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ABSTRACT

Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large lan-
guage models since it can efficiently scale up the model capability without increas-
ing the inference cost. However, evaluations on broad downstream tasks reveal a
consistent suboptimality of the routers in existing MoE LLMs, which results in a
severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this
paper, we show that aligning the manifold of routing weights with that of task em-
bedding via post-training can effectively reduce the gap and improve MoE LLMs’
generalization performance. Our method, “Routing Manifold Alignment (RoMA)”,
introduces an additional manifold regularization term in the post-training objective
and only requires lightweight finetuning of routers (with other parameters frozen).
Specifically, the regularization encourages the routing weights of each sample to
be close to those of its successful neighbors (whose routing weights lead to correct
answers) in a task embedding space. Consequently, samples targeting similar tasks
will share similar expert choices across layers. Building such bindings between
tasks and experts over different samples is essential to achieve better generalization.
Moreover, RoMA demonstrates the advantage of unifying the task understanding
(by embedding models) with solution generation (by MoE LLMs). In experiments,
we finetune routers in two recent MoE LLMs using RoMA. Evaluations on di-
verse benchmarks and extensive comparisons with baselines show the substantial
improvement brought by RoMA.

1 INTRODUCTION

Sparse Mixture-of-Experts (MoE) have emerged as a cornerstone architecture in scaling large lan-
guage models (LLMs), enabling significant capacity increases without proportional computational
overhead during inference (Fedus et al., 2022; Lepikhin et al., 2020). At the core of this mechanism
lies the router, which assigns input tokens to a small subset of experts through routing weights in each
layer. Despite the small portion of router parameters in MoE LLMs (e.g., 0.03% in a 7B model), they
are the key to the success of expert usage in MoE (Shazeer et al., 2017). However, evaluations across
broad downstream tasks reveal that routers in existing MoE LLMs cause major failures. As shown in
Table 1, their suboptimal routing weights lead to a performance gap of 10-20% in accuracy when
compared to the optimal routing weights (oracle). This gap underscores a major untapped bottleneck
in MoE LLMs, suggesting that improving routing is critical to boosting MoE LLMs’ generalization
performance on downstream tasks.

Our analysis further investigates the reasons behind the performance gap and the poor generalization
capabilities of pretrained routers. As illustrated in Figures 3(a) and (b), pretrained routers assign
semantically similar samples in the task embedding space to distinct experts with dramatically
different routing weights. Such misalignment between the task embedding manifold and routing
weight manifold hinders effective knowledge sharing across tasks and underutilize the collective
expertise of the experts. This misalignment between the targeted tasks and the assigned experts
undermines the generalization of MoE and its core principle, which is to leverage specialized experts,
share skills, and transfer knowledge for related inputs.

A natural solution is to finetune the routers. Existing approaches such as Dense BP (Panda
et al., 2025) developed more effective pretraining objectives for routers but do not address
the manifold misalignment between the targeted tasks and the routing weights across samples.

1
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Figure 1: RoMA on OLMoE-7B-A1B vs. 7-
34B dense LLMs across eight benchmarks.
RoMA leads to 7-15% accuracy improve-
ment, consistently outperforming all mod-
els over eight benchmarks, demonstrating
the effectiveness of post-training by RoMA.

This limitation motivates our exploration of incorporat-
ing manifold alignment into the fine-tuning objective.
Specifically, our manifold alignment aims to enforce
the consistency between task understanding (encoded
by an embedding model) and task solving in an MoE
LLM (encoded by the routing weights). As illustrated
in Figure 2, for each training sample, in addition to min-
imizing its loss defined on the output, we encourage its
intermediate layers’ routing weights to move to those of
its “successful neighbors” (samples with correct MoE
predictions) in the task embedding space. These neigh-
bors are weighted by their similarity to the sample.
This training objective can be formulated as manifold
regularization (Belkin et al., 2006), a well-established
technique in machine learning that aims to preserve
the local neighborhood structure of high-dimensional
inputs on the manifold of low-dimensional representa-
tions or outputs. Unlike its original setting, we apply
such a regularization to the routing weights across MoE
layers rather than the final outputs, and establish coher-
ent bindings between the expert choices (weights) and
the task embedding instead of the raw inputs.

Training Objective:

❄️ Embedding Model

Routing Weights
Manifold

Successful Sample

Router

Task Embedding
Manifold

Training Sample Successful Neighbor

Manifold Alignment

Expert1 Expert2 Expert3

🔥

❄️❄️❄️

Successful Neighborhood

🔥Trainable

❄️ Frozen

Figure 2: Overview of RoMA. RoMA finetunes routers
in MoE LLM (bottom, yellow) with a training objective
defined on each sample (xi, yi), which is composed of
(1) the task loss Ltask(i) defined on the model output
f(xi, ri); and (2) the manifold alignment regulariza-
tion Lmanifold(i), which aligns the manifolds of rout-
ing weights (right, green) and the task embedding (left,
blue). It improves MoE’s generalization by unifying
solution generation in MoE with task understanding.

To this end, we propose “Routing Manifold
Alignment (RoMA)”, a router post-training
method that aligns the manifold of rout-
ing weights with task embeddings through
lightweight fine-tuning of a few routers in
MoE LLMs. RoMA introduces a manifold
regularization term to the training objective
that encourages routing weights of each
sample to approximate those of its success-
ful neighbors with similar task embedding,
thereby promoting consistent expert selec-
tion for semantically related inputs. Ex-
tensive experiments on two recent MoE
LLMs (OLMoE, DeepSeekMoE) demon-
strate that RoMA brings substantial im-
provements (7-15% in accuracy) across di-
verse benchmarks and outperforms SOTA
routing methods, as shown in Figure 1,
by merely finetuning 0.0095% parameters
of the base model, without affecting in-
ference cost. Notably, RoMA-finetuned
MoE LLMs with only 1-3B active parame-
ters achieve competitive or superior perfor-
mance over much larger dense models with
34B parameters. We conduct comprehen-

sive ablation studies that further investigate the effects of key designs in RoMA, including layer selec-
tion, neighborhood configuration, and regularization strategies, validating the effectiveness of RoMA
in bridging the performance gap between pretrained routers and optimal routing for MoE LLMs.

2 RELATED WORK

MoE LLMs Mixture of Experts (MoE) architectures have been extensively incorporated into
large language models (LLMs) to enhance computational efficiency and task-specific specializa-
tion (Shazeer et al., 2017). Recent work such as OLMoE (Muennighoff et al., 2024) and DeepSeek-
MoE (Dai et al., 2024a) demonstrate the effectiveness of sparse MoE layers in reducing active
parameters while maintaining model capacity. These MoE models fundamentally rely on routers
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to determine expert selection, typically employing token-choice routing that selectively activates
subsets of experts for each input token (Fedus et al., 2022; Lepikhin et al., 2020). However, the
quality of these routing decisions remains a critical bottleneck. Our study shows current routers often
produce suboptimal routing weights that fail to fully leverage expert specialization, resulting in load
imbalance and expert underutilization.

Manifold Regularization of LLMs Recent work reveals that LLM embeddings exhibit stratified
manifold structures with varying dimensions across semantic domains (Li & Sarwate, 2025; Robinson
et al., 2025). While traditional manifold regularization assumes smooth global structures (Belkin et al.,
2006), LLMs require more sophisticated approaches. Methods like I-STAR (Rudman & Eickhoff,
2023) control isotropy in embedding spaces, while CROW (Min et al., 2024) enforces consistency
across layers. However, these techniques do not explicitly leverage manifold structures to improve
MoE routing. The geometric insights from stratified manifolds suggest that different experts naturally
align with different embedding strata, yet current routing mechanisms fail to exploit this alignment.
This gap motivates our routing manifold alignment approach, which guides routing decisions based
on the data’s inherent geometric structure.

Routing Optimization in MoE architectures has emerged as a critical component for achieving
efficient expert utilization and balanced computation. Routing optimization methods have evolved
from simple load balancing (Fedus et al., 2022; Lepikhin et al., 2020) to sophisticated strategies in-
cluding differentiable top-k selection (Zhou et al., 2022) and test-time optimization such as C3PO (Li
et al., 2025) that dynamically re-weights expert pathways. However, these approaches optimize
routing without considering the embedding space’s geometric structure. Moreover, C3PO introduce
additional computational overhead for task embedding and nearest neighbor search, requiring 6-7x
the cost of standard inference by the base model.

3 TASK-EXPERT ROUTING MANIFOLD MISALIGNMENT

Task Cluster 1 Task Cluster 2 Task Cluster 3 Task Cluster 4

(a)  Task Embedding (d)  Optimal Routing Weights (Oracle)(b)  Routing Weights (Before RoMA) (c)  Routing Weights (After RoMA)

Figure 3: UMAP visualization of task embedding and routing weights manifolds for samples in
ARC-C. (a) Their task embedding shows cluster structures. (b) Routing weights by pretrained MoE
are scattered and misaligned with the task embedding clusters. (c) RoMA aligns routing weights with
the task embedding manifold’s cluster structure. (d) RoMA also achieves a similar manifold structure
as that of the optimal routing weights (oracle), which explains the improvement in generalization.

MoE LLMs employ routers to assign input tokens to a small subset of experts through routing weights
in each layer. However, evaluations across broad downstream tasks reveal that routers in existing
MoE LLMs cause major failures. As shown in Table 1, their suboptimal routing weights lead to a
performance gap of 10-20% in accuracy when compared to the optimal routing weights (oracle) r∗i ,
which is defined below for each sample (xi, yi) in our training set D = {(xi, yi)}ni=1 as:

r∗i ≜ argmin
r

LCE(f(xi, r), yi), (1)

where f(·, ·) represents the MoE model that takes input xi and routing weights r to produce output,
yi is the ground truth label for input xi, and LCE is the cross-entropy loss.

To investigate the root causes behind the observed performance gap in MoE LLMs, we conduct
a comprehensive analysis of the relationship between task embeddings and routing weights in
Figure 3(a), (b), (c) and (d).

The comparison between task embeddings (Figure 3(a)) and pretrained routing weights (Figure 3(b))
reveals a severe misalignment. While the task embedding space presents clear cluster structures
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where semantically similar samples are grouped together, the pretrained routing weights show no
corresponding clustering patterns. Instead, samples from the same semantic cluster are scattered
across the routing weights space. This manifold misalignment indicates that the pretrained routers
fail to capture the underlying task structure, leading to inconsistent expert selection for semantically
related inputs.

In contrast, the oracle routing weights (Figure 3(d)) demonstrate clear cluster structure to the task
embedding structure, with samples from the same semantic group receiving similar routing patterns.
This alignment between task understanding and expert assignment is precisely what enables the oracle
to achieve superior performance, highlighting that the task-expert routing manifold misalignment is
the key bottleneck limiting router generalization in MoE LLMs.

4 ROUTING MANIFOLD REGULARIZATION (ROMA)

To address this limitation, we propose “Routing Manifold Alignment (RoMA)”, a post-training
method that aligns the manifold of routing weights with task embeddings through lightweight router
fine-tuning. Our key insight is that samples with similar task embeddings should share similar
routing patterns to leverage specialized expertise effectively. To achieve this, we introduce a manifold
regularization term that encourages alignment between the routing weight manifold and the task
embedding manifold. Given a training set D = {(xi, yi)}ni=1 and their associated routing weights
{ri}ni=1 (where ri denotes the concatenated routing weights across multiple layers), our goal is to
optimize the routers such that samples with similar task embeddings share similar routing patterns.

4.1 SUCCESSFUL NEIGHBORHOOD TO IMITATE

We first identify the subset of training samples where the MoE produces correct predictions:

S = {j ∈ [n] : f(xj , rj) = yj} (2)

This filtering ensures that our finetuning only imitates from routing patterns for samples in S that
lead to successful outputs, preventing the propagation of suboptimal routing strategies.

Given the set of successful samples S , we construct a neighborhood N (xi) for each sample xi based
on the task similarity in an embedding space. Let E(·) denote a pre-trained embedding model that
maps input task descriptions/instructions to a semantic representation space. The neighborhood of xi

can be defined via k-Nearest Neighbors or ϵ-ball:

k-NN: N (xi) = arg max
A⊆S,|A|≤k

∑
j∈A

sim(E(xi), E(xj)) (3)

ϵ-ball: N (xi) = {j ∈ S : sim(E(xi), E(xj)) ≥ ϵ} (4)

where sim(·, ·) is a similarity metric, for example, the Gaussian similarity is defined as

sim(E(xi), E(xj)) = exp

(
−∥E(xi)− E(xj)∥22

2σ2

)
. (5)

4.2 TRAINING OBJECTIVE WITH MANIFOLD REGULARIZATION

Having identified the successful neighborhood for each sample, our next step is to incorporate this
structure into the training objective to align routing behaviors with the task embedding geometry. The
key idea is that semantically similar samples should not only cluster in the embedding space but also
share consistent routing patterns. To achieve this, we introduce a manifold regularization term that ex-
plicitly aligns the routing weights manifold with the task embedding manifold by encouraging samples
to follow the routing patterns of their successful neighbors, weighted by their semantic similarity.

The (normalized) adjacency Wi,j between sample xi and xj is defined as

Wi,j ≜
sim(E(xi), E(xj))∑

j∈N (xi)
sim(E(xi), E(xj))

, ∀j ∈ N (xi), (6)

4
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where higher weights indicate stronger semantic similarity in the task embedding space. Given Wi,j ,
the manifold regularization applied to the routing weight ri of sample xi is defined as

Lmanifold(i) ≜
∑

j∈N (xi)

Wi,j∥ri − rj∥22. (7)

By penalizing routing discrepancies ∥ri−rj∥2 between semantically similar samples with large Wi,j ,
Lmanifold(i) enforces the routing weights manifold to be aligned with the task embedding manifold.
Moreover, it moves each sample’s routing weights to those of its “successful neighbors” in the task
embedding space. As a consequence, the manifold regularization consolidates the bindings between
tasks and their expert choices, and thus improves the generalization.

To ensure that aligned routing patterns also lead to correct predictions, the training objective in RoMA
applies the manifold regularization to the cross-entropy loss LCE defined on the outputs.

Ltask(i) = LCE(f(xi, ri), yi). (8)

With a regularization coefficient λ ≥ 0, the final objective on sample xi is

LRoMA(i) = Ltask(i) + λ · Lmanifold(i) (9)

During training, we only update router parameters while keeping all expert parameters frozen. The
gradient update is performed via backpropagation on LRoMA with respect to router parameters:

θ
(t+1)
router = θ

(t)
router − η∇θrouterLRoMA, (10)

where θrouter represents the parameters of routers and η is the learning rate. While router parameters
represent only a small fraction of the total model parameters (0.0095%), we empirically find that only
finetuning routers in the last five layers achieves superior performance while significantly saves the
training cost, as demonstrated in Figure 6.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Models We evaluate two recent MoE LLMs: OLMoE-7B-A1B and DeepSeekMoE-16B-A3B.
OLMoE features a 16-layer transformer with 64 experts per layer, activating 8 per token, totaling
6.9B parameters with 1.3B active per token. DeepSeekMoE uses a 28-layer transformer with 2 shared
and 64 routed experts per layer, activating all shared plus 6 routed experts per token, totaling 16.4B
parameters with 2.8B active per forward pass. These models exemplify distinct MoE designs and
scales, enabling a comprehensive evaluation of routing dynamics and generalization behavior.

Baselines We evaluate RoMA against both different adaptation methods (See Table 1) and other mod-
els (See Table 2) across eight benchmarks. For adaptation methods, we compare with: (1) In-Context
Learning (ICL) (Brown et al., 2020) with embedding-based retrieval for few-shot demonstrations;
(2) Router Tuning that directly updates the routers; (3) Oracle Tuning that fine-tunes routers with
access to optimal routing weights (oracle); (4) Prefix Tuning (Li & Liang, 2021) and Soft Prompt
Tuning (Lester et al., 2021) that introduce lightweight trainable parameters while keeping the base
model frozen; (5) Dense Backpropagation (Dense BP) (Panda et al., 2025) that enables gradient flow
through the full model while updating few parameters; (6) C3PO (Li et al., 2025), a state-of-the-art
test-time routing weights optimization method. For model comparison, we evaluate against models
grouped by active parameters (1B, 3B, 7-8B, 13-14B, 27-34B) including recent models like Llama3.2,
Gemma2, Qwen2, and Mistral to assess the efficiency of MoE architectures enhanced with RoMA.

Training Set

General Knowledge (40.8%)

Commonsense (32.7%)

Coreference (6.1%)

Science QA (12.2%)

Reading (8.2%)

BIG-Bench (10,000)
SuperGLUE (10,000)

CommonsenseQA (8,000)
SocialIQA (8,000)

OpenbookQA (3,000)
SciQ (3,000)

KnowRef (3,000)

MultiRC (4,000)

Figure 4: Training set statistics.

Training Set comprises 49,000 samples distributed across
five task categories, as shown in Figure 4. The dataset in-
cludes General Knowledge tasks (BIG-Bench and Super-
GLUE), Commonsense reasoning (CommonsenseQA and
SocialIQA), Science QA (OpenBookQA and SciQ), Read-
ing comprehension (MultiRC), and Coreference resolution
(KnowRef). This diverse composition ensures comprehen-
sive coverage across different reasoning capabilities for ef-
fective training.
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Benchmarks We evaluate RoMA on eight diverse benchmarks. The evaluation suite includes MMLU,
HellaSwag, PIQA, ARC-Challenge, ARC-Easy, WinoGrande, BoolQ and GSM8K. Notably, GSM8K
serves as an Out-Of-Distribution (OOD) benchmark since our training set doesn’t contain math-related
data. Details about training set and benchmarks is in Appendix A.1 and A.2.
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2.4
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2.6
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1.6
1.6

(a) Accuracy (b) Inference Cost

Figure 5: Performance and inference cost of OLMoE (base model), OLMoE + C3PO and OLMoE
+ RoMA across eight benchmarks. (a) Accuracy: RoMA consistently improves the base model’s
performance to be comparable or better than C3PO. (b) Inference cost (in FLOPs ×1011): RoMA
maintains nearly the same efficiency as the base model, while C3PO requires test-time optimization
and induces 6–7× more FLOPs. These results highlight the effectiveness and efficiency of RoMA.

5.2 MAIN RESULTS

Advantage of RoMA over different adaptation methods. Table 1 compares adaptation meth-
ods on DeepSeekMoE and OLMoE across eight benchmarks. Lightweight methods (ICL,
Router/Prefix/Prompt Tuning) yield only modest gains, while Oracle tuning and Dense BP achieve
stronger but still limited improvements compared to the oracle upper bound. C3PO performs better
than these baselines, yet RoMA achieves the highest overall accuracy. On MMLU, RoMA boosts
DeepSeekMoE from 46.2% to 56.8% (+10.6%) and OLMoE from 57.8% to 69.0% (+11.2%), sur-
passing C3PO by +1.4% and +3.5%, respectively. Although C3PO approaches RoMA’s accuracy,
its inference cost is 6–7× higher than both RoMA and the base model (See Figure 5), highlighting
RoMA ’s superior efficiency–effectiveness trade-off.

Comparison of routing weights manifold before and after RoMA. Figure 3 illustrates the effect of
RoMA on routing weights. After applying RoMA, routing weights form clear clusters (Figure 3(a))
that closely align with the task embedding structure (Figure 3(c)). In contrast, the pretrained routing
weights show little alignment with task clusters in Figure 3(b), highlighting that RoMA effectively
resolves the manifold misalignment problem. Furthermore, the post-RoMA routing patterns closely
resemble the oracle routing weights as shown in Figure 3(d), suggesting that our optimization moves
the model toward theoretically optimal expert assignments. As a result, samples within the same
task cluster receive similar routing patterns, enabling more consistent and efficient use of specialized
expertise and bridging the performance gap between suboptimal pretrained routing and ideal oracle
routing.

Advantage of RoMA over State-of-the-Art models. Table 2 reports LLM performance across eight
benchmarks with varying active parameter counts. Notably, OLMoE-7B-A1B+RoMA, with only 1B
active parameters, achieves 69.0% on MMLU and 86.7% on HellaSwag, surpassing several 7–8B and
even 13B dense models. Similarly, DeepSeekMoE-16B-A3B+RoMA (3B active) delivers substantial
gains, matching or exceeding the performance of dense LLMs up to 34B parameters. These results
demonstrate that RoMA consistently improves routing quality, enabling small active-parameter MoEs
to rival or outperform much larger dense counterparts. Details of models are in Appendix A.3.
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Table 1: Comparison of baselines (Base model, Oracle), test-time adaption methods (ICL, C3PO),
training-based methods (Router/Oracle/Prefix/Prompt Tuning) and RoMA across eight benchmarks
on DeepSeekMoE and OLMoE. Bold numbers denote the best performance (excluding Oracle), and
underlined numbers denote the second best. RoMA improves DeepSeekMoE from 46.2% to 56.8%
(+10.6%) and improves OLMoE from 57.8% to 69.0% (+11.2%) on MMLU, outperforming C3PO
(+1.4% and +3.5%, respectively).

MMLU Hella-
Swag ARC-C ARC-E PIQA Wino-

Grande BoolQ GSM8K

DeepSeekMoE

Base model 46.2 78.0 50.3 73.8 79.9 70.1 72.3 62.2
Oracle 63.8 92.5 70.8 85.2 90.3 82.1 83.2 71.8

ICL 49.0 81.6 56.3 76.2 81.4 72.3 75.8 65.7
C3PO 55.4 85.7 61.6 80.7 85.8 77.5 78.2 68.5

Router Tuning 49.3 81.5 57.2 76.6 82.0 73.8 74.5 64.8
Oracle Tuning 54.2 84.3 60.1 79.5 84.0 76.0 77.5 66.2
Prefix Tuning 47.8 77.9 52.4 73.8 79.2 70.3 73.1 64.8
Prompt Tuning 49.3 78.6 55.1 74.7 80.5 72.0 74.2 65.5
Dense BP 50.1 80.2 54.8 77.3 81.7 74.2 76.1 63.9

RoMA (Ours) 56.8 87.9 61.4 81.5 85.2 76.8 80.6 67.4

OLMoE

Base model 57.8 77.9 51.3 79.8 80.7 72.2 75.4 45.5
Oracle 72.2 91.5 74.8 91.4 93.6 87.7 84.5 53.2

ICL 60.3 80.6 58.1 82.5 83.6 76.8 78.9 48.5
C3PO 65.5 85.3 66.3 87.4 88.0 82.7 79.6 50.8

Router Tuning 63.2 81.7 62.5 83.8 80.9 75.3 77.8 47.2
Oracle Tuning 66.8 84.2 65.4 86.1 86.2 80.5 79.9 49.0
Prefix Tuning 59.3 78.2 54.5 80.4 82.1 73.5 76.8 46.7
Prompt Tuning 59.7 79.5 55.9 81.3 82.4 74.1 77.2 47.3
Dense BP 61.8 82.4 57.3 84.1 83.9 76.9 75.2 48.1

RoMA (Ours) 69.0 86.7 67.2 88.0 85.8 81.8 81.7 49.4

5.3 ABLATION STUDY

We perform a series of ablation studies to systematically analyze the design choices behind RoMA.
Specifically, we investigate: (i) which layers to regularize, (ii) which token positions to use for routing
guidance, (iii) how to select neighbors for manifold alignment, (iv) the effect of training set size, and
(v) the choice of regularization method. These ablations help identify the most effective and efficient
configuration, revealing which factors are critical for performance. All experiments are conducted on
OLMoE, and experiment results on DeepSeekMoE are provided in the Appendix A.4.

Layer Selection Figure 6 examines how applying routing manifold regularization to different subsets
of layers affects model performance. Applying RoMA to a single layer yields only modest gains
(69.1–69.7%), while extending it to two layers improves accuracy above 71%. Performance continues
to increase as more layers are regularized, with the last five layers (L5) achieving the highest accuracy
of 76.2%, even surpassing the All-Layer configuration (75.1%). These results highlight that the
final layers are particularly critical for routing quality, and that selectively regularizing a small set
of strategically important layers is both more effective and more efficient than uniformly applying
RoMA across all layers.

Token Selection Figure 7 presents the effect of different token selection strategies when applying
RoMA. Using multiple tokens (e.g., the first three or middle three) provides moderate improvements
over the baseline, with last 3 tokens (Last3) reaching 74.5%. Among single-token choices, the last 1
token (Last1) performs best (76.2%), outperforming both the first one token (First1) (71.4%) and
the middle one token (Middle1) (69.2%). These results indicate that the final tokens contain richer
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Table 2: Comparison of LLMs with varying active parameters (1B, 3B, 7–8B, 13–14B, 27–34B)
evaluated on eight benchmarks. Both OLMoE-7B-A1B (1B active) and DeepSeekMoE-16B-A3B (3B
active) post-trained by RoMA achieve strong performance, surpassing or matching the performance
of much larger dense models. For example, OLMoE-7B-A1B (1B active) achieves 69.0% on MMLU
and 86.7% on HellaSwag, outperforming several 7–8B and even 13B dense counterparts, highlighting
the effectiveness of MoE+RoMA.

MMLU Hella-
Swag ARC-C ARC-E PIQA Wino-

Grande BoolQ GSM8K

∼1B parameters

Llama3.2-1B 27.4 57.9 32.1 53.9 72.4 57.4 63.7 39.4
OLMo-1B 24.1 61.8 29.6 55.7 75.6 56.8 64.2 28.5
OLMoE-7B-A1B 57.8 77.9 51.3 79.8 80.7 72.2 75.4 45.5

∼3B parameters

Gemma2-3B 43.7 66.3 58.4 75.2 71.8 64.5 73.1 41.4
Qwen1.5-14B-A3B 51.3 71.4 68.2 82.7 74.3 65.1 76.3 54.8
DeepSeekMoE-16B-A3B 46.2 78.0 50.3 73.8 79.9 70.1 72.3 62.2

∼7-8B parameters

Qwen2-7B 53.4 74.9 45.8 69.7 77.2 68.1 84.8 79.9
Mistral-7B 59.6 81.0 53.8 79.6 82.2 74.0 68.1 37.9
Llama3.1-8B 57.7 77.9 48.7 80.8 81.4 73.5 81.9 49.6

∼13-14B parameters

Llama2-13B 53.8 78.6 50.1 74.5 79.1 70.1 75.7 35.2
Vicuna-13B 51.3 76.2 47.4 72.8 78.0 68.2 71.5 32.2
Qwen1.5-14B 66.7 81.5 58.0 85.3 82.1 76.9 81.3 58.4

∼27-34B parameters

Gemma2-27B 75.2 86.4 71.4 88.9 83.2 79.0 84.5 61.3
Yi-34B 73.5 83.1 58.2 82.6 82.6 78.9 83.1 63.5
Llama2-34B 62.6 79.4 54.5 77.5 81.9 76.0 78.1 42.2

RoMA (Ours)

DeepSeekMoE-16B-A3B 56.8 87.9 61.4 81.5 85.2 76.8 80.6 67.4
OLMoE-7B-A1B 69.0 86.7 67.2 88.0 85.8 81.8 81.7 49.4
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F1M
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1
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All Layers
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Figure 6: Applying RoMA at different layers (F: early layers, M: middle layers, L: late layers).
Fine-tuning the routers in the last five layers (L5, RoMA) achieves the best performance.

task-relevant information for guiding expert routing than earlier or middle tokens. Moreover, the
superiority of Last1 over Last3 highlights that a single, well-chosen token can be more effective and
efficient than aggregating multiple tokens.

Neighborhood Selection Figure 8 compares different strategies for selecting neighbors in RoMA.
Random neighbor selection yields almost no improvement over the baseline (67.8% vs. 67.6%).
Using ϵ-neighborhoods shows sensitivity to the choice of radius: performance improves steadily
from 68.9% (ϵ=0.3) to a peak of 74.1% at ϵ=0.5, but drops slightly when the radius grows larger
(ϵ=0.7). In contrast, k-nearest neighbor selection provides more stable gains, with k=3 achieving
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Figure 7: Applying RoMA to routing weights of
tokens at different positions. Regularizing the
Last1 token’s routing weights performs the best.
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Figure 8: Comparing neighbor selection strategies
in RoMA. Rand—random neighbors. k-NN with
k = 3 achieves the best performance.
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Figure 9: Comparing different training set sizes
for RoMA on OLMoE. While the full training set
(100%) yields the best performance, 30% suffices
to achieve substantial gains over the baselines.
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Figure 10: Comparing different regularization
methods with RoMA. RoMA’s manifold regular-
ization achieves the best performance.

the best overall accuracy of 76.2%. Notably, this surpasses both smaller (k=1) and larger (k=5)
settings, suggesting that a moderate number of neighbors balances robustness and noise. These results
highlight that careful neighborhood design is crucial for effective manifold alignment, and that our
chosen k=3 strategy offers the most reliable improvement.

Training Set Size Figure 9 examines how the size of the training set used for RoMA affects
performance. Starting from the baseline accuracy of 67.6%, even using only 10% of the training
data yields a noticeable gain (68.5%). Performance improves steadily as more data is available,
reaching 70.8% at 30% and 73.6% at 50%. With 70% of the data, accuracy rises further to 75.0%,
and using the full dataset achieves the best performance of 76.2%. These results demonstrate that
RoMA benefits consistently from additional training data, but also that substantial improvements can
already be obtained with a relatively small fraction of the dataset, highlighting its data efficiency.

Regularization Methods Figure 10 compares different regularization strategies applied to the router.
Standard techniques such as L1 and L2 penalties yield only modest improvements over the baseline
(68.2% and 71.5%, respectively), while entropy regularization reaches a similar level (70.7%).
In contrast, our proposed manifold regularization achieves the best result of 76.2%, substantially
outperforming all alternatives. This demonstrates that aligning routing weights in the task embedding
space provides a more effective inductive bias than generic sparsity or entropy-based constraints,
highlighting the unique advantage of RoMA’s manifold perspective.

6 CONCLUSIONS

Our work introduces RoMA, a lightweight router post-training method for sparse Mixture-of-Experts
LLMs. By aligning routing weights with the underlying task embedding manifold through manifold
regualarization, RoMA addresses the fundamental misalignment between task understanding and
expert utilization in MoE models. Our approach requires updating only router parameters while
keeping experts frozen, yet consistently improves accuracy across diverse benchmarks by 7–15%
without increasing inference cost. Extensive experiments demonstrate that RoMA enables small
active-parameter MoEs to rival or even surpass much larger dense models, highlighting both the
efficiency and effectiveness of RoMA. Beyond performance gains, our findings underscore the
importance of geometric alignment between task representation and expert selection, offering new
insights for advancing routing strategies in future MoE architectures.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All experiments in this paper are con-
ducted on publicly available datasets, and detailed descriptions of model architectures, training data
composition and experimental setups are provided in the main text and Appendix. To further facilitate
reproduction, we include the implementation of our proposed method RoMA in the Supplementary
Materials.
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A APPENDIX

A.1 DETAILS OF TRAINING SET

Training Set

General Knowledge (40.8%)

Commonsense (32.7%)

Coreference (6.1%)

Science QA (12.2%)

Reading (8.2%)

BIG-Bench (10,000)
SuperGLUE (10,000)

CommonsenseQA (8,000)
SocialIQA (8,000)

OpenbookQA (3,000)
SciQ (3,000)

KnowRef (3,000)

MultiRC (4,000)

Figure 11: Training Set by Task

Benchmarks Size

MMLU 14,042

HellaSwag 10,042
PIQA 1,838

ARC-C 1,172
ARC-E 2,376

WinoGrande 1,267

BoolQ 3,227

GSM8k 1,000

Figure 12: Overview of evaluation bench-
marks we use for router post-training.
Benchmarks are reserved strictly for eval-
uation.

Our training set comprises 49,000 samples distributed across five task categories, ensuring compre-
hensive coverage across diverse reasoning skills:

• BIG-Bench (Wei et al., 2022): A large-scale collaborative benchmark covering a wide range
of tasks such as logical reasoning, linguistic phenomena, and commonsense knowledge. It is
designed to probe broad generalization and emergent capabilities in large language models.

• SuperGLUE (Wang et al., 2019): A benchmark suite for general natural language under-
standing, consisting of challenging tasks such as natural language inference, word sense
disambiguation, and question answering. It extends the original GLUE benchmark to push
models toward higher-level reasoning.

• CommonsenseQA (Talmor et al., 2019): A multiple-choice dataset focusing on common-
sense reasoning, requiring models to connect concepts and apply everyday knowledge.

• SocialIQA (Sap et al., 2019): A benchmark for social commonsense reasoning, where
models must infer likely intents, reactions, and motivations of people in everyday situations.

• OpenBookQA (Mihaylov et al., 2018): A science-oriented QA dataset requiring both
retrieval from a small “open book” of facts and additional commonsense reasoning.

• SciQ (Welbl et al., 2017): A dataset of science exam-style questions covering physics,
biology, and chemistry, testing factual recall and reasoning in scientific contexts.

• MultiRC (Khashabi et al., 2018): A reading comprehension benchmark with multi-sentence
passages and multi-answer questions, requiring deeper reasoning across long contexts.

• KnowRef (Emami et al., 2019): A coreference resolution dataset where multiple entities are
mentioned, and models must resolve ambiguous pronouns using contextual cues.

A.2 DETAILS OF BENCHMARKS

We evaluate our method on eight widely used benchmarks covering general knowledge, commonsense
reasoning, science QA, and mathematical problem-solving:

• MMLU (Hendrycks et al., 2021): A comprehensive benchmark of 57 subjects spanning
STEM, humanities, social sciences, and professional domains. It measures models’ multitask
accuracy and general world knowledge.

• HellaSwag (Zellers et al., 2019): A commonsense benchmark requiring models to select
the most plausible continuation of a given context. It emphasizes grounded reasoning about
everyday scenarios.

• PIQA (Bisk et al., 2020): A physical commonsense reasoning dataset, where models must
infer the correct solution to physical problems from everyday settings.
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• ARC-Challenge (Clark et al., 2018): A benchmark of challenging grade-school science
questions requiring reasoning, knowledge retrieval, and integration across multiple facts.

• ARC-Easy (Clark et al., 2018): The easier subset of ARC focusing on factual recall and
simpler reasoning in grade-school science.

• WinoGrande (Sakaguchi et al., 2020): A large-scale benchmark for pronoun resolution and
commonsense reasoning, designed to be adversarially filtered and less susceptible to dataset
artifacts.

• BoolQ (Clark et al., 2019): A reading comprehension dataset of yes/no questions paired
with passages from Wikipedia, requiring models to integrate text understanding with factual
reasoning.

• GSM8k (Cobbe et al., 2021): A dataset of grade-school math word problems requiring
multi-step numerical reasoning. We treat GSM8k as an out-of-distribution (OOD) evaluation
since math is not included in our training set.

A.3 MODEL DESCRIPTIONS

In this section, we provide additional details of the models reported in Table 2. These models cover
a broad range of active parameters (1B, 3B, 7–8B, 13–14B, 27–34B), including dense LLMs and
sparse Mixture-of-Experts (MoE) variants. All results are reported in the main text (see Table 2).

Models with ∼1B Active Parameters

• Llama3.2-1B (Dubey et al., 2024): A 1B-parameter dense model in the Llama 3.2 family.

• OLMo-1B (Groeneveld et al., 2024): Dense model from the AllenAI OLMo family.

• OLMoE-7B-A1B Muennighoff et al. (2024): A sparse MoE variant of OLMoE with 7B
total parameters and ∼1B active per token.

Models with ∼3B Active Parameters

• Gemma2-3B (Team, 2024a): Google’s Gemma2 family dense model.

• Qwen1.5-14B-A3B (Bai et al., 2023): Sparse MoE variant of Qwen1.5 with 14B total
parameters and ∼3B active per token.

• DeepSeekMoE-16B-A3B (Dai et al., 2024b): Sparse MoE model with 16B total parameters
and ∼3B active per token.

Models with ∼7–8B Active Parameters

• Qwen2-7B (Team, 2024b): Dense model from the Qwen2 family.

• Mistral-7B (Jiang et al., 2023): Dense model emphasizing efficient training and inference.

• Llama3.1-8B (Dubey et al., 2024): A dense model from the Llama 3.1 family.

Models with ∼13–14B Active Parameters

• Llama2-13B (Touvron et al., 2023): Dense model from the Llama 2 release.

• Vicuna-13B (Chiang et al., 2023): Instruction-tuned LLM based on Llama2-13B.

• Qwen1.5-14B (Bai et al., 2023): Dense version of Qwen1.5.

Models with ∼27–34B Active Parameters

• Gemma2-27B (Team, 2024a): Largest Gemma2 dense variant.

• Yi-34B (Young et al., 2024): Dense model with 34B parameters.

• Llama2-34B (Touvron et al., 2023) : Large dense model from the Llama 2 family.
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A.4 DETAILS OF ABLATION STUDY ON DEEPSEEKMOE

In this section, we provide a detailed ablation study of RoMA on the DeepSeekMoE model.

Layer configurations (Table 3). When applying RoMA to different numbers of layers, we find that
using a single layer or two layers provides modest gains (e.g., F1 at 68.0%, L2 at 70.6%). Increasing
to five layers yields further improvements (up to 72.4%), while applying RoMA on all layers gives
73.7%. Interestingly, restricting the method to the last five layers achieves the best result (74.7%),
surpassing even the all-layer setting, which highlights the importance of critical-layer selection.

Table 3: DeepSeekMoE average accuracy (%) across different layer configurations

Group Configuration Avg. Acc. (%)

Base Base 66.6

1 Layer
F1 68.0
M1 67.4
L1 68.6

2 Layers

F1M1 69.0
F1L1 70.2
M1L1 69.6
F2 69.4
M2 68.8
L2 70.6

5 Layers

F2M3 70.8
F2L3 71.3
M2L3 71.0
F5 72.4
M5 71.6

All Layers All16 73.7

Ours L5 (Ours) 74.7

Token positions (Table 4). We next evaluate applying RoMA to routing weights of different
tokens. Regularizing the first or middle tokens shows only limited improvements (69.0% and 67.6%,
respectively), while the last token positions provide stronger performance. In particular, Last1
achieves the best result (74.7%), indicating that the most informative supervision signal for routing
weights lies in the final tokens.

Neighbor selection (Table 5). We compare ε-neighbor and k-neighbor strategies. Small ε (0.3)
gives a minor improvement (68.0%), while moderate ε (0.5) achieves a strong 72.8%. For k-neighbors,
increasing k improves accuracy up to k = 3 (74.7%), after which performance saturates (k = 5 at
73.4%). This suggests that a balanced neighbor selection (neither too sparse nor too dense) is crucial
for generalization.

Training set size (Table 6). We investigate different proportions of training data used for regu-
larization. Performance grows steadily with larger set sizes, from 67.5% at 10% to 73.6% at 70%.
Using the full dataset (100%) achieves the best result (74.7%), confirming that more data consistently
strengthens the alignment of routing weights.

Regularization methods (Table 7). We compare different regularization objectives. L1 and L2

losses improve the baseline to 67.2% and 70.3%, respectively, while entropy regularization achieves
69.8%. Our proposed manifold regularization significantly outperforms all alternatives, reaching
74.7%, which demonstrates the effectiveness of aligning routing weights with the manifold structure
of successful neighbors.
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Table 4: DeepSeekMoE average accuracy (%)
when applying RoMA on different token posi-
tions.

Group Configuration Avg. Acc. (%)

Baseline Base 66.6

3 Tokens
First3 69.0
Middle3 67.6
Last3 73.1

1 Token First1 70.2
Middle1 68.1

Ours Last1 (Ours) 74.7

Table 5: DeepSeekMoE average accuracy (%)
with different neighbor selection strategies.

Group Configuration Avg. Acc. (%)

Baseline Base 66.6
Baseline Rand 66.8

ε-neighbor
ε = 0.3 68.0
ε = 0.5 72.8
ε = 0.7 71.2

k-neighbor
k=1 71.0
k=3 (Ours) 74.7
k=5 73.4

Table 6: DeepSeekMoE average accuracy (%)
with different training set sizes.

Configuration Avg. Acc. (%)

Base 66.6
10% 67.5
30% 69.8
50% 72.2
70% 73.6
100% (Ours) 74.7

Table 7: DeepSeekMoE average accuracy (%)
with different regularization methods.

Configuration Avg. Acc. (%)

Base 66.6
L1 67.2
L2 70.3
Entropy 69.8
Manifold (Ours) 74.7

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely for grammar checking and language polishing. No
part of the research design, methodology, experimental results, or core writing was generated by
LLMs. All scientific ideas, analyses, and conclusions are entirely the work of the authors.
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