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ABSTRACT

In this work, we explore the use of untrained message passing layers in graph neural
networks for link prediction. The untrained message passing layers we consider are
derived from widely used graph neural network architectures by removing trainable
parameters and nonlinearities in their respective message passing layers. Exper-
imentally we find that untrained message passing layers can lead to competitive
and even superior link prediction performance compared to fully trained message
passing layers while being more efficient and naturally interpretable, especially in
the presence of high-dimensional features. We also provide a theoretical analysis
of untrained message passing layers in the context of link prediction and show that
the inner product of features produced by untrained message passing layers relate
to common neighbour and path-based topological measures which are widely used
for link prediction. As such, untrained message passing layers offer a more efficient
and interpretable alternative to trained message passing layers in link prediction
tasks.

1 INTRODUCTION

Graph neural networks (GNNs) are a powerful class of machine learning models that can learn from
graph-structured data, such as social networks, molecular graphs, and knowledge graphs. GNNs
have emerged as an important tool in the machine learning landscape, due to their ability to model
complex relationships and dependencies within data and have found applications in a variety of fields
where data exhibits a complex topology that can be captured as a graph. This is shown by a multitude
of studies, including Basu et al. (2022); Wang et al. (2022); Fu et al. (2022); Jaini et al. (2021); Puny
et al. (2021), which highlight the versatility and adaptability of GNNs for machine learning tasks
across a range of fields.

One of the key concepts underlying GNNs is Message Passing (MP) (Gilmer et al., 2017), which
operates by propagating and aggregating information between nodes in the graph, using message and
update functions possibly with learnable parameters. However, designing effective GNNs can be
challenging, as they can suffer from issues such as over-smoothing or over-parameterization, and
because training GNNs can be computationally demanding. In order to address these shortcomings
recent efforts have concentrated on finding simplified architectures that are both more interpretable
and easier to optimize.

With our work, we aim to complement existing works on simplified and untrained MP architectures,
previously formulated in the context of node classification, from the perspective of link prediction
(Zhang & Chen, 2018). Link prediction is an important task in graph ML with many applications such
as recommender systems, spam mail detection, drug re-purposing, and many more (Zhang & Chen,
2018). Current state of the art LP methods (Wang et al., 2023) in general rely on a combination of
GNNs and structural features hence formulating effective, efficient and interpretable MP architectures
has the potential to further improve current LP methods in these regards. Therefore we focus our
analysis on MP layers rather than trying to formulate a novel end-to-end LP method.

In this work, we explore the use of untrained message passing layers for link prediction in graph
datasets with high dimensional features. By formulating Untrained Message Passing (UTMP) layers,
we follow an approach similar to that of Simplified Graph Convolutional Networks introduced by
Wu et al. (2019). This approach simplifies GNN architectures by removing trainable parameters
and nonlinearities resulting in an architecture that can be clearly separated into two components:
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an untrained message passing/feature propagation steps followed by a linear classifier. In addition
to these we also consider fully untrained architectures based on simple inner products of features
obtained after l iterations of UTMP layers as a baseline and find that these features produced by
UTMP layers are already highly informative leading to surprisingly high link prediction performances.

We base our analysis on untrained versions of four widely used MP architectures, namely Graph
Convolutional Networks (GCN)(Kipf & Welling, 2016a), SAGE (Hamilton et al., 2017), GraphConv
(Morris et al., 2019) and GIN (Xu et al., 2018). We test these untrained message passing layers on
a variety of datasets that cover a wide range of sizes, node features, and topological characteristics
ensuring a comprehensive evaluation of the models. We test UTMP layers on a variety of datasets
that cover a wide range of sizes, node features, and topological characteristics ensuring a compre-
hensive evaluation of the UTMP layers. Mirroring the results reported by Wu et al. (2019) for node
classification we find that UTMP layers in many cases outperform their fully trained counterparts in
LP tasks while being highly interpretable and easier to optimize.

We also show that link prediction provides a complementary perspective for the theoretical analysis of
UTMP layers (Zhou et al., 2022; Chamberlain et al., 2022). In our theoretical analysis we establish a
direct connection between features produced by UTMP layers and various path based node similarity
measures. Path based measures capture the indirect connection strength between node pairs nodes in
the absence of a direct link connecting the nodes. Consequently, path based measures and methods
have been widely used in traditional link prediction methods (Martı́nez et al., 2016; Kumar et al.,
2020) and also play a key role in many state of the art methods (Zhu et al., 2021; Zhang & Chen,
2018).

Our theoretical analysis relies on the assumption that initial node features are orthonormal which
covers widely used initialization schemes such as as one-hot encodings and high dimensional
random features, and also holds approximately for many empirical data sets with high dimensional
features. Hence, our theoretical findings also provide new insights into the effectiveness of the widely
used initialization schemes of one-hot encodings and high dimensional random features in graph
representation learning. More generally our results show that untrained versions of message passing
layers are highly amenable to theoretical analysis and hence could potentially serve as an general
ansatz for the theoretical analysis of GNNs including settings beyond link prediction.

The main contributions of the paper are as follows:

• We show that untrained versions of widely used MP layers often outperform their fully
trained counterparts in LP tasks.

• We establish a direct connection between MPNNs and path based node similarity measures
both of which are widely used in LP methods.

• Our theoretical analysis further provides insights in to the effectiveness of widely used node
initialization schemes such as one-hot-encodings and random features.

2 RELATED WORK

Our work is motivated by recent works that investigate simplified and untrained GNNs from different
perspectives. We formulate UTMP layers following the approach of Wu et al. (2019) which simplifies
GNNs by successively removing trainable parameters from layers and nonlinearities between consec-
utive layers. Wu et al. (2019) also provide a theoretical analysis of simplified models in the context
of node classification reducing the model to a fixed low-pass filter followed by a linear classifier. The
paper also empirically evaluates the simplified architectures on various downstream applications and
shows that simplified architectures do not negatively impact accuracy while being computationally
more efficient than their fully trained counterparts.

Other works have focused on finding untrained subnetworks. For instance Huang et al. (2022)
explores the existence of untrained subnetworks in GNNs that can match the performance of fully
trained dense networks at initialization, without any optimization of the weights. The paper leverages
sparsity as the core tool to find such subnetworks and shows that they can substantially mitigate
the over-smoothing problem, hence enabling deeper GNNs. The paper also shows that the sparse
untrained subnetworks have appealing performance in out-of-distribution detection and robustness
to input perturbations. Similarly, in Böker et al. (2023) the authors demonstrate that GNNs with
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randomly initialized weights, without training, can achieve competitive performance compared to
their trained counterparts focusing on the problem of graph classification. In Dong et al. (2023) the
authors show that certain common neighbour measures can be approximated by MPNNs initialised
with random weights and node features without training. Other more recent works on untrained
GNNs include Dong et al. (2024) where the authors propose a training free linear GNN model for
semi supervised node classification in text attributed graphs and Sato (2024) that defines training free
GNNs for transductive node classification based on using training labels as features.

Link prediction is widely studied problem with a multitude of available methods. UTMP layers are
related to a both GNN based methods such as Variational Graph Autoencoders (V-GAE) (Kipf &
Welling, 2016b) and more traditional methods that are rely on path and random walk based measures
for link prediction (Kumar et al., 2020). On the other hand state of the art methods such as SEAL
(Zhang & Chen, 2018), NBFnet (Zhu et al., 2021), BUDDY (Chamberlain et al., 2022), Neo-GNN
(Yun et al., 2021) and NCNC (Wang et al., 2023) in general rely on combining GNNs and structural
features. Some methods such as SEAL (Zhang & Chen, 2018) and WalkPool (Pan et al., 2021) are
based on extracting and performing MP on local subgraphs around target links effectively framing
link prediction as a graph classification problem. Although subgraph extraction based methods can
out perform purely GNN based methods in link prediction tasks the subgraph extraction process can
be resource intensive for large networks negatively affecting the scalability of these methods. NBFnet
(Zhu et al., 2021) is another state-of-the-art method that is motivated by the Bellman-Ford algorithm.
NBFnet is based on learning representations of paths between target nodes and aggregation functions
for these representations. While NBFnet scales more favorably compared to subgraph extraction
based methods it still needs to compute representations for large numbers of paths to predict links
and hence has worse scaling behavior compared to purely GNN based link prediction methods (Zhu
et al., 2021). Neo-GNN (Yun et al., 2021) and BUDDY (Chamberlain et al., 2022) circumvent these
difficulties by using pairwise similarity measures between higher order neighbourhoods of nodes,
which are then used together with GNN based node features for LP. Notably BUDDY includes
a feature propagation step that can be seen as a special case of UTMP (see UTSAGE in Section
3.1). In Wang et al. (2023) the authors propose a GNN based approach that in addition to using
node level features also aggregates features of common neighbours for link prediction and further
propose Neural Common Neighbour Completion (NCNC) to counteract the negative effects of graph
incompleteness on LP performance.

As detailed above GNNs are widely employed as sub-components in LP methods. Hence rather than
proposing a new method for link prediction we consider the advantages of using UTMP layers over
their trained counterparts in existing LP methods. Moreover, our theoretical results establish a link
between MP based approaches and structural features by showing that features resulting from UTMP
implicitly encode neighbourhood information that underlies many widely used common neighbour
and path based structural features.

From a theoretical perspective, our results also relate to recent works on the effectiveness of random
node initializations and one-hot encodings. For instance Sato et al. (2021) and Abboud et al. (2020)
focus on the effect of random node initializations of the expressivity of GNNs in the context of graph
classification while Cui et al. (2022) explores various encodings for the task including node and graph
classification. Our analysis complements these works from the point of view of LP and establishes a
link between features derived from random and one hot initializations and, path based topological
features.

Finally, in our theoretical analysis we rely on the fact that collections of high dimensional vectors
tend to be mutually orthogonal. This is a widely know fact that has wide raging applications in
ML more broadly given the pervasive use of high dimensional vector representations in modern ML
methods (Kanerva, 2009; 2018).

3 MESSAGE PASSING ARCHITECTURES

Prior to introducing the message passing architectures investigated in our work, we first clarify
the notation used throughout the paper. Let G(V,E) be an undirected graph with vertex set V =
{v1, v2 . . . vN}, edges E ⊆ V × V and no self-loops, i.e. (v, v) /∈ E ∀v ∈ V . We denote the
adjacency matrix of the graph as A and define Ã := A + I, where I is the identity matrix, i.e. Ã
denotes the adjacency matrix of the graph G that explicitly includes all possible self-loops. We
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use N (v) to denote the neighborhood of a node v, i.e. the set {w ∈ V : (v, w) ∈ E}, and use
Ñ (v) := N (v) ∪ {v} to denote the neighborhood of v in the graph with self-loops. Similarly, we
denote the degree of a node v as d(v) and d̃(v) = d(v) + 1. The initial feature vector of node v

is denoted as h
(0)
v and we use h

(l)
v to denote the updated feature vector of node v after l rounds

of message passing. Although we restrict our discussion to undirected and unweighted graphs the
generalization of our definitions and results to weighted graphs is straightforward.

Prior to defining untrained versions, we first introduce the message passing rules of the four GNN
architectures considered in our work, using a unified notation above.

Graph Convolutional Networks (Kipf & Welling, 2016a) GCNs were introduced as a scalable
approach for semi-supervised learning on graph-structured data. GCNs are based on an efficient
variant of convolutional neural networks which operate directly on graphs. The MP layer of GCN is
given by:

h(l)
v = W (l) ·

∑
u∈Ñ (v)

1√
d̃ud̃v

h(l−1)
u ,

where W (l) is the weight matrix for layer l.

GraphSAGE (Hamilton et al., 2017) GraphSAGE is a type of Graph Neural Network that uses
different types of aggregators such as mean, gcn, pool, and lstm to aggregate information from
neighboring nodes. The MP layer in GraphSAGE uses the following formula:

h(l)
v = W

(l)
1 · h(l−1)

v +W
(l)
2 · AGGu∈N (v)h

(l−1)
u ,

where W
(l)
{1,2} are learned weight matrices at layer l, AGG is an aggregation function (such as mean,

sum, max).

Throughout this paper use the following slightly modified version of the SAGE layer :

h(l)
v = W

(l)
1 · 1

d̃v

∑
u∈Ñ (v)

h(l−1)
u ,

which we found to produce superior results for link prediction.

GIN (Xu et al., 2018) The Graph Isomorphism Network Convolution (GIN) is a simple architecture
that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-
Lehman graph isomorphism test. The MP step pf GIN is as follows:

h(l)
v = Θ

(
(1 + ϵ) · h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

)
,

where Θ denotes an MLP after each message passing layer, which in our implementation includes
two Linear layers and a Rectified Linear Unit (ReLU) activation function following each Linear layer
(code adapted from Böker et al. (2023); Morris & Ningyuan Huang (2023)).

GraphConv (Morris et al., 2019) GraphConv is a generalization of GNNs, which can take higher-
order graph structures at multiple scales into account. The mathematical formulation of this is as
follows:

h(l)
v = W

(l)
1 · h(l−1)

v +W
(l)
2 ·

∑
u∈N (v)

h(l−1)
u

where W
(l)
{1,2} are learned weight matrices.

3.1 UNTRAINED MP ARCHITECTURES

For the purpose of our theoretical and experimental evaluation, we now define the untrained counter-
parts of the four Message Passing Neural Network (MPNN) architectures introduced in the previous
section. Following Wu et al. (2019) we eliminate all learnable components and replace them with
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identity matrices. Here our objective is to obtain the simplest form for the update function that
retains the general message passing strategy, which includes the predefined update message passing
functions and aggregation methods while removing all learnable parameters and nonlinearities. We
obtain the following functions that capture the aggregation and update step in the untrained versions
of the message passing layers:

UTGCN: h(l)
v =

∑
u∈Ñ (v)

1√
d̃ud̃v

h
(l−1)
u

UTSAGE: h(l)
v = 1

d̃v

∑
u∈Ñ (v) h

(l−1)
u

UTGIN: h(l)
v = (1 + ϵ)h

(l−1)
v +

∑
u∈N (v) h

(l−1)
u

UTGraphConv: h(l)
v =

∑
u∈Ñ (v) h

(l−1)
u

In general, we consider the case where all nodes have self-loops, i.e. the features of the node itself
are included in the aggregation step. Further setting ϵ = 0 for GINs results in a uniform formula
across both models: h(l)

v =
∑

u∈Ñ (v) h
(l−1)
u . Henceforth we will refer to both models as UTGIN.

The simplified message passing layers can also be expressed in matrix form:

H(l) = SH(l−1) = SlH(0),

where H(0) ∈ Rn×d is the initial feature matrix, and H(l) the feature matrix after l iterations of
message passing. Following, the definitions of UTMP layers above we have S = D̃−1/2ÃD̃−1/2

for UTGCN and S = D̃−1Ã for UTSAGE, where D̃ is the degree matrix with diagonal entries
D̃uu =

∑
v Ãuv. Similarly, for UTGIN we have S = Ã. The generalization of UTMP layers to

undirected weighted graphs can be obtained by simply replacing the adjacency matrix and related
quantities with their weighted counterparts in the formulation of S.

3.2 SIMPLIFIED ARCHITECTURES

Following the construction of Wu et al. (2019) for the case of node classification we add a final
trained linear layer before the final dot product. We refer to such architectures that include a final
trained linear layer after the UTMP layers as ’simplified’ in accordance with Wu et al. (2019) and
include an ’S’ in the abbreviations of these models, e.g. SGCN. This results in an architecture where
the final node features are given by:

H(l) = ΘSlH(0),

where Θ is the learned weight matrix of the linear layer. In the case of simplified GNN architectures,
the trained linear layer can also be interpreted as a modified positive semi-definite inner product in
the form of ⟨Θhl

v,Θhl
u⟩ where Θ is the weight matrix of the linear layer.

In the case of link prediction features produced by UTMP layers can actually be used to construct fully
untrained architectures that only consist of feature propagation steps followed by an inner product. In
practice, we found that such architectures based solely on UTMP layers can do surprisingly well in
terms of LP performance showing that UTMP layers produce highly informative features.

3.3 UTMP LAYERS AND PATH BASED MEASURES

Building on the formulations of the untrained layers above, in the following we provide a theoretical
analysis that relates the inner products of features resulting from untrained message passing layers
to pair-wise measures of node similarity that are based on characteristics of paths in the underlying
graph. Such path based measures offer a way of quantifying the indirect connection strength between
node pairs in the absence of a direct link connecting the nodes. In order to relate path based
measures and UTMP layers we will assume that initial feature vectors are pairwise orthonormal i.e.
⟨h(0)

v , h
(0)
u ⟩ = δu,v .

A path of length l is defined as a sequence of l + 1 vertices (v0, v1 . . . vl) such that (vi, vi+1) ∈ E
for all 0 ≤ i < l. We denote the space of a set of all paths of length l between nodes u and v
as P l

uv. The number of paths of length l between any u and v is given by the lth power of the
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adjacency matrix i.e. |P l
uv| = Ãl

uv. Note that since we assume self-loops on all vertices P l
uv

implicitly also includes shorter paths between u and v. Similarly, paths of length l between vertices
u and v also determine the probability of a random walk starting at u reaching v which is given by
P (u

l−→ v) =
∑

p∈P l
uv

∏
i∈p−[v]

1
d̃i

, where p−[v] denotes that the last vertex (v) is not included in the

product. The random walk probability can also be expressed in matrix form P (u
l−→ v) = (D̃−1Ã)luv .

Now we consider inner products of features after l iterations of message passing which is given
by ⟨h(l)

u , h
(l)
v ⟩ = (SlH(0)H(0)⊤(Sl)⊤)uv. For orthonormal features the inner products of features

reduces to H(0)H(0)⊤ = I and we obtain the following expression for the inner product of the
features after l iterations of UTMP layers:

⟨h(l)
u , h(l)

v ⟩ = (Sl(Sl)⊤)uv.

For UTGCN we have S = D̃−1/2ÃD̃−1/2 and the inner product after l layers can be expressed in
terms of paths of length 2l between u and v as:

⟨h(l)
u , h(l)

v ⟩ = 1√
d̃(u)d̃(v)

∑
p∈P 2l

uv

∏
i∈[p]

1

d̃i
,

where [p] denotes the path p with the first and last vertices removed. The above expression is

equivalent to
√
P (u

2l−→ v)P (v
2l−→ u) i.e. the geometric mean of the probabilities that a random

walk starting at either u or v to reaches the other in 2l steps. Similarly, for UTSAGE we have
S = D̃−1Ã and the inner product can be expressed in terms of paths in P 2l

uv as:

⟨h(l)
u , h(l)

v ⟩ =
∑

p∈P 2l
uv

∏
i∈p−m(p)

1

d̃i
,

where m(p) is the midpoint of the path p. The above expression is equivalent to ⟨h(l)
u , h

(l)
v ⟩ =∑

i P (u
l−→ i)P (v

l−→ i) and hence corresponds to the probability that two simultaneous random
walks starting at u and v, respectively, meet after l steps at some midpoint. Finally, for UTGIN we
have S = Ã and hence:

⟨h(l)
u , h(l)

v ⟩ = |P 2l
uv|.

Although the condition of orthonormality might seem quite restrictive at first glance it applies in many
practical settings, though in some cases only approximately. Moreover, for the above result to hold
orthogonality only needs to be satisfied in the common l-neighbourhood of the nodes. One example
of orthonormal features that are widely used in practice are one hot encodings and orthonormality also
applies in the case of high dimensional random feature vectors since for sufficiently large dimensions
any set of k independent random vectors is quasi orthogonal (Eaton, 2007). Similar results also hold
for random high dimensional binary features that are sparsely populated for which the expected value
of the inner product of two vectors scales as O(1/k) for dimension k.

High dimensional features of empirical data sets also show similar characteristics to their random
counterparts. For instance, empirical feature vectors of randomly selected node pairs tend to be
approximately orthogonal, notwithstanding the fact that features of connected node pairs can be
highly correlated (Nt & Maehara, 2019), as can be verified experimentally (see Sec.C).

As mentioned before in the case of simplified GNN architectures, the final trained linear layer can be
interpreted as a modified positive semi-definite inner product and the orthogonality results for high
dimensional random features also apply to such more general inner products. However, note that
normality is no longer guaranteed i.e. ⟨Θhv,Θhu⟩ ∼ δu,v|hu|2Θ.

We would like to note that the assumption of orthogonality is a mathematical assumption we use to
establish the connection between UTMP layers and path based measures. However, this does not
imply that UTMP require orthogonal features to perform well at LP tasks. On the contrary deviations
from orthogonality can enhance the LP performance of UTMP for instance when connected nodes
tend to have more similar features which holds for many LP benchmarks (e.g. see Figure 2).
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3.4 TRIADIC CLOSURE AND OTHER PATH BASED MEASURES

Triadic closure, also known as transitivity, refers to the tendency for nodes in real-world networks to
form connections if they share (many) common neighbors. As such triadic closure has been widely
studied as a mechanism that drives link formation in complex real-world networks (Rapoport, 1953;
Holland & Leinhardt, 1971). Moreover, node similarity measures that build on triadic closure in
social networks have been used for similarity-based link prediction algorithms (Lü & Zhou, 2011).

Given a pair of nodes (u, v), the tendency of them to be connected due to triadic closure can
be quantified by simply counting the number of common neighbours between the two vertices
i.e. T (u, v) = |N(u) ∩ N(v)| which corresponds to l = 1 for UTGIN, assuming that u and v
are not connected in the graph as is typically the case in an LP setting. In practice, one might
further want to account for the fact that in general nodes with higher degrees also have a larger
probability of having common neighbours, for instance by normalizing by the degrees, i.e.: Td(u, v) =

|N(u)∩N(v)|/d̃(u)d̃(v), which corresponds to l = 1 for UTSAGE. One can go one step further and
also take into account the degrees of the common neighbours themselves since high degree nodes are
by definition common neighbours of more node pairs, for instance by weighing common neighbours
according to their degree Tn(u, v) =

1√
d̃(u)d̃(v)

∑
i∈N(u)∩N(v)

1
d̃i

which in our case corresponds to

UTGCN with l = 1.

Our results also link UTMP layers to other topological similarity measures that are widely used in
link prediction heuristics such as the Adamic-Adar (AA) index (Adamic & Adar, 2003), Resource
Allocation (RA) (Zhou et al., 2009), the Katz index (Katz, 1953), rooted PageRank (Brin & Page,
1998) and SimRank (Jeh & Widom, 2002). For instance the AA index, given by AA(u, v) =∑

i∈N(u)∩N(v)
1

log d̃i
, and RA(u, v) =

∑
i∈N(u)∩N(v)

1
d̃i

differ only slightly from the triadic closure
measures we obtained for UTMP layers. Similar results also hold for other path based measures such
as rooted PageRank, the Katz index and SimRank which can be defined in terms of power series
over paths of different lengths. For instance, SimRank similarity between nodes u and v is defined as
s(x, y) =

∑
l Puv(l)γ

l where Puv(l) is the probability that two random walks starting at u and v meet
after l steps and 0 < γ < 1 is a free parameter. Similarly the Katz index is defined as Katz(u, v) =∑

l A
l
uvγ

l and rooted PageRank is defined as PR(u, v) = (1 − γ)
∑

l
P (u

l−→v)+P (v
l−→u)

2 γl again
with 0 < γ < 1 being a free parameter. Hence, the Katz index is closely related to UTGIN and rooted
PageRank is closely related to UTGCN, the main difference being that these measures also include
paths of odd length which UTGIN and UTGCN include only indirectly through the inclusion of self
loops in their formulation.

4 EXPERIMENTS AND RESULTS

In the following, we provide details on our experimental setup. We evaluate GNN architectures on
a variety data sets that cover both attributed graphs where nodes have additional high-dimensional
features (Cora small, CiteSeer small, Cora, CoraML, PubMed, CiteSeer, DBLP) and non-attributed
graphs that do not contain any node features. Data sources and summary statistics of the data sets
can be found in the Appendix Table 3. We use the area under the Receiver Operator Characteristic
curve (ROC-AUC) for the non-attributed datasets and Hits@100 for the attributed datasets as our
main performance measures.

4.1 EXPERIMENTAL SETUP

To ensure a fair comparison among models we maintain the same overall architectures across all
experiments and MP layers. For trainable message passing layers, each layer is followed by an
Exponential Linear Unit (ELU) and the optimal number of layers for models is determined via
hyperparameter search. Upon completion of the message passing layers, we introduce a final linear
layer for both trained and simplified models. We also consider untrained (UT) models that do not
include this final linear layer and directly take the inner product between the propagated features of
the source and target nodes resulting in a parameter-free and hence fully untrained model. Since the
simplified architectures consist of UTMP layers followed by a trainable linear layer, the consideration
of UT models which do not include the linear layer also covers all possible ablation studies.
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In principle any LP method that uses GNNs as one of its sub-components can also be formulated
using UTMP layers. However, in general state of the art methods consist of many sub-components
resulting in more complex and computationally demanding experimental setups where the effect of
switching from trained to untrained MP layers is more difficult to isolate. Although we therefore
focus on graph auto encoders in our experiments due their simplicity, we also consider two versions
of NCNC Wang et al. (2023): one in which uses trained GCNs for MP and another that uses UTGCN
instead, which following our naming convention is denoted as SNCNC. For the simplified models
we precompute node features corresponding to the untrained message passing layers as these do
not change during training. We use one-hot encoding as initial node features for the non-attributed
datasets. Further details about the experimental setup can be found in the Appendix Sec. B.

Table 1: Link Prediction accuracy for attributed networks as measured by Hits@100. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers.

Models Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP
Hits@100 Hits@100 Hits@100 Hits@100 Hits@100 Hits@100 Hits@100

GCN 80.5 ± 1.59 83.0 ± 1.57 79.75 ± 0.74 82.92 ± 1.44 73.64 ± 2.04 81.06 ± 1.3 69.72 ± 1.71
SGCN 84.73 ± 1.46 88.69 ± 0.57 83.93 ± 0.8 87.31 ± 1.23 69.11 ± 1.25 86.02 ± 1.11 64.81 ± 2.09
UTGCN 64.24 ± 3.4 81.07 ± 1.5 37.5 ± 1.5 58.1 ± 1.74 25.35 ± 2.04 69.39 ± 2.22 31.46 ± 1.04
SAGE 75.67 ± 1.29 80.23 ± 1.09 69.07 ± 1.05 78.33 ± 0.85 56.25 ± 0.7 77.14 ± 2.93 64.81 ± 1.66
SSAGE 80.42 ± 1.71 87.22 ± 1.19 74.16 ± 1.47 79.61 ± 1.75 42.14 ± 1.85 83.78 ± 1.61 56.49 ± 2.64
UTSAGE 57.76 ± 1.51 61.85 ± 3.23 30.51 ± 1.57 51.13 ± 1.27 6.6 ± 0.75 69.88 ± 2.15 19.04 ± 2.2
GIN 74.66 ± 1.63 71.16 ± 1.67 69.83 ± 1.07 78.61 ± 1.07 65.3 ± 1.3 74.64 ± 1.61 64.81 ± 1.66
GraphConv 74.7 ± 1.14 74.89 ± 1.59 62.37 ± 1.87 78.66 ± 1.57 62.84 ± 2.1 77.69 ± 1.32 66.59 ± 1.25
SGIN 74.54 ± 1.69 78.71 ± 2.15 73.11 ± 1.03 77.46 ± 1.77 46.21 ± 0.85 78.56 ± 1.31 66.59 ± 1.15
UTGIN 46.73 ± 2.36 61.85 ± 3.23 22.65 ± 1.13 44.79 ± 1.44 22.01 ± 1.71 58.8 ± 6.18 34.29 ± 1.02
NCNC 83.69±3.13 76.37±2.90 84.55±1.14 87.36±1.83 80.72±0.91 87.22±3.61 73.77±0.75
SNCNC 88.72±1.20 93.42±0.78 84.69±1.39 89.81±0.86 81.26±1.59 89.79±1.51 74.23±0.117

4.2 EXPERIMENTAL RESULTS

In the following section, we discuss the results of our experiments for link prediction in graphs
with node attributes (i.e. in graphs where nodes have additional features) and non-attributed graphs
separately. This diverse selection of data sets allows us to thoroughly evaluate the capabilities of the
models for graphs from different application scenarios, with different sizes, and different topological
characteristics.

Results for attributed graphs are given in Table 1 where we find that the simplified model SGCN
performs best on 5 out of 7 datasets in terms of Hits@100. Moreover, we find that simple GAE
type architectures based on UTMP layers can outperform more sophisticated state-of-the-art models
such as SEAL, NBFnet and Neo-GNN (See Table 9 in the Appendix). In general, our experiments
show that simplified models tend to perform better than or on par with their fully trained counterparts
on almost all datasets in terms of Hits@100. This demonstrates that the raw features produced by
UTMP layers, which the simplified models are trained on, are already highly informative for link
prediction in accordance with our theoretical results. Note that, the fully untrained (UT) models can
be computed efficiently via sparse matrix multiplication.

We observe that replacing trained GCN layers with their untrained counterpart also improves the
LP performance of NCNC. Indeed, some of the results reported in Wang et al. (2023) seem to be
obtained using UTGCN layers.

In the case of non-attributed graphs (Table 2) we observe that models based on UTMP layers achieve
the highest score on 6 out of 8 datasets, with the exceptions being NS and Router datasets. Moreover,
we find that the fully untrained UTGCN model performs best on the ’Celegans’, ’PB’, ’USAir’, ’E-
coli’ which can be attributed to the reduced dimension of the learned features that come with the linear
layers present in the simplified and fully trained models. Furthermore, as we used one hot encodings
as initial node features for the unattributed datasets orthonormality is satisfied exactly and therefore
there is a one-to-one correspondence between the UT models and path based topological measures.
We also find that using UTGCN layers in NCNC instead of trained GCN layers also improves link
prediction performance on 6 out of 7 datasets. Additional results for NCNC experiments can be
found in AppendixF
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Table 2: Link Prediction accuracy for non-attributed networks as measured by ROC-AUC. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers.

Models NS Celegans PB Power Router USAir Yeast E-coli
GCN 95.22 ± 1.8 87.98 ± 1.45 92.91 ± 0.3 74.68 ± 2.67 91.42 ± 0.44 93.56 ± 1.53 94.49 ± 0.61 98.48 ± 0.22
SGCN 95.17 ± 0.96 89.38 ± 1.42 93.86 ± 0.42 81.08 ± 1.2 77.51 ± 1.85 94.08 ± 1.43 95.74 ± 0.33 98.32 ± 0.2
UTGCN 94.76 ± 1.03 91.47 ± 1.4 94.49 ± 0.38 72.97 ± 1.27 61.68 ± 1.01 94.81 ± 1.1 94.0 ± 0.43 99.37 ± 0.1
SAGE 95.9 ± 0.86 87.32 ± 1.61 92.94 ± 0.57 74.17 ± 2.03 62.6 ± 3.3 93.37 ± 1.2 94.43 ± 0.67 98.22 ± 0.13
SSAGE 95.21 ± 1.09 88.05 ± 1.8 91.66 ± 0.43 81.84 ± 1.49 70.1 ± 1.3 92.25 ± 1.45 95.72 ± 0.31 93.59 ± 0.14
UTSAGE 94.72 ± 1.07 84.48 ± 1.87 86.46 ± 0.64 72.96 ± 1.26 61.47 ± 0.99 87.94 ± 1.58 93.45 ± 0.45 85.56 ± 0.37
GIN 95.24 ± 1.22 86.74 ± 2.3 93.04 ± 0.99 71.97 ± 2.3 87.84 ± 3.05 92.14 ± 0.98 94.7 ± 0.45 98.43 ± 0.24
GraphConv 95.73 ± 1.4 86.64 ± 2.31 92.99 ± 0.87 74.31 ± 1.93 80.84 ± 1.28 91.16 ± 1.76 94.94 ± 0.38 98.32 ± 0.22
SGIN 95.48 ± 0.88 88.31 ± 1.3 93.72 ± 0.48 73.73 ± 1.69 72.83 ± 1.28 93.02 ± 1.37 95.63 ± 0.49 97.68 ± 0.2
UTGIN 94.62 ± 1.05 86.48 ± 1.29 92.77 ± 0.51 72.93 ± 1.27 61.67 ± 1.02 93.44 ± 0.84 92.94 ± 0.41 95.81 ± 0.22
NCNC 92.66 ± 1.94 86.01 ± 3.13 95.27 ± 0.26 61.63 ± 2.18 73.06 ± 2.96 91.10 ± 2.14 93.41 ± 0.46 99.53 ± 0.09
SNCNC 91.28 ± 2.97 88.18 ± 2.65 95.77 ± 0.22 68.41 ± 1.46 87.29 ± 1.20 93.95 ± 1.36 95.42 ± 0.4 99.62 ± 0.05

Finally, we also examine the effect of increasing the number of UTMP layers using fully untrained
(UT) models. Our results in Fig.1 indicate that, in general, UTGCN and UTSAGE maintain their
performance as the number of layers is increased whereas the performance of UTGIN decreases
sharply with more layers. This behavior can be attributed to the lack of degree based normalization in
the formulation of GIN (see Sec.3.3) which leads UTGIN to be dominated by longer paths, and hence
longer distance correlations, as the number of layers increases. In general however we find that UTMP
layers do not suffer from over-squashing when equipped with proper degree based normalisation
which can be attributed to the absence of nonlinearities and mixing between feature dimensions in
UTMP layers.
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Figure 1: The effect of increased layer size for fully untrained models.

5 CONCLUSION

In this work, we explored the application of graph neural networks with untrained message passing
layers for link prediction. Interestingly, our experimental evaluation of twelve data sets shows that
simplifying GNNs architectures by eliminating trainable parameters and nonlinearities not only
enhances the link prediction performance of GNNs, but also improves their interpretability and
training efficiency. As such untrained message passing layers offer a computationally efficient
alternative to their fully trained counterparts that naturally scales to large graphs. To complement our
experimental results, we offered a theoretical perspective on untrained message passing, analytically
establishing links between features generated by untrained message passing layers and path-based
topological measures. We found that the link prediction offers a complementary perspective for
analysing MPNNs and provides insights into the topological features captured by widely used
initialization schemes such as random features and one-hot encodings.

In future work, we hope to extend our study to other classes of graphs, such as directed, signed,
weighted, and temporal networks. The conceptual simplicity of untrained message passing layers
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might also be a useful guide in designing new graph neural network architectures or adapting existing
architectures to directed or temporal networks. We thus believe that our work is of interest both for
the community of researchers developing new machine learning methods, as well as for practitioners
seeking to deploy efficient and resource-saving models in real-world scenarios.

REPRODUCIBILITY STATEMENT

All data sets are available from cited sources and the code necessary for replicating the experimental
results is available at: https://zenodo.org/records/11237762
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.
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A DATASET DETAILS

Summary statistics and sources of data sets are given in Table 3.

Table 3: Overview of the datasets, sources, and node features for attributed graphs (top group) used
in our experimental evaluation.

Dataset |V| |E| Features
Cora small Yang et al. (2016) 2,708 10,556 1,433
CiteSeer small Yang et al. (2016) 3,327 9,104 3,703
Cora Bojchevski & Günnemann (2017) 19,793 126,842 8,710
Cora ML Bojchevski & Günnemann (2017) 2,995 16,316 2,879
PubMed Bojchevski & Günnemann (2017) 19,717 88,648 500
CiteSeer Bojchevski & Günnemann (2017) 4,230 10,674 602
DBLP Bojchevski & Günnemann (2017) 17,716 105,734 1,639
NS Newman (2006) 1,461 2,742 -
Celegans Watts & Strogatz (1998) 297 2,148 -
PB Ackland et al. (2005) 1,222 16,714 -
Power Watts & Strogatz (1998) 4,941 6,594 -
Router Spring et al. (2004) 5,022 6,258 -
USAir Batagelj & Mrvar (2006) 332 2,126 -
Yeast Von Mering et al. (2002) 2,375 11,693 -
E-coli Zhang et al. (2018) 1,805 15,660 -

B EXPERIMENTAL SETUP AND HYPERPARAMETER CHOICES

For each model, the optimal values of the learning rate, the number of layers, and hidden dimensions
are determined through an exhaustive search over the values given in Table 4). The optimal hyperpa-
rameters values for attributed and non-attributed datasets are given in Table 5 and Table 6, respectively.
We implement a three-fold cross-validation procedure to select the optimal hyperparameter values.

We use Adam Kingma & Ba (2014) as an optimization function and employ binary cross entropy
with logits as our loss function. All datasets are preprocessed by normalizing the node features
and randomly splitting them. For non-attributed datasets, 10% of the data is allocated to the test
set, 5% to the validation set Zhang & Chen (2018), and the remaining data is used for the training
set. In contrast, for attributed datasets, the split is 20% for the test set, 10% for the validation set,
and the remainder for the training set Wang et al. (2023).Each model configuration is run 10 times,
with the results averaged over these runs. Our training and testing procedures are based on the
methodology outlined in pyGteam (2021), where we perform a new round of negative edge sampling
for each training epoch. We limit the maximum number of epochs to 10,000 and also incorporate
an early stopping mechanism in our training process by terminating training whenever there is no
improvement in the validation set results over a span of 250 epochs.

All hyperparameter searches and experiments were conducted on a workstation with AMD Ryzen
Threadripper PRO 5965WX 24-Cores with 256 GB of memory and two Nvidia GeForce RTX 3090
Super GPU, and also AMD Ryzen 9 7900X 12-Cores with 64 GB of memory and an Nvidia GeForce
RTX 4080 GPU.

Table 4: The hyperparameter space for our experiments. It is worth noting that only the number of
MPNN layers applies to the untrained models.

Hyperparameter Values
Number of MPNN layers 1,2,3
Learning Rate 0.2, 0.1,0.01, 0.001, 0.0001
Hidden Dimensions 16, 64, 128
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Table 5: Optimal hyperparameter values for attributed datasets (MaxEpochs=10,000).
Cora small CiteSeer small Cora Cora ML PubMed CiteSeer DBLP

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.001 128 1 0.001 128 1 0.001 64 1 0.001 64 1 0.01 64 1 0.01 64 1 0.001 128 1
SGCN 0.001 64 1 0.001 128 1 0.001 128 1 0.001 128 2 0.001 128 1 0.001 128 2 0.2 128 2
UTGCN 2 2 2 2 2 3 2
SAGE 0.01 128 1 0.01 16 1 0.01 128 1 0.001 128 1 0.01 128 1 0.001 128 1 0.001 64 1
SSAGE 0.0001 128 1 0.0001 128 2 0.1 64 1 0.001 64 1 0.001 128 2 0.01 128 3 0.01 64 2
UTSAGE 2 2 2 2 2 2 2
GIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1
GraphConv 0.0001 64 1 0.0001 128 1 0.001 64 1 0.0001 128 1 0.0001 128 1 0.001 128 1 0.001 128 1
SGIN 0.001 64 1 0.0001 128 2 0.0001 128 1 0.001 64 1 0.01 128 1 0.0001 128 1 0.001 128 1
UTGIN 1 1 1 1 1 1 1

Table 6: Hyperparameter choices for each model in each of the non-attributed dataset.
NS Celegans PB Power Router USAir Yeast E-coli

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.01 64 3 0.001 128 1 0.01 128 2 0.001 64 3 0.2 128 3 0.001 128 2 0.01 64 3 0.1 128 1
SGCN 0.1 128 3 0.01 128 2 0.1 128 2 0.001 128 3 0.2 64 3 0.1 64 2 0.01 128 2 0.01 16 1
UTGCN 3 2 2 3 2 2 2 2
SAGE 0.01 64 2 0.01 128 2 0.01 128 2 0.01 64 3 0.2 16 1 0.01 64 1 0.01 64 2 0.01 128 1
SSAGE 0.01 128 1 0.01 16 2 0.01 128 1 0.001 128 3 0.001 64 3 0.1 64 2 0.001 128 1 0.01 128 1
UTSAGE 2 2 2 3 2 2 2 2
GIN 0.001 128 3 0.001 64 1 0.001 128 1 0.01 128 3 0.1 128 2 0.0001 128 2 0.001 128 1 0.01 128 1
GraphConv 0.001 128 1 0.0001 128 1 0.0001 64 1 0.0001 128 3 0.001 16 1 0.01 64 2 0.0001 64 1 0.01 64 1
SGIN 0.0001 128 2 0.01 128 1 0.2 64 1 0.0001 128 2 0.0001 128 1 0.1 64 1 0.001 128 1 0.001 64 1
UTGIN 2 1 1 3 2 2 2 1

C ORTHOGONALITY OF NODE FEATURES IN EMPIRICAL DATA SETS

The distribution of inner products of initial node features for attributed datasets is given in Figure
2. We find that the inner products of feature vectors of randomly selected node pairs are in general
close to zero. Note that, the feature vectors of all datasets are non-negative as they represent word
occurrences. As expected, for connected nodes the inner products of feature vectors tend to be higher
reflecting the increased feature similarity.

D RUNTIME ANALYSIS AND TRAINING EFFICENCY

Efficiency of SMPNNs While we allocated a very generous limit of 10,000 epochs for training
models in the main paper to ensure models can reach their best possible performance in order to
compare the computational efficiency of the simplified models to their fully trained counterparts we
also consider an experimental setting where we restrict the maximum number of training epochs
to 100. We find that simplified models achieved convergence even for larger learning rates and
considerably faster than their fully trained models. Even when constrained to 100 training epochs
simplified models maintain scores that are almost identical to those presented in Table 8, while fully
trained architectures suffer from the increased learning rates and require in general more epochs to
converge. This leads to training efficiency gains similar to those reported by Wu et al. (2019) in the
case of node classification.

In Table 8, it is evident that the simplified models consistently outperform the fully trained models
across all datasets by a considerable margin. Furthermore, as demonstrated in Table 1, the fully
trained models nearly achieve their peak accuracy within just 100 epochs, indicating that extended
training offers minimal additional benefit. This also implies that the Simplified models are more
efficient in terms of both time and resources required for training.

The hyperpameter space used for the computational efficiency experiments is the same as in Table5,
except that we only use 100 epochs.

Efficiency of UTMP In Figure 3, we presented the training times for both simplified and fully
trained models. The prediction times for UT models are excluded, as they require only a single
”epoch” for making the predictions, unlike other methods that necessitate prolonged training periods.
This characteristic of UT models leads to a substantial reduction in both time consumption and
electricity costs.

Despite a minor trade-off in accuracy on attributed graphs, UT models frequently outperform in terms
of accuracy on unattributed graphs across numerous datasets. In practical applications, the efficiency
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Figure 2: The distribution of feature dot products for pairs of connected and random node pairs for
the attributed datasets.
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of UTMP models could translate to significant savings in energy consumption and hence environ-
mental footprint which can outweigh marginal improvements in accuracy in settings where either
computational resources are limited or reducing energy consumption/cost and environmental impact
of models take priority. This makes UT models particularly appealing for large-scale applications
where operational efficiency and cost reduction are critical. Additionally, the societal impact of using
UT models includes a lower environmental footprint due to reduced energy consumption, aligning
with sustainable and environmentally friendly practices.

Table 7: Optimal hyperparameter values for attributed datasets for MaxEpochs=100.
Cora CiteSeer Cora large Cora ML PubMed CiteSeer large DBLP

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.01 128 1 0.01 128 1 0.01 64 1 0.01 64 1 0.01 64 1 0.01 64 1 0.01 128 1
SGCN 0.1 128 1 0.1 128 2 0.01 128 1 0.01 128 1 0.01 128 1 0.01 64 2 0.1 128 2
SAGE 0.01 128 1 0.01 128 1 0.01 64 1 0.01 64 1 0.01 128 1 0.01 128 1 0.01 128 1
SSAGE 0.2 128 2 0.1 128 2 0.01 128 1 0.01 128 1 0.01 128 1 0.01 64 1 0.1 128 2
GIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.01 64 1 0.01 64 1
GraphConv 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.01 128 1 0.001 128 1
SGIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1

Table 8: Link Prediction accuracy for attributed networks as measured by ROC-AUC. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers. The models are trained only for MaxE-
pochs = 100.

Models Cora CiteSeer Cora large Cora ML PubMed CiteSeer large DBLP
GCN 91.44 ± 1.31 91.48 ± 0.67 96.45 ± 0.29 93.95 ± 0.54 96.56 ± 0.22 93.48 ± 0.81 95.57 ± 0.18
SGCN 94.58 ± 1.27 96.4 ± 0.97 97.99 ± 0.06 96.75 ± 0.3 97.1 ± 0.17 95.41 ± 0.76 96.95 ± 0.1
SAGE 90.2 ± 1.67 90.34 ± 1.87 95.42 ± 0.22 92.53 ± 0.69 92.68 ± 0.5 91.29 ± 1.32 94.36 ± 0.32
SSAGE 93.98 ± 1.08 95.77 ± 1.02 97.72 ± 0.08 95.61 ± 0.38 94.52 ± 0.18 94.48 ± 0.96 96.34 ± 0.12
GIN 90.39 ± 0.6 88.27 ± 0.61 95.38 ± 0.29 93.75 ± 0.24 94.84 ± 0.28 90.94 ± 0.72 94.71 ± 0.26
GraphConv 91.57 ± 1.33 90.79 ± 0.91 96.68 ± 0.16 94.56 ± 0.48 95.17 ± 0.3 92.04 ± 0.96 94.94 ± 0.11
SGIN 92.72 ± 1.23 93.11 ± 0.25 97.29 ± 0.08 95.43 ± 0.27 95.95 ± 0.21 93.18 ± 0.56 95.84 ± 0.15

Figure 3 illustrates that the simplified models, when trained for extended periods, generally achieve
higher accuracy and converge faster to their optimal values compared to fully trained models. Notably,
when trained for a shorter duration (100 epochs), the simplified models not only outperform the fully
trained counterparts by a larger margin but also require considerably fewer epochs to reach relatively
high accuracies. Additionally, the accuracy gap between shorter and longer training durations is
smaller for simplified models than for fully trained models.

E COMPARISON TO STATE-OF-THE-ART

In Table 9, we compare UTMP-based architectures with several state-of-the-art link prediction models,
including SEAL Zhang & Chen (2018), NBFNet Zhu et al. (2021), Neo-GNN Yun et al. (2021),
BUDDY Chamberlain et al. (2022), and NCNC Wang et al. (2023), on attributed datasets. Our results
demonstrate that UTGCN-based NCNC, consistently outperforms other models across these datasets
with BUDDY ranking second on the Cora and CiteSeer small datasets, and SEAL ranking second on
PubMed.

Moreover, SGCN architecture outperform leading methods like SEAL, NBFNet, and Neo-GNN in
terms of Hits@100. Notably, SGCN outperforms SEAL and Neo-GNN on two out of three datasets
and performs better than NBFNet across all datasets.

For the unattributed datasets (see Table 10) we find that UTGCN has the highest overall score for
E-coli while being within a standard deviation of the other methods on Celegans with WalkPool
performing best on the remaining datasets. It should also be noted that SGCN is considerably more
efficient than both methods, which rely on subgraph extraction.
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Figure 3: Average runtimes (in seconds) for training and inference for attributed data sets.

Table 9: Link Prediction accuracy for attributed networks as measured by Hits@100 compared to
heuristics and state-of-the-art models SEAL, NBFnet,BUDDY, Neo-GNN, and NCNC. Hits@100
values for the heuristics and the state-of-the-art models were taken from Wang et al. (2023).

Models Cora small CiteSeer small PubMed
Hits@100 Hits@100 Hits@100

CN 33.92±0.46 29.79±0.90 23.13±0.15
AA 39.85±1.34 35.19±1.33 27.38±0.11
RA 41.07±0.48 33.56±0.17 27.03±0.35
BUDDY 88.00±0.44 92.93±0.27 74.10±0.78
Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19
NCNC (Wang et al.) 89.65±1.36 93.47±0.95 81.29±0.95
NCNC(GCN) 83.69±3.13 76.37±2.90 80.72±0.91
SNCNC (UTGCN) 88.72±1.20 93.42±0.78 81.26±1.59
SEAL 81.71±1.30 83.89±2.15 75.54±1.32
NBFnet 71.65±2.27 74.07±1.75 58.73±1.99
GCN 80.5 ± 1.59 83.0 ± 1.57 73.64 ± 2.04
SGCN 84.73 ± 1.46 88.69 ± 0.57 69.11 ± 1.25
SAGE 75.67 ± 1.29 80.23 ± 1.09 56.25 ± 0.7
SSAGE 80.42 ± 1.71 87.22 ± 1.19 42.14 ± 1.85
GIN 74.66 ± 1.63 71.16 ± 1.67 65.3 ± 1.3
GraphConv 74.7 ± 1.14 74.89 ± 1.59 62.84 ± 2.1
SGIN 74.54 ± 1.69 78.71 ± 2.15 46.21 ± 0.85
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Table 10: Link Prediction accuracy for non-attributed networks as measured by ROC-AUC compared
to state-of-the-art models SEAL and WalkPool. ROC-AUC values SEAL are taken from Zhang &
Chen (2018) and for WalkPool from Pan et al. (2021).

Models NS Celegans PB Power Router USAir Yeast E-coli
SEAL 97.71±0.93 89.54±2.04 95.01±0.34 84.18±1.82 95.68±1.22 97.09±0.70 97.20±0.64 97.22±0.28
WalkPool 98.95±0.41 92.79±1.09 95.60±0.37 92.56±0.60 97.27±0.28 98.68±0.48 98.37±0.25 98.58±0.19
GCN 95.22 ± 1.8 87.98 ± 1.45 92.91 ± 0.3 74.68 ± 2.67 91.42 ± 0.44 93.56 ± 1.53 94.49 ± 0.61 98.48 ± 0.22
SGCN 95.17 ± 0.96 89.38 ± 1.42 93.86 ± 0.42 81.08 ± 1.2 77.51 ± 1.85 94.08 ± 1.43 95.74 ± 0.33 98.32 ± 0.2
UTGCN 94.76 ± 1.03 91.47 ± 1.4 94.49 ± 0.38 72.97 ± 1.27 61.68 ± 1.01 94.81 ± 1.1 94.0 ± 0.43 99.37 ± 0.1
SAGE 95.9 ± 0.86 87.32 ± 1.61 92.94 ± 0.57 74.17 ± 2.03 62.6 ± 3.3 93.37 ± 1.2 94.43 ± 0.67 98.22 ± 0.13
SSAGE 95.21 ± 1.09 88.05 ± 1.8 91.66 ± 0.43 81.84 ± 1.49 70.1 ± 1.3 92.25 ± 1.45 95.72 ± 0.31 93.59 ± 0.14
UTSAGE 94.72 ± 1.07 84.48 ± 1.87 86.46 ± 0.64 72.96 ± 1.26 61.47 ± 0.99 87.94 ± 1.58 93.45 ± 0.45 85.56 ± 0.37
GIN 95.24 ± 1.22 86.74 ± 2.3 93.04 ± 0.99 71.97 ± 2.3 87.84 ± 3.05 92.14 ± 0.98 94.7 ± 0.45 98.43 ± 0.24
GraphConv 95.73 ± 1.4 86.64 ± 2.31 92.99 ± 0.87 74.31 ± 1.93 80.84 ± 1.28 91.16 ± 1.76 94.94 ± 0.38 98.32 ± 0.22
SGIN 95.48 ± 0.88 88.31 ± 1.3 93.72 ± 0.48 73.73 ± 1.69 72.83 ± 1.28 93.02 ± 1.37 95.63 ± 0.49 97.68 ± 0.2
UTGIN 94.62 ± 1.05 86.48 ± 1.29 92.77 ± 0.51 72.93 ± 1.27 61.67 ± 1.02 93.44 ± 0.84 92.94 ± 0.41 95.81 ± 0.22

F ADDITIONAL NCNC RESULTS

In this section, we present additional results showcasing the performance of NCNC on unattributed
datasets. The experiments reveal that NCNC with untrained MP layers outperforms NCNC with
trained layers on 5 out of 8 datasets.

Table 11: Comparison of NCNC with trained and untrained MP layers on unattributed datasets.The
table reports Hits@100 scores for each dataset. Bold values indicate the best performance for a given
dataset.

Models NS Celegans PB Power Router USAir Yeast E-coli
Hits@100 Hits@100 Hits@100 Hits@100 Hits@100 Hits@100 Hits@100 Hits@100

NCNC 91.53 ± 2.76 92.83 ± 3.90 79.13 ± 2.41 42.14 ± 1.94 60.32 ± 4.20 95.80 ± 1.58 89.91 ± 0.85 99.12 ± 0.20
SNCNC 90.15 ± 3.14 94.32 ± 3.38 79.89 ± 1.40 47.89 ± 2.53 75.60 ± 1.89 96.65 ± 1.87 90.62 ± 0.76 98.98 ± 0.15
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