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ABSTRACT

In multichannel speech enhancement (SE) systems, deep neural net-
works (DNNs) are often utilized to directly estimate the clean speech
for effective beamforming. This approach, however, may not gener-
alize adequately to new acoustic or noise conditions. Alternatively,
DNNs can indirectly perform SE by predicting the time-frequency
masks of speech and noise patterns to assist classic statistical beam-
formers. Despite being robust, its effectiveness is constrained by
the later statistical component relying on certain modeling assump-
tions, e.g., covariance-based modeling in the minimum-variance-
distortionless-response (MVDR) beamformer. In this paper, we pro-
pose a novel integration of the two types of methodology, by intro-
ducing an intra-MVDR module embedded in the U-Net beamformer,
that encompasses the merits of both, i.e., effectiveness and robust-
ness. Experiments show that intra-MVDR leads to improvements
that are not achievable by simply enlarging the baseline SE network.

Index Terms— Multichannel speech enhancement, neural
beamforming, MVDR, time-frequency mask, spatial filtering

1. INTRODUCTION

Based on the estimation target and input modalities of deep neu-
ral networks (DNNs), beamforming-based multichannel speech en-
hancement (SE) systems have appeared in several types [1, 2, 3, 4,
5, 6]. For SE systems using only microphone arrays, the mainstream
beamforming-based approach utilizes the DNN to directly estimate
the clean speech for effectiveness, e.g., [7, 8, 9, 10, 11, 12, 13, 14],
as depicted in Fig. 1 (a). Such methods are fully data-driven, ca-
pable of achieving quite effective performance when test conditions
are similar to those seen in training, but could suffer from a lack of
generalization to unseen room acoustic and noise conditions.

Another popular type of approach is the time-frequency (T-F)
mask-based statistical beamforming, where the DNN performs SE
indirectly by estimating some T-F masks representing the speech
and noise patterns in the T-F domain [15, 16, 17, 18, 19, 20]. The
estimated T-F masks are subsequently leveraged to estimate the sig-
nal and noise statistics for utilization in classical beamformers, e.g.,
the minimum-variance-distortionless response (MVDR) filter [21],
as illustrated in Fig. 1 (b). Methods of this type, though potentially
being more robust because here the DNN only has to perform the
relatively simple task of T-F mask prediction, usually have their ef-
ficacy bounded by the subsequent statistical beamforming algorithm
relying on several modeling assumptions.

In this paper, we study integration of the two method types to
encompass their respective merits, i.e., effectiveness and robustness,
as in Fig. 1 (c). To this end, we introduce an intra-MVDR module
embedded in a U-Net direct beamformer network to incorporate T-
F mask-based statistical beamforming. It is found that by placing

(a)

Effective? Robust?

DNN

(b)

DNN(c) MVDR

DNN MVDR
Mask

Fig. 1. Illustration of different multichannel SE systems: (a) DNN
direct beamformer; (b) DNN followed by statistical beamformer
(e.g., MVDR); (c) MVDR-embedded DNN beamformer (proposed).

the mask-based MVDR module in the middle of the encoder and de-
coder layers of U-Net, spatial features of multichannel signals can
be effectively exploited for improved SE outcomes with only mi-
nor increase in model size. Moreover, it is found that integrating
intra-MVDR with U-Net in a multi-level manner leads to further im-
provements by exploiting multi-scale spatial features for processing.

2. BACKGROUND

Signal model: We consider an acoustic scenario with one desired
speech source and several interfering noise signals in a reverberant
environment. Our system is developed in the T-F domain using the
short-time Fourier transform (STFT). Let f, t stand for the frequency
and time frame indexes (with F frequency bins and T time frames
in total). We consider an additive noise model where the i-th mi-
crophone noisy signal STFT Xi ∈ CF×T of an N -element local
microphone array whose (f, t)-th entry is Xi(f, t) and can be writ-
ten as [22]: Xi(f, t) = Si(f, t)+Vi(f, t), ∀f, t, where Si(f, t) and
Vi(f, t) are the (f, t)-th entry of speech component Si ∈ CF×T and
noise component Vi ∈ CF×T received by microphone i, respec-
tively. In this paper, we consider the goal of recovering the speech
component S = Sr ∈ CF×T of a selected reference microphone
r ∈ {1, . . . , N} given the microphone signals X1, . . . ,XN .

DNN direct beamformers (direct BF): Multichannel SE systems
typically perform the “filter-and-sum” operation, or “beamforming”
– linearly combining the multichannel signals to extract the target
signal S from background noise [21]. In the T-F domain, it can be
expressed as: Ŝ =

∑N
i=1 Wi ⊙ Xi, where Wi ∈ CF×T is the

corresponding set of filter weights for microphone i, Ŝ is the en-
hanced signal, and ⊙ denotes element-wise multiplication. In many
DNN-based approaches [7, 8, 9, 10, 11, 12, 13, 14], the networks
are utilized to imitate such beamforming processes (in the time or T-
F domain) to directly output the clean speech trained by minimizing
some signal reconstruction loss. Methods of this type are effective as
the networks learn to directly model the noisy-clean mapping from
data, but may not generalize adequately to unseen testing conditions.
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T-F mask-based statistical beamformers: Another class of ap-
proaches utilizes the DNNs to estimate some set of T-F masks that
represent the speech and noise patterns in the STFT domain, which
are subsequently used to estimate the signal statistics (i.e., the power
spectral density (PSD) matrices) for assisting the conventional beam-
forming algorithms that rely on accurate PSD estiamtion, e.g., the
MVDR beamformer [21]. Methods of this type are usually referred
to as T-F mask-based neural beamformers [15, 16, 17, 18, 19, 20].
Specifically, the DNN-predicted T-F masks are leveraged to weight
the noisy signals for estimating the speech and noise PSD matrices
Φs(f),Φv(f) ∈ CN×N , e.g.,

Φs(f) =
1∑T

t=1 Ms(f, t)

T∑
t=1

Ms(f, t)x(f, t)x
H(f, t), (1)

Φv(f) =
1∑T

t=1 Mv(f, t)

T∑
t=1

Mv(f, t)x(f, t)x
H(f, t), (2)

where Ms,Mv ∈ RF×T are the estimated speech and noise masks,
respectively, whose (f, t)-th entry Ms(f, t) and Mv(f, t) typically
have values in [0, 1], and x(f, t) = [X1(f, t), . . . , XN (f, t)]T ∈
CN×1 is the noisy signal snapshot at the (f, t)-th bin. In these meth-
ods, the DNNs are trained to predict such masks by minimizing some
distance measure (e.g., mean absolute error) between the predicted
mask and some pre-defined target mask [18, 19]. As the DNNs only
have to estimate the intermediate masks, they may generalize better
to unseen acoustic and noise conditions. However, the overall SE
performance is often bounded by the later statistical component.

3. PROPOSED METHOD

Our system is depicted in Fig. 2, where the proposed intra-MVDR
module(s) shown in Fig. 3 are incorporated into the backbone U-Net
direct BF model. It operates in the T-F domain, taking the noisy sig-
nal STFTs Xi as input and predicting the filter weights Wi for esti-
mating clean speech. Due to the complex nature of STFT, we further
utilize complex-valued network operations following [23, 24], while
noting that real-valued U-Nets are also adoptable as the backbone
model with the same design concept. Next, we describe in detail the
major components proposed to improve over the baseline U-Net.

3.1. The intra-MVDR module within direct BF network
As depicted in Fig. 2, the proposed system features intra-MVDR
modules embedded in the backbone U-Net direct BF to take ad-
vantage of conventional statistical beamforming. Each intra-MVDR
module consists of a T-F mask estimation network followed by a
mask-based MVDR processing, as Fig. 3 illustrates. Here, the mask
estimation network takes the encoder feature maps and predicts the
speech and noise masks Ms and Mv for estimating the PSD matri-
ces as (1) and (2) for performing MVDR filtering on noisy STFTs.

In Fig. 2, placed between the encoder and decoder units as an
intermediate feature enhancer at each level, the intra-MVDR module
combines the noisy signal STFTs and encoder feature maps for ex-
tracting useful spatial features from multichannel data, subsequently
passed to the decoder unit. Notably, the original MVDR was derived
from a criterion to minimize the output signal variance constrained
on zero speech distortion [21]. Here, MVDR is integrated as a net-
work module and all the learnable parameters are jointly optimized
for the final clean signal reconstruction loss as in typical direct BF.

3.2. Exploiting MVDR-filtered signals at all microphones
In typical mask-based neural beamformers where the MVDR is usu-
ally the final processing stage, only the reference channel signal gets
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Fig. 2. The proposed MVDR-embedded U-Net beamformer for SE.
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Fig. 3. The proposed intra-MVDR module (Level 1) in details.

enhanced through the MVDR filtering. While in our method, uti-
lized as an intermediate module we can have more flexibility for
exploiting the spatial filtering properties from MVDR by performing
MVDR filtering with respect to all microphones, i.e., taking each mi-
crophone i as the reference channel and generating the correspond-
ing MVDR-filtered signal Zi ∈ CF×T , ∀i = 1, . . . , N , where,

Zi(f, t) = hH
i (f)x(f, t), (3)

∀f, t, with x(f, t) being the input noisy signal snapshot and hi(f) ∈
CN×1 the vector of MVDR beamformer weights given by [21] :

hi(f) =
Φ−1

v (f)Φs(f)

Trace(Φ−1
v (f)Φs(f))

ei, (4)

where the PSD matrices Φs(f), Φv(f) are computed based on us-
ing (1) and (2) and ei = [0, . . . , 1, . . . , 0]T with the 1 located at the
i-th position for microphone i. In other words, the MVDR filtering
(3) is performed N times to obtain the filtered signals with respect
to all N microphones, where each time, the filter coefficients hi(f)
are computed for each specific channel i using (4). Finally, the gen-
erated Zi ∈ CF×T , ∀i = 1, . . . , N are fed into the decoder units as
additional spatial features for improved model learning.

3.3. Multi-scale beamforming with intra-MVDR
Bridging the encoder and decoder units of U-Net, the intra-MVDR
module naturally fits into a multi-scale design by equipping each
level of the U-Net with one intra-MVDR module. As illustrated
in Fig. 2, the input STFTs Xi are downsampled to X

′
i, X

′′
i , and

X
′′′
i via max-pooling, and subsequently fed into the encoder and the
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intra-MVDR module at the respective level. To be more exact, we
sequentially perform 2-D max-pooling operations to the STFT spec-
trograms in alignment with the downsampling operations in the first
half of U-Net. In this way, after the pooling operation, the noisy
spectrograms will become the same size as the downsampled feature
maps that are passed to the encoder unit of the corresponding level
k. Then the N spectrograms can augment the Ck feature maps via
concatenation to become N+Ck input feature maps for the encoder.
Finally, intra-MVDR is applied on the corresponding noisy spectro-
grams by taking the encoder output feature maps as input to the T-F
mask estimation network. The overall SE model can thus exploit
coarse- and fine-grained spatial features from various resolutions.

3.4. Combine MVDR-filtered signals for target reconstruction
Since the MVDR-filtered signals Zi are enhanced versions of the
noisy inputs, including them in the final filtering stage could pro-
vide the model with additional flexibility to estimate the clean sig-
nal through refinement. We hence combine Zi for reconstructing
the target speech at the network output. As depicted in Fig. 2,
the U-Net outputs 2N sets of filter weights Wi, i = 1, . . . , 2N .
The first N sets are the coefficients to be multiplied with the noisy
STFTs Xi, same as the typical filter-and-sum scheme; the rest of
the filter weights WN+i are used to weight the MVDR outputs Zi,
∀i = 1, . . . , N . The enhanced speech is given by the weighted sum:

Ŝ =

N∑
i=1

Wi ⊙Xi +WN+i ⊙ Zi. (5)

Empirically, we have observed (5) leads to better reconstructed
speech than only considering filter-and-sum of the noisy STFTs.

Network architecture details: Our modifications to the origi-
nal U-Net [25] for the model in Fig. 2 are below: Convolutional
layers of U-Net are all replaced by complex convolutional layers.
For the activation function, complex leaky ReLU, i.e., an activation
function that applies leaky ReLU on both real and imaginary val-
ues, is utilized. The number of feature maps in each layer is also
modified. Each encoder or decoder layer consists of two stacks of
“(complex) 3×3 convolution→batch normalization→leaky ReLU”
with (Cin, Cout) specifying the number of input and output channels:
the convolution layer of the first stack takes Cin feature maps and
outputs Cout feature maps; the convolution layer of the second stack
takes Cout feature maps and outputs Cout feature maps. Regarding
the T-F mask estimation network in Fig. 3, it consists of “(com-
plex) 3×3 convolution→batch normalization→leaky ReLU→1×1
convolution→Sigmoid” layers. The 3 × 3 convolution layer takes
Cout features and outputs Cout features; the 1 × 1 convolution layer
takes Cout features and outputs the two T-F masks, where Cout is the
number of the encoder output feature maps at a given level.

4. EXPERIMENTS

We experimentally show that the proposed components in Section 3
lead to improved SE over baseline methods of Fig. 1 (a) and (b).

Dataset and evaluation: We use the public CHiME-3 dataset [26]
which is a 6-microphone recording of talkers speaking in noisy en-
vironments, sampled at 16 kHz. It consists of 7,138 and 1,320 sim-
ulated utterances for training and testing, respectively. We follow
many existing works to take the 5-th channel as the reference micro-
phone for the SE target. For evaluation, we use: PESQ: Perceptual
Evaluation of Speech Quality [27] (value: -0.5 to 4.5). STOI: Short-
Time Objective Intelligibility [28] (value: 0 to 1). SNR: Signal-to-
Noise Ratio. In all metrics, a higher score indicates better SE.

Table 1. Comparison of different multichannel SE schemes. For
the direct BF (Fig. 1 (a)) and mask-based MVDR (Fig. 1 (b)) ap-
proaches we show results for a base (1.27M) and a larger (1.62M)
U-Net models. For our method (Fig. 1 (c)) we present results for
incorporating the intra-MVDR modules at different levels into the
base (1.27M) U-Net model, corresponding to the system in Fig. 2.

Methods # Params PESQ STOI SNR

Direct BF (base) 1.27M 2.39 0.962 17.76
(larger) 1.62M 2.44 0.965 18.31

Mask-based MVDR (base) 1.27M 2.00 0.966 16.67
(larger) 1.62M 2.01 0.966 16.81

Oracle MVDR - 2.01 0.970 18.42

Direct BF w/ intra-MVDR

Level 1 1.30M 2.55 0.970 18.93
Levels 1,2 1.38M 2.57 0.973 20.43
Levels 1,2,3 1.47M 2.60 0.974 20.80
Levels 1,2,3,4 1.56M 2.64 0.974 20.63

Model settings: We set C1, C2, C3, C4 = 32, 64, 64, 64 for the
number of channels in Fig. 2, resulting in a base U-Net model of
1.27M parameters. For STFT processing, we use the Hann window
with a window size of 1024 and a hop size of 256. During train-
ing, 4-second long segments are randomly cropped from the training
samples, while during testing the whole utterances are used. For
training, the Adam optimizer with a learning rate of 0.001 and de-
creased to 0.0001 at the 50-th epoch, with a total of 80 epochs, is
adopted. A batch size of 4 is used. For direct beamforming schemes,
the network is trained to minimize the signal reconstruction loss:
L(Ŝ,S) = 0.3∥Ŝ0.3 − S0.3∥2F + 0.7∥|Ŝ|0.3 − |S|0.3∥2F , i.e., the
combined power-law compressed mean squared error loss in [29].

We compare the SE performance of the following cases based
on using the same backbone (1.27M) U-Net model:

i) Direct BF (Fig. 1 (a)): the U-Net is trained to directly es-
timate the clean speech by predicting the beamformer filter
weights for filtering the input noisy signals

ii) Mask-based MVDR (Fig. 1 (b)): the U-Net is trained to
estimate the speech and noise ideal ratio masks [18]. During
inference, the estimated masks are used in MVDR filtering

iii) Direct BF w/ intra-MVDR (Fig. 1 (c)): the proposed intra-
MVDR module(s) embedded in the U-Net direct BF

For the two baseline approaches of direct BF and mask-based
MVDR, we also provide results with using a larger U-Net model
(1.62M) where C1, C2, C3, C4 = 36, 72, 72, 72 for comparison.

Results: Table 1 presents the results. We first compare the two
baseline approaches and see that the direct BF performs generally
better than the mask-based MVDR, as the network is trained to di-
rectly reconstruct clean speech for effectiveness. On the other hand,
while the mask-based MVDR may be robust, its performance is up-
per bounded by the oracle MVDR performance (also shown in the
table) which uses the ground truth signal PSD matrices for comput-
ing the optimal filter. Finally, the proposed direct BF utilizing intra-
MVDR only at the first level (1.30M) already attains higher scores
than the two baselines. We also see that equipping the intra-MVDR
blocks at subsequent resolutions (Levels) of U-Net further improves
the performance, indicating that multi-scale spatial features are help-
ful. Note that the improvement is not purely due to the increased
model size of the added intra-MVDR modules, as we can see de-
spite using a larger model size (1.62M), the two baseline approaches
do not match the proposed method’s performance. The results re-
veal that by combining the merits of statistical filters (robustness)
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PESQ: 1.16 PESQ: 1.54 PESQ: 1.78 PESQ: 2.24

Fig. 4. Visualization of SE outputs. The proposed method has less residual noise (i.e., better noise suppression) as compared to Mask-based
MVDR while preserving more speech components (i.e., less speech distortion) as compared to Direct BF, achieving the best speech quality.

and DNN direct BF (effectiveness), we can attain SE improvements
that are not achievable by simply making the baseline network larger.
Exemplary SE outputs processed by our full system (1.56M) and the
two larger baselines (1.62M) for a noisy utterance taken from the
CHiME-3 test set are visualized in Fig. 4 to facilitate comparison.

To better quantify the proposed method performance, we com-
pare our full system (i.e., the 1.56M model in Table 1) results with
existing multichannel SE systems also evaluated on the CHiME-3
test set, including Neural BF [16]: An MVDR beamformer with
mask estimation through bidirectional-LSTM. MVDRGC [30]: An
MVDR beamformer using a neural network-based method to iden-
tify and correct phase errors in the steering vector. rSDFCN [31]:
A time-domain, fully convolutional network (FCN) with sinc and
dilated convolutional layers for multichannel SE. CA Dense U-Net
[32]: A time-frequency domain multichannel SE model that com-
bines the merits of DenseNet, U-Net, and channel attention (CA)
mechanism. IC Conv-TasNet [33]: A multichannel SE system
based on a fully convolutional time-domain audio separation net-
work by exploiting inter-channel relationships. In Table 2 we report
the PESQ, STOI, and SNR taken from the corresponding papers,
and the missing entries in the table indicate that the metric is not
reported in the reference paper. It can be seen that the proposed
method outperforms the other approaches in STOI and SNR, and is
on par with the IC Conv-TasNet in PESQ despite using a smaller
model, demonstrating its capability of achieving efficient SE.

Table 2. Comparison with existing multichannel SE methods.

Methods # Params PESQ STOI SNR

Noisy - 1.27 0.870 6.50
Neural BF [16] - 2.29 - 15.12
MVDRGC [30] 0.5M - 0.952 -
rSDFCN [31] 2.1M 2.15 0.937 -
CA Dense U-Net [32] >20M 2.44 - 18.64
IC Conv-TasNet [33] 1.67M 2.67 0.973 19.67
Proposed 1.56M 2.64 0.974 20.63

Besides the above quality/intelligibility scores, we evaluate the
SE model as a front-end denoiser for automatic speech recogni-
tion (ASR) under noisy environments in Table 3. To this end, we
pre-process the noisy CHiME-3 multichannel data through the well-
trained SE model and feed the denoised audio separately to three
pre-trained ASR engines taken from the NVIDIA NeMo toolkit1:
Model 1: Conformer-CTC [34], Model 2: Citrinet [35], and Model
3: Quartznet [36]. We report the word error rate (WER) and charac-
ter error rate (CER) for each ASR engine outcome. To demonstrate
the advantages of the proposed method, we compare our full system
with one existing direct BF approach, i.e., the Filter-and-Sum Net-
work (FaSNet) [37]. We trained the FaSNet by ourselves2 using the

1https://github.com/NVIDIA/NeMo
2We use the FaSNet-TAC model from: https://github.com/yluo42/TAC

same signal reconstruction loss as for ours for fairness. The results
show that our method achieves lower WER and CER than FaSNet
across all three ASR engines with a smaller model size, indicating
its efficacy for improved machine listening capabilities in noise.

Table 3. Comparison of SE models as a front-end denoiser for ASR.

Front-ends # Params
WER / CER (%)

ASR Model 1 ASR Model 2 ASR Model 3

Unprocessed - 7.40 / 4.25 9.18 / 5.64 16.75 / 8.28
FaSNet [37] 2.76M 5.21 / 2.63 5.65 / 3.41 10.20 / 4.87
Proposed 1.56M 3.81 / 1.96 3.54 / 2.33 6.31 / 3.06

With an aim to further validate the proposed method having the
virtues of both mask-based statistical beamforming and DNN direct
BF, we utilize Pyroomacoustics [38] to simulate training and test
data for demonstrating effectiveness (on seen or similar acoustics
and noise conditions) and robustness (generalization to unseen con-
ditions) using speech corpus from the AVSpeech dataset [39]. We
take 8308 speech utterances for training and 1099 for testing, each
mixed with four types of noise profiles downloaded from YouTube.
We create two test sets, with Test Set-1 having the same acoustics
and noise circumstances as training, i.e., room sizes, reverberation
times, noise types, i.e., {blender, vacuum, washer, baby cry}, and
source locations. Meanwhile, Test Set-2 has different background
noise types from training, i.e., {dog barking, kids playing, hair dryer,
food sizzling}, and different room sizes, reverberation times, and
source locations. The results in terms of PESQ of a 4-mic planar
array are shown in Table 4. Compared to the two baselines, the pro-
posed method achieves the highest result for Test Set-1, demonstrat-
ing effectiveness to seen conditions, and has less deteriorating per-
formance on Test Set-2, suggesting robustness to unseen conditions.

Table 4. PESQ scores for comparing effectiveness on test data with
seen room/noise conditions and robustness to unseen conditions.

Methods # Params Seen Cond. Unseen Cond.

Noisy - 1.21 1.22
Mask-based MVDR 1.62M 1.71 1.55
Direct BF 1.62M 2.02 1.66
Proposed 1.56M 2.13 1.76

5. CONCLUSION

In this paper, we presented a novel integration of DNN direct beam-
forming and mask-based statistical beamforming by introducing the
intra-MVDR module embedded in a U-Net design. The new model
encompasses the merits of the two method types, leading to the pro-
posed MVDR-embedded U-Net beamformer better exploiting multi-
scale spatial features. We showed that by incorporating intra-MVDR
modules, improved SE effectiveness and robustness to seen and un-
seen room acoustics and noise conditions can be efficiently achieved.
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