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ABSTRACT

Image generation has recently seen tremendous advances, with diffusion models
allowing to synthesize convincing images for a large variety of text prompts. In
this article, we propose DIFFEDIT, a method to take advantage of text-conditioned
diffusion models for the task of semantic image editing, where the goal is to edit
an image based on a text query. Semantic image editing is an extension of image
generation, with the additional constraint that the generated image should be as
similar as possible to a given input image. Current editing methods based on
diffusion models usually require to provide a mask, making the task much easier
by treating it as a conditional inpainting task. In contrast, our main contribution is
able to automatically generate a mask highlighting regions of the input image that
need to be edited, by contrasting predictions of a diffusion model conditioned on
different text prompts. Moreover, we rely on latent inference to preserve content in
those regions of interest and show excellent synergies with mask-based diffusion.
DIFFEDIT achieves state-of-the-art editing performance on ImageNet. In addition,
we evaluate semantic image editing in more challenging settings, using images
from the COCO dataset as well as text-based generated images.
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Figure 1: In semantic image editing the goal is to modify an input image based on a textual query,
while otherwise leaving the image as close as possible to the original. In our DIFFEDIT approach, a
mask generation module determines which part of the image should be edited, and an encoder infers
the latents, to provide inputs to a text-conditional diffusion model which produces the image edit.

1 INTRODUCTION

The task of semantic image editing consists in modifying an input image in accordance with a
textual transformation query. For instance, given an image of a bowl of fruits and the query “fruits”
→ “pears”, the aim is to produce a novel image where the fruits have been changed into pears,
while keeping the bowl and the background as similar as possible to the input image. The text query
can also be a more elaborate description like “A basket of fruits”. See the example edits obtained
with DIFFEDIT in Figure 1. Semantic image editing bears strong similarities with image generation
and can be viewed as extending text-conditional image generation with an additional constraint: the
generated image should be as close as possible to a given input image.

Text-conditional image generation is currently undergoing a revolution, with DALL-E (Ramesh
et al., 2021), Cogview (Ding et al., 2021), Make-a-scene (Gafni et al., 2022), Latent Diffusion Mod-
els (Rombach et al., 2022), DALL-E 2 (Ramesh et al., 2022) and Imagen (Saharia et al., 2022b),
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vastly improving state of the art in modelling wide distributions of images and allowing for un-
precedented compositionality of concepts in image generation. Scaling these models is a key to
their success. State-of-the art models are now trained on vast amounts of data, which requires large
computational resources. Similarly to language models pretrained on web-scale data and adapted
in downstreams tasks with prompt engineering, the generative power of these big generative mod-
els can be harnessed to solve semantic image editing, avoiding to train specialized architectures (Li
et al., 2020a; Wang et al., 2022a), or to use costly instance-based optimization (Crowson et al., 2022;
Couairon et al., 2022; Patashnik et al., 2021).

Diffusion models are an especially interesting class of model for image editing because of their it-
erative denoising process starting from random Gaussian noise. This process can be guided through
a variety of techniques, like CLIP guidance (Nichol et al., 2021; Avrahami et al., 2022; Crowson,
2021), and inpainting by copy-pasting pixel values outside a user-given mask (Lugmayr et al., 2022).
These previous works, however, lack two crucial properties for semantic image editing: (i) inpaint-
ing discards information about the input image that should be used in image editing (e.g. changing
a dog into a cat should not modify the animal’s color and pose); (ii) a mask must be provided as
input to tell the diffusion model what parts of the image should be edited. We believe that while
drawing masks is common on image editing tools like Photoshop, language-guided editing offers a
more intuitive interface to modify images that requires less effort from users.

Conditioning a diffusion model on an input image can also be done without a mask, e.g. by consid-
ering the distance to input image as a loss function (Crowson, 2021; Choi et al., 2021), or by using
a noised version of the input image as a starting point for the denoising process as in SDEdit (Meng
et al., 2021). However, these editing methods tend to modify the entire image, whereas we aim for
localized edits. Furthermore, adding noise to the input image discards important information, both
inside the region that should be edited and outside.

To leverage the best of both worlds, we propose DIFFEDIT, an algorithm that leverages a pretrained
text-conditional diffusion model for zero-shot semantic image editing, without expensive editing-
specific training. DIFFEDIT makes it possible by automatically finding what regions of an input
image should be edited given a text query, by contrasting the predictions of a conditional and uncon-
ditional diffusion model. We also show how using a reference text describing the input image and
similar to the query, can help obtain better masks. Moreover, we demonstrate that using a reverse
denoising model, to encode the input image in latent space, rather than simply adding noise to it,
allows to better integrate the edited region into the background and produces more subtle and natural
edits. See Figure 1 for illustrations. We quantitatively evaluate our approach and compare to prior
work using images of the ImageNet and COCO dataset, as well as a set of generated images.

2 RELATED WORK

Semantic image editing. The field of image editing encompasses many different tasks, from photo
colorization and retouching (Shi et al., 2020), to style transfer (Jing et al., 2019), inserting objects in
images (Gafni & Wolf, 2020; Brown et al., 2022), image-to-image translation (Zhu et al., 2017; Sa-
haria et al., 2022a), inpainting (Yu et al., 2018), scene graph manipulation (Dhamo et al., 2020), and
placing subjects in novel contexts (Ruiz et al., 2022). We focus on semantic image editing, where
the instruction to modify an image is given in natural language. Some approaches involve training
an end-to-end architecture with a proxy objective before being adapted to editing at inference time,
based on GANs (Li et al., 2020b;a; Ma et al., 2018; Alami Mejjati et al., 2018; Mo et al., 2018) or
transformers (Wang et al., 2022a; Brown et al., 2022; Issenhuth et al., 2021). Others (Crowson et al.,
2022; Couairon et al., 2022; Patashnik et al., 2021; Bar-Tal et al., 2022) rely on optimization of the
image itself, or a latent representation of it, to modify an image based on a high-level multimodal
objective in an embedding space, typically using CLIP (Radford et al., 2021). These approaches
are quite computationnaly intensive, and work best when the optimization is coupled with a pow-
erful generative network. Given a pre-trained generative model such as a GAN, it has also been
explored to find directions in the latent space that corresponds to specific semantic edits (Härkönen
et al., 2020; Collins et al., 2020; Shen et al., 2020; Shoshan et al., 2021), which then requires GAN
inversion to edit real images (Wang et al., 2022c; Zhu et al., 2020; Grechka et al., 2021).

Image editing with diffusion models. Because diffusion models iteratively refine an image starting
from random noise, they are easily adapted for inpainting when a mask is given as input. Song et al.
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(2021) proposed to condition the generation process by copy-pasting pixel values from the reference
image at each denoising step. Nichol et al. (2021) use a similar technique by copy-pasting pixels in
the estimated final version of the image. Wang et al. (2022b) use DDIM encoding of the input image,
and then decode on edited sketches or semantic segmentation maps. The gradient of a CLIP score
can also be used to match a given text query inside a mask, as in Paint by Word (Bau et al., 2021),
local CLIP-guided diffusion (Crowson, 2021), or blended diffusion (Avrahami et al., 2022). Lug-
mayr et al. (2022) apply a sequence of noise-denoise operations to better inpaint a specific region.
There are also a number of methods that do not require an editing mask. In DiffusionCLIP (Kim &
Ye, 2021), the weights of the diffusion model themselves are updated via gradient descent from a
CLIP loss with a target text. The high computational cost of fine-tuning a diffusion model for each
input image, however, makes it impractical as an interactive image editing tool. In SDEdit (Meng
et al., 2021) the image is corrupted with Gaussian noise, and then the diffusion network is used to
denoise it. While this method is originally designed to transform sketches to real images and to
make pixel-based collages more realistic, we adapt it by denoising the image conditionally to the
text query. In ILVR (Choi et al., 2021), the decoding process of diffusion model is guided with
the constraint that downsampled versions of the input image and decoded image should stay close.
Finally, in recent work concurrent to ours, Hertz et al. (2022) propose to edit images by modifying
attention maps during the diffusion process.

3 DIFFEDIT FRAMEWORK

In this section, we first give an overview of diffusion models. We then describe our DIFFEDIT
approach in detail, and provide a theoretical analysis comparing DIFFEDIT with SDEdit.

3.1 BACKGROUND: DIFFUSION MODELS, DDIM AND ENCODING

Denoising diffusion probabilistic models (Ho et al., 2020) is a class of generative models that are
trained to invert a diffusion process. For a number of timesteps T , the diffusion process gradually
adds noise to the input data, until the resulting distribution is (almost) Gaussian. A neural network
is then trained to reverse that process, by minimizing the denoising objective

L = Ex0,t,ϵ∥ϵ− ϵθ(xt, t)∥22, (1)

where ϵθ is the noise estimator which aims to find the noise ϵ ∼ N (0, I) that is mixed with an input
image x0 to yield xt =

√
αtx0 +

√
1− αtϵ. The coefficient αt defines the level of noise and is a

decreasing function of the timestep t, with α0 = 1 (no noise) and αT ≈ 0 (almost pure noise).

Song et al. (2021) propose to use ϵθ to generate new images with the DDIM algorithm: starting from
xT ∼ N (0, I), the following update rule is applied iteratively until step 0:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1ϵθ(xt, t). (2)

The variable x is updated by taking small steps in the direction of ϵθ. Equation 2 can be written as
the neural ODE , taking u = x/

√
α and τ =

√
1/α− 1:

du = ϵθ(
u√

1 + τ2
, t)dτ. (3)

This allows to view DDIM sampling as an Euler scheme for solving Equation 3 with initial condition
u(t = T ) ∼ N (0, αT I). This illustrates that we can use fewer sampling steps during inference than
the value of T chosen during training, by using a coarser discretization of the ODE. In the remainder
of the paper, we parameterize the timestep t to be between 0 and 1, so that t = 1 corresponds to T
steps of diffusion in the original formulation. As proposed by Song et al. (2021), we can also use this
ODE to encode an image x0 onto a latent variable xr for a timestep r ≤ 1, by using the boundary
condition u(t = 0) = x0 instead of u(t = 1), and applying an Euler scheme until timestep r. In
the remainder of the paper, we refer to this encoding process as DDIM encoding, we denote the
corresponding function that maps x0 to xr as Er, and refer to the variable r as the encoding ratio.
Similarly, we note Dr the inverse function that maps xr to x0, which corresponds to regular DDIM
decoding. With sufficiently small steps in the Euler scheme, decoding xr approximately recovers
the original image x0. This property is particularly interesting in the context of image editing: all
the information of the input image x0 is encoded in xr, and can be accessed via DDIM sampling.
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Figure 2: The three steps of DIFFEDIT. Step 1: we add noise to the input image, and denoise it:
once conditioned on the query text, and once conditioned on a reference text (or unconditionally).
We derive a mask based on the difference in the denoising results. Step 2: we encode the input
image with DDIM, to estimate the latents corresponding to the input image. Step 3: we perform
DDIM decoding conditioned on the text query, using the inferred mask to replace the background
with pixel values coming from the encoding process at the corresponding timestep.

3.2 SEMANTIC IMAGE EDITING WITH DIFFEDIT

In many cases, semantic image edits can be restricted to only a part of the image, leaving other parts
unchanged. However, the input text query does not explicitly identify this region, and a naive method
could allow for edits all over the image, risking to modify the input in areas where it is not needed.
To circumvent this, we propose DIFFEDIT, a method to leverage a text-conditioned diffusion model
to infer a mask of the region that needs to be edited. Starting from a DDIM encoding of the input
image, DIFFEDIT uses the inferred mask to guide the denoising process, minimizing edits outside
the region of interest. Figure 2 illustrates the three steps of our approach, which we detail below.

Step 1: Computing editing mask. When the denoising an image, a text-conditioned diffusion
model will yield different noise estimates given different text conditionings. We can consider where
the estimates are different, which gives information about what image regions are concerned by
the change in conditioning text. For instance, in Figure 2, the noise estimates conditioned to the
query zebra and reference text horse1 are different on the body of the animal, where they will tend
to decode different colors and textures depending on the conditioning. For the background, on the
other hand, there is little change in the noise estimates. The difference between the noise estimates
can thus be used to infer a mask that identifies what parts on the image need to be changed to
match the query. In our algorithm, we use a Gaussian noise with strength 50% (see analysis in
Appendix A.1), remove extreme values in noise predictions and stabilize the effect by averaging
spatial differences over a set of n input noises, with n=10 in our default configuration. The result is
then rescaled to the range [0, 1], and binarized with a threshold, which we set to 0.5 by default. The
masks generally somewhat overshoot the region that requires editing, this is beneficial as it allows it
to be smoothly embedded in it’s context, see examples in Section 4 and Section A.5.

Step 2: Encoding. We encode the input image x0 in the implicit latent space at timestep r with
the DDIM encoding function Er. This is done with the unconditional model, i.e. using conditioning
text ∅, so no text input is used for this step.

1We can also use an empty reference text, which we denote as Q = ∅.
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Step 3: Decoding with mask guidance. After obtaining the latent xr, we decode it with our diffu-
sion model conditioned on the editing text query Q, e.g. zebra in the example of Figure 2. We use our
mask M to guide this diffusion process. Outside the mask M , the edited image should in principle
be the same as the input image. We guide the diffusion model by replacing pixel values outside the
mask with the latents xt inferred with DDIM encoding, which will naturally map back to the original
pixels through decoding, unlike when using a noised version of x0 as typically done (Meng et al.,
2021; Song et al., 2021). The mask-guided DDIM update can be written as ỹt = Myt+(1−M)xt,
where yt is computed from yt−dt with Eq. 2, and xt is the corresponding DDIM encoded latent.

The encoding ratio r determines the strength of the edit: larger values of r allow for stronger edits
that allow to better match the text query, at the cost of more deviation from the input image which
might not be needed. We evaluate the impact of this parameter in our experiments. We illustrate the
effect of the encoding ratio in Appendix A.5.

3.3 THEORETICAL ANALYSIS

In DIFFEDIT, we use DDIM encoding to encode images before doing the actual editing step. In this
section, we give theoretical insight on why this component yields better editing results than adding
random noise as in SDEdit (Meng et al., 2021). With xr being the encoded version of x0, using
DDIM decoding on xr unconditionally would give back the original image x0. In DIFFEDIT, we
use DDIM decoding conditioned on the text query Q, but there is still a strong bias to stay close
to the original image. This is because the unconditional and conditional noise estimator networks
ϵθ and ϵθ(·, Q) often produce similar estimates, yielding similar decoding behavior when initialized
with the same starting point xr. This means that the edited image will have a small distance w.r.t.
the input image, a property critical in the context of image editing. We capture this phenomenon
with the proposition below, where we compare the DDIM encoder Er(x0) to the SDEdit encoder
Gr(x0, ϵ) :=

√
αrx0 +

√
1− αrϵ, which simply adds noise to the image x0.

Proposition 1. Let X = Rd be the space of input images, pD be the data distribution of
couples (x0, Q) where x0 ∈ X and Q a textual query to edit that image. Suppose that
∥ϵθ(xt, Q, t)∥2 ≤ C for all x ∈ X , t ∈ [0, 1], that ϵθ(·, ∅, t) is K1-Lipschitz for all t, and let
K2 = E(x0,Q)∈pD

maxt∈[0,1] ∥ϵθ(x, Q, t) − ϵθ(x, ∅, t)∥. Then, for all encoding ratios 0 ≤ r ≤ 1,
we have the two following bounds:

E
(x0,Q)∼pD

ϵ∼N (0,1)

∥x0 −Dr(Gr(x0, ϵ), Q)∥2 ≤ (C + 1)τ, (4)

E
(x0,Q)∼pD

∥x0 −Dr(Er(x0), Q)∥2 ≤ K2τ√
τ2 + 1

(
τ +

√
τ2 + 1

)K1

, (5)

where τ =
√
1/αr − 1 increases with the encoding ratio r: τ(r = 0) = 0 and limr→1 τ = +∞.
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Figure 3: Illustration of the bounds
from Proposition 1, with estimated pa-
rameters C=1,K2=0.02, and K1=3.

We provide the proof in Appendix B. The first bound is
associated with SDEdit, and is an extension of a bound
proven in the original paper. The second bound we con-
tribute is associated with DIFFEDIT. It is tighter than the
first bound below a certain encoding ratio, see Figure 3.
We empirically estimated the parameters K1,K2 and C
with the diffusion models that we are using. While the
asymptotic behavior of the second bound is worse than
the first with K1 > 1, it is the very small value of K2 that
gives a tighter bound.

This supports our argument from above: because the un-
conditional and text-conditional noise estimates generally
give close results —K2 being a measure of the average
difference— the Euler scheme with ϵθ(·, Q, ·) gives a se-
quence of intermediate latents yr, ...,y0 that stays close
to the trajectory xr, . . . , Dr(xr) ≈ x0 mapping back xr

to x0. While these upper bounds do not guarantee that
DDIM encoding yields smaller edits than SDEdit, exper-
imentally we find that it is indeed the case.
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4 EXPERIMENTS

In this section, we describe our experimental setup, followed by qualitative and quantitative results.

4.1 EXPERIMENTAL SETUP

Datasets. We perform experiments on three datasets. First, on ImageNet (Deng et al., 2009) we
follow the evaluation protocol of FlexIT (Couairon et al., 2022). Given an image belonging to
one class, the goal is to edit it so that it will depict an object of another class as indicated by the
query. Given the nature of the ImageNet dataset, edits often concern the main object in the scene.
Second, we consider editing images generated by Imagen (Saharia et al., 2022b) based on structured
text prompts, in order to evaluate edits that involve changing the background, replacing secondary
objects, or changing object properties. Third, we consider edits based on images and queries from
the COCO (Lin et al., 2014) dataset to evaluate edits based on more complex text prompts.

Diffusion models. In our experiments we use latent diffusion models (Rombach et al., 2022). We
use the class-conditional model trained on ImageNet at resolution 256×256, as well as the 890M
parameter text-conditional model trained on LAION-5B (Schuhmann et al., 2021), known as Stable
Diffusion, at 512×512 resolution.2 Since these models operate in a VQGAN latent spaces (Esser
et al., 2021), the resolution of our masks is 32×32 (ImageNet) or 64×64 (Imagen and COCO).
We use 50 steps in DDIM sampling with a fixed schedule, and the encoding ratio parameter further
decreases the number of updates used for our edits. This allows to edit images in ∼10 seconds on
a single Quadro GP100 GPU. We also use classifier-free guidance (Ho & Salimans, 2022) with the
recommended values: 5 on ImageNet, 7.5 for Stable Diffusion. For more details see Section A.2.

Comparison to other methods. We use SDEdit (Meng et al., 2021) as our main point of compari-
son, since we can use the same diffusion model as for DIFFEDIT. We also compare to FlexIT (Coua-
iron et al., 2022), a mask-free, optimization-based editing method based on VQGAN and CLIP. On
ImageNet, we evaluate ILVR (Choi et al., 2021) which uses another diffusion model trained on
ImageNet (Dhariwal & Nichol, 2021). Finally, on COCO and Imagen images, we compare to the
concurrent work of Hertz et al. (2022). 3

Evaluation. In semantic image editing, we have to satisfy the two contradictory objectives of (i)
matching the text query and (ii) staying close to the input image. For a given editing method, better
matching the text query comes at the cost of increased distance to the input image. Different editing
methods often have a parameter that allows to control the editing strength: varying its value allows to
get different operating points, forming a trade-off curve between the two objectives aforementioned.
Therefore, we evaluate editing methods by comparing their trade-off curves. For diffusion-based
methods, we use the encoding ratio to control the trade-off.

4.2 EXPERIMENTS ON IMAGENET
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Figure 4: Comparison on ImageNet
data of DIFFEDIT with other Image
Editing methods. For DIFFEDIT we
annotate the different operating points
with the corresponding encoding ratios.

On ImageNet, we follow the evaluation protocol of Coua-
iron et al. (2022), with the associated metrics: the LPIPS
perceptual distance (Zhang et al., 2018) measures the dis-
tance with the input image, and the CSFID, which is a
class-conditional FID metric (Heusel et al., 2017) mea-
suring both image realism and consistency w.r.t. the trans-
formation prompt. For both metrics, lower values indicate
better edits. For more details see Couairon et al. (2022).

We compare DIFFEDIT to other semantic editing meth-
ods from the literature in terms of CSFID-LPIPS trade-
off. Stronger edits improve (lower) the CSFID score as
the edited images better adhere to the text query, but the
resulting images tend to deviate more from the input im-
age, leading to worse (increased) LPIPS distances.

2Available at https://huggingface.co/CompVis/stable-diffusion.
3As there is no official implementation available at the time of writing, we used the unofficial implementa-

tion adapted for Stable Diffusion from https://github.com/bloc97/CrossAttentionControl.
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Figure 5: Edits obtained on ImageNet with DIFFEDIT and ablated models. Encode-Decode is
DIFFEDIT without masking, and SDEdit is obtained when not using masking nor encoding. When
not using masking (SDEdit and Encode-Decode) we observe undesired edits to the background,
see e.g. the sky in the second column. When not using DDIM encoding (SDEdit and DiffEdit w/o
Encode), appearance information from the input —such as pose— is lost, see last two columns.

The results in Figure 4 indicate that DIFFEDIT obtains the best trade-offs among the different meth-
ods. For fair comparison with previous methods, here we do not leverage the label of the input
image and use the empty text as reference when inferring the editing mask. The Copy and Retrieve
baselines are two opposite cases where we have best possible LPIPS distance —zero, by copying
the input image— and best possible transformation score by discarding the input image and replac-
ing it with a real image from the target class from the ImageNet dataset. DIFFEDIT, as well as
the diffusion-based SDEdit and ILVR, are able to obtain CSFID values comparable to that of the
retrieval baseline. Among the diffusion-based methods, our DIFFEDIT obtains comparable CSFID
values at significantly better LPIPS scores. For FlexIT, the CSFID best value is significantly worse,
indicating it is not able to produce both strong and realistic edits. Using more optimization steps
does not solve this issue, as the distance to the input image is part of the loss it minimizes.

Ablation experiments. We ablate the two core components of DIFFEDIT, mask inference and
DDIM encoding, to measure their relative contributions in terms of CSFID-LPIPS trade-off. If we do
not use either of these components our method reverts to SDEdit (Meng et al., 2021). The results in
Figure 6, left panel, show that adding DDIM encoding (Encode-Decode) and the masking (DiffEdit
w/o Encode) separately both improve the trade-off and reduce the average editing distance w.r.t. the
input image compared to SDEdit. Moreover, combining these two elements into DIFFEDIT gives
an even better trade-off, showing their complementarity: masking better preserves the background,
while DDIM encoding retains visual appearance of the input inside the mask. See Figure 5 for
qualitative examples of these ablations, along with the inferred masks.
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Figure 6: Ablations on ImageNet. Left: effect of masking
and encoding component. Right: DIFFEDIT with different
mask thresholds; with 0.5 our default setting.

The right panel of Figure 6 shows
DIFFEDIT with different mask bi-
narization thresholds. Compared to
our default value of 0.5, a lower
threshold of 0.25 results in larger
masks (more image modifications)
and worse CSFID-LPIPS tradeoff. A
higher threshold of 0.75 results in
masks that are too restrictive: the CS-
FID score stagnates around 40, even
at large encoding ratios.
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Finally, our mask guidance operator ỹt = Myt+(1 − M)xt provides a better trade-off than the
operator used in GLIDE (Nichol et al., 2021), which interpolates yt with a mask-corrected version
of the predicted denoised image ŷ0. With encoding ratio 80%, both operators produce edits with a
LPIPS score of 30.5, but the GLIDE version yields a CSFID of 26.4 compared to 23.6 for ours.

4.3 EXPERIMENTS ON IMAGES GENERATED BY IMAGEN

In our second set of experiments we evaluate edits that involve changes in background, replacing
secondary objects, and editing object properties. We find that images generated by Imagen (Saharia
et al., 2022b) offer a well suited testbed for this purpose. Indeed, the authors tested the compositional
abilities of Imagen with templated prompts of the form: “{A photo of a | An oil painting of a}
{fuzzy panda | British shorthair cat | Persian cat | Shiba Inu dog | raccoon} {wearing a cowboy
hat and | wearing sunglasses and} {red shirt | black jacket} {playing a guitar | riding a bike |
skateboarding} {in a garden | on a beach | on top of a mountain}”, resulting in 300 prompts.
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Figure 7: Editing trade-offs on Imagen images.
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Figure 8: Masks and edits obtained with and without refer-
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Input 
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→ sunglasses
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on the beach

Riding a bike 
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Figure 9: Edits on Imagen dataset. We use encoding ratio of
90% for DiffEdit and 70% for SDEdit for fair comparison:
both methods have similar CLIPScore, for larger encoding
ratios SDEdit drastically change the input.

We use the generated images as in-
put and ask to change the prompt
to another prompt for which one of
these elements is changed. Since we
cannot use the CSFID metric as for
ImageNet, as images do not carry
a single class label, we use FID to
measure image realism, and CLIP-
Score (Hessel et al., 2021) to mea-
sure the alignment of the query and
output image. These two scores
have become the standard in evalu-
ating text-conditional image genera-
tion (Saharia et al., 2022b).

Figure 7 displays the CLIP-LPIPS
and FID-CLIP trade-offs. DIFFEDIT
provides more accurate edits than
SDEdit, FlexIT, and Cross Atten-
tion Control, by combining inferred
masks with DDIM encoding. Two
versions of DiffEdit are shown,
which differ by how the mask is com-
puted: they correspond to (i) using
the original caption as reference text
(labelled w/ ref. text) or (ii) using the
empty text ∅ (labelled w/o ref. text).

Computing the mask with the orig-
inal caption as reference text yields
the best overall trade-off. Leverag-
ing the original caption yields better
CLIP and FID scores. Figure 8 il-
lustrates the difference in the masks
obtained with and without reference
text for two examples. The refer-
ence text allows to ignore parts of
the image that are described both by
the query and reference text (e.g. the
fruits), because in both cases the net-
work uses the common text on the
corresponding image region to esti-
mate the noise. On the contrary, parts
where the query and reference text
disagree, e.g. “bowl” vs. “basket”,
will have different noise estimates.
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Qualitative transformation examples are shown in Figure 9, where the masks are inferred by con-
trasting the caption and query texts.

4.4 EXPERIMENTS ON COCO

To evaluate semantic image editing with more complex prompts, we use images and captions from
the COCO dataset Lin et al. (2014). To this end, we leverage the annotations provided by Hu et al.
(2019), which associate images from the COCO validation set with other COCO captions that are
similar to the original ones, but in contradiction with the given image. This makes these annotations
particularly interesting as queries for semantic image editing, as they can often be satisfied by editing
only a part of the input image, see Figure 15 in the supplementary material for examples. Similar to
our evaluation for Imagen images, here we evaluate edits in terms of CLIPScore, FID and LPIPS.

The results in Figure 10 show that the CLIP-LPIPS trade-off of DIFFEDIT is the best, but that
it reaches lower maximum CLIP score than SDEdit. The FID scores are similar to SDEdit,
but significantly improves upon the Encode-Decode ablation, which does not use a mask.
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Figure 10: Quantitative evaluation on COCO.
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Figure 11: Examples edits on COCO images.

Moreover, in contrast to results on the
Imagen data, leveraging the original
image caption does not change the
CLIP-LPIPS and FID-CLIP trade-
offs. We find that the caption often
describes the input image differently
compared to the query text, making it
more difficult to identify which part
of the image needs to be edited. We
verify this hypothesis in Section A.3
by filtering the dataset according to
the edit distance between the caption
and edit query. When the caption and
edit query are similar, leveraging the
image caption boosts CLIP scores by
0.25 points, a similar improvement as
seen on the Imagen data.

Qualitative examples are shown in
Figure 11. The first column illus-
trates the benefit of DDIM encod-
ing: we are able to correctly main-
tain properties of the object inside the
mask, such as clothes’ color. The
three last columns illustrate how con-
trasting different pairs of reference
and query text allows to select differ-
ent objects in the input image to per-
form different edits. See Section A.5
for more examples.

5 CONCLUSION

We introduced DIFFEDIT, a novel algorithm for semantic image editing based on diffusion mod-
els. Given a textual query, using the diffusion model, DIFFEDIT infers the relevant regions to be
edited rather than requiring a user generated mask. Furthermore, in contrast to other diffusion-based
methods, we initialize the generation process with a DDIM encoding of the input.We provide the-
oretical analysis that motivates this choice, and show experimentally that this approach conserves
more appearance information from the input image, leading to lighter edits. Quantitative and qual-
itative evaluations on ImageNet, COCO, and images generated by Imagen, show that our approach
leads excellent edits, improving over previous approaches. Although DIFFEDIT works better with
a reference text describing the input image, we believe this additional information can be inferred
from input image and target caption, which we leave for future work.
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6 ETHICS STATEMENT

Image editing raises several ethical challenges that we wish to discuss here. First, as image editing
is closely related to image generation, it inherits known concerns. Open-source diffusion models
are trained on large amounts of web-scraped data like LAION, and inherit their biases. In par-
ticular, it was shown that LAION contains inappropriate content (violence, hate, pornography),
along with racist and sexist stereotypes. Furthermore it was found that diffusion models trained on
LAION, such as Imagen, can exhibit social and cultural bias. Therefore, the use of such models can
raise ethical issues, whether the text prompt is intentionnally harmful or not. Because image edit-
ing is usually performed on real images, there are additionnal ethical challenges, such as potential
skin tone change when editing a person or re-inforcing harmful social stereotypes. We believe that
open-sourcing editing algorithms in a research context contributes to a better understanding of such
problems, and can aid the community in efforts to mitigate them in the future. Furthermore, image
editing tools could be used with harmful intent such as harrassement or propagating fake news. This
use, known as deep fakes, has been largely discussed in previous work, e.g. in Etienne (2021). To
mitigate potential misuse, the Stable Diffusion model is released under a license focused on ethical
and legal use, stating explicitly that users “must not distribute harmful, offensive, dehumanizing
content or otherwise harmful representations of people or their environments, cultures, religions,
etc. produced with the model weights”.

Our editing benchmark based on the COCO dataset also has some limitations. COCO has a pre-
dominant western cultural bias, and we are therefore evaluating transformations on a small subset
of images mostly associated with western culture. Finding relevant transformation prompts for an
image is challenging: while we found it relevant to leverage existing annotations based on COCO,
we believe that evaluating image editing models on a less culturally biased dataset is needed.
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DIFFEDIT: Diffusion-based semantic image editing with mask generation
Supplementary Material

In this supplementary material we provide more details on the experiments and methods presented in
the main paper. In Section A we provide additional experimental results, including assessment of
the impact of the strength of classifier-free guidance, the impact of using reference texts describing
the input image, an illustration of the effect of the encoding ratio, more qualitative editing examples,
as well as a number of example images and associated reference and query texts on COCO. In
Section B we provide proofs that support Proposition 1 in the main paper.

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ANALYSIS OF NOISE USED TO COMPUTE THE MASK
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Figure 12: Impact of the noise added to input im-
age when computing the mask, for a encoding ra-
tios of 0.7 or 0.8 on ImageNet.

In step one our method an editing mask is in-
ferred by contrasting noise estimations on a
noised version of the input image, see Sec-
tion 3.2. In this section, we study the impact
of the level of noise added to the input image,
by varying its value between 0.1 and 0.8, where
0 corresponds to using the initial image as in-
put, and 1 to replacing the input image with
random Gaussian noise. We evaluate the ob-
tained operating points on ImageNet with the
CSFID and LPIPS metrics when using a encod-
ing ratios of 0.7 and 0.8 for DDIM encoding
and masked-guided denoising in steps two and
three of DIFFEDIT. From the results in Fig-
ure 12, we find that best results are obtained for
moderate values of noise addition of 0.6 and be-
low. Indeed, with too much noise added to the
input image, it is difficult to correctly identify visual elements in the input image. We use a value of
0.5 in all our experiments.

A.2 CLASSIFIER-FREE GUIDANCE
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Figure 13: Ablation on the value of the classifier-
free guidance parameter. On ImageNet, we find
that a value of at least 3 must be used to get good
results. We chose to use 5, which is the default
value recommended for generation.

In diffusion models, the noise estimator ϵθ can
be conditioned on text describing the image,
which provides a signal to guide the noise es-
timation process (Nichol et al., 2021; Saharia
et al., 2022b). Ho & Salimans (2022) intro-
duced classifier-free guidance, a technique to
greatly improve generation quality and image-
text alignment in text-conditional diffusion
models. It consists in training both a condi-
tional and unconditional model by dropping the
conditioning text at train time with fixed prob-
ability, e.g. 10%. Then, after training, at each
step t during decoding, the noise estimation
ϵθ(xt, Q, t) is extrapolated by using the uncon-
ditional noise estimation ϵθ(xt, ∅, t) as origin.
Formally, the noise that is used is

ϵ = ϵθ(xt, ∅, t)+λ(ϵθ(xt, Q, t)− ϵθ(xt, ∅, t)),

where λ is the classifier-free guidance parame-
ter. We study the influence of this parameter on DIFFEDIT in Figure 13, finding that similarly to
generation, a value above 3 yields the best results. Without classifier-free guidance, the obtained
trade-off is not competitive. For our experiments we use a default guidance value of λ = 5.
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A.3 EXPERIMENTS ON COCO FILTERING
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Figure 14: Results on COCO: unfiltered (left) and filtered (right).
While having a small impact overall, for the filtered set using the ref-
erence text is beneficial, especially at high encoding ratios, e.g. 90%.

Here, we investigate why
there is little difference
between using or not the
reference text to compute
the mask on our COCO
queries. In Figure 15
we show several editing
queries on the COCO
dataset taken from the
BISON dataset (Hu et al.,
2019). Generally, the text
query describes a scene
similar to the one in the
input image, and it is
possible to match the text
query by editing only a
fraction of the input image.
However, we find that while queries have been built to be close to a caption of the input image,
most of the time the query is not well aligned with the caption. We create a filtered version of this
dataset, for which queries are structurally similar to the caption, i.e. where only a few words are
changed, but the grammatical structure stays the same. We use the filtering criterion that the total
number of words inserted/deleted/replaced must not exceed 25% of the total number of words in
the original caption, resulting in a total of 272 queries out of 50k original queries. In Figure 14 we
compare results with and without filtering, and observe that for the images with small caption edits
the gain of DIFFEDIT (w/ ref. text) compared to Encode-Decode is somewhat larger than on the
unfiltered dataset. Moreover, using the original caption as reference text to compute the mask gives
higher CLIPScore, especially at high encoding ratio. This illustrates that a well chosen reference
text helps to generate better editing masks.

A photo of a British shorthair 
Cat wearing a cowboy hat and 
black jacket playing the guitar 
on the beach.

Input 
Image

Text 
Query

Caption

DatasetImagen-Dataset

A photo of a British shorthair 
Cat wearing a cowboy hat and 
black jacket playing the guitar 
in a garden.

Imagen-Dataset

An oil painting of Shiba Inu 
dog wearing sunglasses and 
red t-shirt skateboarding in a 
garden.

An oil painting of Shiba Inu 
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red t-shirt riding a bike in a 
garden.
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Figure 15: Editing queries on the COCO dataset.

A.4 VISUALISATION OF THE IMPACT OF ENCODING RATIO

We show visual results for ablations of our two main components, mask inference and DDIM en-
coding, in Figure 16. The resulting methods are SDEdit, Encode-Decode, DIFFEDIT w/o Encoding,
and DIFFEDIT. We demonstrate the qualitative behavior of these different methods, at varying en-
coding ratios between 30% and 80%. Compared to SDEdit, Encode-Decode allows to better match
the query with less modifications of the main object and the background, especially at 60%− 70%.

15



Published as a conference paper at ICLR 2023

Mask inference allows to maintain exactly the background. Using DDIM inference on top of mask-
based decoding allows to better retain of the content inside the mask, especially at 70% and 80%,
c.f. row 3 vs. 4.

SDEdit

Encode-
Decode

DiffEdit
w/o Encoding

Input 
Image

30% 40% 50% 60% 70% 80%

Query Bald Eagle

DiffEdit

Method Name Encoding Mask

Mask 
generated 

w/ DiffEdit

Figure 16: Qualitative ablations of the mask and encoding components, using different encoding
ratios from 30% to 80%.

A.5 ADDITIONAL VISUALIZATIONS AND QUALITATIVE RESULTS

Figure 17 illustrates editing examples on Imagen, in comparison with other mask-free editing meth-
ods. DIFFEDIT generally performs more targeted and accurate edits, leaving more of the original
image in tact where possible. Consider for example the first column of Figure 17, where DIFFEDIT
leaves the guitar as it, while other methods make unnecessary and unrealistic changes to the guitar.

Additional qualitative examples on COCO images are shown in Figure 19.

Figure 20 shows several failure cases of semantic image editing with DIFFEDIT. Some failure
modes are inherited from the generative model itself: models trained on web-scrapped image-text
data are known to struggle with understanding spatial positions in images, spatial reasoning, and
counting (Ramesh et al., 2021). Others are specific to our mask-based method, like the difficulty to
insert objects, because the mask often seeks an “anchor” visual element to insert an object, see first
column.

A.6 DETAILS ON COMPARISONS WITH OTHER METHODS

On the COCO and Imagen datasets, we do not compare with ILVR, since it cannot be used within
the latent diffusion framework: the method needs image downsampling and upsampling, which does
not work well with the latent spaces used in latent diffusion. Even adapted with a diffusion model
without latent spaces like Imagen, we do not expect the CLIP-LPIPS trade-off to be favorable for this
method, given the high editing distance obtained on ImageNet. Instead, we compare against Cross-
Attention Control Hertz et al. (2022), a recent method for text-driven image editing based on the
unreleased Imagen diffusion model. The method is very recent and has been adapted to use with Sta-
ble Diffusion at https://github.com/bloc97/CrossAttentionControl/. We have
performed lightweight hyperparameter search to optimize the CLIP-LPIPS trade-off on a subset
of Imagen images. We generally find that this re-implementation, while producing edited images
structurally similar to the input, changes local features more than SDEdit, leading to generally high
LPIPS distances, resulting in a CLIP-LPIPS trade-off not competitive with other methods on our
COCO and Imagen benchmark. In particular, LPIPS distance are high on the COCO dataset where
text query and reference text have a high edit distance on average, whereas Cross-Attention Control
was designed to perform well for prompt-to-prompt editing, i.e. the input and target text should al-
most exactly match. Given that our results are based on the unofficial re-implementation, we caution
that they are temporary and we will update them when the official code (or official adaptation for
Stable Diffusion) is released.
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Input

FlexIT
(res 256)

Cross-
Attention 
Control

SDEdit

DiffEdit

Text Query glasses → 
cowboy hat

glasses → 
cowboy hat

riding a bike → 
skateboarding

british shorthair 
cat → fuzzy 

panda

fuzzy panda → 
raccoon

Figure 17: Example edits from Imagen, in comparison with other mask-free editing methods.

17



Published as a conference paper at ICLR 2023

A motorbike and a 
balcony  → A 

motorbike and plants 
on a balcony.

A house and 
motorbike → A 

house and vintage old 
car

Pancake with egg → 
burger

train → coach Bread → burger Truck → rusty 
old truck

A dog playing with 
frisbees → A dog 

playing with 
basketball balls.

A dog playing with 
frisbees → A wolf 

playing with frisbees.

Input 
Image

DiffEdit 
Mask

DiffEdit 
w/o Encode

Editing
 query

Input 
Image

DiffEdit 
Mask

DiffEdit

Editing
 query

House and carriage  
→ House and race 

car

House and carriage  
→ middle-age castle 

and carriage

Keyboard  → Piano 
keyboard

Mashed potatoes → 
fried egg

DiffEdit

SDEdit

Encode-
Decode

SDEdit

Encode-
Decode

DiffEdit 
w/o Encode

Figure 18: More qualitative examples on COCO. Baseline methods are shown for comparison. The
mask is sometimes bigger or smaller that one could expect: In column 3, it is larger, but there are
few edits outside the requested bread → burger transformation (except for the wine bottle label),
which is not the case without DDIM encoding. In column 4, the mask does not cover the interior of
the truck, but this does not affect the edit quality.
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A motorbike and a 
balcony  → A 

motorbike and plants 
on a balcony.

A house and 
motorbike → A 

house and vintage old 
car

Pancake with egg → 
burger

train → coach Bread → burger Truck → rusty 
old truck

A dog playing with 
frisbees → A dog 

playing with 
basketball balls.

A dog playing with 
frisbees → A wolf 

playing with frisbees.

Input 
Image

DiffEdit 
Mask

DiffEdit 
w/o Encode

Editing
 query

Input 
Image

DiffEdit 
Mask

DiffEdit

Editing
 query

House and carriage  
→ House and race 

car

House and carriage  
→ middle-age castle 

and carriage

Keyboard  → Piano 
keyboard

Mashed potatoes → 
fried egg

DiffEdit

SDEdit

Encode-
Decode

SDEdit

Encode-
Decode

DiffEdit 
w/o Encode

Figure 19: More qualitative examples on COCO. In the first column, the color of the objects to be
edited is maintained, which would not be the case with regular inpainting methods. Contrasting
similar text query and reference text allows to select the object to be edited.
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A plane and clouds 
→ A plane and a hot 

air balloon

Two giraffes → two 
giraffes and a zebra

A grey parrot and a parrot 
with yellow head → A 
rainbow lorikeet and a 

parrot with yellow head.

Input 
Image

Editing 
Query

DiffEdit 
Mask

DiffEdit 
Output

A black cat and an empty 
white wall on the right. → 
A black cat and a painting 
of the eiffel tower on the 
white wall on the right.

A cat and a dog → 
A cat and a raccoon

A blue car on the left of 
orange garage door → A 
blue car on the right of 

orange garage door

Failure 
Mode

Object inserted at the wrong 
place

Object inserted at the wrong 
place and undesired 

modification of existing 
object

Object not inserted Mask does not isolate 
object to be edited, both 

objects

Mask does not isolate 
object to be edited

Unable to change 
positions of objects

Figure 20: Illustration of failure modes. In the first two columns show difficulty to insert an object
in a smooth region of the image. In column three the mask fails to identify a region where to add the
zebra. Columns 4 and 5 show mask identification errors, where multiple similar objects are included
in the mask, whereas matching the text query only requires to edit a single object. In both cases this
results in over-editing. Col. 6 shows the failure to change a spatial relation in the image.
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B THEORETICAL RESULTS

Here, we prove the bounds given in the main paper. We reused notations from Proposition 1 in the
main paper. We also discuss links to optimal transport.

B.1 PROOF OF SDEDIT BOUND

Proposition 2. Suppose that ∥ϵθ(x, Q, t)∥2 ≤ C for all x ∈ X , t ∈ [0, 1]. Then

E
(x0,Q)∼pD

ϵ∼N (0,1)

∥x0 −Dr(Gr(x0, ϵ), Q)∥2 ≤ (C + 1)τ (6)

Proof. Let T , xr = Gr(x0, ϵ) , yr = xr and y0 = Dr(yr, Q). Then

∥ xr√
αr

− y0∥ = ∥ yr√
αr

− y0√
α0

∥ = ∥
∫ 0

τ

ϵθ(xt, Q, t)dτ∥ ≤ Cτ. (7)

Since xr√
αr

= x0 + τϵ, we have ∥x0 − y0∥ ≤ ∥x0 + τϵ− y0∥+ ∥τϵ∥ ≤ Cτ + τ which concludes
the proof.

In the SDEdit paper (Meng et al., 2021), a proof similar to what we state is given, with three main
differences: (i) the proof is given in the case of variance-exploding Stochastic Differential Equation
(VE-SDE), which needs adaption for our setting which uses variance-preserving SDE; (ii) the bound
is derived in the case of a stochastic differential equation, whereas we use a deterministic DDIM
process; (iii) the bound is given by controlling the probability tail, whereas we only consider the
expectancy of edit distance. However, despite these differences, the spirit of the proof is the same as
here.

B.2 PROOF OF PROPOSITION 2

Proposition 3. Suppose that ϵθ(·, Q, t) is K1-lipschitz and κ2 defined as

κ2(x0) = max
t∈[0,1]

∥ϵθ(Et(x0), Q, t)− ϵθ(Et(x0), ∅, t)∥ (8)

Let K2 = Ex0
κ2(x0). Then for all encoding ratio r, with τ =

√
α−1
r − 1,

Ex0
∥x0 −Dr(Er(x0), Q)∥ ≤ K2τ√

τ2 + 1

(
τ +

√
τ2 + 1

)K1

(9)

Proof. Let σ be a time-dependent variable defined as σ(t) =
√

α−1
t − 1. Let u = x/

√
α =

x
√
1 + σ2 and v = y

√
1 + σ2. u and v are solutions of the following differential system:

du|t = ϵθ(u/
√

1 + σ2, ∅, t)dσ, (10)

dv|t = ϵθ(v/
√

1 + σ2, Q, t)dσ, (11)

u(r) = v(r) = Er(x0)
√
1 + σ2. (12)

Let w = ∥u− v∥, then w|t=r = 0 and

dw|t ≤ ∥du|t − dv|t∥ = ∥(ϵθ(x, ∅, t)− ϵθ(y, Q, t))dσ∥ (13)
≤ ∥(ϵθ(x, ∅, t)− ϵθ(x, Q, t)∥dσ + ∥(ϵθ(x, Q, t)− ϵθ(y, Q, t)∥dσ (14)
≤ κ2(x0)dσ +K1∥x− y∥dσ (15)

≤
(
κ2(x0) +

K1√
1 + σ2

w
)
dσ. (16)
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By integration we get

w(t) ≤ κ2(x0) ∗ (τ − t) +

∫ τ

t

K1√
1 + σ2

w(σ)dσ.

From here we can apply Grönwall’s inequality:

w(0) ≤ κ2(x0)τ exp
(∫ τ

0

K1√
1 + s2

ds
)

(17)

≤ κ2(x0)τ exp
(
K1 log(τ +

√
τ2 + 1)

)
(18)

≤ κ2(x0)τ
(
τ +

√
τ2 + 1

)K1

. (19)

Which finally gives

∥x0 − y0∥ ≤ κ2(x0)τ√
τ2 + 1

(
τ +

√
τ2 + 1

)K1

. (20)

Taking the expectation w.r.t. the input image x0 gives the final result:

Ex0
∥x0 −DT (ET (x0), Q)∥ ≤ K2τ√

τ2 + 1

(
τ +

√
τ2 + 1

)K1

(21)

which concludes the proof.

B.3 LINKS TO OPTIMAL TRANSPORT THEORY

The reverse DDIM encoder Er maps the distribution of images p0 = pD to the distribution pr of
images noised at timestep r. Khrulkov & Oseledets (2022) suggested that Er could be an optimal
transport map between p0 and pr, minimizing the transport cost Ex0

∥x0 − Er(x0)∥22. This means
that the encoded images are, on average, as close as possible to the input images, while following
the correct distribution pr. It would entail that the unconditional decoder Dr = E−1

r would be
an optimal transport map between pr and p0, and moreover that the conditional decoder Dr(·, Q)
would be an optimal transport map between the distributions pr(·|Q) and p0(·|Q) conditioned by
text description Q. Under the hypothesis that pr is very close to pr(·|Q), then the Encode-Decode
algorithm would be the combination of two optimal transport maps Er and Dr(·, Q), mapping p0
to pr and then pr ≃ pr(·|Q) to p0(·|Q). This is a very interesting property and we make the
connection with the desired properties of semantic image editing, which can be expressed as an
optimal transport problem. Given two distribution of images p1, p2 (lets say cats and dogs), the aim
is to find the function f that performs the expected edit (changing images of cats into images of
dogs) while minimally editing the image, which can be expressed mathematically as:

f = argmin
f

Ex∥x− f(x)∥ s.t. p2 = f#p1, (22)

where f# is the push-forward measure. The function Dr(·, Q) ◦Er is not a solution of this optimal
transport problem, because (i) it was proven that the reverse DDIM encoder is not the optimal
transport map for some distributions (Lavenant & Santambrogio, 2022), and (ii) the composition
of two optimal transport maps is not necessarily an optimal transport map. However, experiments
and numerical simulations suggest that Er is very close from an optimal transport map. It would
be interesting to study the “optimality defect” of Er and of the editing function Dr(·, Q) ◦ Er. We
leave this for future work.
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