
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

PREDICTING LLM OUTPUT LENGTH VIA ENTROPY-
GUIDED REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The long-tailed distribution of sequence lengths in LLM serving and reinforcement learn-
ing (RL) sampling causes significant computational waste due to excessive padding in
batched inference. Existing methods rely on auxiliary models for static length predic-
tion, but they incur high overhead, generalize poorly, and fail in stochastic ”one-to-many”
sampling scenarios. We introduce a lightweight framework that reuses the main model’s
internal hidden states for efficient length prediction. Our framework features two core
components: 1) Entropy-Guided Token Pooling (EGTP), which uses on-the-fly activa-
tions and token entropy for highly accurate static prediction with negligible cost, and 2)
Progressive Length Prediction (PLP), which dynamically estimates the remaining length at
each decoding step to handle stochastic generation. To validate our approach, we build and
release ForeLen, a comprehensive benchmark with long-sequence, Chain-of-Thought, and
RL data. On ForeLen, EGTP achieves state-of-the-art accuracy, reducing MAE by 29.16%
over the best baseline. Integrating our methods with a length-aware scheduler yields sig-
nificant end-to-end throughput gains. Our work provides a new technical and evaluation
baseline for efficient LLM inference.

1 INTRODUCTION

In recent years, large language models (LLMs) (Achiam et al., 2023; Brown et al., 2020) have rapidly
proliferated across diverse applications including chatbots (Yang et al., 2025a), code assistants (Petrovic
et al., 2025), retrieval-augmented generation (RAG) (Li et al., 2025a) applications, and intelligent agents
(Schmidgall et al., 2025). Supporting these applications is an efficient LLM serving infrastructure, and the
typical LLM serving process follows an autoregressive paradigm: the system receives prompts generated by
users or tasks, and the model constructs complete responses through iterative next-token prediction (Zhen
et al., 2025; Kwon et al., 2023; Liu et al., 2025). Concurrently, LLM inference capabilities are being inte-
grated into online reinforcement learning, such as Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) and its variants (Yu et al., 2025; Zheng et al., 2025). To construct stable and diverse reward signals,
systems must perform multiple independent sampling operations on the same prompt, generating a set of
candidate responses and computing rewards based on their relative quality, which are then fed back to the
policy update phases.

In real scenarios, batching techniques (Dong et al., 2025; Xuan et al., 2025) are the core mechanism for
boosting hardware utilization and overall throughput. By executing multiple requests in parallel, systems
can significantly amortize scheduling and memory-access overhead. However, the generation lengths of
different requests within a batch usually vary greatly (as shown in Figure 1a). Because tensor shapes must
align, shorter sequences are padded to match the longest one (Gururangan et al., 2020; Yun et al., 2024).
This leads to a marked ”barrel effect”. Redundant padding computations enlarge GPU or accelerator time
consumption (Deshmukh et al., 2025), and also reduce effective computation (Qiu et al., 2024; Piotrowski

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000

Prompt Length
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

D
en

si
ty

LMSys
ForeLen

0 2000 4000 6000 8000 10000 12000

Response Length
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

D
en

si
ty

LMSys
ForeLen

(a) The prompt and response length distributions of the
LMSYS dataset and our proposed ForeLen benchmark
(left for prompt length, right for response length). The
generation lengths of different requests within a batch
typically exhibit highly variable distributions.

0 2000 4000 6000 8000 10000 12000

Group

0

1000

2000

3000

4000

5000

6000

Le
ng

th
 o

f R
es

po
ns

e

Avg. Length of Resp.
Variance of Group Resp.

(b) Response length distribution observed during a GRPO
training loop for online RL sampling. Despite using
identical prompts within each group, stochastic decoding
introduces substantial variability in generated response
lengths, highlighting the challenge for dynamic length
prediction.

Figure 1: Analysis of LLM Sequence Length Distributions in Representative Scenarios. Figure (a)
illustrates the length characteristics of our proposed ForeLen benchmark and LMSYS, demonstrating a
wider and longer-tailed distribution. Figure (b) showcases the high length variance for generations from
identical prompts in an online RL training setting.

et al., 2025). If systems could estimate output lengths for each request before or early in inference, they
could apply length-aware scheduling. Such scheduling would cut ineffective computation. It would also
raise throughput and cost efficiency in both online serving (Jin et al., 2023) and RL training (Zheng et al.,
2025; Yu et al., 2025).

To predict output lengths for LLMs, recent studies (Qiu et al., 2024; Jin et al., 2023; Hu et al., 2024; Fu et al.,
2024) typically attach a fine-tuned, lightweight auxiliary predictor, e.g., DistilBERT (Sanh et al., 2019) or
OPT (Zhang et al., 2022). Although this design is appealing, it still suffers from three key limitations: (i)
Instability in stochastic, “one-to-many” generation. During sampling—especially in reinforcement-learning
workflows (Wang et al., 2025)—a single prompt can yield multiple valid completions with widely differing
lengths (Figure 1b). Any static estimate that relies only on the prompt therefore becomes unreliable. (ii)
Limited accuracy and generalization. These predictors are usually trained on benchmarks such as LMSYS
(Zheng et al., 2024), which contain few long sequences and little complex reasoning. As a result, their length
forecasts deteriorate in realistic, more complex settings. (iii) Additional computational and deployment cost.
Each request must run a separate predictor instead of reusing the rich hidden states already produced by the
main LLM.

To overcome these challenges of inefficiency, generalization, and inflexibility, we propose a new framework
that directly utilizes the information embedded within the LLM’s internal activations. Our core insight is that
if an LLM can determine when to emit the <eos> token, then signals related to the eventual output length
must be implicitly encoded in its internal states. By reusing these activations, we can enable more accurate
length prediction with minimal additional cost. We introduce Entropy-Guided Token Pooling (EGTP), which
reuses on-the-fly activations, guided by token entropy, to capture the most informative signals from the
prompt, thereby addressing the overhead and generalization challenges of prior work.

Furthermore, to address the fundamental difficulty of length prediction in stochastic environments, we intro-
duce Progressive Length Prediction (PLP). PLP leverages the autoregressive nature of LLMs by operating
dynamically at each decoding step. It uses the current activations to produce an updated estimate of the
remaining tokens to be generated. By iteratively refining its forecast, PLP enables length-aware scheduling
even in highly unpredictable environments like RL sampling, a task for which previous static methods are
not inherently designed.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

To rigorously validate our framework, particularly in scenarios where existing methods may struggle, we
introduce ForeLen, the first comprehensive benchmark for length prediction featuring long-sequence, Chain-
of-Thought (CoT), and reinforcement learning (RL) sampling data. Experiments on ForeLen show that our
method, EGTP, achieves state-of-the-art accuracy. Averaged across all tested models, our method reduces
the Mean Absolute Error (MAE) by 29.16% compared to the strongest baseline and 55.09% compared to
the widely-used SSJF-Reg (Qiu et al., 2024). This superior prediction accuracy, in turn, yields significant
improvements in end-to-end inference throughput.

Our contributions are summarized as follows:

• We propose a lightweight and efficient length prediction framework, comprising two core modules:
EGTP, which reuses internal model activations guided by token entropy for accurate static predic-
tion, and PLP, which performs progressive prediction to handle highly stochastic RL sampling.

• To facilitate rigorous evaluation, we construct and release ForeLen, the first comprehensive bench-
mark designed to test predictors on challenging long-sequence, CoT, and RL data.

• Our methods achieve state-of-the-art prediction accuracy on ForeLen and, when integrated with a
length-aware scheduler, yield significant improvements in inference throughput.

2 RELATED WORK

Efficient LLM Serving and Inference Optimization. Efficient LLM serving relies on optimizations like
continuous batching (e.g., in vLLM) (Kwon et al., 2023) and efficient KV Cache management like Page-
dAttention (Kwon et al., 2023). These techniques maximize throughput by dynamically managing requests
and mitigating memory fragmentation. However, while they reduce inter-request idle time, they do not solve
the computational waste from padding within a running batch, known as the ”barrel effect,” where shorter
sequences waste computation matching the longest (Deshmukh et al., 2025). Our work is orthogonal: by
predicting output length, we enable length-aware schedulers to build more homogeneous batches, directly
reducing this padding overhead and complementing existing serving architectures.

LLM Response Length Prediction. Prior work on length prediction primarily trains lightweight auxiliary
models (e.g., DistilBERT) to predict an LLM’s output length based only on the input prompt (Qiu et al.,
2024; Jin et al., 2023; Hu et al., 2024). This approach, however, incurs non-negligible overhead, requiring
a separate model to be trained, deployed, and executed for every request. We bypass this cost. Inspired by
work linking internal model states like token entropy to generation structure (Li et al., 2025c), our EGTP
(Entropy-Guided token Pooling) method reuses the LLM’s own on-the-fly activations to achieve accurate
prediction with negligible additional computation.

LLM Inference and Sampling in Reinforcement Learning. Modern LLM alignment algorithms like
GRPO (Shao et al., 2024) and its variants (Yu et al., 2025; Zheng et al., 2025) require generating multiple
candidate responses from the same prompt using stochastic sampling. This process creates extreme output
length variance for a single input, rendering all existing static, prompt-based predictors (Qiu et al., 2024)
completely ineffective. Furthermore, a standardized benchmark for this ”one-to-many” prediction scenario
is absent (Wang et al., 2025). Our PLP (Progressive Length Prediction) is designed specifically for this dy-
namic setting. Instead of a single static forecast, it operates autoregressively, using current model activations
at each step to iteratively update its prediction of the remaining tokens, thereby adapting to the unique path
of each stochastic sample.

3 METHOD

Our proposed methodology tackles the challenge of length prediction through two primary components
designed for static and dynamic scenarios, respectively. First, for static prediction from complex prompts,

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

we introduce Entropy-Guided Token Pooling (EGTP). This method efficiently utilizes the LLM’s internal
activations, and its accuracy is further boosted by our novel Regression via Soft Label Distribution training
strategy. Second, to handle the ’one-to-many’ problem in stochastic environments like RL, we present
Progressive Length Prediction (PLP), a dynamic approach that iteratively refines its forecast. This capability
is crucial for scenarios unaddressed by prior static methods.

3.1 ENTROPY-GUIDED TOKEN POOLING (EGTP)

Motivation. As mentioned above, our core insight is that if an LLM can determine when to emit the
<eos> token, then signals related to the eventual output length must be implicitly encoded in its internal
states. By reusing these activations, we can enable accurate length prediction with minimal additional cost.
However, a challenge arises because we have a sequence of these representations, but we need to produce a
single predictive output. Therefore, we require a pooling mechanism to aggregate them into one conclusive
vector. We find that traditional methods like mean or max pooling are suboptimal, as they can dilute or dis-
card crucial information. Instead, we propose a novel pooling strategy guided by predictive entropy, which
we believe more effectively captures the most informative tokens to create a superior final representation.

To validate this hypothesis, we measured each token’s contribution to the final prediction using a gradient-
based attribution method (Sundararajan et al., 2017). Specifically, we define the importance It of a token
at position t as the L2 norm of the gradient of the Mean Squared Error (MSE) loss (LMSE) between the
predicted and ground truth lengths, with respect to its hidden state representation ht:

It = ∥∇ht
LMSE∥2. (1)

To provide an empirical foundation for our approach, we analyzed the relationship between token entropy
and importance. The experiment was performed using a BERT model with a linear head on 10k samples ran-
domly selected from the LMSYS dataset. As shown in Figure 2, the results demonstrate a significant positive
correlation between a token’s entropy and its importance for length prediction (Pearson’s r = 0.451). This
finding confirms that high-entropy tokens, which are those where the model is most uncertain about what
to generate next, are indeed critical signals for forecasting the output length, thus validating our entropy-
weighted pooling strategy.

Ve
ry

Low Low

Med
ium High

Ve
ry

High

Entropy Range

0.1

0.2

0.3

0.4

0.5

Im
po

rta
nc

e

Importance Distribution by Entropy Range

0.2 0.4 0.6 0.8 1.0 1.2
Entropy

0.1

0.2

0.3

0.4

Im
po

rta
nc

e

Joint Distribution of Entropy and Importance
Regression Line (r=0.451)

2

4

6

8

10

12

14

16

Co
un

t

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Figure 2: Empirical validation of the relationship between token entropy and importance. (Left) The
box chart shows the average importance for tokens binned into five equal-width intervals based on their
entropy value. This indicates that importance increases with entropy. (Right) The scatter plot displays
the joint distribution of entropy and importance, with the regression line confirming a significant positive
correlation (r=0.451).

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

EGTP. Based on this validation, we propose Entropy-Guided Token Pooling (EGTP). This method
aggregates a sequence of input hidden states {h1, h2, . . . , hn} into a single feature vector h. The process
begins by computing the entropy Hi for each token. Specifically, for each hidden state hi corresponding to
an input token xi, we calculate the entropy from the next-token probability distribution P (v|x<i) over the
vocabulary V :

Hi = −
∑
v∈V

P (v|x<i) logP (v|x<i) (2)

Next, these entropy values are used to generate attention weights. We transform the entropies into a distribu-
tion of weights wi via a softmax function, scaled by a temperature parameter α that controls the distribution’s
sharpness:

wi =
exp(Hi)∑n
j=1 exp(Hj)

(3)

Finally, the aggregated representation h is computed as the weighted sum of the hidden states, using the
entropy-derived weights:

h =

n∑
i=1

wihi (4)

By adaptively focusing on the most informative parts of the input prompt, EGTP provides a higher-quality
feature representation for the downstream length prediction task.

3.2 LENGTH REGRESSION VIA SOFT LABEL DISTRIBUTION

Next, we will use our above feature representations to build a model for length prediction. While length
prediction is a regression task, standard MSE loss is highly sensitive to outliers or heavy-tailed distributions,
which have been shown in Figure 1a. The common alternative, classification via length binning, ignores the
crucial concept of distance between true and predicted values. Our approach overcomes these limitations
by designing a prediction head that is both robust to outliers like classification and distance-aware like
regression.

Our method begins by converting the continuous length target y into a soft probability distribution p to serve
as the ground truth label. We first discretize the target space into K predefined bins. Instead of using a
one-hot vector, we generate a soft distribution where, for a true length falling into bin i, the probability pj
for any bin j is inversely proportional to its distance from bin i. This is formulated as:

pj =
exp(−|j − i|)∑K
k=1 exp(−|k − i|)

(5)

Next, using the feature vector h from EGTP, our model produces two concurrent outputs. The first is a
classification prediction p̂, which is a K-dimensional probability distribution [p̂1, . . . , p̂K] obtained via a
softmax layer. The second is the final regression prediction ŷ, which is calculated as the expected value of
the predicted distribution. Assuming ci is the center value of the i-th bin, this is computed as:

ŷ =

K∑
i=1

p̂i · ci (6)

Finally, the model is trained by optimizing a joint loss function that combines a Cross-Entropy (CE) loss and
a Mean Squared Error (MSE) loss, balanced by a hyperparameter λ:

L = λLCE(p, p̂) + (1− λ)LMSE(y, ŷ) (7)
The LCE term encourages the predicted distribution p̂ to align with the soft label distribution p, thereby
providing stable, gradient-friendly supervision. Simultaneously, the LMSE term directly minimizes the error
between the final continuous prediction ŷ and the true length y, ensuring regression accuracy.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

3.3 PROGRESSIVE LENGTH PREDICTION (PLP)

In scenarios such as online reinforcement learning, a system often generates multiple candidate responses
with varying lengths from a single prompt. In this context, a static, pre-generation prediction is insufficient.
To address this, we introduce Progressive Length Prediction (PLP). PLP leverages the autoregressive
nature of LLMs by making a new prediction at each decoding step. At timestep t, its objective is to predict
the remaining number of tokens to be generated y

(t)
rem. This is done to leverage the information from all

previously generated tokens to make a more accurate prediction at each step.

To do this, PLP first forms a dynamic input representation zt by combining the prompt feature vector h with
the hidden states of the already generated tokens {h′

1, . . . , h
′
t}:

zt = Aggregate(h, {h′
1, . . . , h

′
t}) (8)

where Aggregate(·) is a simple concatenation function. This representation zt is then passed through the
same prediction head described in Section 3.2 to yield the final prediction for the remaining length, ŷ(t)rem.

The model is trained by minimizing the average loss across all timesteps. The total loss for a single sequence
is:

LPLP =
1

T

T∑
t=1

L(y(t)rem, ŷ
(t)
rem) (9)

where T is the total sequence length and L is the joint loss function defined in Eq. (7). By iteratively
refining its forecast, PLP enables dynamic adjustments to scheduling strategies, thereby improving resource
utilization.

4 EXPERIMENTS

4.1 DATASET CONSTRUCTION

To evaluate our proposed method in complex settings, we constructed the ForeLen, which comprises two
core scenarios designed to comprehensively assess predictor performance under challenging conditions.

Scenario 1: Long-Sequence and Complex Reasoning Generation. This scenario focuses on long-text
and complex reasoning capabilities. We selected prompts from LongBench (Bai et al., 2024a), Zero-
SCROLLS (Shaham et al., 2023), and IFEval (Zhou et al., 2023). For long-sequence tasks, we used the
Qwen2.5 (0.5B-7B) (Yang et al., 2025b) and Llama3.2 (1B, 3B) (Dubey et al., 2024) model series to gen-
erate outputs. For reasoning tasks, outputs were generated by the Qwen2.5 and DeepSeek-R1-Distill model
series (Guo et al., 2025).

Scenario 2: Dynamic RL Sampling. This scenario is designed to simulate the dynamic sampling process
in RL training. We collected data from the actual GRPO training pipeline of the Qwen2.5 and Llama3.2
model series. Prompts were sourced from six widely-used math and code reasoning datasets: CRUXE-
val (Gu et al., 2024), GSM8K (Cobbe et al., 2021), LiveCodeBench (Jain et al., 2025), MATH (Hendrycks
et al., 2021b), MBPP (Austin et al., 2021), and MMLU-STEM (Hendrycks et al., 2021a). For each prompt,
we applied a grouped sampling strategy with K=4 and recorded generated candidate responses and lengths.

Data Splits and Statistics. To ensure a fair evaluation, we strictly adhere to the official train/val/test splits
of the source datasets. This guarantees that prompts in the validation and test sets are unseen during the
predictor’s training phase. Detailed statistics of the dataset are presented in Appendix Table 4.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENT SETTING

Baselines and Additional Datasets. We compare our method against baselines including SSJF-Reg (Qiu
et al., 2024), SSJF-MC (Qiu et al., 2024), S3 (Jin et al., 2023), PiA (Zheng et al., 2023), TPV (Eisenstadt
et al., 2025), TRAIL (Shahout et al., 2025), and LTR-C (Fu et al., 2024). Details about these baselines are
shown in Appendix E.1. Our evaluation is conducted on the popular LMSYS (Zheng et al., 2024) benchmark,
as well as our ForeLen benchmark, which is designed to be richer and more challenging.

Evaluation Metrics. We use the Mean Absolute Error (MAE) to evaluate the performance of our method.
Use throughput, Job Completion Time and padding ratio to evaluate the end-to-end system performance.
Details are shown in Appendix B.

Experimental Setup. For training, we use the AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019)
optimizer with a learning rate of 2e-5. We train the model for a maximum of 10 epochs with a batch size of
16. For reproducibility across all experiments, we set the random seed to 42. For the Soft Label Regression
specific settings, the target length is discretized into K = 20 bins. And we set λ to 0.95 to balance the
CE loss and MSE loss. Experiments are run with 1 V100 GPU, 10 core CPU, and 64 GB memory. For all
baseline methods, we adopt the hyperparameter settings reported in their original papers.

4.3 MAIN RESULTS: PREDICTION ACCURACY

Prediction Method

Model Scenario EGTP(Ours) SSJF-Reg SSJF-MC S3 PiA TPV TRAIL LTR-C

LMSYS Benchmark

GPT-4 LMSYS 87.32 171.62 190.93 96.03 143.02 339.88 116.91 104.11
Claude-2 LMSYS 68.33 152.00 140.18 83.51 91.32 283.81 102.39 77.03

ForeLen Benchmark

Qwen2.5 3B

LongSeq 93.43 271.15 771.96 186.82 346.36 576.08 147.92 124.23
Reasoning 139.04 325.38 789.21 169.72 428.10 621.72 132.20 145.53
RL 99.78 194.03 187.04 169.306 197.87 238.20 159.15 192.84
Avg. 110.75 263.52 582.74 175.28 324.11 478.67 146.42 154.20

Qwen2.5 7B

Long Seq 81.60 210.68 507.34 161.82 279.55 533.92 134.18 129.37
Reasoning 133.57 298.80 770.92 168.80 412.84 466.56 124.19 134.55
RL 95.24 177.07 167.18 173.37 212.78 202.98 155.51 187.13
Avg. 103.47 228.85 481.81 168.00 301.72 401.15 137.96 150.35

Llama3.2 1B

Long Seq 81.77 173.97 251.71 262.27 145.61 512.16 145.35 179.11
Reasoning 138.04 157.67 143.78 152.29 254.57 273.04 148.28 142.28
RL 95.44 204.87 267.08 235.07 197.87 308.09 161.78 206.70
Avg. 105.08 178.84 220.86 216.54 199.35 364.43 151.80 176.03

Llama3.2 3B

Long Seq 78.83 193.34 234.83 259.55 149.92 733.75 143.62 317.89
Reasoning 111.23 186.16 160.36 164.22 264.66 373.03 177.16 174.01
RL 114.53 418.09 218.00 163.86 197.87 244.99 152.85 131.75
Avg. 101.53 265.86 204.40 195.88 204.15 450.59 157.88 207.88

Table 1: Comparison of different length prediction methods. (Best,SecondBest)

To evaluate the efficacy of our proposed method, EGTP, we conducted a comprehensive comparison against
a suite of state-of-the-art baselines for output length prediction. As presented in Table 1, our evaluation
measures the MAE on two distinct benchmarks: the widely-used LMSYS dataset and our more challenging
ForeLen benchmark. The results unequivocally demonstrate that EGTP consistently and significantly out-
performs all other methods across every model and scenario. On the standard LMSYS benchmark, EGTP

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

achieves the lowest MAE when predicting output lengths for both GPT-4 (87.32) and Claude-2 (68.33), sur-
passing the next-best methods by 9.1% and 11.3%, respectively. This initial result validates the fundamental
effectiveness of our approach on established, real-world conversational data.

We further assessed our method on the more demanding ForeLen benchmark, which incorporates complex
scenarios involving Long Sequences, Reasoning, and data from LLMs Reinforcement Learning. Even in
these challenging conditions, EGTP maintains its exceptional performance and reaffirms its superiority.
When analyzing the average performance across these scenarios, EGTP establishes a substantial margin
over the strongest baseline, TRAIL, reducing the MAE from 146.42 to 110.75 (a 24.4% improvement)
for Qwen2.5 3B; from 137.96 to 103.47 (a 25.0% improvement) for Qwen2.5 7B; from 151.80 to 105.08
(a 30.8% improvement) for Llama3.2 1B; and from 157.88 to 101.53 (a remarkable 35.7% improvement)
for Llama3.2 3B. This consistent outperformance across diverse models and complex tasks highlights the
excellent generalization capabilities of EGTP and strongly underscores the critical role of token entropy in
providing a robust signal for accurate output length prediction.

The Effect of PLP. The experimental results in Figure 3 for Progressive Length Prediction show consistent
improvements across all three tasks. The RL task demonstrates the strongest performance gains, dropping
from 95.24 to 80.85 MAE, while both Reasoning and Long Seq tasks also show substantial improvements.
All tasks exhibit a similar convergence pattern where rapid initial gains in the first few steps gradually
stabilize, suggesting that PLP effectively leverages already-generated tokens to refine length predictions. The
improvement across diverse task types validates PLP’s core approach of progressive refinement during the
decoding process, making it particularly valuable for dynamic resource allocation scenarios where accurate
length prediction is crucial for efficient scheduling.

4.4 END-TO-END SYSTEM PERFORMANCE

To evaluate the practical effectiveness of our proposed EGTP, we integrated it and baseline predictors with a
Shortest Job First (SJF) scheduler in an end-to-end system powered by the vLLM serving backend. We tested
the system on two distinct workloads: Long Sequence and Reasoning. The results, presented in the Table 2,
unequivocally demonstrate that EGTP consistently and substantially outperforms all baselines across every
metric in both scenarios. In the Long Sequence workload, EGTP not only achieves the highest throughput
but also more than halves the JCT compared to the best-performing baseline, TRAIL. This significant per-
formance gain is directly driven by EGTP’s superior prediction accuracy, which slashes the padding ratio
to just 0.18, a nearly 3x reduction over TRAIL’s 0.51. This trend extends to the Reasoning scenario, where
EGTP again leads all methods by reducing the padding ratio to a mere 0.09. This represents a 36% relative
reduction in wasted computation over the strongest baseline, LTR-C, cementing its lead in throughput and
JCT.

Long Sequence Reasoning

Model Throughput ↑ Avg. JCT ↓ Padding Ratio ↓ Throughput ↑ Avg. JCT ↓ Padding Ratio ↓

EGTP (Ours) 131.05 4.20 0.18 2941 8.21 0.09

SSJF-Reg 117.87 11.52 0.57 146.74 9.32 0.33
SSJF-MC 109.50 23.24 0.38 124.34 22.31 0.31
S3 115.09 15.74 0.55 139.89 10.31 0.42
PiA 119.20 18.40 0.47 141.83 16.74 0.31
TPV 116.03 43.10 0.57 142.41 40.12 0.32
TRAIL 129.58 9.45 0.51 147.03 9.32 0.34
LTR-C 127.14 12.01 0.21 150.57 9.30 0.14

Table 2: End-to-End System Performance Comparison on Different Scenarios (Best, Second Best)

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0 4 8 16 32
Step

68

70

72

74

76

78

80

82

M
AE

81.60
80.04

79.06 78.57

67.11

Long Seq

0 4 8 16 32
Step

120

122

124

126

128

130

132

134

M
AE

133.57
132.20

131.46

129.01

119.11

Reasoning

0 4 8 16 32
Step

82

84

86

88

90

92

94

M
AE

95.24
94.36

92.45 92.16

80.86

RL

Figure 3: MAE improvements for Progressive Length Prediction.

4.5 ABLATION STUDY

Effectiveness of Entropy-Guided Pooling. Our ablation study on different pooling methods, with results

Table 3: Ablation study on the impact of different pooling methods.

Pooling Method Reasoning Long Sequence RL Average

EGTP (Ours) 133.57 81.60 95.24 103.47

Average Pooling 142.40 173.85 149.92 155.39
Max Pooling 137.88 122.74 98.46 119.69
Last Token Pooling 139.09 135.44 105.39 126.64

in Table 3, clearly demonstrates that our proposed EGTP method outperforms the baselines across all tasks.
EGTP achieves an average MAE of 103.47, which is a significant improvement over the best-performing
baseline, Max Pooling, at 119.69. The advantage of EGTP is especially prominent on the Long Sequence
task, where its MAE of 81.60 is substantially lower than any competing method. This result confirms the
superiority of our approach in effectively capturing key features from complex sequences, a task where
traditional pooling strategies tend to fall short.

The sensitivity analysis of the hyperparameter λ and its effect on the joint optimization is discussed in detail
in Appendix D. Additionally, detailed experimental results for the Qwen2.5-0.5B and Qwen2.5-1.5B models
can be found in Appendix E.5. And the length prediction performance comparison on various other datasets
is provided in the Appendix E.6.

5 CONCLUSION

In this paper, we propose a novel framework that predicts sequence length by reusing the model’s own in-
ternal activations. This approach circumvents the overhead and generalization failures of separate, auxiliary
predictors. Our method introduces EGTP for static estimation and PLP for progressive prediction in dynamic
environments. We validate our approach on ForeLen, a new and challenging benchmark we developed for
this task. The results demonstrate superior prediction accuracy, confirming that sufficient signals for length
determination are already encoded within the LLM’s hidden states.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

The hyperparameters used in our experiments are detailed in 4.2. The source code and dataset supporting
the conclusions of this article will be made publicly available on GitHub and Huggingface after a cleanup
process.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu,
Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context understand-
ing. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024a.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv preprint
arXiv:2408.07055, 2024b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Aadesh Deshmukh, Venkata Yaswanth Raparti, and Samuel Hsu. Zen-attention: A compiler framework for
dynamic attention folding on amd npus, 2025. URL https://arxiv.org/abs/2508.17593.

Haoyu Dong, Pengkun Zhang, Mingzhe Lu, Yanzhen Shen, and Guolin Ke. Machinelearninglm: Continued
pretraining language models on millions of synthetic tabular prediction tasks scales in-context ml, 2025.
URL https://arxiv.org/abs/2509.06806.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Roy Eisenstadt, Itamar Zimerman, and Lior Wolf. Overclocking llm reasoning: Monitoring and controlling
thinking path lengths in llms, 2025. URL https://arxiv.org/abs/2506.07240.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao Zhang. Efficient llm scheduling by
learning to rank. In Advances in Neural Information Processing Systems, volume 37, pp. 59006–59029,
2024.

10

https://arxiv.org/abs/2508.17593
https://arxiv.org/abs/2509.06806
https://arxiv.org/abs/2506.07240

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.
Cruxeval: a benchmark for code reasoning, understanding and execution. In Proceedings of the 41st
International Conference on Machine Learning, pp. 16568–16621, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633–638, 2025. URL https://doi.org/10.1038/s41586-025-09422-z.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks, 2020. URL
https://arxiv.org/abs/2004.10964.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances in neural
information processing systems, 2021b.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi
Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without interference: Dis-
aggregate llm inference for mixed downstream workloads, 2024. URL https://arxiv.org/abs/
2401.11181.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of
large language models for code. In The Thirteenth International Conference on Learning Representations,
2025.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. S3: Increasing gpu utilization during gener-
ative inference for higher throughput. Advances in Neural Information Processing Systems, 36:18015–
18027, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei,
Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui
Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, and Philip S. Yu. To-
wards agentic rag with deep reasoning: A survey of rag-reasoning systems in llms, 2025a. URL
https://arxiv.org/abs/2507.09477.

Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei,
Henry Peng Zou, Xiao Luo, Yusheng Zhao, et al. Towards agentic rag with deep reasoning: A survey of
rag-reasoning systems in llms. arXiv preprint arXiv:2507.09477, 2025b.

Zeju Li, Jianyuan Zhong, Ziyang Zheng, Xiangyu Wen, Zhijian Xu, Yingying Cheng, Fan Zhang, and Qiang
Xu. Compressing chain-of-thought in llms via step entropy, 2025c. URL https://arxiv.org/
abs/2508.03346.

11

https://doi.org/10.1038/s41586-025-09422-z
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2507.09477
https://arxiv.org/abs/2508.03346
https://arxiv.org/abs/2508.03346

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Yue Liu, Jiaying Wu, Yufei He, Ruihan Gong, Jun Xia, Liang Li, Hongcheng Gao, Hongyu Chen, Baolong
Bi, Jiaheng Zhang, Zhiqi Huang, Bryan Hooi, Stan Z. Li, and Keqin Li. Efficient inference for large
reasoning models: A survey, 2025. URL https://arxiv.org/abs/2503.23077.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Nenad Petrovic, Vahid Zolfaghari, Andre Schamschurko, Sven Kirchner, Fengjunjie Pan, Chengdng Wu,
Nils Purschke, Aleksei Velsh, Krzysztof Lebioda, Yinglei Song, Yi Zhang, Lukasz Mazur, and Alois
Knoll. Survey of genai for automotive software development: From requirements to executable code,
2025. URL https://arxiv.org/abs/2507.15025.

Grzegorz Piotrowski, Mateusz Bystroński, Mikołaj Hołysz, Jakub Binkowski, Grzegorz Chodak, and
Tomasz Jan Kajdanowicz. When will the tokens end? graph-based forecasting for LLMs output length.
In Jin Zhao, Mingyang Wang, and Zhu Liu (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 4: Student Research Workshop), pp. 843–848, Vi-
enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-254-1. doi:
10.18653/v1/2025.acl-srw.61. URL https://aclanthology.org/2025.acl-srw.61/.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke, Zbig-
niew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. Efficient interactive llm serving with proxy
model-based sequence length prediction. In The 5th International Workshop on Cloud Intelligence / AIOps
at ASPLOS 2024, volume 5, pp. 1–7, San Diego, CA, USA, 2024. Association for Computing Machinery.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. In Advances in neural information processing systems, 2019.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Michael
Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants, 2025.
URL https://arxiv.org/abs/2501.04227.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot benchmark
for long text understanding. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pp. 7977–7989, 2023.

Rana Shahout, Eran Malach, Chunwei Liu, Weifan Jiang, Minlan Yu, and Michael Mitzenmacher. Don’t
stop me now: Embedding based scheduling for llms. In The Thirteenth International Conference on
Learning Representations, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024. URL https://arxiv.org/abs/2402.03300.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017. URL
https://arxiv.org/abs/1703.01365.

Liangyu Wang, Huanyi Xie, Xinhai Wang, Tianjin Huang, Mengdi Li, and Di Wang. Infinite sampling:
Efficient and stable grouped rl training for large language models, 2025. URL https://arxiv.org/
abs/2506.22950.

Mo Xuan, Zhang yue, and Wu Weigang. Maaso: Slo-aware orchestration of heterogeneous model instances
for maas, 2025. URL https://arxiv.org/abs/2509.06362.

12

https://arxiv.org/abs/2503.23077
https://arxiv.org/abs/2507.15025
https://aclanthology.org/2025.acl-srw.61/
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/2506.22950
https://arxiv.org/abs/2506.22950
https://arxiv.org/abs/2509.06362

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng,
Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025a. URL https:
//arxiv.org/abs/2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report, 2025b. URL https://arxiv.org/abs/2412.15115.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong,
Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang,
Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning
system at scale, 2025. URL https://arxiv.org/abs/2503.14476.

Sungmin Yun, Kwanhee Kyung, Juhwan Cho, Jaewan Choi, Jongmin Kim, Byeongho Kim, Sukhan Lee,
Kyomin Sohn, and Jung Ho Ahn. Duplex: A device for large language models with mixture of experts,
grouped query attention, and continuous batching, 2024. URL https://arxiv.org/abs/2409.
01141.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Ranran Zhen, Juntao Li, Yixin Ji, Zhenlin Yang, Tong Liu, Qingrong Xia, Xinyu Duan, Zhefeng Wang,
Baoxing Huai, and Min Zhang. Taming the titans: A survey of efficient llm inference serving, 2025. URL
https://arxiv.org/abs/2504.19720.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu,
Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy optimization, 2025. URL
https://arxiv.org/abs/2507.18071.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric Xing, et al. Lmsys-chat-1m: A large-scale real-world llm conversation dataset.
In The Twelfth International Conference on Learning Representations, 2024.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length per-
ception and sequence scheduling: An llm-empowered llm inference pipeline. In Advances in Neural
Information Processing Systems, volume 36, pp. 65517–65530, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-following evaluation for large language models. arXiv preprint arXiv:2311.07911,
2023.

13

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2409.01141
https://arxiv.org/abs/2409.01141
https://arxiv.org/abs/2504.19720
https://arxiv.org/abs/2507.18071

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Appendix

A THE USE OF LARGE LANGUAGE MODELS(LLMS)

During the preparation of this manuscript, we utilized Large Language Models (LLMs) for assistance with
grammar checking and text polishing to enhance the clarity and readability of the paper.

B EVALUATION METRICS

This section details the metrics used to evaluate the performance of our models and the end-to-end system.

B.1 PREDICTOR PERFORMANCE METRIC

To evaluate the performance of our predictor, we use the Mean Absolute Error (MAE).

• Mean Absolute Error (MAE) measures the average absolute difference between the predicted val-
ues (ŷi) and the actual ground truth values (yi). A lower MAE indicates a more accurate prediction
model. Given n samples, it is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|

B.2 END-TO-END SYSTEM PERFORMANCE METRICS

To evaluate the overall system performance, we use throughput, Job Completion Time, and padding ratio.

• Throughput measures the number of jobs the system can successfully process per unit of time. It
is a key indicator of system efficiency. Let Ncompleted be the total number of completed jobs in a
time interval Ttotal:

Throughput =
Ncompleted

Ttotal

• Job Completion Time (JCT) refers to the total time elapsed from a job’s submission (Tsubmission) to
its completion (Tcompletion). We typically measure the average JCT across all jobs to gauge system
responsiveness.

JCT = Tcompletion − Tsubmission

• Padding Ratio quantifies the overhead or resource waste from padding. It is the ratio of the padded
portion of a resource to the actual required resource size (Ractual), where Rallocated is the total allo-
cated resource. A lower ratio is better.

Padding Ratio =
Rallocated −Ractual

Ractual

C BENCHMARK DETAILS

C.1 DATASET STATISTICS

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Table 4: Statistics of the benchmark suite. Numbers indicate the count of unique prompts in each split.

Dataset Scenario Train Validation Test Total

LongBench Long-Sequence 330 110 110 550
ZeroSCROLLS Long-Sequence 330 110 110 550
IFEval Reasoning 330 110 110 550
CRUXEval RL 480 160 160 800
GSM8K RL 4,483 1,494 1,494 7,471
LiveCodeBench RL 633 211 211 1,055
MATH RL 4,500 1,500 1,500 7,500
MBPP RL 1,157 386 386 1,929
MMLU-STEM RL 1,891 630 630 3,151

Total 14,134 4,711 4,711 23,556

Figure 4: Proportional
distribution of unique
prompts across the three
primary scenarios.

As visualized in Figure 4, our benchmark suite is composed of a diverse set
of datasets, categorized into three primary scenarios: Long-Sequence (4.7%),
Reasoning (2.3%), and Reinforcement Learning (RL) (93.0%). Detailed statis-
tics for each dataset, including the count of unique prompts in the training,
validation, and test splits, are provided in Table 4. All datasets are partitioned
into training, validation, and test sets following a 3:1:1 ratio.

Specifically, the Long-Sequence scenario includes:

• LongBench (Bai et al., 2024a) is a bilingual, multi-task benchmark
designed to assess the understanding of long text contexts. It encom-
passes a variety of tasks such as single and multi-document question
answering, summarization, and code completion.

• ZeroSCROLLS (Shaham et al., 2023) provides a suite of datasets fo-
cused on zero-shot evaluation of long-text comprehension. It includes
tasks that require synthesizing information across lengthy documents,
such as summarization, question answering, and sentiment classifica-
tion.

The Reasoning scenario contains:

• IFEval (Zhou et al., 2023) is a dataset consisting of prompts with explicit and verifiable instruc-
tions. It is used to evaluate a model’s ability to adhere to constraints and follow complex directives.

The RL scenario includes:

• CRUXEval (Gu et al., 2024) is a dataset for evaluating code reasoning, understanding, and execu-
tion. It tests a model’s ability to predict the output of code snippets and to determine the necessary
input to achieve a desired output.

• LiveCodeBench (Jain et al., 2025) is a dataset for code generation that features problems from
competitive programming websites, focusing on problem-solving with varying levels of difficulty.

• MBPP (Austin et al., 2021) is a dataset containing entry-level Python programming problems that
can be solved with short, self-contained functions.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

• GSM8K (Cobbe et al., 2021) is a dataset of grade school math word problems that require multi-
step reasoning to solve.

• MATH (Hendrycks et al., 2021b) is a dataset of challenging mathematical problems that require
sophisticated reasoning and problem-solving abilities.

• MMLU-STEM (Hendrycks et al., 2021a) is a subset of the Massive Multitask Language Under-
standing benchmark that focuses on science, technology, engineering, and mathematics subjects,
designed to test a model’s knowledge and problem-solving skills in these areas.

C.2 PROMPT AND RESPONSE LENGTH DISTRIBUTIONS

As detailed in Table 5 and visualized in Figure 5 and Figure 6, our benchmark features a wide diversity of
sequence lengths. Prompt lengths range from the short, concise queries in reasoning datasets like MATH
and GSM8K, which average a few hundred characters, to the extensive contexts in long-sequence datasets
like LongBench and ZeroSCROLLS, which average nearly 6,000 characters. Response lengths are similarly
varied, reflecting the diverse complexity of the tasks that demand outputs ranging from single-word answers
to detailed reasoning and comprehensive code solutions.

Table 5: Statistical summary of prompt and response lengths across all datasets. The table presents the
minimum, maximum, and mean length for each category.

Dataset Prompt Length Response Length

Min Max Mean Min Max Mean

CRUXEval 162 387 257 1 6,841 1,136
LiveCodeBench 572 4,089 1,547 1 7,288 2,188
MMLU-STEM 43 1,574 280 1 7,530 1,058
MBPP 107 319 153 16 6,412 594
MATH 16 4,309 210 2 7,579 736
GSM8K 42 985 235 11 8,063 598
IFEval 53 1,858 211 2 3,730 1,586
LongBench 624 7,994 5,865 3 7,106 1,172
ZeroSCROLLS 4,004 7,983 5,914 1 3,626 1,420

0 2000 4000 6000 8000 10000
Prompt length

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Fr
eq

ue
nc

y

LongBench
ZeroScrolls

(a) Long-Sequence Scenario

0 200 400 600 800 1000
Prompt length

0.000

0.001

0.002

0.003

0.004

Fr
eq

ue
nc

y

IFEval

(b) Reasoning Scenario

0 500 1000 1500 2000 2500
Prompt length

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Fr
eq

ue
nc

y

GSM8K
MATH
MMLU-STEM
MBPP
LiveCodeBench
CRUXEval

(c) RL Scenario

Figure 5: Prompt length distributions across different scenarios.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000
Response length

0.0000

0.0001

0.0002

0.0003

0.0004
Fr

eq
ue

nc
y

LongBench
ZeroScrolls

(a) Long-Sequence Scenario

0 1000 2000 3000
Response length

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Fr
eq

ue
nc

y

IFEval

(b) Reasoning Scenario

0 2000 4000 6000
Response length

0.0000

0.0005

0.0010

0.0015

0.0020

Fr
eq

ue
nc

y

GSM8K
MATH
MMLU-STEM
MBPP
LiveCodeBench
CRUXEval

(c) RL Scenario

Figure 6: Response length distributions across different scenarios.

C.3 BENCHMARK DATASET EXAMPLES

To provide a clearer understanding of our benchmark, this section presents representative examples from
our three scenarios. The long-sequence example tests the model’s ability to synthesize information from
extensive contexts. The reasoning example requires multi-step logical deduction. Finally, the RL example
is taken directly from our GRPO training data.

An Example of Long-Sequence Scenario

[Prompt]
Question: Who is Renaud II, Count Of Soissons’s uncle?

Context:
Passage 1:
John I, Count of Soissons. John became Count of Soissons after the death of his brother Renaud II in
1099. John married Aveline de Pierrefonds, daughter of Nivelon II, Seigneur de Pierrefonds. They had:
- Renaud III, Count of Soissons.
...

Passage 2:
Adelaide, Countess of Soissons. Adelaide was sovereign Countess of Soissons from 1057 until 1105.
She was the daughter of Renaud I, Count of Soissons, and his wife, whose name is unknown. Adelaide
married William Busac, Count of Eu. William became Count of Soissons in right of his wife.
...

Passage 5:
Renaud II, Count of Soissons. Renaud II became Count of Soissons after his father’s disgrace. It is
unclear when he assumed the countship, but after his death in 1099, his brother John became the Count
of Soissons.
...

[Response]
Renaud II, Count of Soissons’ uncle is William Busac, Count of Eu and Soissons.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

An Example of Reasoning Scenario

[Prompt]
What is the next number in this series: 1, 4, 7, 11, 17? Please answer with only mathematical notation
without any commas.
[Response]
<think>
To find the next number in the series 1, 4, 7, 11, 17, we first need to identify the pattern. We can do this
by finding the differences between consecutive terms:
4 - 1 = 3
7 - 4 = 3
11 - 7 = 4
17 - 11 = 6
The differences between consecutive terms are increasing by 1 each time (3, 3, 4, 6). Following this
pattern, the next difference should be: 6 + 2 = 8.
To find the next term in the sequence, we add this difference to the last term of the sequence: 17 + 8 = 25
</think>
<answer>
Thus, the next number in the series is 25.
</answer>

An Example of RL Scenario

[Prompt]
Write a function with the following signature: def first Factorial Divisible Number(x).
Write a python function to find the first natural number whose factorial is divisible by x.
[Response]
<reasoning>
To find the first natural number whose factorial is divisible by x, I need to write a function which calculates
the factorial of the numbers starting from 1 and checks if the resulting factorial is divisible by x. As soon
as I find a number with this property, I return that number.
1. Initialize a variable n (starting from 1) to keep track of the current number.
2. Initialize a variable fact (starting from 1) to store the factorial value.
3. Loop through the numbers starting from 1 and calculate the factorial of each number.
4. Check if the factorial is divisible by x.
5. If it is, return the current number.
This approach should yield the first natural number whose factorial is divisible by x.
</reasoning>
<answer>

def first_Factorial_Divisible_Number(x):
n = 1
fact = 1
while True:

if fact % x == 0:
return n

n += 1
fact *= n

</answer>

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

C.4 SYSTEM PROMPTS

In this section, we present the system prompts used to collect model responses. The design of each
prompt is carefully tailored to the requirements of the corresponding dataset. For straightforward tasks
like long-context question answering (LongBench, ZeroSCROLLS), we use a simple, direct prompt. For
more complex tasks involving reasoning (IFEval) or coding (GSM8K, MATH, MMLU-STEM, MBPP, Live-
CodeBench, CRUXEval), we employ more detailed and structured prompts. These structured formats, often
requiring the model to expose its step-by-step reasoning within specific tags (e.g., </reasoning>), are
crucial for improving the reliability of the model’s output and enabling more accurate evaluation. The level
of strictness in the prompt increases with the complexity and evaluation requirements of the task.

System Prompt for IFEval Dataset

You MUST respond in exactly this format:

<think>
[Write your step-by-step reasoning process here. Explain how you will approach the task, what you need
to consider, and work through the problem systematically.]
</think>
<answer>
[Provide your final answer here based on your reasoning above.]

</answer>
Always use these exact tags <think>and <answer>. Do not skip them or use different formatting.

System Prompt for GSM8K Dataset

Respond in the following format:

<reasoning>
...
</reasoning>
<answer>
...
</answer>

System Prompt for LongBench and ZeroSCROLLS Datasets

You are an intelligent assistant capable of understanding and analyzing long contexts. Your task is to
carefully read the provided context and answer the given question accurately and comprehensively.
Instructions:
1. Read the entire context carefully
2. Understand the question being asked
3. Provide a clear, accurate, and well-reasoned answer based on the context
4. If the question cannot be answered from the context, clearly state so
5. For multilingual content, respond in the same language as the question

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

System Prompt for MATH Dataset

You are a mathematical problem solver. Solve the given problem step by step with clear mathematical
reasoning.
Guidelines:
1. Read the problem carefully and identify what is being asked
2. Identify the given information and any constraints
3. Choose the appropriate mathematical concepts, formulas, or methods
4. Show your work step by step with clear explanations 5. Perform calculations accurately
6. Verify your answer makes sense in the context of the problem
7. Present your final answer clearly

Respond in the following format:
<reasoning>
Step 1: [Identify what the problem is asking and what information is given]
Step 2: [Choose the mathematical approach/method to solve the problem]
Step 3: [Set up equations, formulas, or mathematical expressions]
Step 4: [Perform calculations step by step, showing all work]
Step 5: [Verify the solution and check if it makes sense]
</reasoning>
<answer>
[Provide the final numerical answer or mathematical expression. For numerical answers, give exact
values when possible (fractions, radicals) or decimal approximations when appropriate. Clearly state
units if applicable.]
</answer>

System Prompt for MMLU-STEM Dataset

Respond in the following format:
<reasoning>
[Provide your step-by-step reasoning here]
</reasoning>
<answer>
[Put only the number (1, 2, 3, or 4) of your chosen answer here]
</answer>
Do not add any extra text before or after the XML tags.

System Prompt for MBPP Dataset

You are a helpful coding assistant. You must respond in the exact format shown below.
IMPORTANT: Your response must strictly follow this XML format:
<reasoning>
[Your step-by-step reasoning here]
</reasoning>
<answer>
[Your Python code solution here]
</answer>
Do not include any text outside of these XML tags. Do not use markdown code blocks. Place the code
directly inside the <answer> tags.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

System Prompt for LiveCodeBench Dataset

You are a helpful coding assistant. You MUST respond in the exact XML format shown below.
CRITICAL: Your response must STRICTLY follow this XML format. Any deviation will result in failure:
MANDATORY REQUIREMENTS:
1. Use ONLY the XML tags <reasoning> and <answer>
2. Do NOT use markdown code blocks
3. Do NOT include any text outside the XML tags
4. Place your Python code directly inside <answer> tags without any formatting
5. Start your response immediately with <reasoning>
6. End your response immediately with </answer>
WRONG FORMATS (DO NOT USE):
- Any text before <reasoning>
- Any text after </answer>
- Missing XML tags

CORRECT FORMAT EXAMPLE:
<reasoning>
I need to solve this step by step...
</reasoning>
</answer>

def solution():
return "result"

</answer>

System Prompt for CRUXEval Dataset

You are an expert Python code execution simulator. Your task is to carefully trace through Python function
execution step-by-step and predict the exact output.
When given a Python function and its input:
1. Carefully read and understand the function logic
2. Trace through each line of execution with the given input
3. Track variable states and transformations
4. Predict the final return value with precise formatting
Important guidelines:
- Pay attention to data types (lists, tuples, strings, numbers, booleans)
- Consider edge cases and special Python behaviors
- Maintain exact formatting for complex data structures
- For strings, preserve quotes and escape characters
- For None values, output exactly ”None”
- For boolean values, output exactly ”True” or ”False”
Respond in the following format:
<reasoning>
Step-by-step execution trace explaining how you arrived at the answer
</reasoning>
<answer> The exact output value that the function will return
</answer>

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

D ABLATION STUDY

D.1 LOSS WEIGHTING PARAMETER

0.0 0.2 0.4 0.6 0.8 1.0

Lambda

68

70

72

74

76

78

80

82

84
M

AE

Figure 7: Ablation study on the loss weighting parameter λ.

We conduct a ablation study on LMSYS dataset to investigate the impact of the weighting parameter λ in
our joint loss function 9. As shown in Figure 7, the choice of λ significantly affects model performance on
the length prediction task. When using pure MSE loss (λ = 0), the model achieves the worst performance
with MAE of approximately 82-84, which can be attributed to the inherent numerical scale disparity between
MSE and cross-entropy losses—MSE values are typically two orders of magnitude larger than cross-entropy
values in this high-complexity prediction task, leading to gradient domination issues. Pure cross-entropy
loss (λ = 1) provides a solid baseline performance with MAE around 70, demonstrating the effectiveness
of the classification-based approach. However, the optimal performance is achieved at λ = 0.99, yielding
MAE of approximately 68, which represents a notable improvement over both extreme cases. This optimal
weighting allows the cross-entropy loss to provide stable learning signals and handle the discrete nature of
the prediction task, while the small contribution from MSE loss (1%) offers fine-grained regression-based
optimization for enhanced precision. The results validate our design choice and demonstrate that careful
balance between complementary loss functions is crucial for achieving superior performance in complex
prediction tasks.

D.2 ANALYSIS OF LOSS FUNCTION VARIANTS

While our proposed EGTP employs a soft label distribution combined with regression, several alternative
strategies exist for handling regression targets in length prediction. To validate the necessity and effective-
ness of our design choice, we compared EGTP against three common alternatives:

• Log-scale Regression: Predicting the logarithm of the length (log(y)) to compress the target space
and mitigate the impact of long-tailed distributions.

• Label Smoothing: Applying uniform smoothing to the one-hot classification targets to prevent
overconfidence and improve generalization.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

• Label Noise: Adding small random noise to the regression targets during training to improve
robustness.

We conducted experiments using the Qwen2.5-7B model across all three scenarios: Long-Sequence
(LongSeq), Reasoning, and Reinforcement Learning (RL). The results, measured in Mean Absolute Error
(MAE), are presented in Table 6.

Table 6: Performance comparison (MAE ↓) of EGTP against alternative loss function designs on Qwen2.5-
7B. Best results are bolded.

Method LongSeq Reasoning RL

EGTP (Ours) 83.65 ± 1.28 139.14 ± 5.13 92.78 ± 2.32
Label Smoothing 158.44 ± 0.73 144.93 ± 19.60 268.88 ± 3.20
Log-scale Regression 135.73 ± 2.04 136.09 ± 4.76 208.02 ± 0.50
Label Noise 119.05 ± 2.25 217.44 ± 1.81 201.77 ± 1.91

The results show that while Log-scale regression is competitive on the Reasoning task, EGTP consistently
outperforms others across all three domains, especially in LongSeq and RL, indicating better robustness.

D.3 LAYER SELECTION STRATEGY

The practice of using final-layer representations for transfer learning, common in architectures like VGG and
ResNet, persists in modern LLMs. Notably, systems such as Retrieval-Augmented Generation (RAG) (Li
et al., 2025b) employ these activations for retrieval and classification, validating their semantic richness.
Following this established paradigm, we rely on final-layer activations to perform length prediction.

To validate the rationale of using the final layer, we conducted experiments on the GSM8k dataset using
hidden states from different layers of Qwen2.5-0.5B (which has 24 layers) to predict output length. As
shown in Table 3, the performance of the final layer (Layer 24) is comparable to that of the best-performing
intermediate layers (such as Layer 12 and Layer 16). Layer 24 achieves an RMSE of 92.95 ± 2.80, which is
close to Layer 12’s 93.47 ± 1.50. Although Layer 12 slightly outperforms in terms of MAE (70.26 ± 1.20),
Layer 24’s MAE (73.93 ± 2.10) still maintains a competitive level. Considering that using the final layer
avoids over-engineering and unnecessary implementation complexity, we consistently utilize the hidden
states from the last transformer layer across all model types and sizes in our final implementation.

Table 7: Performance of using different layers on Qwen2.5-0.5B (GSM8K). Metrics reported are RMSE and
MAE (lower is better ↓).

Layer Index RMSE ↓ MAE ↓

Layer 1 110.18 ± 2.50 85.91 ± 1.82
Layer 8 97.45 ± 1.81 81.29 ± 1.50
Layer 12 93.47 ± 1.50 70.26 ± 1.20
Layer 16 94.30 ± 1.64 70.79 ± 1.36
Layer 24 (Final) 92.95 ± 2.80 73.93 ± 2.10

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

E SUPPLEMENTAL EXPERIMENT RESULTS

E.1 BASELINES

We use the following methods as our baselines in the main experiment.

• SSJF (Qiu et al., 2024): Uses a fine-tuned BERT model, formulated either as a regression task
to predict the absolute token length (SSJF-Reg) or as a multi-class classification task for length
categories (SSJF-MC).

• S3 (Jin et al., 2023): Utilizes a fine-tuned Distilbert model to classify the output into one of ten
predefined length buckets.

• PiA (Zheng et al., 2023): Prompts or instruction-tunes a Vicuna model to predict its own response
length.

• TPV (Eisenstadt et al., 2025): Trains a linear regressor to estimate the relative progress of
DeepSeek-R1-Distill’s reasoning process.

• TRAIL (Shahout et al., 2025): Trains an MLP classifier on the Llama’s internal embeddings to
predict the final output length.

• LTR (Fu et al., 2024): Employs an OPT model backbone, trained through classification (LTR-C)
or ranking, to predict the output sequence length.

E.2 GENERALIZATION TO SUPER-LONG SEQUENCES

Most standard Supervised Fine-Tuning (SFT) datasets predominantly contain sequences shorter than 4k to-
kens (Bai et al., 2024b). Consequently, our main experiments focus on these typical distributions. However,
to investigate the generalization capability of EGTP on Out-of-Distribution (OOD) samples with extreme
lengths, we conduct additional experiments on the euclaise/writingprompts (Fan et al., 2018)
dataset, where the longest sequence exceeds 17k tokens.

Table 8: Performance comparison on super-long sequences from the euclaise/writingprompts
dataset (> 17k tokens). EGTP demonstrates superior generalization capability in this OOD setting.

Metric EGTP SSJF-Reg SSJF-MC S3 PiA TPV TRAIL LTR-C

MAE ↓ 195.89 ± 1.54 280.26 ± 6.63 315.25 ± 16.88 211.02 ± 27.95 214.48 ± 5.15 724.04 ± 16.80 212.73 ± 6.00 255.12 ± 20.46
RMSE ↓ 257.49 ± 43.18 366.32 ± 69.61 418.76 ± 19.52 281.78 ± 40.07 283.10 ± 13.74 1049.21 ± 143.57 279.42 ± 4.22 293.27 ± 11.18

The results in Table 8 demonstrate that EGTP maintains strong generalization even on sequences far exceed-
ing the length distribution seen during training. It achieves the lowest MAE (195.89) and RMSE (257.49),
significantly outperforming baselines such as TPV and SSJF-MC which fail to scale effectively. This sug-
gests that the entropy-guided representations capture intrinsic autoregressive patterns related to generation
termination, rather than merely memorizing length biases from the training set.

E.3 COMPUTATIONAL EFFICIENCY ANALYSIS

To offer a more granular quantitative analysis of the overhead introduced by different length prediction
methods, we evaluated the inference latency and memory consumption of the prediction modules in isolation.
This complements the end-to-end system performance reported in Section 4.4.

We utilized the GSM8K math reasoning dataset for evaluation. All experiments were conducted on a single
NVIDIA RTX 4090 (24GB) GPU under consistent environmental settings. We measured:

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

• Avg Time (ms): The average wall-clock time required for the predictor to process a query and
generate a length estimate.

• Avg VRAM (MB): The additional GPU memory required to load and run the prediction module.

We compared EGTP against baselines. Note that for PiA, which relies on the LLM itself to generate token
counts, we exclusively recorded the time consumed for generating the specific length-prediction tokens to
ensure a fair comparison.

Table 9: Auxiliary model overhead for predicting Qwen2.5-7B response lengths. EGTP incurs negligible
latency and memory costs compared to methods requiring external models.

Metric EGTP (Ours) SSJF-MC SSJF-Reg S3 LTR-C TPV PiA TRAIL

Avg Time (ms) 0.67 ± 0.07 3.94 ± 0.01 4.04 ± 0.12 2.26 ± 0.08 12.57 ± 0.07 0.83 ± 0.21 60.90 ± 0.33 2.04 ± 0.08
Avg VRAM (MB) 7.21 269.76 269.76 264.19 238.41 6.38 - 268.03

Table 10: Auxiliary model overhead for predicting Llama3.2-3B response lengths.

Metric EGTP (Ours) SSJF-MC SSJF-Reg S3 LTR-C TPV PiA TRAIL

Avg Time (ms) 0.65 ± 0.01 3.95 ± 0.02 4.18 ± 0.13 2.41 ± 0.04 12.56 ± 0.03 0.79 ± 0.11 60.40 ± 1.97 2.59 ± 0.11
Avg VRAM (MB) 5.52 269.76 269.76 264.19 238.41 5.95 - 268.03

Tables 9 and 10 unequivocally demonstrate the efficiency of our approach. EGTP achieves the lowest infer-
ence time (≈ 0.66ms), which is effectively negligible in the context of LLM inference. In contrast, auxiliary
model-based methods like SSJF and TRAIL typically require 2–12ms to perform a forward pass on their ex-
ternal models. PiA is the slowest (≈ 60ms) due to the overhead of autoregressive decoding for the prediction
tokens.

Since EGTP reuses the hidden states already computed during the prefill phase of the main LLM, it only
requires storing a lightweight linear head, consuming merely 5–7 MB of VRAM. Conversely, baselines
requiring separate auxiliary models consume significantly more memory (238–270 MB) to store model
weights, which can compete for resources with the main serving system.

E.4 ANALYSIS OF PREDICTION STABILITY

While MAE serves as the primary metric for average accuracy, it may not fully capture the stability of
predictions, particularly the presence of large outliers. To provide a more comprehensive assessment, we
further report the Root Mean Square Error (RMSE) and variance across different task categories using the
Qwen2.5-7B model, as shown in Table 11. The results demonstrate that EGTP consistently achieves the
lowest RMSE across all three scenarios with Qwen2.5-7B, showing particularly strong performance on long
sequences (108.47) and maintaining competitive results on reasoning (123.25) and RL tasks (120.46). The
low variance across runs indicates stable performance. Methods like LTR-C and TRAIL show reasonable
performance on certain tasks but exhibit higher errors on long sequences, while SSJF-MC struggles signifi-
cantly on reasoning tasks. This validates that our entropy-guided approach generalizes well across different
model architectures and task types.

E.5 LENGTH PREDICTION PERFORMANCE ON OTHER DATASETS

Table 12 presents a comprehensive comparison of our proposed method, EGTP, against several baseline
approaches using the Qwen2.5 model family (0.5B and 1.5B). The evaluation, based on Mean Absolute

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Table 11: RMSE comparison across different task categories on Qwen2.5-7B (lower is better ↓). The results
demonstrate that EGTP consistently achieves the lowest prediction error variance.

Method Long Seq Reasoning RL

EGTP (Ours) 108.47 ± 2.43 123.25 ± 4.32 120.46 ± 1.33
SSJF-Reg 313.64 ± 7.84 332.10 ± 15.95 306.85 ± 12.05
SSJF-MC 746.19 ± 25.33 1102.99 ± 17.91 368.69 ± 5.99
S3 174.25 ± 2.15 203.66 ± 9.09 192.69 ± 6.56
PiA 180.75 ± 6.93 186.96 ± 2.02 172.75 ± 8.43
TPV 597.57 ± 25.87 679.05 ± 12.56 240.92 ± 4.13
TRAIL 256.46 ± 4.45 192.05 ± 4.26 134.09 ± 4.16
LTR-C 168.26 ± 4.59 206.47 ± 4.47 140.86 ± 4.86

Error (MAE), is conducted across three distinct scenarios: Long Sequence, Reasoning, and RL. The results
clearly demonstrate the superiority of our method. EGTP consistently achieves the lowest average MAE for
both model sizes, significantly outperforming all competitors. The TRAIL method consistently secures the
second-best position, but still trails our approach by a notable margin.

Benchmark Prediction Method

Model Scenario EGTP (Ours) SSJF-Reg SSJF-MC S3 PiA TPV TRAIL LTR-C

Qwen2.5 0.5B

Long Seq 133.10 375.67 675.28 380.45 444.17 847.42 170.74 215.44
Reasoning 145.85 221.15 466.00 200.91 296.02 597.00 146.24 178.28
RL 88.52 125.40 224.68 179.19 255.52 261.36 161.79 199.14
Avg. 122.49 240.74 455.32 253.52 331.90 568.59 159.59 197.62

Qwen2.5 1.5B

Long Seq 125.42 301.68 690.73 212.73 351.20 587.64 151.86 162.54
Reasoning 146.48 310.64 815.78 169.72 432.05 584.08 138.01 139.02
RL 96.59 129.65 173.95 167.97 133.82 208.39 160.60 170.93
Avg. 122.83 247.32 560.15 183.47 305.69 460.04 150.16 157.50

Table 12: Comparison of different length prediction methods based on Mean Absolute Error (MAE). Lower
values indicate better performance. In each ’Avg.’ row, which shows the mean performance, the best-
performing method is highlighted in red, and the second-best is highlighted in green.

E.6 DETAILED PREDICTION ACCURACY RESULTS

The following tables provide a detailed breakdown of the output length prediction results, supplementing the
averaged scores presented in the main text. We evaluate several baseline methods on their ability to predict
the response length from a given prompt. The prompts are sourced from LongBench, ZeroSCROLLS (See
Table 13 and Table 14), and IFEval (See Table 15 and Table 16). The corresponding responses are generated
by the LLMs specified in the ”Model” column (Qwen2.5, Llama3.2, and DeepSeek-R1-Distill models).

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Table 13: Performance of length prediction methods on Long-Sequence Scenario.

Model Method LongBench ZeroSCROLLS

MAE MAE

Qwen2.5
-0.5B
-Instruct

SSJF-Reg 374.14 140.36
SSJF-MC 696.02 654.55
S3 599.09 161.82
PiA 325.00 146.50
TPV 1078.33 616.52
TRAIL 176.19 165.29
LTR-C 339.78 91.09
EGTP(Ours) 114.42 95.44

Qwen2.5
-1.5B
-Instruct

SSJF-Reg 250.71 92.07
SSJF-MC 720.45 660.99
S3 300.91 124.55
PiA 214.32 151.48
TPV 705.29 469.98
TRAIL 147.95 155.77
LTR-C 207.55 117.53
EGTP(Ours) 93.36 82.74

Table 14: Performance of length prediction methods on Long-Sequence Scenario (MAE only).

Model Method LongBench ZeroSCROLLS
MAE MAE

Qwen2.5
-3B
-Instruct

SSJF-Reg 208.55 96.75
SSJF-MC 930.60 613.32
S3 254.55 119.09
PiA 153.00 161.45
TPV 790.71 361.45
TRAIL 143.47 152.36
LTR-C 153.51 94.95
Ours 132.43 78.83

Qwen2.5
-7B
-Instruct

SSJF-Reg 201.49 100.93
SSJF-MC 832.60 182.08
S3 223.64 100.00
PiA 256.32 154.24
TPV 676.28 391.57
TRAIL 150.46 117.91
LTR-C 158.45 100.29
Ours 114.97 93.43

Llama3.2
-1B
-Instruct

SSJF-Reg 290.54 57.40
Continued on next page

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Table 14 – continued from previous page
Model Method LongBench ZeroSCROLLS

MAE MAE

SSJF-MC 431.19 72.24
S3 450.91 73.64
PiA 145.61 142.41
TPV 686.38 337.95
TRAIL 161.89 128.82
LTR-C 307.63 50.59
Ours 93.36 59.19

Llama3.2
-3B
-Instruct

SSJF-Reg 311.58 75.09
SSJF-MC 387.15 82.50
S3 441.82 77.27
PiA 142.32 145.61
TPV 1079.16 388.35
TRAIL 172.45 114.79
LTR-C 504.68 131.10
Ours 102.47 79.03

Table 15: Performance of length prediction methods on Reasoning Scenario.

Model Method IFeval
MAE

Qwen2.5
-0.5B
-Instruct

SSJF-Reg 149.27
SSJF-MC 483.46
S3 200.92
PiA 260.06
TPV 597.00
TRAIL 146.24
LTR-C 178.28
Ours 145.81

Qwen2.5
-1.5B
-Instruct

SSJF-Reg 133.99
SSJF-MC 597.21
S3 180.73
PiA 265.15
TPV 584.08
TRAIL 138.01
LTR-C 139.02
Ours 146.48

Qwen2.5
-3B
-Instruct

SSJF-Reg 129.00
SSJF-MC 812.80
S3 223.85
PiA 254.57

Continued on next page

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Table 15 – continued from previous page
Model Method MAE

TPV 621.72
TRAIL 132.19
LTR-C 145.53
Ours 111.23

Qwen2.5
-7B
-Instruct

SSJF-Reg 120.52
SSJF-MC 599.25
S3 168.81
PiA 254.54
TPV 466.56
TRAIL 124.19
LTR-C 134.55
Ours 119.60

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Table 16: Performance of length prediction methods on Reasoning Scenario.

Model Method MAE

DeepSeek-R1-Distill
-Qwen-1.5B

SSJF-Reg 86.16
SSJF-MC 90.36
S3 164.22
PiA 264.66
TPV 373.03
TRAIL 77.16
LTR-C 74.01
Ours 71.59

DeepSeek-R1-Distill
-Qwen-7B

SSJF-Reg 57.67
SSJF-MC 143.78
S3 52.29
PiA 254.57
TPV 273.04
TRAIL 58.28
LTR-C 52.28
Ours 48.36

DeepSeek-R1-Distill
-Llama-8B

SSJF-Reg 72.00
SSJF-MC 78.21
S3 69.45
PiA 272.16
TPV 243.54
TRAIL 46.85
LTR-C 66.06
Ours 45.87

E.7 VISUALIZATION OF THE GRPO TRAINING PROCESS

To demonstrate the effectiveness of our GRPO training process, we present the reward curves from our ex-
periments in Figure 8 through Figure 13. These visualizations cover the training process on six datasets:
code execution prediction with CRUXEval (Figure 8), code generation with MBPP (Figure 9) and Live-
CodeBench (Figure 12), and mathematical and scientific reasoning with MMLU-STEM (Figure 10), MATH
(Figure 11), and GSM8K (Figure 13).

For each dataset, we trained multiple models, including four different sizes of Qwen2.5 and two sizes of
Llama3.2. It should be noted that for smaller models, we use a larger batch size, which can result in a differ-
ent number of training steps. As shown across all figures, the training process exhibits a stable and consistent
improvement in rewards. This demonstrates that our GRPO implementation successfully optimizes model
performance, regardless of the underlying architecture or the specific challenges of the task.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

0 100 200 300
Training Steps

0

1

2

3

4

R
ew

ar
d

S
co

re

(a) Qwen2.5-0.5B

0 100 200 300
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(b) Qwen2.5-1.5B

0 100 200 300
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(c) Qwen2.5-3B

0 100 200 300
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(d) Qwen2.5-7B

0 100 200 300
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(e) Llama3.2-1B

0 100 200 300
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(f) Llama3.2-3B

Figure 8: GRPO training process on the CRUXEval dataset.

0 100 200 300
Training Steps

2

3

4

R
ew

ar
d

Sc
or

e

(a) Qwen2.5-0.5B

0 100 200 300 400
Training Steps

1

2

3

4

R
ew

ar
d

S
co

re

(b) Qwen2.5-1.5B

0 100 200 300 400
Training Steps

1

2

3

4
R

ew
ar

d
S

co
re

(c) Qwen2.5-3B

0 100 200 300 400
Training Steps

2

3

4

R
ew

ar
d

S
co

re

(d) Qwen2.5-7B

0 100 200 300 400
Training Steps

2

3

4

R
ew

ar
d

S
co

re

(e) Llama3.2-1B

0 100 200 300 400
Training Steps

2

3

4

R
ew

ar
d

S
co

re

(f) Llama3.2-3B

Figure 9: GRPO training process on the MBPP dataset.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

0 500 1000 1500
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(a) Qwen2.5-0.5B

0 500 1000 1500
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(b) Qwen2.5-1.5B

0 500 1000 1500
Training Steps

1.0

1.5

2.0

2.5

3.0

R
ew

ar
d

S
co

re

(c) Qwen2.5-3B

0 500 1000 1500
Training Steps

2.0

2.5

3.0

R
ew

ar
d

S
co

re

(d) Qwen2.5-7B

0 500 1000 1500
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(e) Llama3.2-1B

0 500 1000 1500
Training Steps

1.5

2.0

2.5

3.0

R
ew

ar
d

S
co

re

(f) Llama3.2-3B

Figure 10: GRPO training process on the MMLU-STEM dataset.

0 500 1000 1500
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(a) Qwen2.5-0.5B

0 1000 2000 3000
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(b) Qwen2.5-1.5B

0 1000 2000 3000
Training Steps

1.5

2.0

2.5

3.0
R

ew
ar

d
S

co
re

(c) Qwen2.5-3B

0 1000 2000 3000
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(d) Qwen2.5-7B

0 1000 2000 3000
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(e) Llama3.2-1B

0 1000 2000 3000
Training Steps

2.2

2.4

2.6

2.8

3.0

R
ew

ar
d

S
co

re

(f) Llama3.2-3B

Figure 11: GRPO training process on the MMLU-STEM dataset.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

0 200 400 600 800
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(a) Qwen2.5-0.5B

0 100 200 300
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(b) Qwen2.5-1.5B

0 200 400 600 800
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(c) Qwen2.5-3B

0 200 400 600 800
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(d) Qwen2.5-7B

0 200 400 600 800
Training Steps

0

1

2

3

R
ew

ar
d

Sc
or

e

(e) Llama3.2-1B

0 200 400 600 800
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(f) Llama3.2-3B

Figure 12: GRPO training process on the LiveCodeBench dataset.

0 500 1000 1500
Training Steps

1

2

3

R
ew

ar
d

S
co

re

(a) Qwen2.5-0.5B

0 200 400 600 800
Training Steps

1.5

2.0

2.5

3.0

R
ew

ar
d

S
co

re

(b) Qwen2.5-1.5B

0 1000 2000 3000
Training Steps

1.0

1.5

2.0

2.5

3.0
R

ew
ar

d
S

co
re

(c) Qwen2.5-3B

0 2000 4000 6000
Training Steps

1.5

2.0

2.5

3.0

R
ew

ar
d

S
co

re

(d) Qwen2.5-7B

0 500 1000 1500
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(e) Llama3.2-1B

0 1000 2000 3000
Training Steps

1

2

3

R
ew

ar
d

Sc
or

e

(f) Llama3.2-3B

Figure 13: GRPO training process on the GSM8K dataset.

33

	Introduction
	Related Work
	Method
	Entropy-Guided Token Pooling (EGTP)
	Length Regression via Soft Label Distribution
	Progressive Length Prediction (PLP)

	Experiments
	Dataset construction
	Experiment Setting
	Main Results: Prediction Accuracy
	End-to-End System Performance
	Ablation Study

	Conclusion
	Reproducibility Statement
	The Use of Large Language Models(LLMs)
	Evaluation Metrics
	Predictor Performance Metric
	End-to-End System Performance Metrics

	Benchmark Details
	Dataset Statistics
	Prompt and Response Length Distributions
	Benchmark Dataset Examples
	System Prompts

	Ablation Study
	Loss Weighting Parameter
	Analysis of Loss Function Variants
	Layer Selection Strategy

	Supplemental Experiment Results
	Baselines
	Generalization to Super-Long Sequences
	Computational Efficiency Analysis
	Analysis of Prediction Stability
	Length Prediction Performance on other datasets
	Detailed Prediction Accuracy Results
	Visualization of the GRPO Training Process

