
Fast Data Attribution for Text-to-Image Models

Sheng-Yu Wang¹ Aaron Hertzmann² Alexei A. Efros³ Richard Zhang² Jun-Yan Zhu¹
¹Carnegie Mellon University ²Adobe Research ³UC Berkeley

Abstract

Data attribution for text-to-image models aims to identify the training images that most significantly influenced a generated output. Existing attribution methods involve considerable computational resources for each query, making them impractical for real-world applications. We propose a novel approach for scalable and efficient data attribution. Our key idea is to distill a slow, unlearning-based attribution method to a feature embedding space for efficient retrieval of highly influential training images. During deployment, combined with efficient indexing and search methods, our method successfully finds highly influential images without running expensive attribution algorithms. We show extensive results on both medium-scale models trained on MSCOCO and large-scale Stable Diffusion models trained on LAION, demonstrating that our method can achieve better or competitive performance in a few seconds, faster than existing methods by $2,500 \times \sim 400,000 \times$. Our work represents a meaningful step towards the large-scale application of data attribution methods on real-world models such as Stable Diffusion.

1 Introduction

Data attribution for text-to-image models [3, 4, 5, 6, 7, 8, 9, 10] aims to identify training images that most significantly influence generated images. For a given output, influence is defined counterfactually: *if influential images were removed from the training dataset, the model would lose its ability to generate the output*. However, directly identifying influential images by retraining models with all possible training subsets is computationally infeasible.

To make attribution more tractable, researchers have proposed several approaches to approximate this process. One common strategy is to estimate individual influence scores by examining the effect of removing single training images. Gradient-based methods, such as influence functions [11, 12, 13], approximate this removal process by calculating the inner product of the training and test images' model gradients, reweighted by the inverse Hessian. Unfortunately, computing and storing these gradients per training image is costly. Projecting gradients into lower dimensions reduces accuracy further [14], while still being computationally prohibitive for models with billions of parameters [15]. Another approach approximates influence by directly “unlearning” individual images, which improves accuracy but significantly increases runtime [1, 16, 17]. None of the above methods is practical for applications requiring fast test time performance. Furthermore,

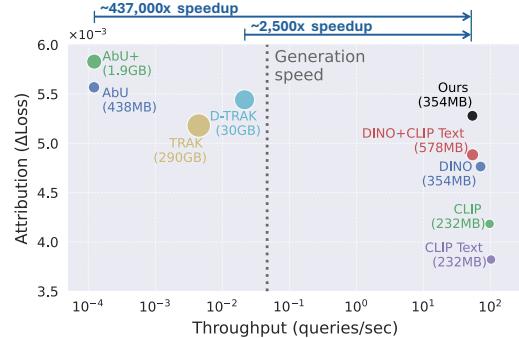


Figure 1: **Attribution performance vs. throughput.** Previous methods (AbU [1], D-TRAK [2]) offer high attribution performance but are computationally expensive for deployment. Fast image similarity using off-the-shelf features (DINO) lacks attribution accuracy. We distill slower attribution methods into a feature space that retains attribution performance while enabling fast deployment.

while text-to-image platforms typically charge users 5-10 cents per image [18, 19], existing attribution methods could cost way more per query due to heavier computation needs. This significant cost disparity, costing orders of magnitude more than generation revenue, prevents real-world deployment.

In this work, we propose a new method to overcome the tradeoff between computational complexity and attribution performance. Our key idea is to distill a slow, unlearning-based attribution method to a feature embedding space that enables efficient retrieval of highly influential training images. More concretely, leveraging off-the-shelf text and image encoders, we learn our embedding model’s weights via learning-to-rank, supervised by the unlearning-based attribution method [1]. During deployment, our method scales to hundreds of millions of training images at a low cost.

However, this approach introduces several technical challenges. First, data curation is computationally intensive – collecting influence scores across large datasets (e.g., LAION-400M [20]) consumes significant GPU hours. To address this, we adopt a two-stage retrieval strategy: rapidly indexing [21] to select top candidates and then reranking them with more precise attribution methods. We show that our embedding function can be effectively learned from these reranked subsets. Second, designing objective functions to accurately predict dense rankings is non-trivial, as most learning-to-rank literature focuses on ranking fewer items. After evaluating several learning-to-rank objectives, we develop a simplified yet effective loss function.

We validate our method through extensive experiments. First, we benchmark our approach on MSCOCO using counterfactual evaluation, showing that our learned feature embeddings achieve strong attribution performance. We further compare runtime and storage costs against recent methods, as shown in Figure 1, demonstrating the best tradeoff between computational complexity and performance. Finally, we apply our approach to Stable Diffusion, achieving superior predictive performance on held-out test data. Our code, models, and datasets are at: <https://peterwang512.github.io/FastGDA>.

In summary, our contributions are:

- A new scalable approach to data attribution that employs a learning-to-rank method to learn features related to attribution tasks.
- A systematic study of key components that ensure efficient and effective learning-to-rank, including tailored objective functions and a two-stage data curation strategy.
- Extensive benchmarking against existing methods, demonstrating superior performance in both computational efficiency and attribution accuracy.
- The first successful application and evaluation of an attribution method on a large-scale model such as Stable Diffusion trained on LAION.

2 Related Works

Data Attribution. The interplay between training data and models has been extensively studied across various domains, including data selection [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], dataset mixing [33, 34, 35, 36, 37, 38], and data valuation [39, 40, 41, 42, 43, 44, 45, 46, 47]. In contrast, we focus on identifying training images influential to a given generated output in text-to-image models. For classification tasks, prior methods typically average contributions over models retrained on random subsets [48, 39, 40, 49, 46], inspired by Shapley values [50], or estimate gradient similarity across training checkpoints [51, 52].

Influence functions [12, 11] are also widely used, as they require no retraining or intermediate checkpoints. The main idea is to approximate changes in the model output loss after perturbing the training datapoint. This requires estimating gradients and an inverse Hessian matrix of the model parameters. To make evaluating the Hessian tractable, previous methods explore inverse Hessian-vector products [12], Arnoldi iteration [13], and Gauss-Newton approximation [14, 53, 54, 2, 15, 55], which is most commonly adopted for text-to-image models for its efficiency.

Despite these advances, challenges persist from high storage costs for model gradients across the dataset. To address this, researchers proposed several solutions, including estimating influence at test time [54, 1, 55, 16, 17] without storing gradients at a cost of increased runtime, and gradient dimensionality reduction through random projections [14, 53, 2] or low-rank adaptors [56, 15]. These methods introduce a tradeoff between computational resources (storage, runtime) and attribution

performance, as heavier approximations worsen attribution [2, 1]. To address this, we propose learning a feature space specifically trained to predict attribution results obtained by computationally expensive but accurate methods.

Learning to Rank (LTR) aims to predict item rankings [57] and are broadly categorized into pointwise, pairwise, and listwise approaches. Pointwise methods independently score each item, applying methods such as multiclass classification [58], ordinal loss [59], or regression [60]. Pairwise methods are trained to predict relative orderings between pairs, leveraging boosting [61], SVM [62], and neural networks with cross-entropy [63] or rank-based losses [64]. Listwise methods optimize the entire list directly [65, 66, 67, 68], aiming to improve ranking metrics such as NDCG [69], mAP, Precision@k, and Recall@k [70]. LTR benchmarks typically involve ranking fewer than 1,000 items [71, 72]. In contrast, our task involves ranking significantly larger lists (e.g., 10,000 items). For simplicity, we focus on a pointwise method and propose a simple, effective variant that outperforms strong baselines in our application.

Representation Learning. The representations learned in deep networks [73, 74, 75] often translate across tasks [76, 77, 78]. For example, a representation learned from an image classification dataset [79] can be efficiently repurposed for tasks, from detecting objects [76] to modeling human perception [80, 81]. Unsupervised [82, 83] or self-supervised learning [84, 85, 86, 87, 88] methods aim to learn image representations without text labels. A particularly effective training objective is the contrastive loss [89, 90, 91, 92, 93], where co-occurring data or two views of the same datapoint (such as text and image in CLIP [94]), are associated together, in contrast to other unrelated data. Previous work by Wang et al. [95] evaluate and tune a representation towards attribution in the customization setting. In our work, we leverage counterfactually predictive unlearning methods and learn representations for general-purpose attribution.

3 Method

Our goal is to learn an attribution-specific feature using a collection of attribution examples, generated from an accurate but slow attribution method. Section 3.1 overviews the attribution algorithm we adopt and explains our data collection process. In Section 3.2, we introduce our learning to rank objective for training attribution-specific features.

3.1 Collecting Attribution Data

Following the convention from Wang et al. [1], a text-to-image model $\theta_0 = \mathcal{A}(\mathcal{D})$ is trained with learning algorithm \mathcal{A} on dataset $\mathcal{D} = (\mathbf{x}_i, \mathbf{c}_i)_{i=1}^N$, where \mathbf{x} and \mathbf{c} denote an image and its conditioning text, respectively. The model θ_0 generates a synthesized image $\hat{\mathbf{x}}$ conditioned on caption \mathbf{c} . To simplify notation, we denote a synthesized pair as $\hat{\mathbf{z}} = (\hat{\mathbf{x}}, \mathbf{c})$ and a training pair as $\mathbf{z}_i = (\mathbf{x}_i, \mathbf{c}_i)$.

Data attribution aims to attribute the generation $\hat{\mathbf{z}}$ to its influential training data. We define a data attribution algorithm τ , which assigns an attribution score $\tau(\hat{\mathbf{z}}, \mathbf{z}_i)$ to each training datapoint \mathbf{z}_i , with higher score indicating higher influence. We assume that τ has access to all training data, parameters, and the loss function, but omit them for notational brevity.

Attribution by Unlearning. We collect attribution examples using Attribution by Unlearning (AbU) [1], one of the leading attribution methods for text-to-image models, shown in the top of Figure 2. The method runs machine unlearning [96, 97, 98, 99] on the synthesized image and evaluates which of the training images are forgotten by proxy. The authors observe that the forgotten training images are more likely to be influential. Intuitively, this reverses the question: which training points must the model forget to unlearn the synthesized image?

Formally, to unlearn the synthesized image and evaluate which training images are “forgotten”, we start with the pre-trained model θ_0 , and apply certified unlearning [96] on the synthesized sample $\hat{\mathbf{z}}$:

$$\theta_{-\hat{\mathbf{z}}} = \theta_0 + \frac{\alpha}{N} F^{-1} \nabla \mathcal{L}(\hat{\mathbf{z}}, \theta), \quad (1)$$

this creates unlearned model $\theta_{-\hat{\mathbf{z}}}$, where α is the step size, N is the size of the training set, and F is the Fisher information matrix. \mathcal{L} is the training loss of text-to-image diffusion model, as defined in Appendix A.1. This constitutes a one-step Newton update to maximize the loss of the synthesized

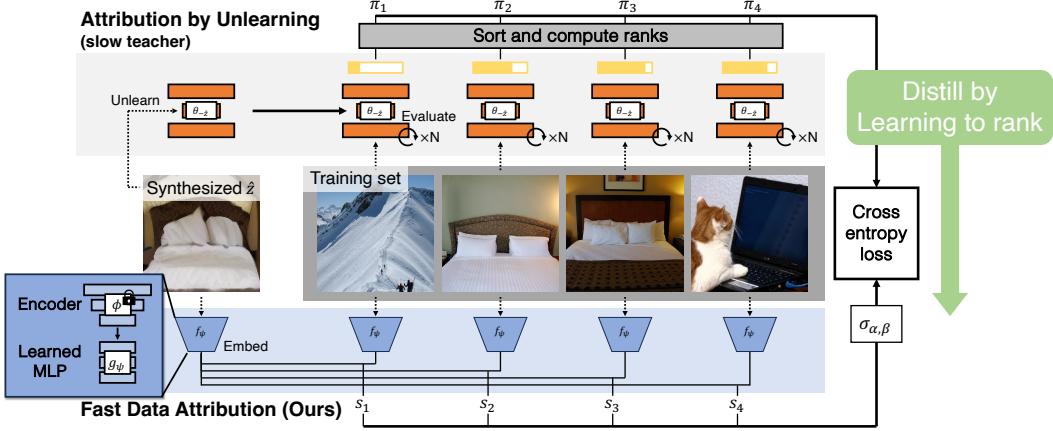


Figure 2: **Our method.** Given a synthesized sample, data attribution aims to find which elements in the training set are more influential. (Top) Attribution by Unlearning (AbU) is a slow but accurate method. It works by unlearning a synthesized example and evaluating the change in reconstruction loss on each training image, where each evaluation takes many forward passes. We generate AbU scores, using them to train an attribution-focused embedding (bottom), so that attribution can be performed by fast similarity search, while retaining the accuracy of the slower AbU method.

sample through gradient ascent, regularized by elastic weight consolidation (EWC) loss [100] to retain other knowledge.

After unlearning, the attribution score is assigned to each training sample \mathbf{z} by evaluating the training loss change, before and after unlearning:

$$\tau(\hat{\mathbf{z}}, \mathbf{z}) = \mathcal{L}(\mathbf{z}, \theta_{-\hat{\mathbf{z}}}) - \mathcal{L}(\mathbf{z}, \theta_0). \quad (2)$$

The loss change in $\tau(\hat{\mathbf{z}}, \mathbf{z})$ measures how much the unlearned model loses its capability to represent each training image. The method is effective but computationally expensive, as it requires evaluating the unlearned model on every training image at runtime.

Attribution by Unlearning+. The Fisher information matrix of a deep network is difficult to compute and store, as its size grows quadratically with the number of model parameters. In AbU, Wang et al. [1] simply approximate this using a diagonal approximation. We find that replacing the diagonal approximation with the Eigenvalue-corrected Kronecker Factorization (EK-FAC) approximation [101] yields better performance and refer to this as **AbU+**.

While this method is accurate, it takes a significant amount of runtime. For example, it takes 2 hours to process a single query for a training dataset with 100K images. We aim to distill this slow but accurate method into a fast embedding next.

Two-stage data collection. Recall that our goal is to collect a dataset of attribution scores between synthesized and training examples. However, the expensive runtime prohibits collecting data across all training samples. We resolve this using a two-stage data collection process to improve efficiency. We note that most training samples do not meaningfully contribute to a synthesized example, so evaluating *all* training samples \mathcal{D} for a given query is unnecessary. To narrow the search space, we first obtain the K nearest neighbors of the synthesized sample using off-the-shelf features $\mathcal{D}_{\hat{\mathbf{z}}} \subset \mathcal{D}$. We then collect attribution scores for them $S_{\hat{\mathbf{z}}} = \{\tau(\hat{\mathbf{z}}, \mathbf{z}_k)\}_{\mathbf{z}_k \in \mathcal{D}_{\hat{\mathbf{z}}}}$. As long as the subset contains the most influential images, the data is suitable for learning to identify them. Guo et al. [102] also explored a similar two-stage approach, but to reduce runtime cost for attribution, whereas we apply it to speed up data collection.

Our final dataset contains query images, corresponding training subset, and collected attribution scores: $\hat{\mathbf{z}}, \mathcal{D}_{\hat{\mathbf{z}}}, S_{\hat{\mathbf{z}}}$.

3.2 Learning to Rank From Attribution Data

Given query $\hat{\mathbf{z}}$ and attribution scores $\mathcal{S}_{\hat{\mathbf{z}}}$ in dataset $\mathcal{D}_{\hat{\mathbf{z}}}$, we obtain normalized ranked scores $\pi_{\hat{\mathbf{z}}}^i \in [\frac{1}{K}, \frac{2}{K}, \dots, 1]$ for each training sample \mathbf{z}_i , where the most influential sample is assigned $\frac{1}{K}$, and the least assigned 1.

Predicting attribution rank. We then learn a function $r_{\psi}(\hat{\mathbf{z}}, \mathbf{z}_i)$ to efficiently predict the true rank $\pi_{\hat{\mathbf{z}}}^i$ of the sample, as shown in the bottom branch of Figure 2. We parameterize $r_{\psi}(\hat{\mathbf{z}}, \mathbf{z}_i) = \cos(f_{\psi}(\hat{\mathbf{z}}), f_{\psi}(\mathbf{z}_i))$ to compare cosine similarity across feature embeddings. This enables one to store embeddings $f(\mathbf{z}_i)$ and perform simple feature similarity search at attribution time.

We parameterize feature embedding $f_{\psi} = g_{\psi} \circ \phi$, where ϕ is a pretrained network and g_{ψ} is a learned MLP that maps pretrained features towards an embedding focused on attribution.

Learning to rank by cross-entropy. We adopt the pointwise learning-to-rank approach [58, 59, 60] and apply cross-entropy loss to optimize each rank prediction individually. We then learn r_{ψ} through binary cross-entropy loss ℓ_{BCE} :

$$\mathcal{L}(\psi, \alpha, \beta) = \mathbb{E}_{\hat{\mathbf{z}} \sim \hat{\mathcal{Z}}, \mathbf{z}_i \sim \mathcal{D}_{\hat{\mathbf{z}}}} \ell_{\text{BCE}}\left(\pi_{\hat{\mathbf{z}}}^i, \sigma_{\alpha, \beta}(r_{\psi}(\hat{\mathbf{z}}, \mathbf{z}_i))\right), \quad (3)$$

where we randomly sample synthesized images from a collection $\hat{\mathcal{Z}}$ and training images $\mathcal{D}_{\hat{\mathbf{z}}}$, and function $\sigma_{\alpha, \beta}(x) = \frac{1}{1+e^{-(\alpha x + \beta)}}$ is a logit with a learned affine scaling. We also explored other alternatives. Direct regression [60, 103] performs poorly, whereas Ordinal regression loss from Crammer and Singer [59] delivers competitive ranking performance. However, implementing the loss requires changes in our rank function designs, such that it no longer supports fast feature similarity search at inference time. A full derivation of the ordinal loss, along with more details of the alternative ranking losses, could be found in the supplementary material.

Sampling strategies. To further improve accuracy and reduce attribution-score computation costs, we modify our sampling of training examples in two ways. First, sampling only from top- K neighbors focuses the model on fine-grained distinctions but hurts its ability to recognize unrelated images. To counteract this, with probability 0.1, we draw a random example \mathbf{z} *outside* the neighbor set and assign it the worst rank: $\pi_{\hat{\mathbf{z}}}^i = 1$. This encourages the model to rank non-neighbor images last.

Second, computing attribution scores on all K neighbors at every step still incurs $\mathcal{O}(K)$ cost. We therefore subsample $M < K$ candidates uniformly at each iteration, compute true ranks only on that subset, and train using those M examples. In practice, we find that choosing $M \approx 0.1K$ (or even smaller) preserves ranking performance, while greatly reducing per-query curation time. We provide a detailed study on how each strategy affects accuracy and efficiency in Section 4.1.

4 Experiments

We address two questions in this section: (Q1) *Rank prediction*: Can our tuned feature improve attribution-rank accuracy? (Q2) *Counterfactual forgetting*: Does better rank prediction translate into stronger counterfactual prediction, the “gold standard” to evaluate attribution? This counterfactual prediction verifies whether the model forgets about the synthesized sample when its influential data are removed. We evaluate Q1 on both MSCOCO and Stable Diffusion models, and Q2 on MSCOCO only, since repeated retraining on Stable Diffusion is computationally prohibitive.

4.1 MS-COCO models

We follow previous testbeds, using the same latent diffusion model [4] trained on the 100k MSCOCO dataset [104]. The model is the same as used in AbU [1] and Georgiev *et al.* [53], and we use the test set from AbU, which contains 110 synthesized queries.

Rank prediction metrics (Q1). We collect ground-truth ranks with AbU+ on the 110 queries, where we rank every training data point. To train our model, we generate 5000 images, using other prompts in MSCOCO. To build our dataset, for each query, we select the top 10k nearest neighbor candidates in the DINO feature space and rank candidates with AbU+, totaling 50M attribution ranks. We take 4900 queries for training and 100 for validation. We measure rank-prediction accuracy on the 110-query test set by mean average precision (mAP) in a binary-retrieval setup: the top L

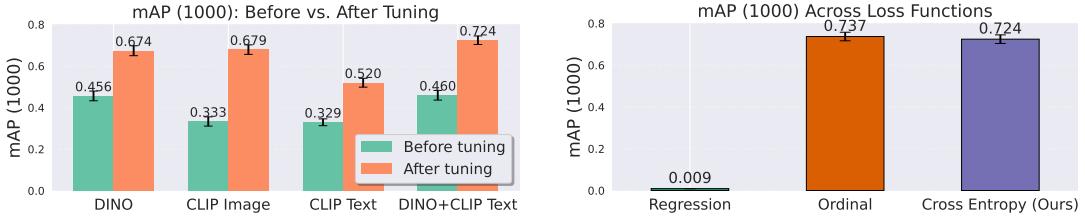


Figure 3: (Left) **Feature spaces.** We compare different feature spaces, before and after tuning for attribution. We measure mAP to the ground truth ranking, generated by AbU+. While text-only embeddings perform well before tuning, image-only embeddings become stronger after tuning. Combining both performs best and is our final method. (Right) **Ranking loss functions.** Simple MSE regression does not converge well. Ordinal loss works well, but does not support fast similarity search at inference time. We use cross-entropy, which achieves performance similar to ordinal loss while supporting similarity search. We report 1-standard error in the plots.

training points from the ground truth rank are labeled positive. We denote this as **mAP** (L) for $L \in \{500, 1000, 4000\}$. We note that this metric is different from conventional mAP@ K , where AP is evaluated for the first K data points only. Instead, we use L only to define positives while evaluating over the full training set. We also report other ranking metrics in Appendix C.2.

Counterfactual forgetting metrics (Q2). Following AbU, for each test query, we remove the top k influential images ($k=500, 1000, 4000$), retrain the model *from scratch*, and measure how much the retrained model forgets via:

- **Loss change** $\Delta \mathcal{L}(\hat{\mathbf{z}}, \theta)$: the increase in query $\hat{\mathbf{z}}$ loss under the retrained model relative to the original pretrained model.
- **Generation deviation** $\Delta G_\theta(\epsilon, \mathbf{c})$: the difference between the original and re-generated image (using the same noise seed ϵ), where larger deviation indicates stronger forgetting [53]. As in AbU, we report the difference in mean square error (MSE) and CLIP similarity.

Note that this test is expensive, as it involves retraining a model for each combination of synthesized image and attribution method, but is a gold-standard counterfactual test for attribution. We select and study various design choices of our ranking model using the inexpensive rank-prediction metrics, then apply the much costly counterfactual forgetting evaluation to confirm that the tuned feature space indeed improves attribution.

Which feature space to tune? Figure 3 (left) reports the effect of tuning different feature spaces. Before tuning, using a text embedding (CLIP-text) beats image-only embeddings (DINO or CLIP). However, after tuning, the image-only embeddings achieve higher performance than text-only. The best results come from concatenating DINO and CLIP-Text: after tuning this combined feature, we achieve the highest prediction accuracy, harnessing both visual and text signals.

Learning-to-rank objectives. Figure 3 (right) compares three objective functions. We first implement a simple mean-squared-error (MSE) loss to regress ground-truth ranks, as used in previous work [60, 103]. However, this formulation fails to converge and yields poor retrieval accuracy.

Next, we find that ordinal loss [59] delivers competitive ranking performance. However, as mentioned in Section 3.2, this loss function is incompatible with fast feature search at inference time. Finally, we adopt a cross-entropy loss on rank labels (normalized by K), which preserves the efficient cosine-similarity search, while matching the ordinal loss in mAP(L) across all thresholds L . Please see additional comparisons in Appendix C.2.

Data scaling. Figure 4 (left) shows how rank-prediction accuracy improves as we increase the number of training samples. We see steep gains when moving from small to moderate dataset sizes, followed by diminishing returns as size grows further. This “elbow” behavior suggests that a few thousand attribution query examples suffice to capture the bulk of the ranking signal.

Sampling images outside the neighbor set. Figure 4 (right) explores the impact of injecting random “negative” samples—images not among the top- K neighbors—during training. A modest 10% sampling rate of non-neighbors raises accuracy from 0.709 to 0.724, but higher rates steadily degrade performance. This pattern suggests that occasional negatives help the model maintain global

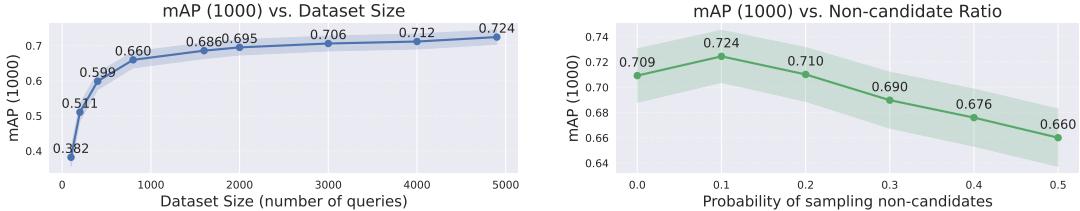


Figure 4: (Left) **Data scaling.** We investigate the impact of the number of synthesized queries. Note that each synthesized query contains attribution scores with 10k training points. We find that the performance quickly improves and saturates. (Right) **Sampling outside the neighbor set.** We vary the probability of selecting non-nearest neighbor images when building the attribution dataset. Using a few randomly sampled, unrelated images from the training set helps keep the learned attribution model, while having too many impedes the learning. We report 1-standard error in the plots.

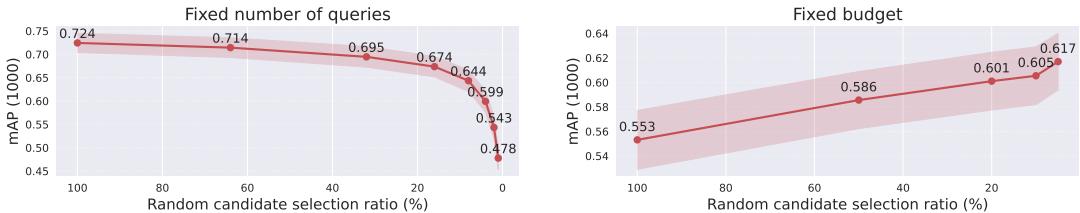


Figure 5: **Sampling strategies of dataset construction.** (Left) For each query, we randomly select from the 10k neighbors to learn from. Reliable rankings can be learned, even with relatively fewer training images per query are provided in the dataset. (Right) Given a fixed budget of 2.45M query-training attribution ranks, we test trading off between fewer training images per query and more synthesized queries. We find that at this budget, more query images with fewer training images are beneficial. We report 1-standard error in the plots.

distances (assigning truly unrelated images worse ranks), yet over-sampling them distracts from the core task of fine-grained ranking among the most relevant candidates.

Random sampling of nearest-neighbor candidates. Figure 5 (left) fixes the number of queries and varies the fraction of top- K candidates used for training. We observe that rank-prediction accuracy drops mildly until the candidate subset falls below 20%, indicating that reliable relative rankings can be learned from a small fraction of neighbors. Figure 5 (right) explores a fixed compute-budget regime (constant total queries \times selected candidates) of 2.45M query-training attribution ranks. (Recall our complete dataset has 50M). In this setting, one can reduce the number of training images sampled per query and increase the number of distinct queries. We find that this boosts accuracy. This trade-off suggests that under budget constraints, it is better to sample fewer candidates per query to evaluate more queries. Accordingly, we adopt a 20% neighbor-sampling rate for collecting attribution examples in our Stable Diffusion experiments (Section 4.2).

Runtime vs. counterfactual performance. In Table 1, we compare performance and run-time against several baselines. Runtime and storage are shown on the left. We gather runtime values for each method by warmstarting 10 queries (if applicable) and then averaging over 20 queries. We run on a single Nvidia A100 80GB for benchmarking. The right columns of Table 1 show the counterfactual performance – retraining a model from scratch without a subset of identified images from an attribution method – and seeing if the targeted synthesized image is damaged in the subsequent model (Loss deviation) or generation (Image deviation).

The influence and unlearning-based methods offer tradeoffs between latency, performance, and storage. Unlearning-based AbU, and our improved AbU+ variant achieve the highest attribution performance. However, the method requires hours to run, due to repeated function evaluations on each training image. While the influence function-based methods are faster, they are lower performing, with D-TRAK performing relatively well at fast inference times (46.7 sec). However, note that this is still longer than the time to generate an image (21.5 sec for 50-DDIM steps), and the method requires storage of the preconditioned gradients on the training set (30GB), which is larger than the images in the training set itself (19 GB).

Family	Method	Efficiency		Loss deviation $\Delta\mathcal{L}(\hat{\mathbf{z}}, \theta)$ $\uparrow (\times 10^{-3})$			Image deviation $\Delta G_\theta(\epsilon, \mathbf{c})$ $\uparrow (\times 10^{-2})$			
		Latency	Storage	500	1000	4000	500	1000	4000	
Random	Random	—	—	3.51 \pm 0.03	3.46 \pm 0.03	3.47 \pm 0.03	4.09 \pm 0.06	4.07 \pm 0.06	4.05 \pm 0.06	
Influence	TRAK	3.76 min	290 GB	5.18 \pm 0.14	5.77 \pm 0.16	7.05 \pm 0.16	4.67 \pm 0.21	4.68 \pm 0.24	4.75 \pm 0.20	
	JourneyTRAK	3.64 min	290 GB	4.44 \pm 0.11	4.87 \pm 0.13	5.72 \pm 0.15	4.77 \pm 0.19	5.36 \pm 0.23	5.42 \pm 0.24	
	D-TRAK	46.7 sec	30 GB	5.44 \pm 0.16	6.60 \pm 0.22	9.59 \pm 0.33	5.86 \pm 0.24	6.43 \pm 0.25	7.82 \pm 0.30	
Unlearn.	AbU	2.28 hr	438 MB	5.57 \pm 0.16	6.75 \pm 0.22	9.78 \pm 0.33	5.07 \pm 0.21	5.69 \pm 0.24	6.07 \pm 0.22	
	AbU+	2.28 hr	1.9 GB	5.83 \pm 0.17	7.13 \pm 0.22	10.70\pm0.32	5.64 \pm 0.25	6.20 \pm 0.24	7.54 \pm 0.25	
Text	CLIP _{Text}	9.8 ms	232 MB	3.82 \pm 0.12	4.19 \pm 0.14	5.52 \pm 0.25	4.12 \pm 0.20	4.30 \pm 0.19	4.56 \pm 0.19	
	Pixel	603.6 ms	19 GB	3.59 \pm 0.10	3.64 \pm 0.10	3.98 \pm 0.11	4.34 \pm 0.19	4.30 \pm 0.21	4.90 \pm 0.21	
	CLIP	10.3 ms	232 MB	4.18 \pm 0.14	4.69 \pm 0.18	6.44 \pm 0.32	4.35 \pm 0.20	4.57 \pm 0.21	5.20 \pm 0.22	
	DINO	11.6 ms	354 MB	4.76 \pm 0.15	5.60 \pm 0.20	8.06 \pm 0.35	4.51 \pm 0.16	5.29 \pm 0.22	5.88 \pm 0.21	
	DINOv2	27.9 ms	464 MB	3.89 \pm 0.12	4.29 \pm 0.15	6.26 \pm 0.33	4.30 \pm 0.20	4.59 \pm 0.20	5.09 \pm 0.19	
	AbC (CLIP)	10.4 ms	232 MB	4.55 \pm 0.13	4.92 \pm 0.17	6.94 \pm 0.32	4.55 \pm 0.20	5.09 \pm 0.22	5.63 \pm 0.23	
	AbC (DINO)	11.7 ms	354 MB	4.75 \pm 0.15	5.53 \pm 0.20	8.11 \pm 0.35	4.78\pm0.22	4.95 \pm 0.20	5.81 \pm 0.21	
	DINO+CLIP _{Text}	18.6 ms	578 MB	4.88 \pm 0.16	5.55 \pm 0.20	8.02 \pm 0.34	4.63 \pm 0.20	5.30\pm0.23	5.83 \pm 0.22	
	Ours	DINO+CLIP _{Text} (Tuned)	18.7 ms	354 MB	5.28\pm0.17	6.44\pm0.24	9.35\pm0.35	4.78\pm0.22	5.30\pm0.22	6.27\pm0.24

Table 1: **Runtime and counterfactual leave- K -out evaluations.** We show the runtime and storage requirements of different attribution methods. Note that in this setting, an image takes 21.5 seconds to generate. Influence and unlearning-based methods are slower than generation, highlighted in **yellow** and **red**, while search-based embedding methods are faster than generation, shown in **green**. We show storage costs for attribution. Methods are colored relative to the storage cost of the training set (19 GB), more than the training set as **red**, within $10\times$ as **yellow**, and significantly less as **green**. Following the “gold-standard” metrics from Wang et al. [1], we measure the ability of different attribution methods to predict counterfactually significant training images. That is given a synthesized image $\hat{\mathbf{z}}$, we train leave- K -out models for each of the attribution methods and track $\Delta\mathcal{L}(\hat{\mathbf{z}}, \theta)$, the increase in loss change, and $\Delta G_\theta(\epsilon, \mathbf{c})$, deviation of generation. We report results over 110 samples, and gray shows the standard error. Across each efficiency regime (slower or faster than generation time), we **bold** the best method and underline methods that are within a standard error. Of the fast methods, our method performs the best at attribution.

On the other hand, embedding-based methods offer low-storage (100s of megabytes), depending on the size of the embedding, and fast run-times (tens of milliseconds). As such, these methods can be tractable, as they are cheap to create relative to the generation itself. As the models we test are learning a mapping from text to image, we explore both text and image-based descriptors. As a baseline, we test if a text descriptor is sufficient for attribution, using the CLIP text encoder. While it performs better than random, text-only is not sufficient, and the visual content is indicative of which training images were used. While one can use an off-the-shelf visual embedding and achieve visually similar images from the training set, they are not guaranteed to be counterfactually predictive and appropriate for attribution either. Previous work [1] found DINO to be a strong starting point.

From the ranking evaluation above, for our method, we select the best-performing model, which is tuned DINO+CLIP Text feature with 0.1 probability sampling images outside the neighbor set, using all the data within the neighbor set. In Figure 1, we plot the attribution performance (loss change with $k = 500$) vs. throughput (reciprocal of run-time). Our method achieves strong attribution performance overall, comparable to influence-function-based methods, at orders of magnitude higher speed. We show qualitative results in Figure 7 (left) and provide more results in Appendix C.2.

4.2 Stable Diffusion

We use Stable Diffusion v1.4 [4, 105] for our experiments. We collect generated images and captions from DiffusionDB [106] as attribution queries. Since retraining is prohibitive for such large models, we only report rank prediction metrics in this setting. In Figure 7 (right), we show a qualitative example of DINO + CLIP Text feature before and after tuning.

Rank prediction metrics (Q1). Same as the setup in MSCOCO (Section 4.1), we collect ground truth queries and collect attribution examples of them using AbU+, where the queries are split for training, validation, and testing. Different from MSCOCO, it is prohibitively costly to run AbU+ over the entire dataset (LAION-400M [20]). Hence, for each test query, we retrieve 100k nearest neighbor candidates from LAION-400M through CLIP index [21] and obtain ground truth attribution ranks for those candidates. For training and validation, following studies in Section 4.1, for each query, we retrieve 100k nearest neighbors. To collect more diverse queries within a fixed budget, we only rank a 20% random selection of them for supervision. We collect 5000 queries for training and 50 queries for validation, for a total of 101M query-training attribution ranks. We report mAP (L)

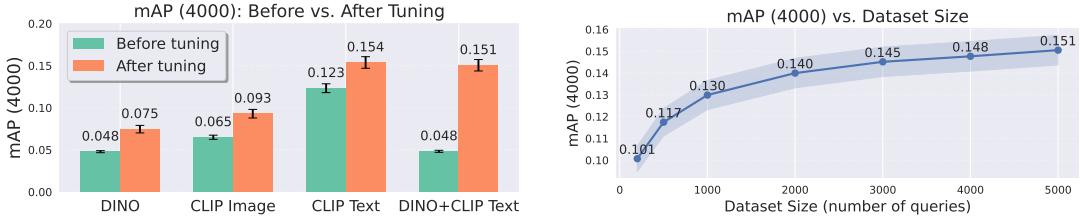


Figure 6: **Stable Diffusion ranking results.** (Left) **Tuning performance.** We see similar trends as with MS-COCO, with strongest performing embedding using both text and image features. (Right) **Data scaling.** Performance increases with query images, increasing additional gains with more compute dedicated to gathering attribution training data. We report 1-standard error in the plots.

Figure 7: **Qualitative examples on MSCOCO (left) and Stable Diffusion (right).** For each generated image and its text prompt on the left, we show top-5 training images retrieved by: *DINO + CLIP-Text* (top row), *Ours* (middle row), and the ground-truth influential examples via AbU+ (bottom row). Compared to the untuned baseline, our distilled feature space yields attributions that match the ground-truth examples more closely.

for $L \in \{500, 1000, 4000\}$, where we use the tuned features to rank the 100k candidates and check whether this prediction aligns with the ground truth.

Which feature space to use? Figure 6 (left) reports performance of different features before and after tuning. Similar to the findings in MSCOCO models, tuning feature spaces consistently improves the prediction results. However, in contrast to MSCOCO models, where image feature is an important factor for accurate rank prediction, we observe the opposite in Stable Diffusion. In fact, the results indicate that text features are strictly necessary to yield good tuning performance. Using DINO and CLIP-Image features significantly underperforms the ones with text features. This indicates that AbU+ tends to assign attribution scores that are more correlated with text feature similarities. We discuss this more in Appendix C.2

Data scaling. Figure 6 (right) reports performance improvements with respect to dataset size. Similar to the findings in MSCOCO models, there are steep gains from small to moderate dataset sizes, and the rate of gain decreases as size grows further. However, we note that even with the full dataset at 5000 queries (100M data points), the performance increase has not saturated. With more compute, one could collect more data to improve ranking performance.

5 Discussion, Broader Impacts, and Limitations

Data attribution is a quest to understand model behavior from a data-centric perspective. It can potentially aid practical applications such as compensation models, which could help address the timely issue surrounding the authorship of generative content [107, 108, 109, 110]. Our method reduces the runtime and storage cost of the data attribution algorithm, which is a step towards making data attribution a feasible solution for a compensation model.

While our work demonstrates a good tradeoff between compute resources and attribution performance, there are additional avenues for future work. First, the learning to rank approach does not distill the raw attribution score, just the relative ranking in the training set, so the degree of influence and how diffuse or concentrated the influence may be lost as well. Further exploring and characterizing the degree of influence is an area of future work. Secondly, as our method is distilled from a teacher method, failure modes will also be inherited. However, in this work, we have shown that future broader improvements in attribution methods can benefit a faster method through distillation. Besides developing a fast

attribution method for diffusion models, there are opportunities for applying attribution to other widely used models (e.g., flow matching [111, 112], one-step models [113, 114, 115, 116]) and making attribution more explainable to the end users.

Acknowledgments. We thank Simon Niklaus for the help on the LAION image retrieval. We thank Ruihan Gao, Maxwell Jones, and Gaurav Parmar for helpful discussions and feedback on drafts. Sheng-Yu Wang is supported by the Google PhD Fellowship. The project was partly supported by Adobe Inc., the Packard Fellowship, the IITP grant funded by the Korean Government (MSIT) (No. RS-2024-00457882, National AI Research Lab Project), NSF IIS-2239076, and NSF ISS-2403303.

References

- [1] Sheng-Yu Wang, Aaron Hertzmann, Alexei A Efros, Jun-Yan Zhu, and Richard Zhang. Data attribution for text-to-image models by unlearning synthesized images. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
- [2] Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of data attribution on diffusion models. In *International Conference on Learning Representations (ICLR)*, 2024.
- [3] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.
- [4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.
- [5] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
- [6] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfai Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2022.
- [7] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamkar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Ho Jonathan, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language understanding. *arXiv preprint arXiv:2205.11487*, 2022.
- [8] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-based text-to-image generation with human priors. *arXiv preprint arXiv:2203.13131*, 2022.
- [9] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
- [10] Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Patrick Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-to-image generation via masked generative transformers. In *International Conference on Machine Learning (ICML)*, 2023.
- [11] Frank R. Hampel. The influence curve and its role in robust estimation. *Journal of the American Statistical Association*, 1974.
- [12] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International conference on machine learning*, pages 1885–1894. PMLR, 2017.
- [13] Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022.
- [14] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak: Attributing model behavior at scale. *arXiv preprint arXiv:2303.14186*, 2023.
- [15] Sang Keun Choe, Hwijeon Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to gpt? llm-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.

[16] Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, and Ruoxi Jia. The mirrored influence hypothesis: Efficient data influence estimation by harnessing forward passes. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

[17] Masaru Isonuma and Ivan Titov. Unlearning reveals the influential training data of language models. In *The Annual Meeting of the Association for Computational Linguistics (ACL)*, 2024.

[18] Adobe Inc. Adobe Firefly: Generative AI for Creatives. <https://www.adobe.com/products/firefly.html>, 2025.

[19] Midjourney, Inc. Midjourney Website. <https://www.midjourney.com/home>, 2024.

[20] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

[21] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

[22] Lan Feng, Fan Nie, Yuejiang Liu, and Alexandre Alahi. Tarot: Targeted data selection via optimal transport. In *International Conference on Machine Learning (ICML)*, 2025.

[23] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang, Tat-sunori Hashimoto, and William Yang Wang. A survey on data selection for language models. *arXiv preprint arXiv:2402.16827*, 2024.

[24] Robert C. Moore and William Lewis. Intelligent selection of language model training data. In *Proceedings of the ACL 2010 Conference Short Papers*, 2010.

[25] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In *International Conference on Learning Representations (ICLR)*, 2020.

[26] Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection with datamodels. In *International Conference on Machine Learning (ICML)*, 2024.

[27] Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh Ramakrishnan. Learning from less data: A unified data subset selection and active learning framework for computer vision. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2019.

[28] Jiachen Tianhao Wang, Tong Wu, Dawn Song, Prateek Mittal, and Ruoxi Jia. Greats: Online selection of high-quality data for llm training in every iteration. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

[29] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential data for targeted instruction tuning. In *International Conference on Machine Learning (ICML)*, 2024.

[30] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of machine learning models. In *International Conference on Machine Learning (ICML)*, 2020.

[31] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Gradmatch: Gradient matching based data subset selection for efficient deep model training. In *International Conference on Machine Learning (ICML)*, 2021.

[32] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding important examples early in training. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2021.

[33] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.

[34] Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization estimation. In *International Conference on Machine Learning (ICML)*, 2024.

[35] Simin Fan, David Grangier, and Pierre Ablin. Dynamic gradient alignment for online data mixing. *arXiv preprint arXiv:2410.02498*, 2024.

[36] Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher Ré. Skill-it! a data-driven skills framework for understanding and training language models. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.

[37] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model pre-training via structured pruning. In *International Conference on Learning Representations (ICLR)*, 2024.

[38] Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for language model pre-training. *arXiv preprint arXiv:2312.02406*, 2023.

[39] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In *International Conference on Machine Learning (ICML)*, 2019.

[40] Ruoxi Jia, David Dao, Boxin Wang, Fa Hubis, Nick Hynes, Negin Gurel, Bo Wei, Costas J. Spanos Li, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based on the shapley value. In *International Conference on Machine Learning (ICML)*, 2019.

[41] Ferenc Illés and Péter Kerényi. Estimation of the shapley value by ergodic sampling. *arXiv preprint arXiv:1906.05224*, 2019.

[42] Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. *arXiv preprint arXiv:2406.11011*, 2024.

[43] Mark A. Burgess and Archie C. Chapman. Approximating the shapley value using stratified empirical bernstein sampling. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, 2021.

[44] W. Li and Y. Yu. Faster approximation of probabilistic and distributional values via least squares. In *International Conference on Learning Representations (ICLR)*, 2024.

[45] Jinkun Lin, Anqi Zhang, Mathias Lécuyer, Jinyang Li, Aurojit Panda, and Siddhartha Sen. Measuring the effect of training data on deep learning predictions via randomized experiments. In *International Conference on Machine Learning (ICML)*, 2022.

[46] Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shapley value estimation. *Journal of Machine Learning Research*, 2022.

[47] Ramin Okhrati and Aldo Lipani. A multilinear sampling algorithm to estimate shapley values. In *2020 25th International Conference on Pattern Recognition (ICPR)*, 2021.

[48] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail via influence estimation. *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.

[49] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Datamodels: Predicting predictions from training data. In *International Conference on Machine Learning (ICML)*, 2022.

[50] Lloyd S Shapley. *A value for n-person games*. Princeton University Press Princeton, 1953.

[51] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence by tracing gradient descent. *Conference on Neural Information Processing Systems (NeurIPS)*, 33:19920–19930, 2020.

[52] Shengchao Wang, Xuezhou Zhang, Junchi Yan, Tianle Liu, and Yisen Wang. Training data attribution via approximate unrolling. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

[53] Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The journey, not the destination: How data guides diffusion models. *arXiv preprint arXiv:2312.06205*, 2023.

[54] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

[55] Bruno Kacper Mlodzeniec, Runa Eschenhagen, Juhan Bae, Alexander Immer, David Krueger, and Richard E. Turner. Influence functions for scalable data attribution in diffusion models. In *International Conference on Learning Representations (ICLR)*, 2025.

[56] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 2022.

[57] Tie-Yan Liu. Learning to rank for information retrieval. *Foundations and Trends in Information Retrieval*, 2009.

[58] Ping Li, Christopher J. Burges, and Qiang Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2007.

[59] Koby Crammer and Yoram Singer. Pranking with ranking. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2002.

[60] David Ciossok and Tong Zhang. Statistical analysis of bayes optimal subset ranking. *IEEE Transactions on Information Theory*, 2008.

[61] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for combining preferences. *Journal of Machine Learning Research*, 1998.

[62] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank boundaries for ordinal regression. In *Advances in Large Margin Classifiers*, 2000.

[63] Christopher J.C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In *Proceedings of the 22nd International Conference on Machine Learning (ICML)*, 2005.

[64] Christopher J. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with nonsmooth cost functions. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2006.

[65] Maksims N. Volkovs and Richard S. Zemel. Boltzrank: Learning to maximize expected ranking gain. In *International Conference on Machine Learning (ICML)*, 2012.

[66] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Sofrank: Optimizing non-smooth rank metrics. In *Proceedings of the International Conference on Web Search and Data Mining (WSDM)*, 2008.

[67] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: From pairwise approach to listwise approach. In *Proceedings of the 24th International Conference on Machine Learning (ICML)*, 2007.

[68] Christopher J.C. Burges. From ranknet to lambdarank to lambdamart: An overview. In *Microsoft Research Technical Report MSR-TR-2010-82*, 2010.

[69] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. *ACM Transactions on Information Systems*, 2002.

[70] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information retrieval. In *Cambridge University Press*, 2008.

[71] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. Letor: A benchmark collection for research on learning to rank for information retrieval. *Information Retrieval*, 2010.

[72] William Hersh, Chris Buckley, T.J. Leone, and David Hickam. Ohsumed: An interactive retrieval evaluation and new large test collection for research. In *Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, 1994.

[73] Alex Krizhevsky and Geoffrey E Hinton. Using very deep autoencoders for content-based image retrieval. In *ESANN*, volume 1, page 2. Citeseer, 2011.

[74] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *International Conference on Learning Representations (ICLR)*, 2015.

[75] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*, 2021.

[76] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 580–587, 2014.

[77] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In *Conference on Neural Information Processing Systems (NeurIPS)*, 2014.

[78] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

[79] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision (IJCV)*, 115(3):211–252, 2015.

[80] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

[81] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic data. In *arXiv preprint arXiv:2306.09344*, 2023.

[82] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828, 2013.

[83] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In *Proceedings of the 25th international conference on Machine learning*, pages 1096–1103, 2008.

[84] Virginia De Sa. Learning classification with unlabeled data. *Advances in neural information processing systems*, 6, 1993.

[85] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context prediction. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1422–1430, 2015.

[86] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In *Proceedings of the IEEE international conference on computer vision*, pages 2794–2802, 2015.

[87] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In *European Conference on Computer Vision (ECCV)*, 2016.

[88] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders: Feature learning by inpainting. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

[89] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pages 1597–1607. PMLR, 2020.

[90] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 9729–9738, 2020.

[91] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *European Conference on Computer Vision (ECCV)*, 2020.

[92] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *IEEE International Conference on Computer Vision (ICCV)*, 2021.

[93] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural information processing systems*, 33:21271–21284, 2020.

[94] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *International Conference on Machine Learning (ICML)*, 2021.

[95] Sheng-Yu Wang, Alexei A. Efros, Jun-Yan Zhu, and Richard Zhang. Evaluating data attribution for text-to-image models. In *IEEE International Conference on Computer Vision (ICCV)*, 2023.

[96] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal from machine learning models. In *International Conference on Machine Learning (ICML)*, 2020.

[97] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.

[98] Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan Zhu. Ablating concepts in text-to-image diffusion models. In *IEEE International Conference on Computer Vision (ICCV)*, 2023.

[99] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts from diffusion models. In *IEEE International Conference on Computer Vision (ICCV)*, 2023.

[100] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences (PNAS)*, 114(13):3521–3526, 2017.

[101] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approximate natural gradient descent in a kronecker factored eigenbasis. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2018.

[102] Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif: Scalable influence functions for efficient model interpretation and debugging. *arXiv preprint arXiv:2012.15781*, 2020.

[103] Przemyslaw Pobrotyn, Tomasz Bartczak, Mikolaj Synowiec, Radoslaw Bialobrzeski, and Jaroslaw Bojar. Context-aware learning to rank with self-attention. *arXiv preprint arXiv:2005.10084*, 2020.

[104] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European Conference on Computer Vision (ECCV)*, 2014.

[105] Stable diffusion. <https://huggingface.co/CompVis/stable-diffusion-v-1-4-original>, 2022.

[106] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image generative models. *arXiv:2210.14896 [cs]*, 2022.

[107] Katherine Lee, A Feder Cooper, and James Grimmelmann. Talkin’bout ai generation: Copyright and the generative-ai supply chain. *arXiv preprint arXiv:2309.08133*, 2023.

[108] Niva Elkin-Koren, Uri Hacohen, Roi Livni, and Shay Moran. Can copyright be reduced to privacy? *arXiv preprint arXiv:2305.14822*, 2023.

[109] Uri Hacohen, Adi Haviv, Shahar Sarfaty, Bruria Friedman, Niva Elkin-Koren, Roi Livni, and Amit H Bermano. Not all similarities are created equal: Leveraging data-driven biases to inform genai copyright disputes. *arXiv preprint arXiv:2403.17691*, 2024.

[110] Ziv Epstein, Aaron Hertzmann, Hany Farid, Jessica Fjeld, Morgan R. Frank, Matthew Groh, Laura Herman, Neil Leach, Robert Mahari, Alex “Sandy” Pentland, Olga Russakovsky, Hope Schroeder, and Amy Smith. Art and the science of generative ai. *Science*, 380(6650):1110–1111, 2023.

[111] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *International Conference on Learning Representations (ICLR)*, 2023.

[112] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

[113] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Frédo Durand, and William T. Freeman. Improved distribution matching distillation for fast image synthesis. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

[114] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Frédo Durand, and William T. Freeman. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

- [115] Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shechtman, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. In *European Conference on Computer Vision (ECCV)*, 2024.
- [116] Yang Song, Chenlin Meng, and Stefano Ermon. Consistency models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- [117] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
- [118] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations (ICLR)*, 2021.
- [119] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning (ICML)*, 2015.
- [120] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In *International Conference on Machine Learning (ICML)*, 2010.
- [121] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- [122] Zhe Li, Wei Zhao, Yige Li, and Jun Sun. Do influence functions work on large language models? *arXiv preprint arXiv:2409.19998*, 2024.
- [123] Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin Xiong, Ian Tenney, Jacob Andreas, and Kelvin Guu. Towards tracing factual knowledge in language models back to the training data. In *Empirical Methods in Natural Language Processing (EMNLP)*, 2022.

A Formulations

Here we expand the main paper’s formulations with more details.

A.1 Diffusion Models.

Section 3 of the main paper describes our formulation, which uses the loss \mathcal{L} of the generative model being used. Our experiments are on diffusion models, and we describe the loss term here. Diffusion models [117, 118, 119] learn to reverse a data noising process, defined as $\mathbf{x}_0, \dots, \mathbf{x}_T$, where a clean image \mathbf{x}_0 is gradually diffused to a pure Gaussian noise \mathbf{x}_T over T timesteps. At timestep $t \in [0, T]$, noise $\epsilon \sim \mathcal{N}(0, I)$ is blended into the clean image \mathbf{x}_0 to form a noisy image $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$, where $\bar{\alpha}_t$ defines the noise schedule. The training loss of the diffusion models is to encourage accurate denoising of \mathbf{x}_t by predicting the noise:

$$\mathbb{E}_{\epsilon, \mathbf{x}, \mathbf{c}, t} [w_t \|\epsilon - \epsilon_\theta(\mathbf{x}_t, \mathbf{c}, t)\|^2], \quad (4)$$

where w_t is a weighting term typically set to 1 [117], ϵ_θ is the denoising model, and \mathbf{c} is the text condition. At inference, the denoising model ϵ_θ takes in random Gaussian noise and gradually denoises it to the learned data distribution.

Evaluating the diffusion loss in Equation 4 requires a Monte-Carlo estimate, and we estimate it by taking averages over different noise samples and timesteps. Section B provides implementation details of the Monte-Carlo estimate.

A.2 Influence function.

In the main text, we discussed that influence function methods suffer from a tradeoff between computation cost and attribution performance. To understand this, we briefly recap the influence function from Koh and Liang [12]. Let

$$\mathcal{R}(\theta) = \frac{1}{N} \sum_{i=1}^N \mathcal{L}(\mathbf{z}_i, \theta), \quad \theta_0 = \arg \min_{\theta} \mathcal{R}(\theta), \quad H = \nabla_{\theta}^2 \mathcal{R}(\theta_0), \quad (5)$$

where \mathcal{R} is the full training loss, $\{\mathbf{z}_i\}$ are the training examples, and H is the Hessian of the training loss. We estimate the effect of removing a single training point \mathbf{z} via a small perturbation ϵ :

$$\theta_{-\mathbf{z}, \epsilon} = \arg \min_{\theta} \{\mathcal{R}(\theta) - \epsilon \mathcal{L}(\mathbf{z}, \theta)\}, \quad (6)$$

where $\theta_{-\mathbf{z}, \epsilon}$ is the optimal model under the perturbed loss. $\theta_{-\mathbf{z}, \epsilon}$ statisfies the stationary condition:

$$0 = \nabla_{\theta} \mathcal{R}(\theta_{-\mathbf{z}, \epsilon}) - \epsilon \nabla_{\theta} \mathcal{L}(\mathbf{z}, \theta_{-\mathbf{z}, \epsilon}). \quad (7)$$

From Equation 7, taking a Taylor approximation around θ_0 and assuming convergence in model training, Koh and Liang show that the change in model weight $\Delta \theta_{-\mathbf{z}} = \theta_{-\mathbf{z}, \epsilon} - \theta_0$ would be:

$$\Delta \theta_{-\mathbf{z}, \epsilon} \approx H^{-1} \nabla_{\theta} \mathcal{L}(\mathbf{z}, \theta_0) \epsilon. \quad (8)$$

Influence function is then defined by the rate of change of loss on the testing point (or synthesized image) $\hat{\mathbf{z}}$ with respect to the perturbation ϵ on the training point \mathbf{z} . By the chain rule:

$$\frac{\partial \mathcal{L}(\hat{\mathbf{z}}, \theta_{-\mathbf{z}, \epsilon})}{\partial \epsilon} = \frac{\partial \mathcal{L}(\hat{\mathbf{z}}, \theta_{-\mathbf{z}, \epsilon})}{\partial \theta_{-\mathbf{z}, \epsilon}} \frac{\partial \theta_{-\mathbf{z}, \epsilon}}{\partial \epsilon} \approx \nabla_{\theta} \mathcal{L}(\hat{\mathbf{z}}, \theta_0)^T H^{-1} \nabla_{\theta} \mathcal{L}(\mathbf{z}, \theta_0). \quad (9)$$

To make the computation of Equation 9 tractable, recent works [14, 2, 54, 53, 15, 55] estimate the Hessian by Generalized Gauss-Newton (GGN) approximation, which essentially replaces the Hessian with the Fisher information matrix.

However, even with this approximation, the tradeoff between computation cost and attribution performance remains. The size of the gradient (e.g., $\nabla_{\theta} \mathcal{L}(\mathbf{z}, \theta_0)$) is too big to store. One could either sacrifice runtime by computing training point gradients on the fly upon each query [54, 55, 1], or projecting gradients to a much smaller dimension that sacrifices performance [14, 2, 15].

A.3 Eigenvalue-Corrected Kronecker-factored Approximate Curvature (EKFAC)

We collect attribution data using AbU+, an improved variant of AbU [1], by replacing the diagonal Fisher-information approximation with EKFAC [101]. Below is a brief overview of EKFAC. We first discuss KFAC, the basis of EKFAC.

KFAC (Kronecker-factored Approximate Curvature) consists of two core ideas to reduce the space complexity of FIM: (1) approximating the Fisher information matrix (FIM) blockwise, where each layer corresponds to a block, and (2) reducing each layer's FIM block to two smaller covariances. To illustrate the idea, for a linear layer (no bias) at layer i :

$$\begin{aligned} s_i &= W_i a_{i-1}, \\ a_i &= \varphi_i(s_i), \end{aligned} \quad (10)$$

where φ_i is an element-wise nonlinearity (e.g., ReLU [120]), $a_{i-1} \in \mathbb{R}^{d_{\text{in}}}$, and $W_i \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$. Writing $g_i = \nabla_{s_i} \mathcal{L}$, the weight gradient is

$$\begin{aligned} \nabla_{W_i} \mathcal{L} &= g_i a_{i-1}^T, \\ \text{vec}(\nabla_{W_i} \mathcal{L}) &= a_{i-1} \otimes g_i, \end{aligned} \quad (11)$$

where $\text{vec}(\cdot)$ flattens a 2D matrix column-wise into an vector. We use the fact that a flattened outer product of two vectors can be written as a Kronecker product of the two vectors. The Fisher block becomes

$$\begin{aligned}
F_i &= \mathbb{E}[\text{vec}(\nabla_{W_i} \mathcal{L}) \text{vec}(\nabla_{W_i} \mathcal{L})^T] \\
&= \mathbb{E}[(a_{i-1} a_{i-1}^T) \otimes (g_i g_i^T)] \\
&= \underbrace{\mathbb{E}[(a_{i-1} \otimes g_i)(a_{i-1} \otimes g_i)^T]}_{d_{\text{in}} d_{\text{out}} \times d_{\text{in}} d_{\text{out}}} \approx \underbrace{\mathbb{E}[a_{i-1} a_{i-1}^T]}_{d_{\text{in}} \times d_{\text{in}}} \otimes \underbrace{\mathbb{E}[g_i g_i^T]}_{d_{\text{out}} \times d_{\text{out}}}.
\end{aligned} \tag{12}$$

The last step in the Equation 12 leverages properties of the Kronecker product. The final approximation reduces space complexity from $\mathcal{O}(d_{\text{in}}^2 d_{\text{out}}^2)$ to $\mathcal{O}(d_{\text{in}}^2 + d_{\text{out}}^2)$, since the only requirement is to compute the two smaller covariance matrices.

EKFAC refines KFAC by correcting the eigenvalues without increasing space complexity. We first take the eigen decompositions of the two covariance matrices:

$$A = \mathbb{E}[a_{i-1} a_{i-1}^T] = U_A S_A U_A^T, \quad B = \mathbb{E}[g_i g_i^T] = U_B S_B U_B^T. \tag{13}$$

Then the FIM block becomes:

$$\begin{aligned}
F_i &= A \otimes B = (U_A S_A U_A^T) \otimes (U_B S_B U_B^T) \\
&= (U_A \otimes U_B) (S_A \otimes S_B) (U_A \otimes U_B)^T.
\end{aligned} \tag{14}$$

EKFAC fixes the shared eigenbasis $U_A \otimes U_B$ but re-estimates the diagonal eigenvalue matrix S by projecting empirical gradients into this basis:

$$F_i \approx (U_A \otimes U_B) S (U_A \otimes U_B)^T. \tag{15}$$

Since $U_A \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$, $U_B \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}$, and S is diagonal of size $d_{\text{in}} d_{\text{out}}$, the $\mathcal{O}(d_{\text{in}}^2 + d_{\text{out}}^2)$ cost is preserved while reducing approximation error [101].

In practice, we sample training images, noise vectors, and timesteps to estimate A , B , and the corrected eigenvalues S . Implementation details, including convolutional extensions, appear in Section B.

A.4 Learning-to-Rank Objectives

In Section 4 of the main text, we compare our cross-entropy objective with two other alternatives: MSE loss and ordinal loss. For the two losses, we follow the conventions from Pobrotyn *et al.* [103].

Using the notations from Section 3 of the main text, we want to predict the normalized ranked scores $\pi_{\hat{\mathbf{z}}}^i \in [\frac{1}{K}, \frac{2}{K}, \dots, 1]$ for each training sample \mathbf{z}_i , where the most influential sample is assigned $\frac{1}{K}$, and the least assigned 1.

MSE loss. This simply regresses the normalized rank:

$$\mathbb{E}_{\substack{\hat{\mathbf{z}} \sim \hat{\mathcal{Z}} \\ \mathbf{z}_i \sim \mathcal{D}_{\hat{\mathbf{z}}}}} \left\| \pi_{\hat{\mathbf{z}}}^i - \sigma_{\alpha, \beta}(r_{\psi}(\hat{\mathbf{z}}, \mathbf{z}_i)) \right\|^2, \tag{16}$$

where r_{ψ} and the affine-scaled sigmoid $\sigma_{\alpha, \beta}(x) = 1/(1 + e^{-(\alpha x + \beta)})$ are as defined in Section 3.2. As reported in Section 4.1, training with this loss fails to converge and yields poor retrieval accuracy. We conjecture that regressing dense ranks over 10^4 candidates (vs. the usual 5–100) [60, 103] makes the MSE formulation ill-suited to our setting.

Ordinal loss. In the ordinal-regression framework [59], each ground-truth (unnormalized) rank $r \in \{1, \dots, K\}$ is converted into a binary vector of length $K - 1$ via

$$b^k(r) = \begin{cases} 1, & r > k, \\ 0, & r \leq k, \end{cases} \quad k = 1, \dots, K. \tag{17}$$

Our ranker r_{ψ} now outputs $K - 1$ logits ℓ^1, \dots, ℓ^K , which we transform into probabilities

$$p^k = \sigma(\ell^k) = \frac{1}{1 + e^{-\ell^k}}. \tag{18}$$

The ordinal loss is the sum of binary cross-entropies over thresholds:

$$\mathcal{L}_{\text{ord}} = - \mathbb{E}_{\hat{\mathbf{z}}, i} \sum_{k=1}^{K-1} \left[b^k(\pi_{\hat{\mathbf{z}}}^i) \log p^k + (1 - b^k(\pi_{\hat{\mathbf{z}}}^i)) \log(1 - p^k) \right]. \quad (19)$$

At inference, we recover a scalar rank via

$$\hat{r} = \sum_{k=1}^{K-1} p^k. \quad (20)$$

Directly using $K \approx 10^4$ would require 10^4 binary heads and thresholds, which is memory-prohibitive. Instead, we coarsen the rank range into $B = 10$ equal-width bins and apply ordinal loss over the $B - 1$ thresholds, reducing the number of binary classifiers to 9, while preserving most of the ordinal structure.

In contrast to our setup in Section 3 of the main text, the ordinal approach requires the network to emit multiple feature heads (one per threshold), compute a separate cosine similarity, affine transform, and sigmoid for each, and then sum all resulting probabilities to recover a scalar rank. This multi-step, multi-head pipeline increases parameters and computation and slows inference. Since our cross-entropy-based method matches ordinal loss in accuracy while only requiring one feature vector with no extra summation, we adopt it as our main method due to its simplicity and efficiency.

B Implementation Details

B.1 MSCOCO Models

Collecting attribution data. We follow the AbU+ procedure from Wang *et al.* [1], performing a single unlearning step that updates only the cross-attention key/value layers. When using EKFAC in place of a diagonal Fisher approximation, we set the Newton step-size to $0.01/N$, with $N = 118\,287$ (the size of the MSCOCO training set).

Within that step, we estimate the diffusion loss via Monte Carlo by sampling and averaging over 50,000 independent (noise, timestep) pairs. Attribution scores are then defined as the difference in loss between the unlearned and original models. To compute each loss, we evaluate at 20 equally spaced timesteps; at each timestep, we average the five losses obtained by combining the image with each of its five corresponding captions (using different random noise for each caption).

Training rank models. Our rank model is a 3-layer MLP with hidden and output dimensions of 768. We optimize using AdamW (learning rate 10^{-3} , default betas 0.9, 0.999, weight decay 0.01) for 10 epochs on the training set, without any additional learning-rate scheduling.

B.2 Stable Diffusion

Collecting attribution data. Similar to MSCOCO (Section B.1), we run AbU+ by performing a single unlearning step that updates only the cross-attention key/value layers. We set the Newton step-size to 0.002, and $N = 400,000,000$ (the size of LAION-400M [20]).

Within the unlearning step, we estimate the diffusion loss via Monte Carlo by sampling and averaging over 4,000 independent (noise, timestep) pairs. To compute the loss for attribution scores, we evaluate at 10 equally spaced timesteps, and at each time step, we sample 1 random noise and use the corresponding caption to assess the loss value.

Training rank models. We follow the exact same training recipe as the rank model for MSCOCO, which is described in Section B.1.

B.3 Baselines

We describe the baselines used in our experiments. Most baselines follow those reported in AbU [1].

Pixel space. Following JourneyTRAK’s implementation [53], we flatten the pixel intensities and use cosine similarity for attribution.

CLIP image and text features. We use the official ViT-B/32 model for image and text features.

DINO [92]. We use the official ViT-B/16 model for image features.

DINOv2 [121] We use the official ViT-L14 model with registers for image features.

CLIP (AbC) and DINO (AbC) [95]. We use the official models trained on the combination of object-centric and style-centric customized images. CLIP (AbC) and DINO (AbC) are selected because they are the best-performing choices of features.

TRAK [14] and Journey TRAK [53]. We adopt the official implementation of TRAK and Journey-TRAK and use a random projection dimension of 16384, the same as what they use for MSCOCO experiments.

D-TRAK [2]. We follow the best-performing hyperparameter reported in D-TRAK, using a random projection dimension of 32768 and lambda of 500. We use a single model to compute the influence score.

AbU [1] and AbU+. For AbU, we follow the default hyperparameter reported in the paper. For AbU+, we follow the same hyperparameters as the ones used for data curation, which is described in Section B.1.

Licenses. Below we list the licenses of code, data, and models we used for this project.

- **MSCOCO source model:** collected from Georgiev *et al.* [53], which is under the MIT License.
- **MSCOCO dataset:** Creative Commons Attribution 4.0 License.
- **MSCOCO synthesized images testset:** collected from AbU [1], which is under CC BY-NC-SA 4.0.
- **Stable Diffusion:** CreativeML Open RAIL++-M License.
- **DiffusionDB images:** MIT License.
- **CLIP model:** MIT License.
- **DINO model:** Apache 2.0.
- **DINOv2 model:** Apache 2.0.
- **AbC model:** CC BY-NC-SA 4.0.
- **TRAK code:** MIT License.
- **EKFAC code:** Taken from the Kronfluence codebase, which is under Apache 2.0 License.

C Additional Analysis

C.1 Compute Cost

Our experiments are all done by NVIDIA A100 GPUs. Below, we describe the runtime cost of the components of our project.

Data curation. On MSCOCO, attributing 100k candidates for 110 test queries at 2 hours/query took 220 GPU-hours, while curating 10k candidates for 5,000 train/val queries at 0.25 hour/query took 1,250 GPU-hours. For Stable Diffusion, attributing 20k candidates for 5,050 train/val queries at 3 hours/query required 15,150 GPU-hours, and 140 test queries at 15 hours/query consumed 2,100 GPU-hours in total.

Training time for LTR models. Training one rank model on MSCOCO for 10 epochs takes approximately 1 GPU-hour, while training the Stable Diffusion rank model for the same number of epochs requires about 6 GPU-hours.

C.2 Additional Results

Effectiveness of K-NN retrieval using off-the-shelf features. We study the effect of sampling from top- K neighbors for data collection, described in Section 3.2. As in Table 1, we report in Table 2 counterfactual metrics for AbU+ ran on (1) the full training set (**AbU+**) and (2) top neighbors after K -

Method	Loss deviation $\Delta\mathcal{L}(\hat{\mathbf{z}}, \theta)$ $\uparrow (\times 10^{-3})$			Image deviation $\Delta G_\theta(\epsilon, \mathbf{c})$ $\text{CLIP} \downarrow (\times 10^{-1})$					
	MSE $\uparrow (\times 10^{-2})$			CLIP $\downarrow (\times 10^{-1})$					
	500	1000	4000	500	1000	4000			
Random	3.5±0.0	3.5±0.0	3.5±0.0	4.1±0.1	4.1±0.1	4.0±0.1	7.9±0.0	7.9±0.0	7.9±0.0
D-TRAK	5.4±0.2	6.6±0.2	9.6±0.3	5.9±0.2	6.4±0.3	7.8±0.3	7.3±0.1	7.1±0.1	6.4±0.1
AbU+	5.8 ±0.2	7.1 ±0.2	11.0 ±0.3	5.6±0.2	6.2±0.2	7.5±0.2	7.2±0.1	6.8±0.1	5.8 ±0.1
AbU+ (K-NN)	5.8 ±0.2	7.1 ±0.2	9.7±0.4	5.4±0.2	6.3±0.3	6.9±0.3	7.1 ±0.1	6.7 ±0.1	5.8 ±0.1

Table 2: **Counterfactual leave- K -out evaluations.** We report loss deviation and image deviation metrics at $K \in \{500, 1000, 4000\}$. Values are scaled as indicated in the headers; gray shows the standard error.

NN (**AbU+ (K-NN)**). We also copied numbers from D-TRAK (2nd best teacher) and random baselines as reference. We find that applying K-NN retrieval does not introduce a significant performance drop.

Predicting absolute attribution scores directly. We explore directly predicting the absolute attribution instead of ranks, where the MLP regresses the absolute attribution scores (normalized by mean and standard deviation). This regression leads to worse ranking performance (0.009 **mAP (1000)**) than our learning-to-rank method (0.724 **mAP (1000)**).

Rank prediction evaluation. In Section 4, we only include mAP (L) with one L value. Here, we include mAP (500) and mAP (4000) for MSCOCO experiments in Figure 10,11,12,13,14,15. We include mAP (500) and mAP (1000) for Stable Diffusion experiments in Figure 16,17. All trends are similar to the ones reported in the main text.

MSCOCO qualitative results. Figure 8 presents additional MSCOCO examples. Our rank model can retrieve influential training images as AbU+. Their influence is confirmed-removing those images, retraining, and regenerating the query leads to large deviations.

Stable Diffusion qualitative results. Figure 9 shows additional examples on Stable Diffusion. Our model’s top attributions follow those of AbU+, emphasizing prompt content over pure visual similarity. Since full counterfactual retraining is infeasible at this scale, we cannot definitively verify that these attributions reflect true influence. However, as shown in Section 4.2, our method reliably predicts AbU+’s ranks, indicating a consistent attribution signal.

Establishing the ground-truth validity of this signal is left to future work. Prior studies suggest that influence-based methods may weaken on very large models (e.g., LLMs) [122, 123]. However, developing more robust attribution algorithms for large-scale models—and distilling a rank model from stronger teacher methods using our method—are all promising directions ahead.

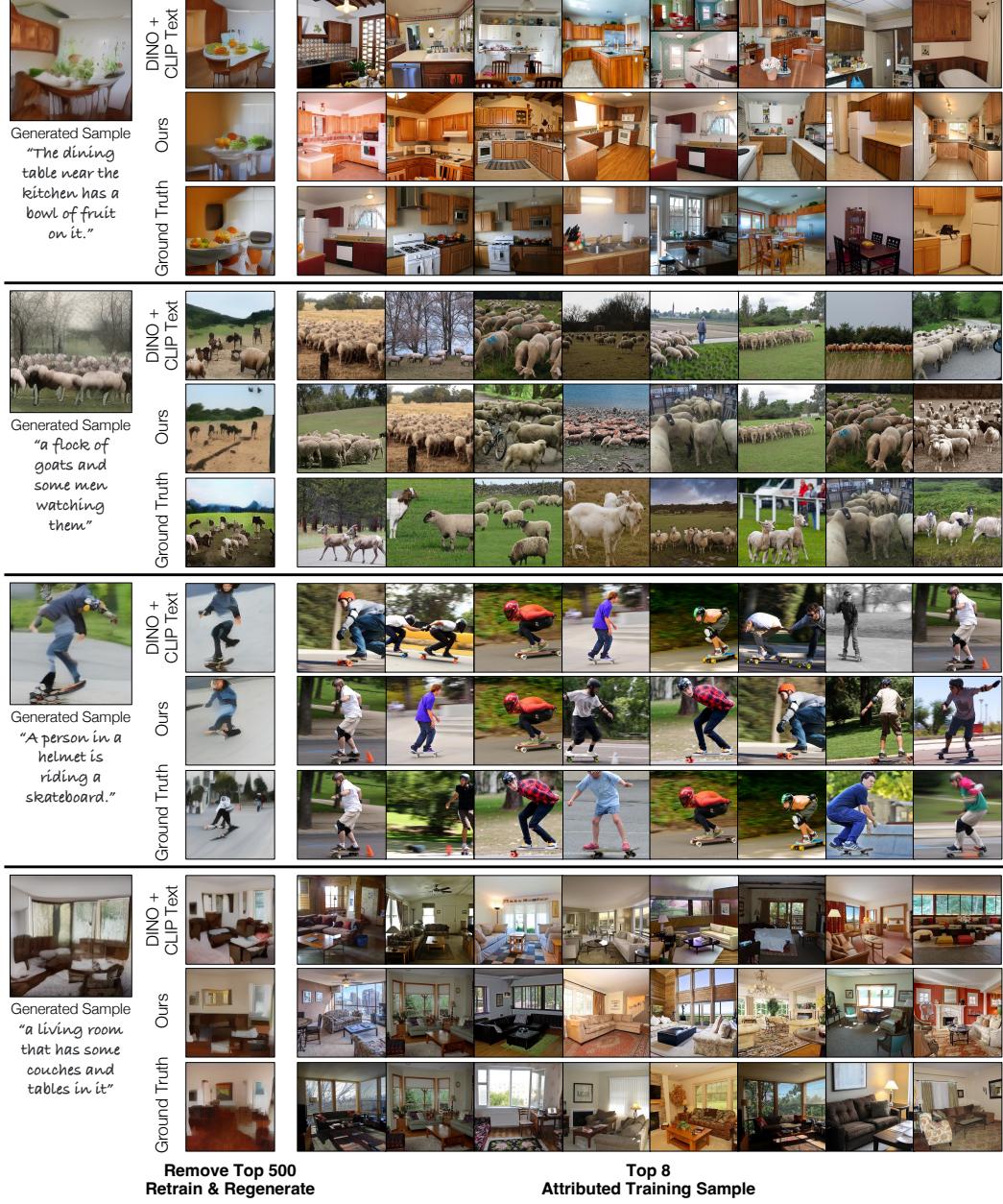


Figure 8: MSCOCO qualitative results. For each synthesized sample (leftmost), we compare three methods—DINO+CLIP-Text (top row), our tuned rank model (middle row), and AbU+ ground truth (bottom row). *Left block:* after removing the top 500 attributed images and retraining, the model re-generates the query. *Right block:* each method’s top-8 attributed training samples. Our method matches AbU+ in both forgetting behavior and retrieved examples.

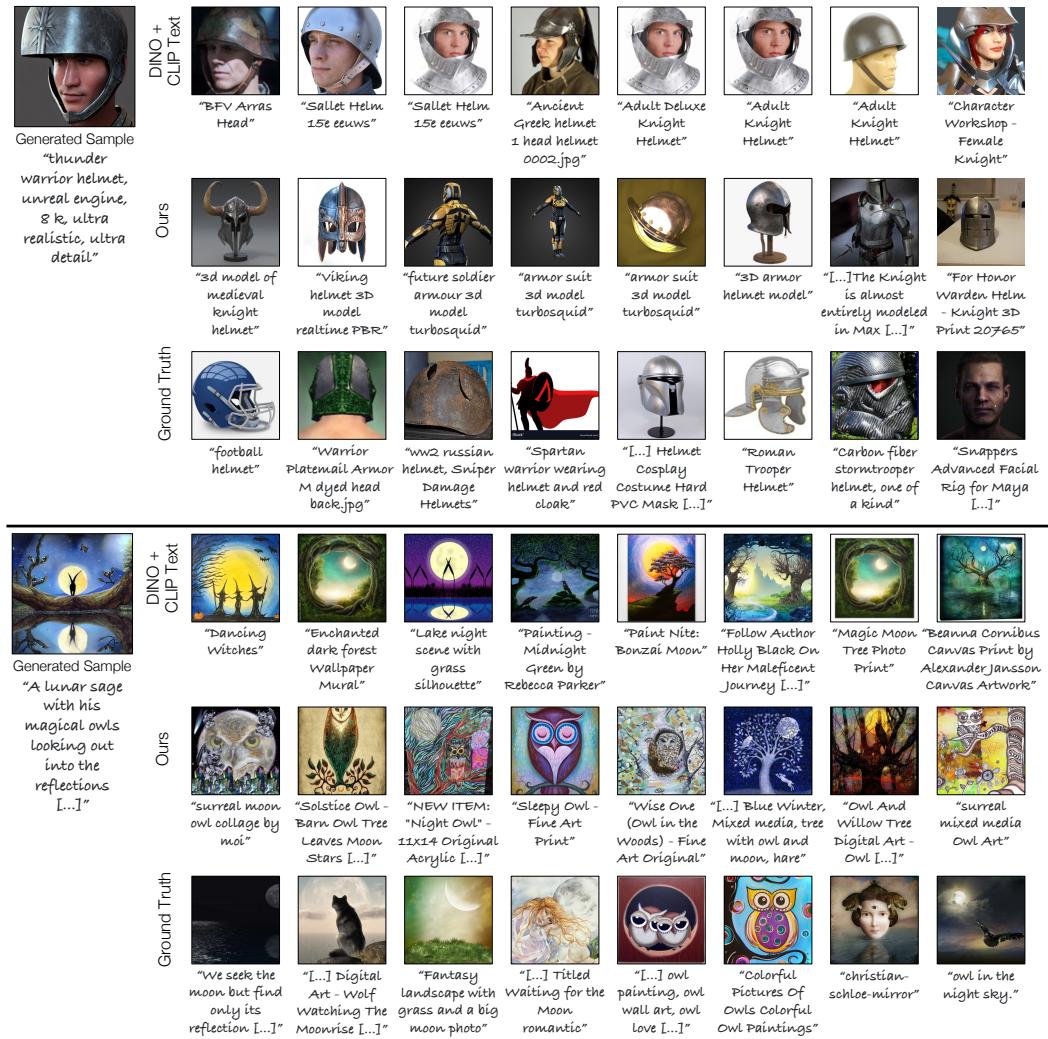


Figure 9: **Stable diffusion qualitative results.** For each generated image (left), we compare the DINO+CLIP-Text baseline (top row), our calibrated feature ranker (middle row), and AbU+ ground-truth attributions (bottom row). Both AbU+ and our method tend to retrieve images that reflect textual cues rather than visual similarity. *Top:* “warrior helmet” – retrieved helmets rather than faces wearing helmets. *Bottom:* “lunar sage ... magical owls” – retrieved owl-centric scenes despite no owls in the query images.

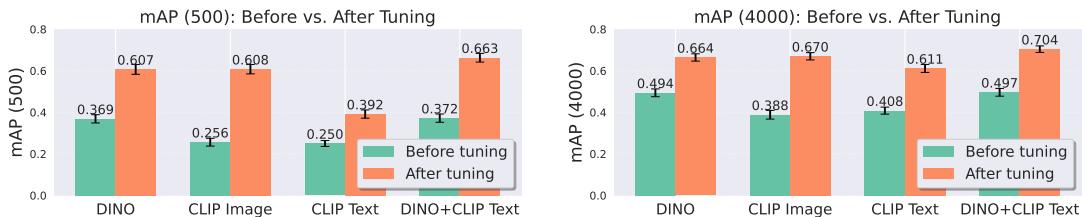


Figure 10: **mAP across different feature spaces.** We compare different feature spaces, before and after tuning for attribution. We report mAP (500) and mAP (4000) to the ground truth ranking, generated by AbU+. The trend is similar to Figure 3 (left) of the main text.

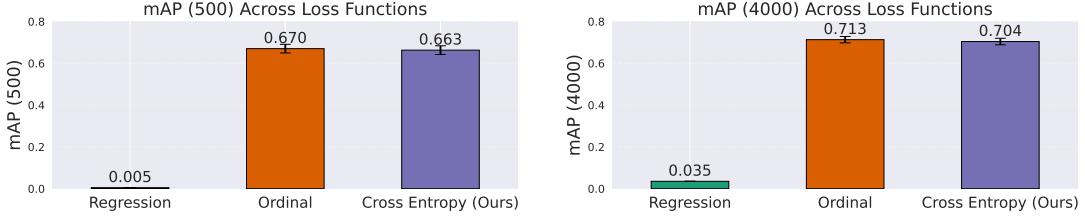


Figure 11: **mAP across different learning-to-rank losses.** Simple MSE regression does not converge well. Our cross-entropy method achieves performance similar to ordinal loss while supporting similarity search. We report mAP (500) and mAP (4000), and the trend is similar to Figure 3 (right) of the main text.

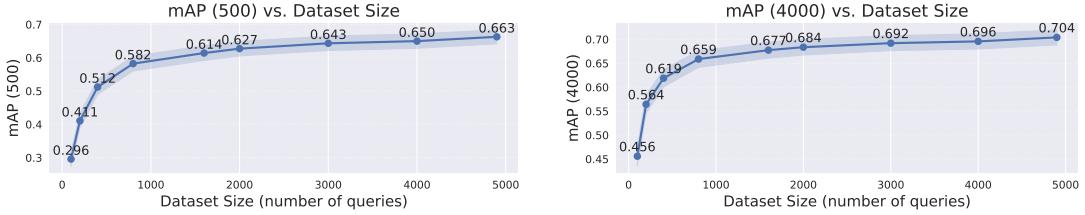


Figure 12: **mAP across different dataset sizes.** We find that the performance quickly improves and saturates as the dataset size grows. We report mAP (500) and mAP (4000), and the trend is similar to Figure 4 (left) of the main text.

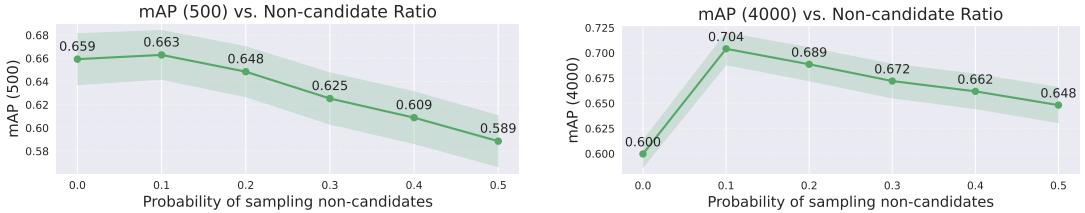


Figure 13: **mAP across probability of non-candidate sampling.** Using a few randomly sampled, unrelated images from the training set helps keep the learned attribution model, while having too many impedes the learning. We report mAP (500) and mAP (4000), and the trend is similar to Figure 4 (right) of the main text.

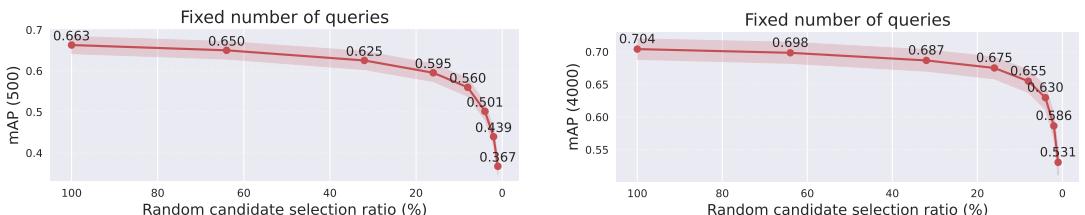


Figure 14: **mAP vs. random subset ratio with a fixed number of queries.** Reliable rankings can be learned, even with relatively fewer training images per query. We report mAP (500) and mAP (4000), and the trend is similar to Figure 5 (left) of the main text.

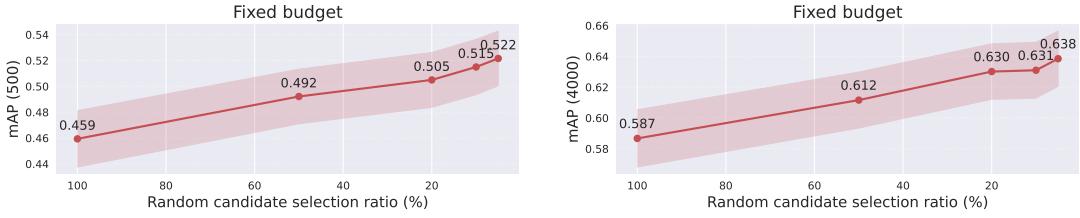


Figure 15: **mAP vs. random subset ratio with a fixed budget.** We find that at a fixed budget of 2.45M, more query images with fewer training images are beneficial. We report mAP (500) and mAP (4000), and the trend is similar to Figure 5 (right) of the main text.

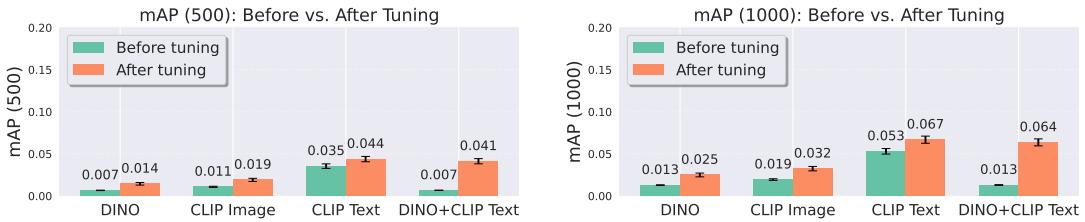


Figure 16: **Stable Diffusion ranking results (tuning feature spaces).** We see similar trends as with MS-COCO, with the strongest performing embedding using both text and image features. However, text features are more necessary to yield strong performance in this setting. We report mAP (500) and mAP (1000), and the trend is similar to Figure 6 (right) of the main text.

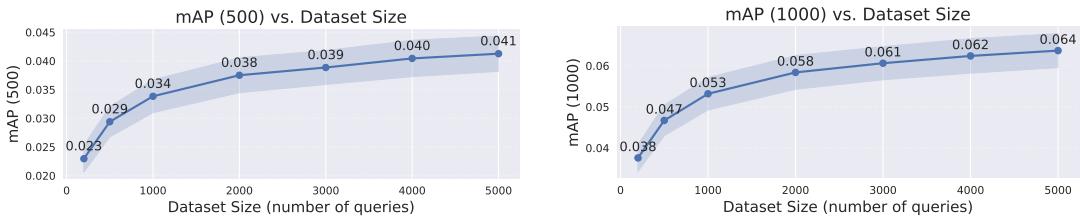


Figure 17: **Stable Diffusion ranking results (dataset sizes).** Performance increases with query images, increasing additional gains with more compute dedicated to gathering attribution training data. We report mAP (500) and mAP (1000), and the trend is similar to Figure 6 (right) of the main text.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: In the abstract and introduction, the claims are made to reflect the paper's contributions and scope accurately.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: See Section 5

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: The paper presents empirical findings and does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information for reproducing our main results in the main paper (Section 3,4) and the supplemental material. We will also release the code upon publication.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We release code, model, and data at <https://peterwang512.github.io/FastGDA>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We provided these details in the main paper (Section 4) and the supplemental material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We report 1-standard-error error bars in Figure 3,4,5,6 and Table 1. We state that we are reporting error bars representing 1 standard error in the captions.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We report compute resources for our experiments in the supplemental material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We fully conform with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss societal impacts in Section 5.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We conduct experiments on existing generative models and data. We will release a data-attribution-specific feature encoder, which has a low risk for misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: In the supplemental material.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: We will release the code upon publication. No assets are provided for this submission.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [\[NA\]](#)

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.