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Abstract

Data attribution for text-to-image models aims to identify the training images that
most significantly influenced a generated output. Existing attribution methods
involve considerable computational resources for each query, making them imprac-
tical for real-world applications. We propose a novel approach for scalable and
efficient data attribution. Our key idea is to distill a slow, unlearning-based attribu-
tion method to a feature embedding space for efficient retrieval of highly influential
training images. During deployment, combined with efficient indexing and search
methods, our method successfully finds highly influential images without running
expensive attribution algorithms. We show extensive results on both medium-scale
models trained on MSCOCO and large-scale Stable Diffusion models trained on
LAION, demonstrating that our method can achieve better or competitive perfor-
mance in a few seconds, faster than existing methods by 2,500× ∼ 400,000×.
Our work represents a meaningful step towards the large-scale application of data
attribution methods on real-world models such as Stable Diffusion.

1 Introduction

~2,500x  speedup
~437,000x  speedup

Figure 1: Attribution performance vs. through-
put. Previous methods (AbU [1], D-TRAK [2])
offer high attribution performance but are computa-
tionally expensive for deployment. Fast image sim-
ilarity using off-the-shelf features (DINO) lacks
attribution accuracy. We distill slower attribution
methods into a feature space that retains attribution
performance while enabling fast deployment.

Data attribution for text-to-image models [3, 4,
5, 6, 7, 8, 9, 10] aims to identify training im-
ages that most significantly influence generated
images. For a given output, influence is de-
fined counterfactually: if influential images were
removed from the training dataset, the model
would lose its ability to generate the output.
However, directly identifying influential images
by retraining models with all possible training
subsets is computationally infeasible.

To make attribution more tractable, researchers
have proposed several approaches to approxi-
mate this process. One common strategy is
to estimate individual influence scores by ex-
amining the effect of removing single training
images. Gradient-based methods, such as in-
fluence functions [11, 12, 13], approximate this
removal process by calculating the inner product
of the training and test images’ model gradients,
reweighted by the inverse Hessian. Unfortu-
nately, computing and storing these gradients per training image is costly. Projecting gradients into
lower dimensions reduces accuracy further [14], while still being computationally prohibitive for mod-
els with billions of parameters [15]. Another approach approximates influence by directly “unlearning”
individual images, which improves accuracy but significantly increases runtime [1, 16, 17]. None of
the above methods is practical for applications requiring fast test time performance. Furthermore,
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while text-to-image platforms typically charge users 5-10 cents per image [18, 19], existing attribution
methods could cost way more per query due to heavier computation needs. This significant cost
disparity, costing orders of magnitude more than generation revenue, prevents real-world deployment.

In this work, we propose a new method to overcome the tradeoff between computational complexity
and attribution performance. Our key idea is to distill a slow, unlearning-based attribution method
to a feature embedding space that enables efficient retrieval of highly influential training images.
More concretely, leveraging off-the-shelf text and image encoders, we learn our embedding model’s
weights via learning-to-rank, supervised by the unlearning-based attribution method [1]. During
deployment, our method scales to hundreds of millions of training images at a low cost.

However, this approach introduces several technical challenges. First, data curation is computationally
intensive – collecting influence scores across large datasets (e.g., LAION-400M [20]) consumes
significant GPU hours. To address this, we adopt a two-stage retrieval strategy: rapidly indexing [21]
to select top candidates and then reranking them with more precise attribution methods. We show that
our embedding function can be effectively learned from these reranked subsets. Second, designing
objective functions to accurately predict dense rankings is non-trivial, as most learning-to-rank
literature focuses on ranking fewer items. After evaluating several learning-to-rank objectives, we
develop a simplified yet effective loss function.

We validate our method through extensive experiments. First, we benchmark our approach on
MSCOCO using counterfactual evaluation, showing that our learned feature embeddings achieve
strong attribution performance. We further compare runtime and storage costs against recent methods,
as shown in Figure 1, demonstrating the best tradeoff between computational complexity and
performance. Finally, we apply our approach to Stable Diffusion, achieving superior predictive
performance on held-out test data. Our code, models, and datasets are at: https://peterwang512.
github.io/FastGDA.

In summary, our contributions are:

• A new scalable approach to data attribution that employs a learning-to-rank method to learn
features related to attribution tasks.

• A systematic study of key components that ensure efficient and effective learning-to-rank, including
tailored objective functions and a two-stage data curation strategy.

• Extensive benchmarking against existing methods, demonstrating superior performance in both
computational efficiency and attribution accuracy.

• The first successful application and evaluation of an attribution method on a large-scale model
such as Stable Diffusion trained on LAION.

2 Related Works

Data Attribution. The interplay between training data and models has been extensively studied
across various domains, including data selection [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], dataset
mixing [33, 34, 35, 36, 37, 38], and data valuation [39, 40, 41, 42, 43, 44, 45, 46, 47]. In contrast, we
focus on identifying training images influential to a given generated output in text-to-image models.
For classification tasks, prior methods typically average contributions over models retrained on
random subsets [48, 39, 40, 49, 46], inspired by Shapley values [50], or estimate gradient similarity
across training checkpoints [51, 52].

Influence functions [12, 11] are also widely used, as they require no retraining or intermediate
checkpoints. The main idea is to approximate changes in the model output loss after perturbing the
training datapoint. This requires estimating gradients and an inverse Hessian matrix of the model
parameters. To make evaluating the Hessian tractable, previous methods explore inverse Hessian-
vector products [12], Arnoldi iteration [13], and Gauss-Newton approximation [14, 53, 54, 2, 15, 55],
which is most commonly adopted for text-to-image models for its efficiency.

Despite these advances, challenges persist from high storage costs for model gradients across the
dataset. To address this, researchers proposed several solutions, including estimating influence at
test time [54, 1, 55, 16, 17] without storing gradients at a cost of increased runtime, and gradient
dimensionality reduction through random projections [14, 53, 2] or low-rank adaptors [56, 15]. These
methods introduce a tradeoff between computational resources (storage, runtime) and attribution
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performance, as heavier approximations worsen attribution [2, 1]. To address this, we propose
learning a feature space specifically trained to predict attribution results obtained by computationally
expensive but accurate methods.

Learning to Rank (LTR) aims to predict item rankings [57] and are broadly categorized into
pointwise, pairwise, and listwise approaches. Pointwise methods independently score each item,
applying methods such as multiclass classification [58], ordinal loss [59], or regression [60]. Pairwise
methods are trained to predict relative orderings between pairs, leveraging boosting [61], SVM [62],
and neural networks with cross-entropy [63] or rank-based losses [64]. Listwise methods optimize
the entire list directly [65, 66, 67, 68], aiming to improve ranking metrics such as NDCG [69], mAP,
Precision@k, and Recall@k [70]. LTR benchmarks typically involve ranking fewer than 1,000
items [71, 72]. In contrast, our task involves ranking significantly larger lists (e.g., 10,000 items). For
simplicity, we focus on a pointwise method and propose a simple, effective variant that outperforms
strong baselines in our application.

Representation Learning. The representations learned in deep networks [73, 74, 75] often trans-
late across tasks [76, 77, 78]. For example, a representation learned from an image classification
dataset [79] can be efficiently repurposed for tasks, from detecting objects [76] to modeling human
perception [80, 81]. Unsupervised [82, 83] or self-supervised learning [84, 85, 86, 87, 88] methods
aim to learn image representations without text labels. A particularly effective training objective is
the contrastive loss [89, 90, 91, 92, 93], where co-occurring data or two views of the same datapoint
(such as text and image in CLIP [94]), are associated together, in contrast to other unrelated data.
Previous work by Wang et al. [95] evaluate and tune a representation towards attribution in the
customization setting. In our work, we leverage counterfactually predictive unlearning methods and
learn representations for general-purpose attribution.

3 Method

Our goal is to learn an attribution-specific feature using a collection of attribution examples, generated
from an accurate but slow attribution method. Section 3.1 overviews the attribution algorithm we
adopt and explains our data collection process. In Section 3.2, we introduce our learning to rank
objective for training attribution-specific features.

3.1 Collecting Attribution Data

Following the convention from Wang et al. [1], a text-to-image model θ0 = A(D) is trained with
learning algorithm A on dataset D = (xi, ci)

N
i=1, where x and c denote an image and its conditioning

text, respectively. The model θ0 generates a synthesized image x̂ conditioned on caption c. To
simplify notation, we denote a synthesized pair as ẑ = (x̂, c) and a training pair as zi = (xi, ci).

Data attribution aims to attribute the generation ẑ to its influential training data. We define a data
attribution algorithm τ , which assigns an attribution score τ(ẑ, zi) to each training datapoint zi, with
higher score indicating higher influence. We assume that τ has access to all training data, parameters,
and the loss function, but omit them for notational brevity.

Attribution by Unlearning. We collect attribution examples using Attribution by Unlearning
(AbU) [1], one of the leading attribution methods for text-to-image models, shown in the top of
Figure 2. The method runs machine unlearning [96, 97, 98, 99] on the synthesized image and
evaluates which of the training images are forgotten by proxy. The authors observe that the forgotten
training images are more likely to be influential. Intuitively, this reverses the question: which training
points must the model forget to unlearn the synthesized image?

Formally, to unlearn the synthesized image and evaluate which training images are “forgotten”, we
start with the pre-trained model θ0, and apply certified unlearning [96] on the synthesized sample ẑ:

θ−ẑ = θ0 +
α

N
F−1∇L(ẑ, θ), (1)

this creates unlearned model θ−ẑ, where α is the step size, N is the size of the training set, and F is
the Fisher information matrix. L is the training loss of text-to-image diffusion model, as defined in
Appendix A.1. This constitutes a one-step Newton update to maximize the loss of the synthesized
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Figure 2: Our method. Given a synthesized sample, data attribution aims to find which elements in
the training set are more influential. (Top) Attribution by Unlearning (AbU) is a slow but accurate
method. It works by unlearning a synthesized example and evaluating the change in reconstruction
loss on each training image, where each evaluation takes many forward passes. We generate AbU
scores, using them to train an attribution-focused embedding (bottom), so that attribution can be
performed by fast similarity search, while retaining the accuracy of the slower AbU method.

sample through gradient ascent, regularized by elastic weight consolidation (EWC) loss [100] to
retain other knowledge.

After unlearning, the attribution score is assigned to each training sample z by evaluating the training
loss change, before and after unlearning:

τ(ẑ, z) = L(z, θ−ẑ)− L(z, θ0). (2)

The loss change in τ(ẑ, z) measures how much the unlearned model loses its capability to represent
each training image. The method is effective but computationally expensive, as it requires evaluating
the unlearned model on every training image at runtime.

Attribution by Unlearning+. The Fisher information matrix of a deep network is difficult to compute
and store, as its size grows quadratically with the number of model parameters. In AbU, Wang et
al. [1] simply approximate this using a diagonal approximation. We find that replacing the diagonal
approximation with the Eigenvalue-corrected Kronecker Factorization (EK-FAC) approximation [101]
yields better performance and refer to this as AbU+.

While this method is accurate, it takes a significant amount of runtime. For example, it takes 2 hours
to process a single query for a training dataset with 100K images. We aim to distill this slow but
accurate method into a fast embedding next.

Two-stage data collection. Recall that our goal is to collect a dataset of attribution scores between
synthesized and training examples. However, the expensive runtime prohibits collecting data across
all training samples. We resolve this using a two-stage data collection process to improve efficiency.
We note that most training samples do not meaningfully contribute to a synthesized example, so
evaluating all training samples D for a given query is unnecessary. To narrow the search space, we
first obtain the K nearest neighbors of the synthesized sample using off-the-shelf features Dẑ ⊂ D.
We then collect attribution scores for them Sẑ = {τ(ẑ, zk)}zk∈Dẑ

. As long as the subset contains
the most influential images, the data is suitable for learning to identify them. Guo et al. [102] also
explored a similar two-stage approach, but to reduce runtime cost for attribution, whereas we apply it
to speed up data collection.

Our final dataset contains query images, corresponding training subset, and collected attribution
scores: ẑ,Dẑ,Sẑ.
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3.2 Learning to Rank From Attribution Data

Given query ẑ and attribution scores Sẑ in dataset Dẑ, we obtain normalized ranked scores πiẑ ∈
[ 1K ,

2
K , ..., 1] for each training sample zi, where the most influential sample is assigned 1

K , and the
least assigned 1.

Predicting attribution rank. We then learn a function rψ(ẑ, zi) to efficiently predict the true
rank πiẑ of the sample, as shown in the bottom branch of Figure 2. We parameterize rψ(ẑ, zi) =
cos(fψ(ẑ), fψ(zi)) to compare cosine similarity across feature embeddings. This enables one to
store embeddings f(zi) and perform simple feature similarity search at attribution time.

We parameterize feature embedding fψ = gψ ◦ϕ, where ϕ is a pretrained network and gψ is a learned
MLP that maps pretrained features towards an embedding focused on attribution.

Learning to rank by cross-entropy. We adopt the pointwise learning-to-rank approach [58, 59, 60]
and apply cross-entropy loss to optimize each rank prediction individually. We then learn rψ through
binary cross-entropy loss ℓBCE:

L(ψ, α, β) = E
ẑ∼Ẑ,zi∼Dẑ

ℓBCE

(
πiẑ, σα,β

(
rψ(ẑ, zi)

))
, (3)

where we randomly sample synthesized images from a collection Ẑ and training images Dẑ, and
function σα,β(x) = 1

1+e−(αx+β) is a logit with a learned affine scaling. We also explored other
alternatives. Direct regression [60, 103] performs poorly, whereas Ordinal regression loss from
Crammer and Singer [59] delivers competitive ranking performance. However, implementing the loss
requires changes in our rank function designs, such that it no longer supports fast feature similarity
search at inference time. A full derivation of the ordinal loss, along with more details of the alternative
ranking losses, could be found in the supplementary material.

Sampling strategies. To further improve accuracy and reduce attribution-score computation costs, we
modify our sampling of training examples in two ways. First, sampling only from top-K neighbors
focuses the model on fine-grained distinctions but hurts its ability to recognize unrelated images. To
counteract this, with probability 0.1, we draw a random example z outside the neighbor set and assign
it the worst rank: πiẑ = 1. This encourages the model to rank non-neighbor images last.

Second, computing attribution scores on all K neighbors at every step still incurs O(K) cost. We
therefore subsample M < K candidates uniformly at each iteration, compute true ranks only on that
subset, and train using those M examples. In practice, we find that choosing M ≈ 0.1K (or even
smaller) preserves ranking performance, while greatly reducing per-query curation time. We provide
a detailed study on how each strategy affects accuracy and efficiency in Section 4.1.

4 Experiments

We address two questions in this section: (Q1) Rank prediction: Can our tuned feature improve
attribution-rank accuracy? (Q2) Counterfactual forgetting: Does better rank prediction translate into
stronger counterfactual prediction, the “gold standard” to evaluate attribution? This counterfactual
prediction verifies whether the model forgets about the synthesized sample when its influential data
are removed. We evaluate Q1 on both MSCOCO and Stable Diffusion models, and Q2 on MSCOCO
only, since repeated retraining on Stable Diffusion is computationally prohibitive.

4.1 MS-COCO models

We follow previous testbeds, using the same latent diffusion model [4] trained on the 100k MSCOCO
dataset [104]. The model is the same as used in AbU [1] and Georgiev et al. [53], and we use the test
set from AbU, which contains 110 synthesized queries.

Rank prediction metrics (Q1). We collect ground-truth ranks with AbU+ on the 110 queries,
where we rank every training data point. To train our model, we generate 5000 images, using other
prompts in MSCOCO. To build our dataset, for each query, we select the top 10k nearest neighbor
candidates in the DINO feature space and rank candidates with AbU+, totaling 50M attribution ranks.
We take 4900 queries for training and 100 for validation. We measure rank-prediction accuracy
on the 110-query test set by mean average precision (mAP) in a binary-retrieval setup: the top L
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Figure 3: (Left) Feature spaces. We compare different feature spaces, before and after tuning for
attribution. We measure mAP to the ground truth ranking, generated by AbU+. While text-only
embeddings perform well before tuning, image-only embeddings become stronger after tuning.
Combining both performs best and is our final method. (Right) Ranking loss functions. Simple
MSE regression does not converge well. Ordinal loss works well, but does not support fast similarity
search at inference time. We use cross-entropy, which achieves performance similar to ordinal loss
while supporting similarity search. We report 1-standard error in the plots.

training points from the ground truth rank are labeled positive. We denote this as mAP (L) for
L ∈ {500, 1000, 4000}. We note that this metric is different from conventional mAP@K, where
AP is evaluated for the first K data points only. Instead, we use L only to define positives while
evaluating over the full training set. We also report other ranking metrics in Appendix C.2.

Counterfactual forgetting metrics (Q2). Following AbU, for each test query, we remove the top k
influential images (k=500, 1000, 4000), retrain the model from scratch, and measure how much the
retrained model forgets via:

• Loss change ∆L(ẑ, θ): the increase in query ẑ loss under the retrained model relative to the
original pretrained model.

• Generation deviation ∆Gθ(ϵ, c): the difference between the original and re-generated image
(using the same noise seed ϵ), where larger deviation indicates stronger forgetting [53]. As in
AbU, we report the difference in mean square error (MSE) and CLIP similarity.

Note that this test is expensive, as it involves retraining a model for each combination of synthesized
image and attribution method, but is a gold-standard counterfactual test for attribution. We select and
study various design choices of our ranking model using the inexpensive rank-prediction metrics,
then apply the much costly counterfactual forgetting evaluation to confirm that the tuned feature
space indeed improves attribution.

Which feature space to tune? Figure 3 (left) reports the effect of tuning different feature spaces.
Before tuning, using a text embedding (CLIP-text) beats image-only embeddings (DINO or CLIP).
However, after tuning, the image-only embeddings achieve higher performance than text-only. The
best results come from concatenating DINO and CLIP-Text: after tuning this combined feature, we
achieve the highest prediction accuracy, harnessing both visual and text signals.

Learning-to-rank objectives. Figure 3 (right) compares three objective functions. We first implement
a simple mean-squared-error (MSE) loss to regress ground-truth ranks, as used in previous work [60,
103]. However, this formulation fails to converge and yields poor retrieval accuracy.

Next, we find that ordinal loss [59] delivers competitive ranking performance. However, as mentioned
in Section 3.2, this loss function is incompatible with fast feature search at inference time. Finally,
we adopt a cross-entropy loss on rank labels (normalized by K), which preserves the efficient cosine-
similarity search, while matching the ordinal loss in mAP(L) across all thresholds L. Please see
additional comparisons in Appendix C.2.

Data scaling. Figure 4 (left) shows how rank-prediction accuracy improves as we increase the
number of training samples. We see steep gains when moving from small to moderate dataset sizes,
followed by diminishing returns as size grows further. This “elbow” behavior suggests that a few
thousand attribution query examples suffice to capture the bulk of the ranking signal.

Sampling images outside the neighbor set. Figure 4 (right) explores the impact of injecting
random “negative” samples—images not among the top-K neighbors—during training. A modest
10% sampling rate of non-neighbors raises accuracy from 0.709 to 0.724, but higher rates steadily
degrade performance. This pattern suggests that occasional negatives help the model maintain global
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Figure 4: (Left) Data scaling. We investigate the impact of the number of synthesized queries. Note
that each synthesized query contains attribution scores with 10k training points. We find that the
performance quickly improves and saturates. (Right) Sampling outside the neighbor set. We vary
the probability of selecting non-nearest neighbor images when building the attribution dataset. Using
a few randomly sampled, unrelated images from the training set helps keep the learned attribution
model, while having too many impedes the learning. We report 1-standard error in the plots.
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Figure 5: Sampling strategies of dataset construction. (Left) For each query, we randomly
select from the 10k neighbors to learn from. Reliable rankings can be learned, even with relatively
fewer training images per query are provided in the dataset. (Right) Given a fixed budget of 2.45M
query-training attribution ranks, we test trading off between fewer training images per query and
more synthesized queries. We find that at this budget, more query images with fewer training images
are beneficial. We report 1-standard error in the plots.

distances (assigning truly unrelated images worse ranks), yet over-sampling them distracts from the
core task of fine-grained ranking among the most relevant candidates.

Random sampling of nearest-neighbor candidates. Figure 5 (left) fixes the number of queries and
varies the fraction of top-K candidates used for training. We observe that rank-prediction accuracy
drops mildly until the candidate subset falls below 20%, indicating that reliable relative rankings
can be learned from a small fraction of neighbors. Figure 5 (right) explores a fixed compute-budget
regime (constant total queries × selected candidates) of 2.45M query-training attribution ranks.
(Recall our complete dataset has 50M). In this setting, one can reduce the number of training images
sampled per query and increase the number of distinct queries. We find that this boosts accuracy. This
trade-off suggests that under budget constraints, it is better to sample fewer candidates per query to
evaluate more queries. Accordingly, we adopt a 20% neighbor-sampling rate for collecting attribution
examples in our Stable Diffusion experiments (Section 4.2).

Runtime vs. counterfactual performance. In Table 1, we compare performance and run-time
against several baselines. Runtime and storage are shown on the left. We gather runtime values
for each method by warmstarting 10 queries (if applicable) and then averaging over 20 queries.
We run on a single Nvidia A100 80GB for benchmarking. The right columns of Table 1 show
the counterfactual performance – retraining a model from scratch without a subset of identified
images from an attribution method – and seeing if the targeted synthesized image is damaged in the
subsequent model (Loss deviation) or generation (Image deviation).

The influence and unlearning-based methods offer tradeoffs between latency, performance, and
storage. Unlearning-based AbU, and our improved AbU+ variant achieve the highest attribution
performance. However, the method requires hours to run, due to repeated function evaluations on each
training image. While the influence function-based methods are faster, they are lower performing,
with D-TRAK performing relatively well at fast inference times (46.7 sec). However, note that this is
still longer than the time to generate an image (21.5 sec for 50-DDIM steps), and the method requires
storage of the preconditioned gradients on the training set (30GB), which is larger than the images in
the training set itself (19 GB).
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Family Method Efficiency Loss deviation ∆L(ẑ, θ) Image deviation ∆Gθ(ϵ, c)
↑ (×10−3) MSE ↑ (×10−2) CLIP ↓ (×10−1)

Latency Storage 500 1000 4000 500 1000 4000 500 1000 4000

Random Random – – 3.51±0.03 3.46±0.03 3.47±0.03 4.09±0.06 4.07±0.06 4.05±0.06 7.86±0.03 7.85±0.03 7.85±0.03

Influence
TRAK 3.76 min 290 GB 5.18±0.14 5.77±0.16 7.05±0.16 4.67±0.21 4.68±0.24 4.75±0.20 7.65±0.09 7.63±0.09 7.49±0.09
JourneyTRAK 3.64 min 290 GB 4.44±0.11 4.87±0.13 5.72±0.15 4.77±0.19 5.36±0.23 5.42±0.24 7.68±0.09 7.53±0.09 7.53±0.09
D-TRAK 46.7 sec 30 GB 5.44±0.16 6.60±0.22 9.59±0.33 5.86±0.24 6.43±0.25 7.82±0.30 7.31±0.10 7.06±0.09 6.44±0.09

Unlearn. AbU 2.28 hr 438 MB 5.57±0.16 6.75±0.22 9.78±0.32 5.07±0.21 5.69±0.24 6.07±0.22 7.35±0.09 7.00±0.09 6.36±0.10
AbU+ 2.28 hr 1.9 GB 5.83±0.17 7.13±0.22 10.70±0.32 5.64±0.25 6.20±0.24 7.54±0.25 7.15±0.10 6.83±0.10 5.80±0.09

Text CLIPText 9.8 ms 232 MB 3.82±0.12 4.19±0.14 5.52±0.25 4.12±0.20 4.30±0.19 4.56±0.19 7.84±0.08 7.72±0.09 7.41±0.08

Image

Pixel 603.6 ms 19 GB 3.59±0.10 3.64±0.10 3.98±0.11 4.34±0.19 4.30±0.21 4.90±0.21 7.85±0.10 7.80±0.09 7.69±0.10
CLIP 10.3 ms 232 MB 4.18±0.14 4.69±0.18 6.44±0.32 4.35±0.20 4.57±0.21 5.20±0.22 7.63±0.09 7.54±0.08 6.79±0.08
DINO 11.6 ms 354 MB 4.76±0.15 5.60±0.20 8.06±0.35 4.51±0.16 5.29±0.22 5.88±0.21 7.41±0.09 7.10±0.09 6.27±0.10
DINOv2 27.9 ms 464 MB 3.89±0.12 4.29±0.15 6.26±0.33 4.30±0.20 4.59±0.20 5.09±0.19 7.68±0.09 7.66±0.08 6.98±0.09
AbC (CLIP) 10.4 ms 232 MB 4.35±0.13 4.92±0.17 6.94±0.32 4.55±0.20 5.05±0.22 5.63±0.23 7.52±0.09 7.26±0.09 6.54±0.09
AbC (DINO) 11.7 ms 354 MB 4.75±0.15 5.53±0.20 8.11±0.35 4.78±0.22 4.95±0.20 5.81±0.21 7.51±0.09 7.18±0.09 6.29±0.09

Im.+Text DINO+CLIPText 18.6 ms 578 MB 4.88±0.16 5.55±0.20 8.02±0.34 4.63±0.20 5.30±0.23 5.83±0.22 7.42±0.09 7.15±0.10 6.29±0.10
Ours DINO+CLIPText (Tuned) 18.7 ms 354 MB 5.28±0.17 6.44±0.24 9.35±0.35 4.78±0.22 5.30±0.22 6.27±0.24 7.37±0.09 7.05±0.09 6.05±0.09

Table 1: Runtime and counterfactual leave-K-out evaluations. We show the runtime and storage
requirements of different attribution methods. Note that in this setting, an image takes 21.5 seconds to
generate. Influence and unlearning-based methods are slower than generation, highlighted in yellow
and red, while search-based embedding methods are faster than generation, shown in green. We
show storage costs for attribution. Methods are colored relative to the storage cost of the training
set (19 GB), more than the training set as red, within 10× as yellow, and significantly less as green.
Following the “gold-standard” metrics from Wang et al. [1], we measure the ability of different
attribution methods to predict counterfactually significant training images. That is given a synthesized
image ẑ, we train leave-K-out models for each of the attribution methods and track ∆L(ẑ, θ), the
increase in loss change, and ∆Gθ(ϵ, c), deviation of generation. We report results over 110 samples,
and gray shows the standard error. Across each efficiency regime (slower or faster than generation
time), we bold the best method and underline methods that are within a standard error. Of the fast
methods, our method performs the best at attribution.

On the other hand, embedding-based methods offer low-storage (100s of megabytes), depending
on the size of the embedding, and fast run-times (tens of milliseconds). As such, these methods
can be tractable, as they are cheap to create relative to the generation itself. As the models we test
are learning a mapping from text to image, we explore both text and image-based descriptors. As a
baseline, we test if a text descriptor is sufficient for attribution, using the CLIP text encoder. While it
performs better than random, text-only is not sufficient, and the visual content is indicative of which
training images were used. While one can use an off-the-shelf visual embedding and achieve visually
similar images from the training set, they are not guaranteed to be counterfactually predictive and
appropriate for attribution either. Previous work [1] found DINO to be a strong starting point.

From the ranking evaluation above, for our method, we select the best-performing model, which is
tuned DINO+CLIP Text feature with 0.1 probability sampling images outside the neighbor set, using
all the data within the neighbor set. In Figure 1, we plot the attribution performance (loss change
with k = 500) vs. throughput (reciprocal of run-time). Our method achieves strong attribution
performance overall, comparable to influence-function-based methods, at orders of magnitude higher
speed. We show qualitative results in Figure 7 (left) and provide more results in Appendix C.2.

4.2 Stable Diffusion

We use Stable Diffusion v1.4 [4, 105] for our experiments. We collect generated images and captions
from DiffusionDB [106] as attribution queries. Since retraining is prohibitive for such large models,
we only report rank prediction metrics in this setting. In Figure 7 (right), we show a qualitative
example of DINO + CLIP Text feature before and after tuning.

Rank prediction metrics (Q1). Same as the setup in MSCOCO (Section 4.1), we collect ground
truth queries and collect attribution examples of them using AbU+, where the queries are split for
training, validation, and testing. Different from MSCOCO, it is prohibitively costly to run AbU+
over the entire dataset (LAION-400M [20]). Hence, for each test query, we retrieve 100k nearest
neighbor candidates from LAION-400M through CLIP index [21] and obtain ground truth attribution
ranks for those candidates. For training and validation, following studies in Section 4.1, for each
query, we retrieve 100k nearest neighbors. To collect more diverse queries within a fixed budget, we
only rank a 20% random selection of them for supervision. We collect 5000 queries for training and
50 queries for validation, for a total of 101M query-training attribution ranks. We report mAP (L)
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Figure 6: Stable Diffusion ranking results. (Left) Tuning performance. We see similar trends as
with MS-COCO, with strongest performing embedding using both text and image features. (Right)
Data scaling. Performance increases with query images, increasing additional gains with more
compute dedicated to gathering attribution training data. We report 1-standard error in the plots.
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Figure 7: Qualitative examples on MSCOCO (left) and Stable Diffusion (right). For each
generated image and its text prompt on the left, we show top-5 training images retrieved by: DINO +
CLIP-Text (top row), Ours (middle row), and the ground-truth influential examples via AbU+ (bottom
row). Compared to the untuned baseline, our distilled feature space yields attributions that match the
ground-truth examples more closely.

for L ∈ {500, 1000, 4000}, where we use the tuned features to rank the 100k candidates and check
whether this prediction aligns with the ground truth.

Which feature space to use? Figure 6 (left) reports performance of different features before and
after tuning. Similar to the findings in MSCOCO models, tuning feature spaces consistently improves
the prediction results. However, in contrast to MSCOCO models, where image feature is an important
factor for accurate rank prediction, we observe the opposite in Stable Diffusion. In fact, the results
indicate that text features are strictly necessary to yield good tuning performance. Using DINO and
CLIP-Image features significantly underperforms the ones with text features. This indicates that
AbU+ tends to assign attribution scores that are more correlated with text feature similarities. We
discuss this more in Appendix C.2

Data scaling. Figure 6 (right) reports performance improvements with respect to dataset size. Similar
to the findings in MSCOCO models, there are steep gains from small to moderate dataset sizes, and
the rate of gain decreases as size grows further. However, we note that even with the full dataset at
5000 queries (100M data points), the performance increase has not saturated. With more compute,
one could collect more data to improve ranking performance.

5 Discussion, Broader Impacts, and Limitations

Data attribution is a quest to understand model behavior from a data-centric perspective. It can
potentially aid practical applications such as compensation models, which could help address the
timely issue surrounding the authorship of generative content [107, 108, 109, 110]. Our method
reduces the runtime and storage cost of the data attribution algorithm, which is a step towards making
data attribution a feasible solution for a compensation model.

While our work demonstrates a good tradeoff between compute resources and attribution performance,
there are additional avenues for future work. First, the learning to rank approach does not distill the raw
attribution score, just the relative ranking in the training set, so the degree of influence and how diffuse
or concentrated the influence may be lost as well. Further exploring and characterizing the degree of
influence is an area of future work. Secondly, as our method is distilled from a teacher method, failure
modes will also be inherited. However, in this work, we have shown that future broader improvements
in attribution methods can benefit a faster method through distillation. Besides developing a fast
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attribution method for diffusion models, there are opportunities for applying attribution to other
widely used models (e.g., flow matching [111, 112], one-step models [113, 114, 115, 116]) and
making attribution more explainable to the end users.
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A Formulations

Here we expand the main paper’s formulations with more details.

A.1 Diffusion Models.

Section 3 of the main paper describes our formulation, which uses the loss L of the generative
model being used. Our experiments are on diffusion models, and we describe the loss term here.
Diffusion models [117, 118, 119] learnsto reverse a data noising process, defined as x0, . . . ,xT ,
where a clean image x0 is gradually diffused to a pure Gaussian noise xT over T timesteps. At
timestep t ∈ [0, T ], noise ϵ ∼ N (0, I) is blended into the clean image x0 to form a noisy image
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt defines the noise schedule. The training loss of the diffusion

models is to encourage accurate denoising of xt by predicting the noise:

Eϵ,x,c,t
[
wt∥ϵ− ϵθ(xt, c, t)∥2

]
, (4)

where wt is a weighting term typically set to 1 [117], ϵθ is the denoising model, and c is the text
condition. At inference, the denosing model ϵθ takes in random Gaussian noise and gradually denoises
it to the learned data distribution.

Evaluating the diffusion loss in Equation 4 requires a Monte-Carlo estimate, and we estimate it by
taking averages over different noise samples and timesteps. Section B provides implementation
details of the Monte-Carlo estimate.

A.2 Influence function.

In the main text, we discussed that influence function methods suffer from a tradeoff between
computation cost and attribution performance. To understand this, we briefly recap the influence
function from Koh and Liang [12]. Let
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R(θ) =
1

N

N∑
i=1

L
(
zi, θ

)
, θ0 = argmin

θ
R(θ), H = ∇2

θR(θ0), (5)

where R is the full training loss, {zi} are the training examples, and H is the Hessian of the training
loss. We estimate the effect of removing a single training point z via a small perturbation ϵ:

θ−z,ϵ = argmin
θ

{R(θ)− ϵL(z, θ)}, (6)

where θ−z,ϵ is the optimal model under the perturbed loss. θ−z,ϵ statistfies the stationary condition:

0 = ∇θR(θ−z,ϵ)− ϵ∇θL(z, θ−z,ϵ). (7)

From Equation 7, taking a Taylor approximation around θ0 and assuming convergence in model
training, Koh and Liang show that the change in model weight ∆θ−z = θ−z,ϵ − θ0 would be:

∆θ−z,ϵ ≈ H−1∇θL(z, θ0)ϵ. (8)

Influence function is then defined by the rate of change of loss on the testing point (or synthesized
image) ẑ with respect to the perturbation ϵ on the training point z. By the chain rule:

∂L(ẑ, θ−z,ϵ)

∂ϵ
=
∂L(ẑ, θ−z,ϵ)

∂θ−z,ϵ

∂θ−z,ϵ

∂ϵ
≈ ∇θL(ẑ, θ0)TH−1∇θL(z, θ0). (9)

To make the computation of Equation 9 tractable, recent works [14, 2, 54, 53, 15, 55] estimate the
Hessian by Generalized Gauss-Newton (GGN) approximation, which essentially replaces the Hessian
with the Fisher information matrix.

However, even with this approximation, the tradeoff between computation cost and attribution
performance remains. The size of the gradient (e.g., ∇θL(z, θ0)) is too big to store. One could either
sacrifice runtime by computing training point gradients on the fly upon each query [54, 55, 1], or
projecting gradients to a much smaller dimension that sacrifices performance [14, 2, 15].

A.3 Eigenvalue-Corrected Kronecker-factored Approximate Curvature (EKFAC)

We collect attribution data using AbU+, an improved variant of AbU [1], by replacing the diagonal
Fisher-information approximation with EKFAC [101]. Below is a brief overview of EKFAC. We first
discuss KFAC, the basis of EKFAC.

KFAC (Kronecker-factored Approximate Curvature) consists of two core ideas to reduce the space
complexity of FIM: (1) approximating the Fisher information matrix (FIM) blockwise, where each
layer corresponds to a block, and (2) reducing each layer’s FIM block to two smaller covariances. To
illustrate the idea, for a linear layer (no bias) at layer i:

si =Wi ai−1,

ai = φi(si),
(10)

where φi is an element-wise nonlinearity (e.g., ReLU [120]), ai−1 ∈ Rdin , and Wi ∈ Rdout×din .
Writing gi = ∇siL, the weight gradient is

∇Wi
L = gi a

T
i−1,

vec
(
∇WiL

)
= ai−1 ⊗ gi,

(11)

where vec(·) flattens a 2D matrix column-wise into an vector. We use the fact that a flattened outer
product of two vectors can be written as a Kronecker product of the two vectors. The Fisher block
becomes
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Fi = E
[
vec(∇Wi

L) vec(∇Wi
L)T

]
= E

[
(ai−1a

T
i−1)⊗ (gig

T
i )

]
= E

[
(ai−1 ⊗ gi)(ai−1 ⊗ gi)

T
]︸ ︷︷ ︸

dindout×dindout

≈ E[ai−1a
T
i−1]︸ ︷︷ ︸

din×din

⊗ E[gigTi ]︸ ︷︷ ︸
dout×dout

.
(12)

The last step in the Equation 12 leverages properties of the Kronecker product. The final approxima-
tion reduces space complexity from O(d2in d

2
out) to O(d2in + d2out), since the only requirement is to

compute the two smaller covariance matrices.

EKFAC refines KFAC by correcting the eigenvalues without increasing space complexity. We first
take the eigen decompositions of the two covariance matrices:

A = E[ai−1a
T
i−1] = UA SA U

T
A , B = E[gigTi ] = UB SB U

T
B . (13)

Then the FIM block becomes:

Fi = A⊗B = (UA SA U
T
A )⊗ (UB SB U

T
B )

= (UA ⊗ UB) (SA ⊗ SB) (UA ⊗ UB)
T .

(14)

EKFAC fixes the shared eigenbasis UA ⊗ UB but re-estimates the diagonal eigenvalue matrix S by
projecting empirical gradients into this basis:

Fi ≈ (UA ⊗ UB) S (UA ⊗ UB)
T . (15)

Since UA ∈ Rdin×din , UB ∈ Rdout×dout , and S is diagonal of size dindout, the O(d2in + d2out) cost is
preserved while reducing approximation error [101].

In practice, we sample training images, noise vectors, and timesteps to estimate A, B, and the
corrected eigenvalues S. Implementation details, including convolutional extensions, appear in
Section B.

A.4 Learning-to-Rank Objectives

In Section 4 of the main text, we compare our cross-entropy objective with two other alternatives:
MSE loss and ordinal loss. For the two losses, we follow the conventions from Pobrotyn et al. [103].

Using the notations from Section 3 of the main text, we want to predict the normalized ranked scores
πiẑ ∈ [ 1K ,

2
K , ..., 1] for each training sample zi, where the most influential sample is assigned 1

K , and
the least assigned 1.

MSE loss. This simply regresses the normalized rank:

E
ẑ∼Ẑ
zi∼Dẑ

∥∥∥πiẑ − σα,β
(
rψ(ẑ, zi)

)∥∥∥2, (16)

where rψ and the affine-scaled sigmoid σα,β(x) = 1/
(
1 + e−(αx+β)

)
are as defined in Section 3.2.

As reported in Section 4.1, training with this loss fails to converge and yields poor retrieval accuracy.
We conjecture that regressing dense ranks over 104 candidates (vs. the usual 5−100) [60, 103] makes
the MSE formulation ill-suited to our setting.

Ordinal loss. In the ordinal-regression framework [59], each ground-truth (unnormalized) rank
r ∈ {1, . . . ,K} is converted into a binary vector of length K − 1 via

bk(r) =

{
1, r > k,

0, r ≤ k,
k = 1, . . . ,K. (17)

Our ranker rψ now outputs K − 1 logits ℓ1, . . . , ℓK , which we transform into probabilities

pk = σ(ℓk) =
1

1 + e−ℓk
. (18)
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The ordinal loss is the sum of binary cross-entropies over thresholds:

Lord = − Ê
z, i

K−1∑
k=1

[
bk
(
πiẑ

)
log pk +

(
1− bk(πiẑ)

)
log(1− pk)

]
. (19)

At inference, we recover a scalar rank via

r̂ =

K−1∑
k=1

pk. (20)

Directly usingK ≈ 104 would require 104 binary heads and thresholds, which is memory-prohibitive.
Instead, we coarsen the rank range into B = 10 equal-width bins and apply ordinal loss over the
B − 1 thresholds, reducing the number of binary classifiers to 9, while preserving most of the ordinal
structure.

In contrast to our setup in Section 3 of the main text, the ordinal approach requires the network to
emit multiple feature heads (one per threshold), compute a separate cosine similarity, affine transform,
and sigmoid for each, and then sum all resulting probabilities to recover a scalar rank. This multi-step,
multi-head pipeline increases parameters and computation and slows inference. Since our cross-
entropy-based method matches ordinal loss in accuracy while only requiring one feature vector with
no extra summation, we adopt it as our main method due to its simplicity and efficiency.

B Implementation Details

B.1 MSCOCO Models

Collecting attribution data. We follow the AbU+ procedure from Wang et al. [1], performing a
single unlearning step that updates only the cross-attention key/value layers. When using EKFAC in
place of a diagonal Fisher approximation, we set the Newton step-size to 0.01/N , with N = 118 287
(the size of the MSCOCO training set).

Within that step, we estimate the diffusion loss via Monte Carlo by sampling and averaging over
50,000 independent (noise, timestep) pairs. Attribution scores are then defined as the difference in
loss between the unlearned and original models. To compute each loss, we evaluate at 20 equally
spaced timesteps; at each timestep, we average the five losses obtained by combining the image with
each of its five corresponding captions (using different random noise for each caption).

Training rank models. Our rank model is a 3-layer MLP with hidden and output dimensions of 768.
We optimize using AdamW (learning rate 10−3, default betas 0.9, 0.999, weight decay 0.01) for 10
epochs on the training set, without any additional learning-rate scheduling.

B.2 Stable Diffusion

Collecting attribution data. Similar to MSCOCO (Section B.1, we run AbU+ by performing a
single unlearning step that updates only the cross-attention key/value layers. We set the Newton
step-size to 0.002, and N = 400, 000, 000 (the size of LAION-400M [20]).

Within the unlearning step, we estimate the diffusion loss via Monte Carlo by sampling and averaging
over 4,000 independent (noise, timestep) pairs. To compute the loss for attribution scores, we
evaluate at 10 equally spaced timesteps, and at each time step, we sample 1 random noise and use the
corresponding caption to assess the loss value.

Training rank models. We follow the exact same training recipe as the rank model for MSCOCO,
which is described in Section B.1.

B.3 Baselines

We describe the baselines used in our experiments. Most baselines follow those reported in AbU [1].

Pixel space. Following JourneyTRAK’s implementation [53], we flatten the pixel intensities and use
cosine similarity for attribution.
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CLIP image and text features. We use the official ViT-B/32 model for image and text features.

DINO [92]. We use the official ViT-B/16 model for image features.

DINOv2 [121] We use the official ViT-L14 model with registers for image features.

CLIP (AbC) and DINO (AbC) [95]. We use the official models trained on the combination of
object-centric and style-centric customized images. CLIP (AbC) and DINO (AbC) are selected
because they are the best-performing choices of features.

TRAK [14] and Journey TRAK [53]. We adopt the official implementation of TRAK and Journey-
TRAK and use a random projection dimension of 16384, the same as what they use for MSCOCO
experiments.

D-TRAK [2]. We follow the best-performing hyperparameter reported in D-TRAK, using a random
projection dimension of 32768 and lambda of 500. We use a single model to compute the influence
score.

AbU [1] and AbU+. For AbU, we follow the default hyperparameter reported in the paper. For
AbU+, we follow the same hyperparameters as the ones used for data curation, which is described in
Section B.1.

Licenses. Below we list the licenses of code, data, and models we used for this project.

• MSCOCO source model: collected from Georgiev et al. [53], which is under the MIT License.

• MSCOCO dataset: Creative Commons Attribution 4.0 License.

• MSCOCO synthesized images testset: collected from AbU [1], which is under CC BY-NC-SA
4.0.

• Stable Diffusion: CreativeML Open RAIL++-M License.

• DiffusionDB images: MIT License.

• CLIP model: MIT License.

• DINO model: Apache 2.0.

• DINOv2 model: Apache 2.0.

• AbC model: CC BY-NC-SA 4.0.

• TRAK code: MIT License.

• EKFAC code: Taken from the Kronfluence codebase, which is under Apache 2.0 License.

C Additional Analysis

C.1 Compute Cost

Our experiments are all done by NVIDIA A100 GPUs. Below, we describe the runtime cost of the
components of our project.

Data curation. On MSCOCO, attributing 100k candidates for 110 test queries at 2 hours/query took
220 GPU-hours, while curating 10k candidates for 5,000 train/val queries at 0.25 hour/query took
1,250 GPU-hours. For Stable Diffusion, attributing 20k candidates for 5,050 train/val queries at 3
hours/query required 15,150 GPU-hours, and 140 test queries at 15 hours/query consumed 2,100
GPU-hours in total.

Training time for LTR models. Training one rank model on MSCOCO for 10 epochs takes
approximately 1 GPU-hour, while training the Stable Diffusion rank model for the same number of
epochs requires about 6 GPU-hours.

C.2 Additional Results

Effectiveness of K-NN retrieval using off-the-shelf features. We study the effect of sampling from
top-K neighbors for data collection, described in Section 3.2. As in Table 1, we report in Table 2
counterfactual metrics for AbU+ ran on (1) the full training set (AbU+) and (2) top neighbors after K-
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Method
Loss deviation ∆L(ẑ, θ) Image deviation ∆Gθ(ϵ, c)

↑ (×10−3) MSE ↑ (×10−2) CLIP ↓ (×10−1)

500 1000 4000 500 1000 4000 500 1000 4000

Random 3.5±0.0 3.5±0.0 3.5±0.0 4.1±0.1 4.1±0.1 4.0±0.1 7.9±0.0 7.9±0.0 7.9±0.0
D-TRAK 5.4±0.2 6.6±0.2 9.6±0.3 5.9±0.2 6.4±0.3 7.8±0.3 7.3±0.1 7.1±0.1 6.4±0.1
AbU+ 5.8±0.2 7.1±0.2 11.0±0.3 5.6±0.2 6.2±0.2 7.5±0.2 7.2±0.1 6.8±0.1 5.8±0.1
AbU+ (K-NN) 5.8±0.2 7.1±0.2 9.7±0.4 5.4±0.2 6.3±0.3 6.9±0.3 7.1±0.1 6.7±0.1 5.8±0.1

Table 2: Counterfactual leave-K-out evaluations. We report loss deviation and image deviation
metrics at K ∈ {500, 1000, 4000}. Values are scaled as indicated in the headers; gray shows the
standard error.

NN (AbU+ (K-NN)). We also copied numbers from D-TRAK (2nd best teacher) and random baselines
as reference. We find that applying K-NN retrieval does not introduce a significant performance drop.

Predicting absolute attribution scores directly. We explore directly predicting the absolute attribu-
tion instead of ranks, where the MLP regresses the absolute attribution scores (normalized by mean
and standard deviation). This regression leads to worse ranking performance (0.009 mAP (1000))
than our learning-to-rank method (0.724 mAP (1000)).

Rank prediction evaluation. In Section 4, we only include mAP (L) with one L value. Here, we
include mAP (500) and mAP (4000) for MSCOCO experiments in Figure 10,11,12,13,14,15. We
include mAP (500) and mAP (1000) for Stable Diffusion experiments in Figure 16,17. All trends are
similar to the ones reported in the main text.

MSCOCO qualitative results. Figure 8 presents additional MSCOCO examples. Our rank model
can retrieve influential training images as AbU+. Their influence is confirmed-removing those images,
retraining, and regenerating the query leads to large deviations.

Stable Diffusion qualitative results. Figure 9 shows additional examples on Stable Diffusion.
Our model’s top attributions follow those of AbU+, emphasizing prompt content over pure visual
similarity. Since full counterfactual retraining is infeasible at this scale, we cannot definitively verify
that these attributions reflect true influence. However, as shown in Section 4.2, our method reliably
predicts AbU+’s ranks, indicating a consistent attribution signal.

Establishing the ground-truth validity of this signal is left to future work. Prior studies suggest
that influence-based methods may weaken on very large models (e.g., LLMs) [122, 123]. However,
developing more robust attribution algorithms for large-scale models—and distilling a rank model
from stronger teacher methods using our method—are all promising directions ahead.
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Figure 8: MSCOCO qualitative results. For each synthesized sample (leftmost), we compare three
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Figure 9: Stable diffusion qualitative results. For each generated image (left), we compare the
DINO+CLIP-Text baseline (top row), our calibrated feature ranker (middle row), and AbU+ ground-
truth attributions (bottom row). Both AbU+ and our method tend to retrieve images that reflect textual
cues rather than visual similarity. Top: “warrior helmet” – retrieved helmets rather than faces wearing
helmets. Bottom: “lunar sage . . . magical owls” – retrieved owl-centric scenes despite no owls in the
query images.
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Figure 10: mAP across different feature spaces. We compare different feature spaces, before
and after tuning for attribution. We report mAP (500) and mAP (4000) to the ground truth ranking,
generated by AbU+. The trend is similar to Figure 3 (left) of the main text.
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Regression Ordinal Cross Entropy (Ours)
0.0

0.2

0.4

0.6

0.8

m
AP

 (5
00

)

0.005

0.670 0.663
mAP (500) Across Loss Functions

Regression Ordinal Cross Entropy (Ours)
0.0

0.2

0.4

0.6

0.8

m
AP

 (4
00

0)

0.035

0.713 0.704
mAP (4000) Across Loss Functions

Figure 11: mAP across different learning-to-rank losses. Simple MSE regression does not converge
well. Our cross-entropy method achieves performance similar to ordinal loss while supporting
similarity search. We report mAP (500) and mAP (4000), and the trend is similar to Figure 3 (right)
of the main text.

0 1000 2000 3000 4000 5000
Dataset Size (number of queries)

0.3

0.4

0.5

0.6

0.7

m
AP

 (5
00

)

0.296

0.411

0.512
0.582 0.6140.627 0.643 0.650 0.663

mAP (500) vs. Dataset Size

0 1000 2000 3000 4000 5000
Dataset Size (number of queries)

0.45

0.50

0.55

0.60

0.65

0.70

m
AP

 (4
00

0)

0.456

0.564
0.619

0.659 0.6770.684 0.692 0.696 0.704
mAP (4000) vs. Dataset Size

Figure 12: mAP across different dataset sizes. We find that the performance quickly improves and
saturates as the dataset size grows. We report mAP (500) and mAP (4000), and the trend is similar to
Figure 4 (left) of the main text.

0.0 0.1 0.2 0.3 0.4 0.5
Probability of sampling non-candidates

0.58

0.60

0.62

0.64

0.66

0.68

m
AP

 (5
00

)

0.659 0.663
0.648

0.625
0.609

0.589

mAP (500) vs. Non-candidate Ratio

0.0 0.1 0.2 0.3 0.4 0.5
Probability of sampling non-candidates

0.600

0.625

0.650

0.675

0.700

0.725

m
AP

 (4
00

0)

0.600

0.704
0.689

0.672 0.662
0.648

mAP (4000) vs. Non-candidate Ratio

Figure 13: mAP across probability of non-candidate sampling. Using a few randomly sampled,
unrelated images from the training set helps keep the learned attribution model, while having too
many impedes the learning. We report mAP (500) and mAP (4000), and the trend is similar to Figure
4 (right) of the main text.
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Figure 14: mAP vs. random subset ratio with a fixed number of queries. Reliable rankings can be
learned, even with relatively fewer training images per query. We report mAP (500) and mAP (4000),
and the trend is similar to Figure 5 (left) of the main text.
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Figure 15: mAP vs. random subset ratio with a fixed budget. We find that at a fixed budget of
2.45M, more query images with fewer training images are beneficial. We report mAP (500) and mAP
(4000), and the trend is similar to Figure 5 (right) of the main text.
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Figure 16: Stable Diffusion ranking results (tuning feature spaces). We see similar trends as with
MS-COCO, with the strongest performing embedding using both text and image features. However,
text features are more necessary to yield strong performance in this setting. We report mAP (500)
and mAP (1000), and the trend is similar to Figure 6 (right) of the main text.
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Figure 17: Stable Diffusion ranking results (dataset sizes). Performance increases with query
images, increasing additional gains with more compute dedicated to gathering attribution training
data. We report mAP (500) and mAP (1000), and the trend is similar to Figure 6 (right) of the main
text.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, the claims are made to reflect the paper’s
contributions and scope accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper presents empirical findings and does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information for reproducing our main results in the main
paper (Section 3,4) and the supplemental material. We will also release the code upon
publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

27



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release code, model, and data at https://peterwang512.github.io/
FastGDA.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided these details in the main paper (Section 4) and the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 1-standard-error error bars in Figure 3,4,5,6 and Table 1. We state
that we are reporting error bars representing 1 standard error in the captions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report compute resources for our experiments in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We conduct experiments on existing generative models and data. We will
release a data-attribution-specific feature encoder, which has a low risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the supplemental material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[Yes]
Justification: We will release the code upon publication. No assets are provided for this
submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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