vi)
IS
<§gdpu v ( pint,V (‘Z’H o ‘7/+1> —V/(s) o V/(s) + (‘ v/ T ’ AZ/HHOO) (2@;1,”*(8) N 1))
<§dpu v (meV <V+1 o Z'Jr1> — ‘//\;/(s) o ‘7/(8)) + (‘ I//\;-’ N + ‘ Ai/JﬂHoo>
+2<“7i’ ' 1+1H )deﬂl’ Buu()
3 (R0 (Valore ,»+1<s>) S AOLACRYAC) RN/ e (1
w2 (|7 + V] ) S s (o)
seS
:SZ@; (@47 (Vs (9oVa(9) =2 (V1 () 0 V() + (|77 + |7 )
(7] [Ta) X @ )0 i), 7). (107)
7 (s,h)ESXB

Besides, under TV distance, we have

Varps  (Vit)) = Varpew (V)] = |Varps | (Vi) = Varpuer (V)|

'Lsab

inf,V 7 2
19ab i,8,a,b 1 i+1 o
2
g(ﬁHVi’HH <@+ ||| . aos)

where the last inequality comes from Lemma 3]

33



Under review as a conference paper at ICLR 2025

Therefore, we derive

Z > dP’ud7V*<57Md(s),b)VarP£ . (Vi)

i=1 (s,b)eSxB

Z Z dp,u"yv* (s, p4(s), b)Vaerf,’Xb (‘7211)

i=1 (s,b)ESXB

H
4 Z Z d?v/tdﬂ/* (S) 'l,l/d(s)7 b) ’Varp;‘j&a’b (‘/;j’:l) VaI’P;:]f 14 (V;il)’
i=1 (s,b)eSXB

H H
> > d v+ 11
SSa((5] [l ) S o35 ([0 e o)
=1 SES =1
dl/* ~ o~
+ A () Vi (s) 0 Vi (s)
seS
A H+1)(1—(1—gt)H~i a =
<4Zmin{( ol Er o) )7H Z AP (s, 1% (s), ) Bi(s, 19 (s), b, V)
- g (s,b)ESXB
H H+1)(1—(1—cgt)H-i
+(H+3)Zmin{( + )< ( o) ),H
=1
D) (H+1)(1-(1—oh)¥ ul “ ) "
<4me m 7H Z d2H Y (s, pu(s),0)Bi(s, u(s),b,V)
g i=1 (sb)ESxB
H+1 — o))
+(H+3)Zmin{( G ( d }
=1
(ii) . [2(Hot —1+ (1 —-0")H) - o v
§4Hmm{ ) ,H}Z Z dPH (s, 19(5), ) Bs (s, n%(s),b, V)

i=1 (s,b)eSXB

. [2(Hot —1+(1—0h)H)
+(H+3)H mm{ o) , } , (109)
where (i) comes from Cauchy—Schwarz inequality and the (ii) holds since
(H+D)(1=(1=0")"7) HH+1) = H+DA-o)
Z ot T gt Z ot
i=1 i=0
HH+1) (H+1)1-Q1-0h))
e (*)?
C(H+1)(Hot =1+ (1—0")H)
B (0F)?
2H(Hot — 1+ (1 —o™)H)
- (0+)?

D PROOF OF THEOREM

In this section, we focus on a simpler class of RTZMGs: robust Markov decision processes (MDPs),
which are single-agent versions of RTZMGs.

Before proceeding, we briefly define a Robust MDP (RMDP) in the finite-horizon episodic
setting. Recall that an RTZMG with an uncertainty set is represented as MG =

{8, A, B,ue" (P°),u° (P°),r,H}. For simplicity, we assume A > B, and set |B]|
meaning the min-player’s actions do not affect transitions or rewards. Thus, finding a robust NE
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in such RTZMGs reduces to finding the max-player’s optimal policy in a corresponding RMDP
M, = {8, AU’ (P%),r, H}.

Thus, in this section, we construct the lower bound for finding the optimal policy in RTZMGs, which
also implies a lower bound for finding robust NE in RTZMGs. We first highlight a useful property
about KL divergence from (Tsybakov| (2008, Lemma 2.7), which can be helpful in this section.

Lemma 7 For any p,q € (0, 1), it holds that

(p—q)?

KL(p |l q) < m

(110)

D.1 STEP 1: CONSTRUCTING A FAMILY OF HARD MARKOV GAME INSTANCES

The hard instances developed here differ from standard MDP since we need to consider that the
transition kernel can be perturbed in robust MDPs.

Constructing hard robust MDP instances. To begin with, we first introduce an auxiliary
collection ® C {0, 12, consisting of H-dimensional vectors. In addition, resorting to the Gilbert-
Varshamov lemma (Gilbert, |1952)), we notice that there exists a set & C {0, l}H such that:

~ ~ ~ H
for any ¢, € ® obeying ¢ # ¢ : || — |1 > 3 and |®| > efl/8, (111)
With this in mind, we construct a set of RMDPs as below:

M(F,®) = {M" = (S,A,Z/I"+(Pf’¢),r,H) |f e F={0,1,--- ,SA -1},

¢ = [nli<n<m € @}, (112)

where
§={0,1,...,5 -1}, and A={0,1,---,A—1},
and o+ will be introduced momentarily.

In simple terms, the collection M (F, ®) consists of SA subsets, each containing |®| different
RMDPs associated with some f € F. The state space for each RMDP M? € M(F,®), denoted

as Sone, includes two types of states: M = {m; | i € F} and N = {n; | i € F}. Each state in
M and A has two possible actions, Aone = {0, 1}. Thus, there are a total of 254 states and 45 A
state-action pairs.

With these notations, we define the transition kernels for M(F,®). For any RMDP M? €

M(F,®), the transition kernel P¥¢ = {.P}J:’(z’}hH:1 is defined as follows, for any (s,a,s’,h) €
Sone X -Aone X Sone X [HL

pl(s' =np)+ (1 —p)l(s'=s) if s=ms,a=¢
P}{’d)(s/s,a)—{ qi(s' =ngp)+ (1 —)l(s'=s) if s=mpa=1—¢ (113)
1(s' = s) otherwise

where p and ¢ follow p > ¢ > 3.

In addition, the reward function is defined as

1 ifseN
V(h,s,a) € [H] X Sone X Aone :  Tr(s,a) = { 0 otherwise. (114)
Uncertainty set of the transition kernels. Denote the transition kernel vector as
Y(h,s,a) € [H] X Sone X Aone : P? = P?(-]5,a) € A(S). (115)
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Recalling the uncertainty set defined in , we know that 24" (Pf:%) represents:

Ut (o) =oue (P ), uet (Pl ) = {ﬁf,qb c A(S):p(ﬁf@ _ ph¢ ) <U+}7

h,s,a h,s,a h,s,a h,s,a h,s,a )] —

where ® represents the Cartesian product over (h, s,a) € [H] X Sone X Aone-

For the convenience of the subsequent proof, we analyze the TV distance as an uncertainty set for
example, which means

- 10~
u (Pt = {PlL e AS) 5 | B - Pl <ot} (116)

h,s,a h,s,a h,s,a

Next, we introduce useful notations and facts for this section. For any RMDP M? € M(F,®) and
any (h,s,a,s") € [H] X Sone X Aone X Sone, We define the minimum transition probability from
(s,a) to ¢, determined by any perturbed transition kernel Py, ; , € U (PH? ), as:

h,s,a

P syt P ss0) = max{Po(s'] s.a) o0} (117
h,s,a e !

h,s,a

where the last equation follows directly from the definition of 24" (-) in (116}, with the remaining
probability distributed to other states.

For convenience, we also define the transition from each s € M to the corresponding state s " €
N for any /\/l;f, which is crucial in our analysis: for all h € [H],

formy: ppt = P (nyg lmy, dn) =p— ot
i inf
gt = Pl (g lmp, 1 — gp) =g — o (118)
Then it is obvious that
Pt =t =l M =g =g (119)

which motivates us to abbreviate them consistently as p'™f := pi"f and ¢'*f := ¢i"f later.

Robust value functions and optimal policies. We now define the robust value functions and
identify the optimal policies for RMDP instances. For any RMDP M? € M(F,®), let p=/¢ =

{uZ’f ’¢}th1 represent the optimal policy, given that v is deterministic. At each step h, we use

Vhﬁ 7254 and Vhf"ﬁ’f % to denote the robust value function of any policy i and the optimal policy

15, respectively, under uncertainty level o+. The following lemma highlights key properties of
robust value functions and optimal policies; the proof is deferred to Appendix

Lemma 8 Consider any ./\/l? € M(F,®) and any policy ji. Defining
ﬁ7f,¢ — inf~ inf ~ 1— 120
m, P an(dn [ my) + ¢ fin(1 — én [my), (120)
it holds that

~0-+7 b ~7.) ~7U+) b ~)47 ~:U+7 b
Vhe[H]: VT D0 my) = mpDOVET TP (ng) + (1= mip POV (my),
(121a)

V(s,h) €N x [H]: VI 2(s) = 14 (1 — o)V P2(s) + ot VET T (my). (121b)
In addition, for all h € [H|, the optimal policy and the optimal value function obey

b (on |my) = "% (on |ng) = 1, (122)
ot infy 0", f, in ot f,
Vit D2 (myg) = VIS (ng) + (1= pM VIS (my). (123)
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Construction of the history/batch dataset. In the nominal environment Mjf’", a batch dataset is
generated with K independent sample trajectories, each of length H, according to (3)) and based on
the initial state distribution o" and behavior policy " = { u’}‘L}thl satisfying

1

Qn(s) = Q(S) and /72(@ | S) = 57 V(s,a,h) € Sone X Agne X [H] (124)

We define the nominal transition kernels for M?’", where any state m; € M transitions only to the

corresponding n; € A or remains at itself. For simplicity, for any s = m; € M, we denote the
corresponding state n; € N as s™ ™. The basic nominal transition kernel is defined as follows for
all (h, S, a) S [H] X Sone X Aone:

(p+MA(s' ="+ (1—p—A)I(s'=35) if seM,a=¢y,
Pr(s'|s,a) = { pl(s =7+ (1 —p)L(s' =) if seM,a=1—¢y,
1(s' = s) if seN.
(125)

In words, the transition kernel of each M? € M(F, ®) only differs slightly from the basic nominal

transition kernel M?’" when s = my, which makes all the components within M (F, ®) close to
each other.

Specifically, p and q are set according to
0<p<p+A<1 and 0<g=p—-A (126)

for some p and A > 0. Without loss of generality, let the uncertainty level be o € (0,1 — ¢o] for
some 0 < co < 1. Then taking c; < § and ¢; = % < 1, p and A are set as

C2 : + c2 Cc2 : + c2
p=JH " <of A<l 0T <op (127)
(1+%)o™ otherwise ~ | %o"  otherwise

which establishes the fact that

p+AZp2q:p*A2maX{2%,o+}~ (128)
Combined with H > 2, it is easily verified that 0 < p + A < 1 as follows:
2 H-1
when0+>;—;[: (1+%)J++%0’+§1—CO+%0+§1—¥<1,
Co 3ca
henot < —=: = <1. 12
when o < oo 5 < (129)

In addition, let 9(s) represents a state distribution supported on the state subset (m g, ny) € M xN:

1 1
8(s) = g l(s =mp) + (1= mg7) 1 = np). (130)

where 1(-) is the indicator function, and C' > 0 is some constant that will determine the
concentrability coefficient C* (as we shall detail momentarily) and obeys
1 1

< I
4

CSA (131)

As it turns out, for any MDP Mi;, the occupancy distributions of the above batch dataset are the
same (due to symmetry) and admit the following simple characterization:

, 1
V(s,a) € Sone X Aone, drl"Pd) f(s, a) = 5@(5), (132a)
(5, a,h) € Sone X Aone X [H], o) 4P (s) < 28(s), o) _ AP (5,a) < B(s).

2 4

(132b)
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In addition, we choose the following initial state distribution

1 .
o CSA>» lfSEM
9<5>_{0, ifse N, (133)

With this choice of g, the single-policy clipped concentrability coefficient C and the quantity C' are
intimately connected as follows:

C<Cr<2c. (134)
The proof of the claim (I32) and (I34) are postponed to Appendix[E.2]

D.2 STEP 2: ESTABLISHING THE MINIMAX LOWER BOUND

Recall our goal: for any policy estimator i computed based on the empirical dataset, we plan to
control the quantity

w0t ot
Smax AV v )} (135)

with initial state distribution defined in (T33).

Step 1: converting the goal to estimate (f, ¢). Towards this, we make the following essential
claim which shall be verified in Appendix [E.3} letting

2 ifot < 2
< H - 2H 136
©= {1 otherwise (136)

and
, ifot < L2
A=cs HQE N =on (137)
- otherwise
which satisfies (127)), it leads to that for any policy i obeying
~ H
D an(lmg) = E e Clmpll, > 5 (138)
one has
Vi I () — VT () > e, (139)

We are now ready to convert the task of estimating an optimal policy to estimating (f, ¢). For this,
let P; 4 represent the probability distribution when the RMDP is ./\/l? forany (f, ¢) € F x ®. Then,
for any (f, ) € F x ®, suppose that there exists a policy ft achieving

Tot 3
Pro { VT I mp) = VI I mg) < e} = 2 (140)

which in view of (I39) indicates that we necessarily have

H
Pf¢{2!|uh ) = 0 Imf>||1<8}24- (141)
h=1
Consequently, taking ¢ = arg 1n1n¢€q> Zh B my) — gy T2 m #)|l,» we are motivated to

construct the estimate of ¢ as ¢ = ¢. Namely, if S5, [|fin (- |my) — u2f¢( |my)||, < & holds

for some ¢ € @, then for any ¢’ € ® obeying ¢’ # ¢, one has

H
ST anClmyg) = @y ¢ lmg)|,

hf

H
>STE 0 Clmg) = e Clmg)|), - ZHuh (-[mg) = a0 (- [my)]

h=1

H H H
> T w (142)
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where the first inequality holds by the triangle inequality, and the last inequality follows from the

assumption Zthl (- [ myg) — fy f¢( |mf)H1 < 4 and the separation property of ¢ € ® (see

l ). Similarly, it shows that we have (;5 = (b if

ZH,Uh |my) = il (- Imy)|, < o ZHuh lmy) — iy ()] (143)
h=1

holds for all @' € ® that ¢’ # ¢. It is clear that the above equation can be directly achieved when

Zthl H,Eh( |myg) — ﬁ2f¢( \mf)Hl < %, which gives
3 S ok H1 .3
Pro[6=0] > Prod Y llinCIm) —mlClmpll, < 51 =5 (4
h=1

Step 2: developing the probability of error in testing multiple hypotheses. Next, we address
the hypothesis testing problem over ¢ € ® and derive the information-theoretic lower bound for the
probability of error. Specifically, we define the minimax probability of error as:

= inf max P ~ |
P (F,0) (f.0)E€FxP f,¢(q§ #+ QS)

where the infimum is taken over all possible tests ¢ constructed from the available batch dataset.

Given the dataset Dy with K independent trajectories, let o™? (and Q2’¢(s,a)) represent the
distribution vector (and distribution) of each sample tuple (s, as, s;,) at time step h under the
nominal transition kernel P* for /\/lq;’". Using this, along with Fano’s inequality (Tsybakov,
2008, Theorem 2.2) and the additivity of KL divergence (Tsybakov, 2008 Page 85), we derive
the following result:

MaX (4 5 cp 523 KL(Q“"’5 | Q"’¢) + log 2
Pe > 1—K
log @

(i) K - log 2
>1-— 8K max _KL(¢"?[o™?) — 8log

H (4.4)ca,043 H
(i) 1 K ~
> - — 8K ax KL(o™? | o"?), (145)

2 H pdeao4p
where (i) holds by |®| > /8 and (ii) follows from H > 16log 2.
Since the occupancy state distribution dj, is the same for any MDP /\/ljf for ¢ € &, we apply

the chain rule of KL divergence (Duchi, 2018, Lemma 5.2.8) and the Markov property of the
independent sample trajectories to obtain:

~ H
KL(g™? | o™?) = Z l]iE {KL( ®(Is,a) | P ( |s,a))]
=1 5~ (5)
Q%Emf Z > [KLBLCImpa) | BECImg )], (46)

h=1a€e{0,1}
where (i) follows from applying (T32)) and obtaining the fact as

*¢ S, a *¢ S,a
E e <| I PPl sa)]

~ P (ot
N _ wp(als)Py(s"|s,a
= E dp(s) E uh(a|s)Pff*‘(s’ |'s,a)log Nh( [5) ’(’;h( [5,a)
s a,s’ MZ(G"S)P}L (SI|S7G)

1 P%(’\m a)
=—0 ¢L / —f7
= 0m) 3 B! [y a)log T

a s P ( ‘mfaa)

—a(mp) S KL(PP (- |my,a) | PO (- |my, ).
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Consequently, combining (T43)) and (T46) leads to

4K 1 =
——  max _|a(my) > > KL(PY"(-|my,a) | PP (-|myg,a))| . (147)

1
DPe Z o - ~
2 H (pdevo# =

Thus, we turn to focus on terms in (147)) now in different cases of the uncertainty level o™,
s ForO <ot < 3% If ¢y, = o, it is obvious that

> KL(PYO(-|s.a) || Pr?(-|s,a)) = 0. (148)
a€{0,1}

Therefore, we consider the case of ¢, # 5;1. Without loss of generality, we suppose ¢, = 0
and ¢ = 1, which indicates
~ _ \2 . AQ
KL(P? (0 my,0) || P2(0|my,0)) < L9 O
(h (l f )H h (l f )) q(lfq) q(lfq)
G) (cs)%e? - 4(c5)%e?
- Hq(1—¢q) = cH3 '’

(149)

where the first inequality exists by applying Lemma[7} (i) follows from the definitions in
(126), (ii) holds due to the definition in (I37), and the last inequality arises from ¢ =
p—A> L (see(l27pandl —g>1-—p>1—2>1

Similarly, we can establish the same bound for KL(P;?(0 [my, 1) || Pr?(0]my,1)).
Summing up the results with the fact in (T49), we arrive at

16(65)262

b X
> KL(B?CImypa) || B2 my,a) < = =

a€{0,1}

(150)

* For 52 < 0% < 1 — ¢o: Following the same pipeline, it then boils down to control the
main term as below:

~ _ 2 . A2
KL(P*(0[m7.0) | P50 my,0)) < L=9° 0
(h ( ‘ f )H h ( | f ))_q(lfq) q(lfq)

i) (c5)20+%2  2(cs)20te?

p 151

H2q(1—q) = coH? (151)

where (i) and (ii) follow from the definitions in (I26) or (I37). Here, the last inequality

arises from
c1, o Q) c; () ¢
1og>1-p=1-(1+L)t>c-2L>2
g>1-p A+t zeo—F7 25
(iii)
p>q=p-A>o", (152)

where (ii) holds by the definition of ¢; = %, and (iii) follows from (128). Consequently,
we arrive at

3 KL(PP( ] sia) || PrP(,s0a) <
a€{0,1}

(153)

Summing up (150) and (153)), we achieve for any (¢, qg) € ® with ¢ # ¢ and any time step h € [H]

16(65)262
coco H?

IN

S KPP Imp.a) | PEOC |y, a)) max{ot,1/H}.  (154)

a€{0,1}
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Plugging (T54) back to (T47), under the definition in (T33)), we obtain

H
1 4K 3
pe>=—— max _|o(my) KL(PP"(-|my.a) || PP (- |my,a)
2 H (4,d)c0,6+#3 ,;; (7 " )
H

1 4K _ 16(c5)%e? n
> _ — 1/H
> 5 -4 Q(mf)h; cocs IT? max{c™,1/H}

1 64K (c5)2e? N 1
> - DRG)E 1/HY > = 155
25 7 cocCsame e U HY 2 4 (155)

as long as the sample size 7' = K H of the dataset is selected as

T < coc2CSAH? min{1/o", H} < coc2CrSAH3 min{1/ot, H}

156
= 256(cy 262 = 256(cy ) 2€2 (156)

Step 3: summing up the results together. We suppose that there exists an estimator ;. such that

+ Tot 1
P va J:b( gy _ et }> } <. 157
ax JEre W1 (o) = Vi (0 z¢el <7 (157)

Then according to (I33), we need

m 1
Yw e F: rqrﬁlgng7¢ HVl*’”+’f’¢(mf) - \/1“’U+’f’¢(mf)} > 6} <7 (158)
To meet (I538) for any w € F, we require
*,0t ) ﬁ,g—* ) 3
Vo€ @i Py (VT mg) = VT mp) <) 2 1 (159)
which in view of (I39) indicates that we necessarily have
a H)| _3
V¢Eq) Pf»¢{ZHﬁh(|mf)—ljZ’f’¢(mf)H1 < 8} > 1 (160)
h=1
As a consequence, (T44) indicates
- 3
Vo E®:Pry|6=0| > - (161)

To achieve (I57), we here apply the fact in (I6I) to all w € F, which leads to the fact that one
necessarily has

. (162)

=

V(f0)€Fx@: Pry(F.9) = (f0) 2

However, this would contract with (I55) as long as the sample size condition in (I56) is satisfied.
Thus, if the sample size obeys the condition (156), we can’t achieve an estimate y that satisfies
(T57), which completes the proof.

E AUXILIARY FACTS FOR THEOREM [2]

E.1 PROOF OF LEMMA[§]

Since all RMDPs in M (F, ®) are constructed similarly for each w € F and ¢ € ®, we will focus
on a specific RMDP /\/ljﬁ € M(F,®), with the results applicable to all other RMDPs in M (F, ®).
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Part 1: ordering the robust value function over different states. Before proceeding, we
introduce several facts and notations that will be useful throughout this section. First, for any ./\/l(lfs
and any policy fi, we observe the following at the final step H + 1:

Vse MUN : Vi 9(s) =0, (163)
Then for step H, we can easily verify that

VseN: VET () = By [TH(&(L) +  inf Pvgff’fﬂ =1 (164a)

ot s
PeU (P};f;,a)

ot f, : ot f,
VseM: Vi I(s) =Baniyi s [m(s,a) L. P )PV,Q,+1 f¢] =0, (164b)
H,s,a

which holds by (I63) and the definition of the reward function (see (I14)). The above fact directly
indicates that

V(s,s') € M x N : anig Vg’a+’f’¢(§) = Vg’a+’f’¢(mf) < Vg’a+’f’¢(s) < Vg’g+’f’¢(s'),
s€
(165a)
Y(s,8') €N x N o VBT I0(5) = o 504, (165b)

Then we introduce a claim which we will prove by induction in a moment as below:
Y(h,s,s") € [H x M x N VIO 59 (m ) < VIO 09 (5) < VEOTI9() (166a)
V(s,8) EN x N o VP I (s) = o lo (). (166b)

Note that the base case when the time step is H + 1 is verified in (I65). Assume that the following
fact at time step h + 1 holds

. ot f, iot.f, ot f, mot,f,

(s, s') € M N+ minViESP0E) = VTP mg) < VIET0(s) < VTS,
(167a)

V(s,s') €N x N o VT I9 () = VETI9(s), (167b)

Therefore, the rest of the proof focuses on proving the same property for time step h. For RMDP
J\/lj? € M(F,®) and any policy p1, we characterize the robust value function of different states
separately:

e For state s € N': we observe that for any s € N,

G0, . mot,f,
th’ ! ¢(5) = E(wﬁh(' ['s) {Th(s’ a) + Peuagl(ga.f,¢ )th#""l ! d)}

h,s,a

(i) inf fot,f, mot,f,

=14+ Eonjin(-s) [Ph 7f’¢(3 | Sva)VfiJrl f¢(3)} + ‘7+th+1 N)(mf)
— 14+ (1= oV (s) + 0T VT (my), (168)

where (i) holds by rp(s,a) = 1 for all s € N (see (114)), the fact that

minges foi‘f’f 9(3) = VhMJ,j*,f,¢(m ) induced by the induction assumption (cf. ll

and the definition of P"?(s|s,a) in (117), and the last equality follows from

P/?(s|s,a) = 1 forall (s,a) € N' X Aone. Resorting to the induction assumption in
(T67), we have

Y(s,s') €N x N : Vo I0(5) = yo T lo (o), (169)
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* For state my: first, the robust value function at state m ; obeys

~ o+
Vf’g ’f’¢(mf)

_ ~ : Hot.f.
= EaNMh(' [my) Th(mf, a) + peuﬁl(n}f,{:if’a) PVh-H
O) ~ : ot f.¢
=0+ pn(on | my) +1ni}¢ PV
Peu° (Ph:mme)
+ TR (1 — ¢ | my) inf Py e
peyet (P;{;j;f)l_%)

(i) ~ i hoT : o+
D S (on | my) [pmfvl;:g 7f7¢<nf) + (1 _ pmf) thjj ’f’d)(mf)}

~ in N,U+, s in N’U+a s
+Nh(1_¢h|mf)[q VEL T ng) + (1 - ™) VIS M(Mf)}

(i) 7. f.oy ot f, fi o\ ot f,

= mp POV ) 4+ (L= mp VIR (my) (170)
Tot Tot

< (1 _ U+)Vh“4’rl ’f’d)(nf) +U+thjrl vfyd)(mf). a71)

where (i) uses the definition of the robust value function and the reward function in (I14),
(ii) uses the induction assumption in so that the minimum is attained by picking
the choice specified in (I118) to absorb probability mass to state my, and (iii) holds by

plugging in the definition 1) of mg’f ., Finally, the last inequality follows from the
fact that function f(m) = mV;fNL_;T’f"z’(nf) +(1- m)‘/,fj_:f’f@(mf) is monotonically

= ot
> V271 (m ) (see the induction assumption

. . . . got
increasing with m since V', 19 (ny) ]

), and the fact mi,f’f’¢ <1l-—ot.

Combining the above results with (I69), we confirm the claim in (TI66).

Part 2: deriving the optimal policy and optimal robust value function. We shall characterize
the optimal policy and corresponding optimal robust value function for different states separately:

* For states in M: Recall (T70)
i 0-+1 k) ~7 ’ ~70.+7 k) ~7 ) ~7ﬂ'+7 k)
VT ) = mp POVES T )+ (L= mp POV my) - (172)
and the fact V}f7+"§+’f’¢(nf) > V,ﬁ‘f’f’(z’(mf) in (166). We observe that li
f ¢

is monotonicity increasing with respect to m/ 1.¢ 59 s also increasing in

‘ ‘ 1 and mp”
fin(¢n | my) (refer to the fact p'™f > ¢! since p > ¢; see (126) and (118))). Consequently,
the optimal policy and optimal robust value function in state m s thus obey

Vhe [H]: fip" 0 (gn|ms) =1,
ot in 7O'Jr, s in »0+7 5
Vi b myg) = pMVET D (ng) + (L= p™) Vi D (). (173)

* For states s € N': Recall the transitions in (I23)) and (IT3). Considering that the action
does not influence the state transition for all states s € N, without loss of generality, we
choose the robust optimal policy obeying

VseN: % (gnls)=1. (174)
E.2 PROOF OF CLAIM (132) AND (134)

Proof of the claim (I32). With the initial state distribution and behavior policy defined in (124),
we have for any MDP M ,

& (s) = 0" (s) = a(s),
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which leads to

V(myg,a) € M x Aone : d'{’Pd)'f(mf,a) = %@(mf). (175)

Along with d'de)’f(nf, a) = 30(nys) = 0, the claim lb is proved.
In view of (T23)), the state occupancy distribution at any step h = 2,3,--- , H obeys

6.7 _
dr;l’P (mg) >P{sp, =5"|sp_1 =mys;a"}

> dsz’f(mf) [Bh_1 (-1 |mp) A —p—A)+ [} _1 (1 — ¢p1|my)(1 —p)]

h—1
n,P®f n.P?®
> 4l )L —p=8) = = T mp) [[A-p -4
7=0
v
> omp)(1-p-a)" > 209, (176)

where the last line makes use of the properties p and A in (I128) and

(1-r-8)"2(1-55) 2 (1-55) 25

provided that 0 < ¢ < 1. In addition, as state ns is an absorbing state and state my will only
transfer to itself or state n ¢ at each time step, we directly achieve that

o 6. f 0. f _
™ (myg) < dpty T (mp) <o <dPT (my) < 2(my). (177)
For state ny, as it is absorbing, we directly have

o POt - o POt POt _
dh’P (Tlf):]P’{Sh:nf|8h—1:nf§ﬂn}2dh’f1 (ny) Z"'Zdl’P (ny) =o(ny).
(178)

According to the assumption in (I31), it is easily verified that
& (ng) <1< 28(ny). (179)

Finally, combining (176), (177} |178), (179), the definitions of P} (-|s,a) in (125) and the Markov
y (h,s) € [H] x S,
4

property, we arrive at for an

% <d""(s) < 20(s), (180)
which directly leads to
&) P (g o) = n(al )T (s) < B(). (181)

4

Proof of the claim (134). Examining the definition of C} in (22), we make the following
observations.

e For h = 1, we have

. P
min {d; (s,a),féA}
max PoT
(8,0, P)ESone X Aone XU (P?) d? (S,(I)

min {d’{’P(S7 $1), 34}
max n,P®.f
(s,P)EM XU (P%) dyT" (s, 1)

—
=

ii 1
© max 557
(s, PYEMXU(P?) A4S AdY " (s, ¢1)
(iii) 1

sem 284(s) (182)
where (i) holds by d}"* (s) = p(s) = 0 for all s € N (see (133)) and i};"? (¢, | s) = 1 for
all (s, h) € M x [H] (see (122)), (ii) follows from the fact d}"* (s, ¢ ) = 1 forall s € M,
(iii) is verified in (I32), and the last equality arises from the definition in (T30).
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 Similarly, for h = 2,3, --- | H, we arrive at

min {d}’ P (s,a), 12+
ax { A, ) 154 )
(5,0, P)ESone X Aane XU (P#) dy (s, a)
(i) min {dZ’P(Sv ¢h  I5A )
= max N
(s,P)ES XU (P?) dy" (s, 0n)
1

max n.Po.f
(s, PYEMAU(P) 4S AT (5, 6,)
(ii) 1

~
=

IN

< =2C 183

S 25 Aa(s) O (183)
where (i) holds by the optimal policy in || and the trivial fact that dZ’P(s) = 0 for all
s € N (see (I33) and (123)), (ii) arises from (I32)), and the last equality comes from (T30).

Combining the above cases, we complete the proof by

1
g<C*: max min {d;;" (s, a), 747 } <C
27 " (hsa PIElH] X Smex Ao xU(PF) P f(s, a)

E.3 PROOF OF cLAIM (139)
Recalling (T12Ta)) and (I23)), we first consider a more general form
VT 8 ) = VT )
me}:c_:l s ¢>( f) +(1- inf)vh+1 2 ¢(mf)
(A VES )+ [1 | V%)
= (" ) Ve ) e P (Vi )~ VS )
=) (Vi o m) VI mg)) = (07— m ) VST )
=mip P (Vi ) = VIS ) (=) (Vi mg) = V)
(o = h2) (Vi ) = Vi mp))
> (1) (Vi3 mg) = VS m))
(0 = ) (Vi ) = Vi 0 ()
>(1 =) (Vi P2 myg) = ViS50 my))

1

+§ —(JHH

~ o ot.f,
Lo mg) = T lm) [, (Vi 2 g) = Vi o mg)) a8

where the last inequality holds since

Pt mg,f«b = (™ = ¢™) (1 — Fin(on | my))
(p — q)(l — /Jah((bh | mf))

%(p — q)(1 = in(dn | my) + Fin(1 — én | my))
L

7f<7>

= s =" [mp) = (- Imp)|, (185)

2
with the first equality holding by (I20) and the second existing by (IT8).
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To further control (T84),
Vi ) = Vi )
Q1+ (1= oMWy 0 ng) + VL (my)
_ (pinfvijrolﬂf@(n )+ (1 _pinf)v}:rol*,f@(mf))
=1+ (=g o) (Vi) = Vi)

(ii) %0t f, *,0t f,
11 + (1 —p) (Vh+1 fd)(nf) - Vh+1 f¢(mf)>

H—h )
== (1-py, (186)
=0

where (i) follows from Lemma [§] and (ii) holds by (II8). Then, we consider two cases w.r.t. the
uncertainty level o™ to control (186), respectively:

* When0 < 0" < 5% Recall p = $ if o™ < $2. In this case, applying (186), we have
Vh, ’f,¢( f) V x0T, f, ¢( f)

H-h H—h+1
1-(1-%) 2co(H —h+1)
— Y- (1- 7) il > . (187
; ( Z o > ; (187)
Here, the final 1nequahty holds by observing

H—h+1 CQ(H*h‘i’l) 262(H7h+1)

_ =z < I S I [ S
(1 H) exp < — <1 — : (188)

where the first inequality holds by noticing cy < % and then 1 — x < exp(—x), and the last
inequality holds by exp(—z) <1 — %7” forany 0 < 2 < 1.
Plugging above fact in (I87) back to (I84), we arrive at

Vie? P2 mg) = Vi P )
i *0’+.
>(1=p") (Vi P mp) = Vi 0 my)

1 _ 2c(H —h+1
+ 50 = Q[0 Jmy) _Nh('|mf)||1%. (189)
Then invoking the assumptlon
H
ZH% mg) = Clmp), > 5 (190)

in (T38) and applying @) recursively for h = 1,2, --- , H yields
a'+, ', ~7U+7 5
Vi b () = VIR ()

H
2%2 Z(l_pinf)h—l( Q)(H —h+1) ||~*f¢ |mf)—ﬁh('|mf)H1
h=1
() ey & e i
25 B o e D) =t ),
=1
(i) ¢y & . o
> 20— )H — h+ )"0 ¢ Img) = in(- | my)],
h=1
iii) Co A ~
252 L4502 )l
h=1
o LH/16]
Dt S o> 28 i) (/0] + 1), oy
h=1
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where (i) follows from 1 — p™ > 1 —p =1 — £, and (ii) holds by
1
Vhe [H]: 1—£’L—1> 1- 2yH > 2y 192
elH]: (-7 20— 23 (192
as long as ¢ < % Here, (iii) arises from the definition of p, ¢ in 1} (iv) can be verified
by the fact that for any series 0 < my,mo, - ,myg < Mpyax that obeys Zthl mpy > v,
one has
H meax/nj
domah > Y muah, (193)
h=1 h=1
and taking my, = ||ﬁH_h+1(~ |my) — ﬁ;lf_fH( | mf)||1 < 2= Mmax and n = %.

Consequently, observed from (191)), the following inequality holds
o A
VEr O (my) — VIO () > % |H/16) (|LH/16) +1) > csAH? > & (194)
for some small enough constant ¢3 and letting A = .

* When §% < o <1—cq: Similarly, recalling p = (1 + %) o if o™ > 2 and invoking

(T3 gives
+ + b = c J
) =V ) = S 0= X (1 (145 o)
Jj=0 Jj=
1-(1-(1+ %)cﬁ)’”‘“
(14 F)ot
02(H —h + 1)
> 7 195
30+H ’ (195)
where the final inequality holds by observing
(1= (e ) o) oo (- (14 ) o0 -ne)
7)° <exp 7)°
¢ 2 (1 H—h+1
—eXp< ZH( +H)( e ))
CQ(H — h + ].)
<1- (1 —) _ . 196
- + H 3H (196)
Here, (1) holds by observing 57 < , and the last inequality holds by (1 + %) < 2,
Cy § , and the fact exp(—x) < lf—forany0<x< L
Plugging above fact in (T95)) back to @ gives
*O’+, s 77U+7 ’
Vi P ) = VIR (my)
in ,U+7 , ~7U+a s
>(1—p™) (Vh*+1 9 (my) = Vi M(mf))
1 w16 ( co(H —h+1)
+§ —q Hu (-1myg) = pn(-|my) le (197)
Following the same routine to achieve (191), applying (197) recursively for h =
1,2,---, H gives
*.a*, N ~,0+» )
Ve D () — VIR D ()
H
. (H—h+1)- ~
infy\h—1 *f¢
ZZ(l—p ) (p— )WH (-1myg) = mn(-|mg)||,
H
e h 1 *.f, ¢> ~
= 60+H ]; (H = b+ D[y Jmg) = fin(- [ my)]|,
(i) cpA
> H/1 H/1 1 198
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where (i) follows from 1 — p™ =1 — (p — 67) = 1 — %o, and (ii) holds by letting
c < % and following the same routine of l|
Consequently, (I98) yields

i A AH
Vi mg) = VI ) > 5 6] (LH/16) 1) > 55 > e
120t H
(199)
which holds for some small enough constant ¢4 and letting A = g:lj.

F  MULTIPLAYER GENERAL-SUM MARKOV GAMES

In this section, we extend RTZ-VI-LCB to the setting of multi-player general-sum Markov games
and present the corresponding theoretical guarantees.

F.1 PROBLEM FORMULATION

A robust general-sum Markov game is a tuple M(S, {A;}}%,, H, {UZ* (P°)}7%,, {r;}7%,) with m
players, where S denotes the state space and H is the horizon length. We have m different action
spaces, where A; is the action space for the i player and |A;| = A;. Welet A = A; x --- x A,
denote the joint action space, and let @ := (a1,-- ,a,,) € A denote the (tuple of) joint actions
by all m players. A notable deviation from standard MGs is that: for 1 < ¢ < m, instead of
assuming a fixed transition kernel, each i" player anticipates that the transition kernel is allowed to
be chosen arbitrarily from a prescribed uncertainty set 25 (P°). Here, the uncertainty set 243 (P°)
is constructed centered on P°(-|s, a), with its size and shape defined by a certain distance metric
p and a radius parameter o; > 0. 7; = {7n,i}ne[m) is a collection of reward functions for the ith
player, so that 7, ;(s, a) gives the reward received by the i'" player if actions a are taken at state s
at step h.

The policy of the i player is denoted as 7; := {whﬂ- S = Ay, We denote the product

}hE[H]’
policy of all players as 7 := 7 X --- x 7y, and denote the policy of all players except the i
player as m_;. We define V,:i(s) as the expected cumulative reward that will be received by the

i player if starting at state s at step h and all players follow policy . For any strategy 7_;,
there also exists a robust best response of the i" player, which is a policy pu*(7_;) satisfying

Vh’fz(w’i)m’“m(s) = sup,,, V7" "% (s) for any (s,h) € S x [H]. For convenience, we denote

|7 (m=0):m—0% The Q-functions of the robust best response can be defined similarly.

Similar to the definition of behavior policy (u",v"), we use the short-hand notation for the
occupancy distribution w.r.t. the behavior policy 7" = (7', 7" ) as: V(h,s,a) € [H] x S x A,

dZ’PO(s) = dZH’PO (5) :=P(sp, = 5|81 ~ 0", 7", PY); (2002)
dZ’PO (s,a) = dzn’Po (s,a) :=P(s, = 5|51 ~ 0", 7", P") 1" (a] s). (200b)
Similarly, for any product policy = = (m;, m—;), there is, V(h, s,a) € [H] x S x A
dzi’ﬁ‘i’P(s) =P(sp, = s|s1 ~ 9,7, P); (201a)
Ay ™ (s,a) = P(sy, = s| 51 ~ 0,7, P)miplai | s) m_inla_;| s). (201b)

Therefore, the robust variant of standard solution concepts—robust NE for Robust multi-player
general-sum MGs is introcuded as follows: A product policy 7 is considered a robust NE if

Y(s) €S, VTi(s) = VT (s). (202)

A robust NE signifies that given the product policy (7) of the opponents, no player can enhance
their outcome by deviating from their current policy unilaterally when each player accounts for the
worst-case scenario within their uncertainty set Uy (P% foralli=1,2,---,m.
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Since finding exact robust equilibria can be complex and may not always be feasible, practitioners
often seek approximate equilibria. In this context, a product policy 7 € A(A) can be termed an
e-robust NE if

Gap(rm) = max{{v:lmfi,m (0) — szrl,ol(g)};il} <e, (203)
where
VTR () = Ban V™07 (), and V77 (0) = Eano Vi7" (5).

The existence of robust NE has been established for general divergence functions used in the
uncertainty set by [Blanchet et al.[(2024).

Learning objective With a dataset collected from the nominal environment, our objective is to find
a solution among the e-robust NEs for the robust multi-player general-sum MG MG, with respect
to a specified uncertainty set 2/(P") around the nominal kernel, while minimizing the number of
samples required under partial coverage of the state-action space.

F.2 MULTI-RTZ-VI-LCB

Here we present the Multi-RTZ-VI-LCB algorithm in Algorithm ] which is an extension of
Algorithm [2|for multi-player general-sum Markov games.

According to the empirical frequencies of state transitions, we can naturally construct an empirical
estimate P° = {P?}L | of P°, where

N .
ﬁO (5/ | S a) _ Nh(lsya) Zj=1 1 {(Sjvajvsg‘) = (Saavs/)} ) lho (S,CL) > 07 (204)
SR 1, if N, (s, @) = 0,
. rin(s,a), if Nj(s,a) > 0;
n(s,a)= 4" : 205
Tin(s:a) {o, if N, (s.a) = 0, (205

forany (i, h, s,a,s’) € [m] x [H] xS x Ax B x S. Besides, Ny (s, @) represents the total number
of sample transitions from (s, a) at step h, and

N

Ni(s,a) = Z]l{(sj,aj) = (s,a)}. (206)

Jj=1

Before the details of Multi-RTZ-VI-LCB, we extend Algorithm [I| as Algorithm 3| which reduces
statistical dependencies and produces a distributionally equivalent dataset D, with independent
samples. Similar to Lemma [T} we present the following lemma concerning the dataset Dy, whose
proof is similar to the context in Appendix

Algorithm 3: Two-stage subsampling technique for Multi-RTZ-VI-LCB.

1 Input: Dataset D, probability 4.

2 Step 1: Data Partitioning. Split D into two equal-sized subsets, D™ and D?, each containing
K /2 trajectories.

3 Step 2: Defining Transition Bounds. For step h and state s, denote the number of transitions
from D™ (resp. D?) as N;"(s) (resp. N3(s)). Construct the trimmed count as:

N} (s) :== max {Nﬁ(s) — 104/ N7 (s) log HTS, 0} :

4 Step 3: Generating Subsampled Dataset. Randomly sample transitions (quadruples of the
form (s, a, h, s")) from D™ uniformly. For each (s, h) € S x [H], include
min{Nj (s), Nj"(s)} transitions in the new dataset D*.

s Output: Set Dy = D*.
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Lemma 9 The dataset produced by the two-stage subsampling method is distributionally identical
to Do with probability at least 1 — 86, where { Ny (s, a)} are independent of the sample transitions
in DY and obey: V(h,s,a) € [H] x S x A,

Kd KH
Ni(s, @) > w - 5\/Kd;(s, a)log ——. (207)

Algorithm 4: Multi-RTZ-VI-LCB.

Initialization: Set uncertainty levels o; fori = 1,2,--- ,m; set ‘Z‘Th (s) = H and
@;"'h(s,a) = Hforall (i,s,a,h) € [m| xS x Ax [H+1].
Compute the empirical reward function 7 using and the empirical transition kernel ]30

using (12).
forh=H,H—-1,...,1do
for playeri =1,2,...,mdo
Update the robust Q-value estimate as

Q7 (sva) =min {7y (ssa)+inf PV o+ o (5.0, V500 ) H o
’ peuci(PY ) ’ ’

s,a

h,s,a

. . Chlog KH ChH log £H
with 8; 1, (s, @, V) = min {max {\/Nh(gs’;) Varg, (V), 20 Hlog 57 Nh(sf’a)é } ,H} .

Compute Nash policy for each s € S as

7 (5) = (i (5) , i1 (s)) = ComputNash (QF), (5.)) .

Update the robust value estimate for each s € S as

‘Zaﬁ (8) = Eqmmy (s) {@flh (s, a)} .

Output: The product policy 7 (s) = {m, (s)}}_; with 7, (s) = [T/2; min (5).

Based on Algorithm[d] we propose a model-based approach for solving robust multi-player general-
sum MGs using an approximate P° for P, as summarized in Algorithm

Similar to (I8]), we can tackle the multi-player general-sum MGs problem as:
inf PIA/-U;;H = _ max {ﬁ,?’g’a [f/\;",’;ﬂ} —0; (a—min {XZ",’;H} (s’)) }
] ’ o s’ ’ [

PelUi (ﬁo ) b a€[ming V,Lv',j,";Jrl,maxS \7:}‘L+1
(208)

h,s,a

where [‘Z”h +1} . respectively denote the clipped versions of ‘A/fh 41 € R¥ based on some level
o > 0, as follows.

o VI (s), itV (s) >
V_m } = i,h+1 ’ i,h+1 ’ 209
{ ht1 a(S) {a. otherwise; (209)

F.3 ANALYSIS OF MULTI-ME-NASH-QL

In this subsection, we prove Theorem [3] which can separated into three steps as the proof of
Theorem [T}

First of all, similar to Assumption [I] we measure the distributional discrepancy between the
historical data and the target data to assess the effectiveness of the historical dataset for achieving
the desired goal. We propose a novel assumption for robust multi-agent general-sum MGs as:
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Assumption 2 (Robust multiple clipped concentrability) The behavior policies of the historical
dataset D satisfies

. wrm_i, P
mln{dhl (&@7%} *
max sup n, PO - = Cmr
(m—i,8,a,h, PYEA(A_;) X SXAX[H] XU (P0) dy) (s, a)
=1
(210)

Step 1: decoupling statistical dependency Before bounding Gap(7), we introduce an 1mportant

lemma whose proof is similar to Lemmal 3|in Appendix n 3| quantifying the difference between p
and P when projected in the direction of the value function.

Lemma 10 Instate the assumptions in TheoremE] Consider any vector V€ RS with ||V |0 < H
forall (i,h,s,a) € [m] x [H] x S x A satisfying Ny, (s,a) > 0. With probability at least 1 — 6,
one has

1 KH Hlog KH
inf PV—  inf  PV|<Cy/——Varg, (V)lo +C 2

Peusi (P, ) Peusi(PY, ) a 4\/Nh (s.a) ~ he V)Tog 6 "Ny (s, a)
(211)

for some sufficiently large constant Cy > 0, and

H? KH
Varﬁ}?mcL (V) < 2Varp}?usya (V) + O (Nh G.a) log 5 ) 212)
With Lemma[T0] we can now have
inf PV — 1nf PV| < Bh(s,a,V) (213)
Peuci(PY | ) PeUi (P, )

for any (i, h, s,a) € [m] x [H] x S x A satisfying Ny (s,a) > 1.
Therefore, we conclude that Q ' (s,a) is an optimistic estimation of Q” i(s,a) for any i =

1,2,--- ,m, which is summarlzed below, whose proof is similar to Lemma@m Appendix [C.4]

Lemma 11 With probability exceeding 1 — 6, it holds that
Q71 (s,a) > Q" (s,a)  and  Vi(s) = VT (s). (214)

i,h i,h

Besides, we introduce another key lemma highlighting the difference between robust multi-player
general-sum MGs and standard multi-player general-sum MGs from the same idea of Lemma 5] as
shown below.

Lemma 12 Consider any multi-player general-sum MGs MG, =
{SAA}~ H U (PO)} ) {ri}2,} and the uncertainty set {UJ'(P°)}7™ (-) with TV

distance. The optimistic robust value function estimate V7 :

sES seES 0;

Y(i, h) € [m] x [H] : maXVh man <mm{(H+1)(1_(1_0i)H_h),H}.

Step 2: decomposing the error Gap(7) The goal of our algorithm is to output an e-robust NE
policy () satisfying Gap(7) in (203), i.e.,

Gap(7) = max {{V;7""(0) - V7" (o)}, } <.
According to the relationship in Lemma under the definition of A_; == A; x .-+ x A;_1 X
A1 X - X Ay, we obtain

~ + —~ ~
VT () < Vi(s) = ma min EGNW{ 7 &a}
) ST = max i Bavs [Q5405,0)

< min Ean(xs(s),m_i(s)) [Ql 5 (s, a)} ; (215)

maXny_,eA(A_;)
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where the first equality comes from line 8 in Algorithm[d Therefore, there exists a deterministic
policy 7, : S + A(A_;) satisfying that for any s € S

79, (s) == argw,irélg(lAi)EaN(ﬂ;(S)’ﬂ’i(s)) {Q;"h(s,a)} . (216)

Before starting, we introduce several useful notations:

* The state-action space covered by the behavior policy 7" in the nominal transition kernel
PV is denoted as

C" ={(h,s,a) : d}(s,a) > 0}. (217)

* The set of potential state occupancy distributions w.r.t. the policy (7 (s),7®,(s)) in a
model within the uncertainty set P € U°* (P°) for any (i, h) € [m] x [H] is denoted as

i w7 (s),m° ;(s), P
sz,h = {[dh (5)}
sES

i T (s), 7> (s
o = {7 )

* For convenience and without ambiguity, we introduce an additional notation for (i, h) €
[m] x [H] as

:PelUci (PO)} : (218)

:PeU” (PO)} : (219)
(s,a)eSxA

7r-*,7rlli So;
Bi,;z (S) = an(w;‘(s),ﬂ'b_i(s))ﬁi,h (87 a, Vvl.JH—l) .

* b * b
In particular, the vector ﬁ:;l’w_” € R¥ is defined with its s-th item given by ﬂ:}l’w"’ (s).

* Similarly, we can define the notation related to rewards for (i, h) € [m] x [H] as

ik m,

Tih “(s) = Em(w;(s),ﬂgi(s))&h (s,a).
According to the update rule in line 4 in Algorithm [4 and robust Bellman equality similar to (3T)),
we derive
+

Vi (s) = Vit ()

Sos Tr:,w"_i,0'+
<VZ(s) =V, (s)

. So; O
SEanimi(s)rt s mf PV B (s)
Peu“i (P;?,s,a
d x
—-E x b inf Pyt
~(m}(s),mt 1
ar (7} (s),m2,(s)) peusi (P2, ) i,h+

<E inf PV inf  pyTTo
=Fan(mf(s),m,(s)) m e iht1

peusi (P2, ) peusi(Pp . .)

3 AO" : AO" ﬂ;vﬂ-b—i
+ inf PV — inf PV |+ B8 ' (s)
i (PO > o (5 ) >
peusi(py, ,) peui (PY

(i) . o . TFg,TI'_i*,Ui 772’7"57;
<Ear(ny(s),m () inf PV, - o mf o PV +20,5 7 (s)

peui (Y, ,) Peui(Py )
(E)E inf,V {70 71';-1,71'71'*,0'»; 77;77"!)_7;
SEanimr(s)n, () | Pinis,a (Viher = Vinit +28,5 7 (s). (220)

Here, (ii) is valid under the notation
inf,V. s md %ot
‘Pi,h,s,a ._ argmlnpeu6+ (P}?,s.a) P‘/,i7h+1 (221)
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and consequently,

+ . d * _+
7r T o _ inf,V T, T —i O o inf,V
inf P‘/’L h+1 - Pi,h,s7a‘/i7h+l ) and inf P‘/z h+1 < Pz h,s, a‘/z h+1"
Peuci (PP Peusi (PP

h,s,a h,s,a

Besides, (i) in (220} exists due to (213) in Lemma[10|for Ny (s,a) > 0 and
inf PV inf PV, | <H=8, ) (222)
reuni(rg, ) peun(py )
for Ni,(s,a) = 0.

. . Hinf,V inf,V
For ease of proof, we introduce a notation as P; ;, " = Eq(r+(s), 70 i(s))Pz hs,q- Furthermore, we

define a sequence of matrices P nf Ve RS*S. We can utilizing 1) recursively over the time
steps h,h+1,--- , H and derlve

7o ) o d * Lo
Vi 7 (s) = VT (s) S V() = VT 7 (s)
f,vV i ST ,04 1:
< P (Vi = VELET) 426807 ()
5inf,V #inf,V i drm_i* £V qmdmoi* wy,mt
< Pm lerllz—i-l (‘/zoh—i-Z ‘/Lﬂ-h-:Q 7 ) Pm Bz h—:l + Qﬂz h ( )

i'—1

<9 Z H mev 5ZE/JL> (223)

'=h \ j=h

/' —1 5int,V -
where we define (H;: n P57 ) = I for convenience.

* b .
Forany d," " =" € DY (cf. ), taking inner product with yields

i'—1 I
<d i T —4 V;*hw_l Nes (S) _ ‘/’:},lfr,(s)> < T 2 Z H Plan Bi7;/’ _1,>

i'=h \ j=h

H
=2) <d"’ —1,51 i > , (224)
i'=h

where
v 1 T
* b vt .
& @y T (T ]| et (225)
j=h
by the definition of D, (cf. (218)) forall / = h+1,--- , H.
Next, we control ( i ‘7,,81 ;,’ ‘1> utilizing concentrability. First of all, according to the

definition of penalty, we demonstrate that the pessimistic penalty satisfies

) Cylog K2 . 20,H log KX
- < Enl08 75y, Z¥n S 6
/BZ,’L (3, a, V) < max \/ N, (8 a) ElI’PIU5 Q(V>7 N, (S, a)

\/C’n log % ~ 2C\H log %

NP8 T8 \ara bl =S W
N; (s,a) arPRs,a(V) + N; (s,a)

(i) [Cylog BH ~ CoH? KH 20, H log £2
<y /== (2V Vv 1 i
\/Ni (s.a) ( . V) N ey S )* N (s,a)

(i) (20, log EHE ~ 20, + /C,Cp) Hlog BX
N; (s,a) o Ni(s,a)

(226)
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where (i) holds by applying (212) for some sufficiently large Cj and (11) exists follows from the
Cauchy-Schwarz inequality. Therefore, combining the definition of B R (s), we obtain

4,1/
pTr P o 7 71' ™
i —d L7 ’L’ 70" —d
< 7/ 76 § :d zz’ (S)

seS

=S & " Eqn(nt (s).20, (s))Bisi (5,0, V)

seS

=Y & e = 7 ()} (a i) B (s,a, V)

(s,a)ESXAXB

= Y T s () Bes (s, (s) s, V), @2D)

(s,a;)ESx.A

b
where the last equation holds due to the definition in (201b). Then, we observe dp’ fm (s,a) €
Dy (cf. ). Thereafter, we divide the bound 1l into two cases.

For the first case, i.c., s € S where maxpeyr (p0) d;, DT P(s,ai,ﬂii(s)) = 0, it follows from
the definition (cf. (2 .) that for any d5,™ "~ (s, a;, 7, (s)) € DP¥, it satisfies that
* __b
a7 (s, a4, w24 (5)) = 0. (228)
7T 7rb

P(s,ai,wﬁi(s)) > 0, by the

3!

For the second case, i.e., s € S where MAX p ey ot (o) d.;

assumption in (210)

. ;P
min {d: " (SyaiaWEi(s))vm} *
o - i= < CF < oo.
Pelei (PY) dr, (S,aiaﬂ'fi(s))

It implies that

a5 (s,a;,m;(s)) >0 and (7,s,a;,7°,(s)) € C". (229)
Lemma [9]tells that with probability at least 1 — 84,
Kd, iy T KH
N/ (s,ai77TEi(S)) > 4 (S a; — 5\/Kd 3 i, T ( )) log —— 5
() Kdj (s ai, m,(s))
>
- 16
. w2, P b 1
(if) KmaXpeuai(pO) min di’ (S7 a;, 7T_7;(S)), m
>
- 16C}
b

Kmln{dp’ ”ﬂ"(s a;, 7™, (s ))’SZ 14 }
> = 2
> e , (230)

where (ii) comes from Assumption|2|and (i) holds due to
HSY . . A; KH
Kd}, (s,ai,wii(s)) > ¢ Zd:nl:l log f({ai}?il,H)d;-‘, (s,ai,wtli(s))
m
KH
> cOHS;A log 5 F({oi}ity, H) > 1600 log ——, (231)

where f({o;}",,H) = min {{W} ) ,H}, the first inequality follows from
condition (29), and the second inequality follows from

dy, = min {d%(s,ﬁf(s),a,i) cdp (s, 73 (s),a_;) > 0} < d} (s, a5, 7,;(s)). (232)

hSa“TK'
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Combining the results in (#9) and (50), we arrive at

* b * b
P, T T T
(d B )

* b ~
= Z d?fﬁ'i T (s a5, 74 (5)) Biir (5, a5, 72, (5), V)
(s,a;)ESXA;
rrb 20, log KH -
< o l(s,ai,wii(s))\/ o ___Varpo (V)
ol 2C, + vC,Cy) H 1 EH
bY R s (o) - VCuCh) Hlos 75
(s,a;)ESXA; 4 (8’ ai, 7771-(8>)
o 16C* (2C, + /TaCy) H log KX
Z " l(s,aimii(s»( p(* 5 VCiCo) Hlog 7
i T =i b 1
Kmm{dil (S,az,ﬁ_i(S))a 5y, qu}
32C*C, log% ~ >

Var po (V)
. N S P:s Smb (s
Kmm{d?/m " (s, a4, 7 ,(5)), szilzl Ai} b

IN

(s,ai)ESXAi

_|_

(233)

Similar to the proof in Appendix , we are ready to bound V;;”* () — Vfl*” (o). There exists
some sufficiently large constants C7, C, C3 > 0, and

F o _ C*C1H3SY. .. A;log B 20Ho; — 14 (1 —0;)H
Vi ”(g)v:f“@)s\/ OISR A0y (2 (L0 )

(0:)?
C*CyH?S S . A;log £H2 o BEPSAY
+ r 2 Z’L:l 0g ) min Z(Ha-i 1 + (1 O—'L) )7H
K (0i)?
* 3 ) . KH R — g \H
< CrC3H3S Y, Ajlog =5 win 2(Hoy =14 (1—0y) >,H 7
K (04)2
(234)

where the last inequality follows from condition (29).

Step 3: summing up the results Consequently, we obtain the upper bound of V:f*""“ (o) —
Vi,ﬁfai (o) in (234). which directly leads to

C*H2SS™ | A;log KH T PRI
Gap(7) < 61\/ - ZZ; %5 min { { 2(Ho t;)gl 9:)") } ,H}7 (235)
i 1

for some sufficiently large c; and

- _ s )Ey ™
KzHSZAilogK(SHmin{{Q(HUZ L+ (1-0) )} ,H}.
i=1

= (0:)*
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