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Abstract001

Annually, research teams spend large amounts002
of money to evaluate the quality of machine003
translation systems (WMT, Kocmi et al., 2023,004
inter alia). This is expensive because it requires005
detailed human labor. The recently proposed006
annotation protocol, Error Span Annotation007
(ESA), has annotators marking erroneous parts008
of the translation. In our work, we help the009
annotators by pre-filling the span annotations010
with automatic quality estimation. With AI as-011
sistance, we obtain more detailed annotations012
while cutting down the time per span annota-013
tion by half (71s/error span → 31s/error span).014
The biggest advantage of ESAAI protocol is an015
accurate priming of annotators (pre-filled error016
spans) before they assign the final score as op-017
posed to starting from scratch. In addition, the018
annotation budget can be reduced by up to 24%019
with filtering of examples that the AI deems to020
be very likely to be correct.021

1 Introduction022

The quality of machine translation (MT) systems023

is periodically evaluated by academic and industry024

teams to measure progress and inform deployment025

decisions. This undertaking at scale, such as the026

WMT campaigns (Kocmi et al., 2022, 2023, inter027

alia), is extremely expensive, when requiring high028

annotation quality. Despite recent advancements029

in automated metric design (Freitag et al., 2023),030

these metrics remain misaligned with the ideal mea-031

sure of text quality and human evaluation remains032

the most accurate and reliable standard.033

Human evaluation protocols range from rank-034

ing different system outputs against each other035

(Novikova et al., 2018), to predicting scores (direct036

assessment, DA, Graham et al., 2015), or predict-037

ing specific error spans, types, and their severities038

(Multidimensional Quality Metrics, MQM, Lom-039

mel et al., 2014; Freitag et al., 2021). Kocmi et al.040
0Code & collected data will be publicly available.

Figure 1: The pipeline (top) and annotation user inter-
face (bottom) with Error Span Annotation pre-filled with
AI. In the example, the user: (1) lowered the severity
of the gender agreement error, (2) removed incorrectly
marked error span, and (3) assigned the final score.

(2024) simplified this protocol into Error Span An- 041

notation (ESA), which focuses only on the error 042

span severities but not the actual error types, and 043

is thus faster. One of the problems of the existing 044

annotation protocols is their either very high cost, 045

or low quality. In this work we aim to make the 046

MT evaluation process with ESA less expensive. 047

We pose that human evaluation of MT can ben- 048

efit from AI assistance. Despite the risk of auto- 049

matic bias, human-AI collaboration can be faster 050

and more accurate than human or AI alone (Bondi 051

et al., 2022). Thus, instead of showing annotators 052

just the source and the system translation, we pre- 053

fill the translation with error annotations from an 054

AI system (Figure 1 bottom). This setup, which we 055

call ESAAI, is enabled by the advancements in qual- 056

ity estimation systems (Guerreiro et al., 2023; Fer- 057

nandes et al., 2023; Kocmi and Federmann, 2023), 058

which provide accurate initial error spans. The 059

main advantage of ESAAI comes from priming the 060

user with possible translation errors. 061
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ESAAI yields 1.6 error spans per translation seg-062

ment in contrast to 0.5 for human-only ESA. While063

the overall ESAAI annotation time is slightly lower064

to that of ESA (58s→52s/segment), ESAAI halves065

the time per span annotation (71s→31s/error span).066

In majority of cases where the AI did not predict067

any errors, the annotators did not add any new error068

span. We find that we can pre-filter such examples069

from the evaluation, save up to 24% of the budget,070

and the evaluation results will be almost identical.071

In addition, because of the unified priming, the072

annotators also become more self-consistent and073

have higher inter-annotator agreement, suggesting074

higher annotation quality.075

2 Related Work076

Human evaluation. One of the goals of MT eval-077

uation is to compare systems to inform decisions078

(e.g. which system to deploy). Reference-based079

metrics compare the system translation to gold hu-080

man translation, which can introduce evaluation081

bias (Freitag et al., 2020, 2023; Zouhar and Bojar,082

2024). Reference-less approaches, known as qual-083

ity estimation, do not have this problem, but they084

do not always correspond to human perception of085

quality (Freitag et al., 2023; Zouhar et al., 2024;086

Falcão et al., 2024) because the task is more com-087

plex. In higher-stakes settings, human annotators088

are employed to judge the translation quality.089

The simplest option for human evaluation is to090

show the source and the translation and ask the091

annotators to give a number from 0 to 100, DA092

(Graham et al., 2015; Kocmi et al., 2022). and has093

the issue of low reliability and agreement. To make094

the annotations more objective, we can ask the an-095

notators to mark specific errors in the translation096

(Multidimensional Quality Metrics, MQM, Lom-097

mel et al., 2014; Freitag et al., 2021). The marking098

is done based on their severity (e.g. minor or ma-099

jor) but also type (e.g. “inconsistent terminology”).100

This requires well-trained annotators and is thus101

expensive. In addition, this protocol does not yield102

scores, but only error spans, which are turned into103

the final score with a handcrafted formula.1104

To simplify this process and align it with the105

goal of objective translation quality estimation,106

Kocmi et al. (2024) proposed ESA, which uses107

non-experts and asks them to provide only the er-108

ror severity (not its type) and a final translation109
1With some exceptions, the score computation from spans

is a sum across all errors with -1 for minor and -5 for major.

score. This combines both approaches in that the 110

annotators are primed with their marked errors to 111

provide high quality final scoring. The modalities 112

are depicted in App.Figure 6. 113

AI Assistance. Prior work shows that annotators 114

can benefit from AI assistance (Devarajan et al., 115

2023; Pavoni et al., 2022). However, the use of 116

AI in evaluation is not straightforward because 117

the AI might bias the user or induce over-reliance 118

(Buçinca et al., 2021). Human annotators usually 119

have a financial incentive to optimize their work. 120

Veselovsky et al. (2023) showed, that up to 46% 121

of annotators did use LLMs for abstractive sum- 122

marization. Including AI assistance in the annota- 123

tion directly could decrease the use of undisclosed 124

tools. We do so with quality estimation (QE/AI) 125

systems that mark error spans in the output. The 126

most popular QE systems are xCOMET (Guerreiro 127

et al., 2023), AutoMQM (Fernandes et al., 2023) 128

and GEMBA (Kocmi and Federmann, 2023). The 129

QE system is not always correct, but the output 130

is vetted by a human annotator. The QE thus still 131

offloads some of the work that a human would do 132

and better primes the annotators for evaluation. 133

3 Setup 134

Pipeline. We implement our study in Appraise 135

(Federmann, 2018) and use GEMBA, a GPT-based 136

quality estimation system. We adapt the ESA pro- 137

tocol, where errors are marked and annotated as 138

either minor or major.2 The initial error markings 139

are done by the AI and then post-edited by anno- 140

tators. Afterwards, they manually assign a final 141

score on the scale from 0 to 100% (not with AI). 142

The error annotation part thus works as priming 143

of the annotators in giving more accurate scores. 144

The complete pipeline is shown in Figure 1 top. 145

We also run the ESAAI setup twice with a differ- 146

ent set of annotators to be able to determine the 147

inter-annotator agreement and annotation stability. 148

Dataset and collected data. We use the data of 149

WMT23 Metrics Shared Task (Freitag et al., 2023) 150

which has been annotated with MQM and ESA. 151

For maximum compatibility, we use the setup iden- 152

tical to that of Kocmi et al. (2024). We focus on 153

English→German where 13 systems were submit- 154

ted, one of which is the human reference translation. 155

For each system, we have 207 segments (average 156

18 words per segment) from 74 source documents. 157
2Minor: style/grammar/lexical choice could be better;

Major: changes meaning, lowers usability. See Appendix C.

2



We first examine the high-level distribution of158

the collected data in Table 1. For ESAAI, the total159

number of reported error spans is three times higher160

than for ESA, which is due to the high number161

of suggested annotations by GEMBA. The split162

between minor and major errors is similar, though163

ESAAI annotators prefer major errors as opposed164

to ESA, even slightly more than those produced by165

GEMBA. Finally, the overall translation score is166

lower for ESAAI as opposed to just ESA. This is167

potentially caused by the priming effect of initially168

annotated error spans by GEMBA which highlight169

the negative aspects of the translation.170

Protocol/method #errors %minor/%major Score

ESA 0.45 63% / 37% 81.8
ESAAI 1.63 54% / 46% 76.7
GEMBA (AI only) 1.51 55% / 45% ×

Table 1: Average number of error spans and scores
across ESA, ESAAI, and GEMBA.

4 Analysis171

To evaluate the new ESAAI annotation pipeline,172

we consider two main aspects: (1) the annotation173

process, including its reliability and human effort,174

and (2) its usefulness for MT system comparisons.175

4.1 ESAAI Evaluation Process176

Not all post-editing operations are of equal value.177

For example, moving the error span by a few char-178

acters to the left is less important than adding a179

new error span for a missing translation. We point180

out two post-editing types: (1) changing the error181

span severity, and (2) editing the error span bound-182

aries (App.Table 5). In 11% of cases, the users183

only changed the severity. This is important from184

the workflow perspective, because it only requires185

clicking the error span. In many cases, the error186

span was only moved. Time-wise this is more ex-187

pensive because it requires the original error span188

to be removed and a new one created in its place.189

This operation can be skipped because it does not190

contribute to the ESA score. Therefore, the annota-191

tors could be instructed more specifically to not try192

to post-edit errors as long as they are approximately193

correct. See App.Example 2 for post-editing types.194

Do annotators blindly accept AI hints? Gradual195

overreliance (Holford, 2022) is a type of automa-196

tion bias which arises through repetition of non-197

problematic examples. Especially when there are198

no repercussions, the annotator might be tempted199
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Figure 2: Number of removed/kept/added error spans
from GEMBA with respect to annotator progress.

to only confirm the AI suggestion without actually 200

doing any post-editing work. We first examine this 201

through the perspective of changing in annotator’s 202

behaviour thorough the annotation. In Figure 2 we 203

show that the annotators make the same number 204

of edits at the beginning as at the end, therefore 205

excluding the possibility of automation bias. 206

Do annotators pay attention? We use attention 207

checks, where the translation is malformed but 208

GEMBA does not show an error (App.Example 1). 209

The range for passing the attention checks for both 210

protocols is the same—around 75% (App.Table 6). 211

ESAAI is at a disadvantage because GEMBA spans 212

were showing that the perturbed span was correct 213

(i.e. no error spans). Therefore, the pertrubed ex- 214

amples were even more out-of-distribution and at- 215

tention in-distribution is likely higher. 216

Do AI mistakes affect annotators? Showing 217

incongruent examples, where AI predictions are 218

clearly wrong, has the potential of reducing the 219

user’s trust in the AI and subsequent collaborat- 220

ing (Dhuliawala et al., 2023). Such examples are 221

our attention checks. 84% and 73% of GEMBA- 222

suggested spans are accepted for the document di- 223

rectly before and after the perturbed one. This is a 224

slight decrease in trust, but it does not render the 225

collaboration ineffective. 226

How long do annotations take? One of the mo- 227

tivations of the AI-assisted setup is speeding up 228

the annotations and leading to lower costs. The 229

variance in individual annotator time can be ex- 230

plained by how much they post-edited the GEMBA 231

error span annotation (see Figure 3). Per segment, 232

ESAAI annotators required 52s while ESA required 233

58s, which is comparable. The time is 71s per 234

single error span for ESA but 31s per single error 235

span for ESAAI, making the latter more efficient in 236

detailed annotation. In addition, the annotators get 237

faster as the annotation progresses (Appendix B). 238

Do annotators agree? For a robust and objec- 239

tive annotation protocol, the scores by two inde- 240

pendent annotators should be similar. To test this, 241
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Figure 3: Annotation actions (remove/keep/add an error
span) and time per segment. Each dot is an annotator.

we ran the annotations again with different anno-242

tators. App.Table 7 shows that ESAAI has a much243

larger inter-annotator agreement. For the MQM-244

like score computation, this is due to the bias by245

the pre-filled error spans. Still, the agreement is246

much higher also for the direct scoring, likely due247

to the priming. This is consistent with much higher248

ESAAI intra-annotator agreement (App.Figure 9),249

i.e. how much annotators agree with themselves.250

4.2 ESAAI for Evaluation of WMT Systems251

Our goal is for ESAAI to be as reliable or more than252

ESA in ranking MT systems. We consider MQM253

collected by Freitag et al. (2023) as the human gold254

standard and show the system-level correlations255

with our protocol in App.Figure 8. Both ESA and256

ESAAI have similar correlations with MQMWMT,257

justifying our setup. In Table 2 we show that this258

protocol does not stray far away from existing ones259

in terms of segment-level rating. Many of these260

cross-protocol correlations are on part with inter-261

annotator agreement, which is naturally the upper262

bound. Notably, ESAAI has higher correlation than263

ESA or MQM by Kocmi et al. (2024) alone.264

ESA ESAAI MQM GEMBA
MQMWMT 0.240 0.292 0.239 0.416

Table 2: Kendall τ segment-level correlations between
evaluation protocols, ESA and ESAAI use direct scores.

Can cost be further lowered? GEMBA is recall-265

focused and therefore the occurrence of “false pos-266

itive” segments is low. In 89% of cases, spans that267

were marked by GEMBA to have 0 errors retained268

0 errors after annotation (App.Table 4), and such269

segments had an average score of 95. This makes270

it possible to also use GEMBA as a pre-filtering271

step. If we replace all such segments with 100 (to272

not overfit), all but one system comparisons remain273

the same. Alternatively, one can also filter seg-274

ments for which GEMBA marks 0 errors for most275

systems, which has the advantage that we do not276

alter the data. For this method, again all but one 277

system comparison would be the same (Figure 4). 278

Pre-filtering can thus result in almost 25% budget 279

saving (~52 segments per system). 280
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Figure 4: Average system scores with either substitution
or filtering of segments with no GEMBA errors.

How many annotations are needed? With large 281

enough evaluation, even noisy annotation schemes 282

yield the true system ordering. Conversely, only 283

robust annotation schemes are good on a small 284

scale. We formalize this in Appendix A to show 285

that ESAAI leads to better annotations than ESA 286

or MQM. For each subset size, e.g. 30 source 287

sentences, we select 1000 random subsets and com- 288

pute the system ranking accuracy against the whole 289

dataset. Results in Figure 5 show that GEMBA 290

alone is the most consistent because of the lack 291

of inter-annotator confusion. However, it also in- 292

creases the stability and quality of scores that an- 293

notators assign manually in ESAAI. In addition 294

in practice, one can annotate fewer examples (e.g. 295

2000 for ESAAI) to obtain the same system-level 296

accuracy as a slower protocol (e.g. 2500 for ESA), 297

lowering the costs. 298
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Figure 5: Accuracy of a system ranking only on a subset
against ranking on full data. Percentages are averages.
See numbers in App.Table 8.

5 Conclusion 299

Our AI-assisted protocol of human evaluation 300

of MT is faster and cheaper. This protocol is 301

more robust and self-consistent and increases inter- 302

annotator agreement by priming the annotators 303

with pre-annotated error spans. Our analysis also 304

shows that the annotators did not over-rely on the 305

AI and were able to maintain evaluation quality. 306

The inclusion of AI in evaluation also opens many 307

options for further evaluation economy. 308
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Limitations309

Despite the advantages in lower costs per error span310

of the presented setup, we urge practitioners to not311

use this approach when metrics evaluation is one of312

the expected tasks due to the particular bias to the313

used metric in the setup. The intended application314

of this pipeline is purely a more efficient evaluation315

of machine translation system quality.316

Both ESAAI and GEMBA rank GPT-4-5shot as317

the best system, a system that uses the same LLM318

to translate sentences as we use to generate for319

GEMBA. This indicated a weakness that our ap-320

proach is biased towards systems build on top of the321

same underlying LLM. Liu et al. (2023) described322

this phenomena when the same system used for323

generating output should not be used to also eval-324

uate them. This issue could be mitigated by using325

two different LLMs to generate error spans.326

Lastly, we use GEMBA, a GPT4-based system,327

for the quality estimation and work with WMT328

2023 data. Unfortunately, we can not exclude the329

possibility of the QE system being trained on this330

data, though the texts and scores are kept in two331

separate large files with non-linear mappings.332

Ethics Statement333

The annotators were paid a standard commercial334

translator wage in the respective country. No per-335

sonal data was collected and the showed data was336

screened for potentially disturbing content.337
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Figure 6: Overview of inputs and outputs of various
machine translation evaluation approaches.

A Subset Consistency Formalization495

This section justifies the setup in Section 4.2 and496

is reminiscent of the work of Riley et al. (2024). A497

key distinction is that we are considering ranking498

stability with respect to the protocol itself. We do499

so by bootstrapping subsets of the data.500

Our goal is tho show that a protocol with lower501

annotation error has higher system-level ranking502

accuracy. We assume that the annotation schemes503

are not biased towards a particular system but are504

noisy. We also assume a simplified model of sys-505

tem performance, where the annotation output ym,i506

of system m on segment i can be approximated507

by the system ability am (e.g. average across a508

real life distribution) from which segment-specific509

variance di is subtracted and error term ϵ is added.510

The annotation output ym,i is dependent on the spe-511

cific annotation scheme, which is not indicated for512

brevity. We would like to find the system abilities513

am but we only have access to ym,i. This notation514

can also be extended to a collection of segments I:515

ym,i = am − di + ϵm,i (1)516

Ym,I =

∑
i∈I ym,i

|I|
(2)517

= am −
∑

i∈I di

|I|
+

∑
i∈I ϵm,i

|I|
(3)518

On a large enough set of segments with the law519

of large numbers, we can assume
∑

i∈I ϵm,i

|I| ≈ 0520

as ϵ is unbiased. If we want to estimate ϵm,i, we521

could subtract from sample i the average from all522

dataset, Ym,D. Unfortunately, this would still leave523

the segment-specific difference di:524

ym,i − Ym,D = −di + ϵm,i (4)525

To separate ϵm,i, we could consider subsets I ⊊ D526

for which
∑

i∈I dm,i

|I| ≈ 0 but
∑

i∈I ϵm,i

|I| ̸≈ 0. Apart527

from the difficulty of finding such subsets, our goal528

is to have a good estimation of the ranking of the 529

systems. For this, we define system ordering >I 530

given by the observed subset I: 531

m1 >I m2 532

def⇔
∑

i∈I yi,m1

|I|
>

∑
i∈I yi,m2

|I|
(5) 533

⇔
∑
i∈I

yi,m1 >
∑
i∈I

yi,m2 (6) 534

⇔ am1 −
∑
i∈I

di +
∑
i∈I

ϵi,m1 > 535

am2 −
∑
i∈I

di +
∑
i∈I

ϵi,m2 (7) 536

⇔ am1+
∑
i∈I

ϵi,m1 > am2+
∑
i∈I

ϵi,m2 (8) 537

Notice that >I is independent of the segment- 538

specific term di because both systems are evaluated 539

on the same segments. We compare this empirical 540

ordering with that of the true system ranking. This 541

is done across a set of systems M using pairwise 542

accuracy, i.e. how many system pairs are ranked in 543

the same way as by the true system ranking: 544

ACC(I)
def
=

∑
m1,m2∈M

1[(m1>Im2) ⇔ (am1>am2)]

|M|2
545

(9) 546

With higher accuracy we can assume that the rela- 547

tive ϵ is lower, at least for the purposes of ordering. 548

This is because if the accumulated error terms are 549

low (10), the indicator in Equation (9) is true (11), 550

which is equivalent to high accuracy (12): 551∑
i∈I

ϵi,m1 → 0 ∧
∑
i∈I

ϵi,m2 → 0 ⇒ (10) 552

(
am1+

∑
i∈I

ϵi,m1>am2+
∑
i∈I

ϵi,m2⇔ am1>am2

)
553

(11) 554

⇔ ACC(I) → 1 (12) 555

To obtain ACC, we would need to know if 556

am1>am2 . In our setup, we do not know this 557

true ranking and obtaining it would require large- 558

scale super-human annotations. However, for large- 559

enough I , we can assume that
∑

i∈I ϵm,i

|I| ≈ 0. 560

Therefore, for the true ordering, we use the order- 561

ing by that particular annotation scheme on all data. 562

Now we established a link between accumulated 563

annotation noise,
∑

i∈I ϵi,m, and accuracy, which 564

we can measure. 565

The accuracy will be high if the error terms are 566

low and therefore the annotations are of high qual- 567

ity. This can be used to measure the annotation 568
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protocol usefulness. In addition, this has practical569

implications as we could solicit fewer annotations570

to obtain the same results as if we had more.571

B Learning to Annotate572

Kocmi et al. (2024) showed that despite ESA being573

faster than MQM, the users learn to perform the574

MQM annotations slightly faster. We show similar575

results in Figure 7, though in our case the work-576

ers learn to perform the post-editing of GEMBA577

error span annotation slightly faster (0.18s faster578

with every segment). This effect is present despite579

the ESA annotators being at an advantage because580

there was fewer of them and they thus each indi-581

vidually processed more segments. Even though582

the speedup happens thorough the whole annota-583

tion, it is mostly present in the first 15% of seg-584

ments (green box in Figure 7). For ESA, this is585

-2.1s/segment and for ESAAI this is -1.9s/segment.586

In addition, users in the post-editing task seem to587

be more consistent. For ESA, the user’s deviation588

from their personal average is 43.3s, while for post-589

editing GEMBA this is only 32.1s. Overall, this590

makes the human effort more consistent and pre-591

dictable but also showcases that the nature of the592

annotation task changes.593
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ESA  (-0.17s per segment)
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)

learning
ESAAI  (-0.18s per segment)

Figure 7: Time per segment with respect to progression
in the annontation. Each annotator is the gray faint line
and their average is in black. The lines are smoothed
with a window of size 15 segments. We also compute
the average speed at the beginning and at the end, which
yields the learned speedup. This is how much the anno-
tator speeds up per working on one segment.

We now examine what specifically makes some594

segments take longer than others. We do so us-595

ing feature-level correlations as shown in Table 3.596

Many of these features are co-dependent. For ex-597

ample, the longer the translation, the more likely 598

GEMBA finds more error spans and the lower the 599

final score. Nevertheless it gives us insights that 600

ESAAI users learn to become faster. The number of 601

words in the translation, together with the number 602

of error spans is a strong predictor of annotation 603

time. For MQM this is the highest, which can be ex- 604

plained by each error span requiring the most work 605

in the MQM annotation scheme because the anno- 606

tators have to also assign the error type. The longer 607

the document (number of translation paragraphs), 608

the lower the annotation time, which is likely due 609

to shared context. With longer documents, the an- 610

notator does not have to switch between domains 611

and contexts. Contrastively, the ESAAI annotators 612

are slightly less affected by the translation length 613

in contrast to ESA. 614

MQM ESA ESAAI

Progress -0.12 -0.13 -0.13
Translation word count 0.30 0.19 0.16
GEMBA error spans 0.12 0.07 0.12
Error spans 0.06 0.04 0.12
Score -0.07 -0.03 -0.08
Document size -0.14 -0.17 -0.17

Table 3: Individual Pearson correlation between features
and annotation times. The higher the absolute value, the
more it affects the annotation time.

C User Guidelines 615

The following are are annotation guidelines for our 616

two local ESAAI campaigns, which is closely based 617

on the setup of Kocmi et al. (2024). 618

Highlighting errors: Highlight the text fragment 619
where you have identified a translation error (drag or 620
click start & end). Click repeatedly on the highlighted 621
fragment to increase its severity level or to remove the 622
selection. 623
• Minor Severity: Style/grammar/lexical choice could 624

be better/more natural. 625
• Major Severity: Seriously changed meaning, diffi- 626

cult to read, decreases usability. 627
If something is missing from the text, mark it as an error 628
on the [MISSING] word. The highlights do not have 629
to have character-level precision. It’s sufficient if you 630
highlight the word or rough area where the error appears. 631
Each error should have a separate highlight. 632

Score: After highlighting all errors, please set the 633
overall segment translation scores. The quality levels 634
associated with numerical scores on the slider: 635
• 0%: No meaning preserved: Nearly all information is 636

lost in the translation. 637
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• 33%: Some meaning preserved: Some of the meaning638
is preserved but significant parts are missing. The639
narrative is hard to follow due to errors. Grammar640
may be poor.641

• 66%: Most meaning preserved and few grammar mis-642
takes: The translation retains most of the meaning. It643
may have some grammar mistakes or minor inconsis-644
tencies.645

• 100%: Perfect meaning and grammar: The meaning646
and grammar of the translation is completely consis-647
tent with the source.648

GEMBA ——Removed—— No edit ——Added——
#err. (freq.) =2 =1 =0 =0 =1 =2 ≥3

0 (23.8%) 0% 0% 100% 88% 88% 8% 2% 2%
1 (38.0%) 0% 28% 72% 62% 81% 14% 3% 3%
2 (18.8%) 15% 16% 69% 54% 71% 13% 9% 7%
3 (10.4%) 11% 20% 62% 51% 68% 16% 7% 10%
4 (8.9%) 11% 13% 69% 54% 65% 13% 10% 12%

Table 4: Distribution of error span post-editing based
on original GEMBA-reported error spans (2nd column).
Percentages in the table are proportions within the num-
ber of GEMBA error spans. For example, second row
shows that 62% of segments with exactly one GEMBA
error span received no post-editing from annotators and
in 28% the annotators removed the single error. ESA is
comparable to ESAAI.

Operation Frequency

Severity change 12.0%
Increase severity 60.0%
Decrease severity 40.0%

Move span ≤5 13.1%
Move span ≤10 17.2%
Move span ≤20 23.3%

Resize
Increase error span size 21.5%
Decrease error span size 78.5%

Table 5: Distribution of two ESAAI post-editing types:
changing the severity, and moving the error span. A
span is considered to be moved if the distance between
old and new endpoints is at most 5, 10, or 20 characters.
Many GEMBA errors are only misplaced or have the
wrong severity. See specific cases in Example 2.

SRC: Sie haben gestern das Treffen wieder verschoben.
TGT: He postponed the meeting again yesterday.
TGTP: He postponed the meeting squirrels are never.

Example 1: An example of a perturbed translation
TGTP based on the original system translation TGT.
GEMBA correctly annotated the error span he (correctly
the pronoun is they) but the perturbed part is left inten-
tionally unannotated as an attention check.

Original Perturbed OK

ESA
Score 79.5 52.6 86%
Span count 0.85 1.86 54%
Perturbation marked 56%

ESAAI
Score 75.8 52.6 76%
Span count 2.19 4.48 61%
Perturbation marked 71%

Table 6: Annotations assigned to perturbed attention
check items (either scores or number of spans). OK is
percentage in how many cases the non-perturbed item re-
ceived a higher score or had fewer error spans, and how
often the pertrubed span was marked by the annotator.

Scoring ESA ESAAI

direct score 0.376 0.533
from spans 0.327 0.671

Table 7: Inter-annotator agreement with direct scores
and scores computed from error spans with MQM for-
mula, as measured with Spearman correlation. ESAAI

spans have the highest inter-annotator agreement, which
is however caused by the GEMBA pre-filling. Still, the
scores from ESAAI, solely by humans, have the highest
inter-annotator agreement.

Protocol/
method

Subset size
10 40 115 190

ESAAI 84.41% 92.38% 96.69% 98.88%
ESAAI

spans 85.69% 93.43% 97.46% 99.49%
GEMBAspans 85.73% 93.10% 96.86% 98.94%
ESA 81.86% 90.26% 95.52% 98.52%
ESAspans 78.11% 88.28% 94.48% 97.94%
MQMspans 77.19% 86.30% 93.89% 98.50%

Table 8: Specific values of Figure 5. Subset accuracy
across annotation schemes. ESAAI

spans has the highest
subset consistency, though this is likely biased by the
spans from GEMBA, which as 100% inter-annotator
agreement. However, ESAAI (direct scores) is based
solely on human scorings, which has the second-highest
subset consistency of any protocol.

9



69 72 75 78 81 84 87
ESA

12

10

8

6

4

M
QM

W
M

T

=0.973
Acc=94.9%

55 60 65 70 75 80 85
ESAAI

12

10

8

6

4

=0.962
Acc=93.6%

10 8 6 4 2
GEMBA (no humans)

12

10

8

6

4

=0.973
Acc=94.9%

Figure 8: Each point is a system, with original MQMWMT scores on the y-axis against ESA, ESAAI, and GEMBA
before post-editing. Stripped lines indicate cluster separations with alpha threshold 0.05. Numbers show Spearman’s
correlations between the specific protocol and MQMWMT. ESA and ESAAI have comparable system-level accuracy
and correlations with MQMWMT, making them equal in quality in this aspect.
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Figure 9: Changes in scoring by the same annotator when evaluated again. Each point represents single annotated
segment with x-axis being annotator’s score assigned in March and y-axis their score assigned in May. ESAAI has
the highest intra-annotator agreement, showing another positive aspect of being primed by GEMBA.

Increase
severity

Source The physics are terrible and the people that created the game won’t do anything about it
GEMBA Die Physik ist schrecklich und die Leute, die das Spiel entwickelt haben, werden nichts dagegen tun

ESAAI Die Physik ist schrecklich und die Leute, die das Spiel entwickelt haben, werden nichts dagegen tun

Decrease
severity

Source Will not buy Mr. Coffee again
GEMBA Ich kaufe Mr. Kaffee nicht mehr.

ESAAI Ich kaufe Mr. Kaffee nicht mehr.

Move
Source However, I hate classes on fine arts and literature, and my school history bears it out.

GEMBA Aber ich hasse Kunst und Literatur, und meine Schulgeschichte bestätigt es.
ESAAI Aber ich hasse Kunst und Literatur, und meine Schulgeschichte bestätigt es. [missing]

Resize
Source [. . .] I’m not sure if that would work for this.

GEMBA [. . .] ich bin mir nicht sicher, ob das für diesen Zweck funktionieren würde.
ESAAI [. . .] ich bin mir nicht sicher, ob das für diesen Zweck funktionieren würde.

Example 2: Several post-editing operations from the collected data. Changing the severity (minor and major) is
a very fast operation (only clicking the span), while moving and resizing are slow (removing the error span and
creating a new one in its place takes up more of the annotator’s time).
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Figure 10: Screenshot of the study interface implemented for Appraise. Multiple segments from a document are
shown together for context. The AI suggests the initial error spans which the annotator post-edits and finally adds
final score judgment.
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