
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROUTING MANIFOLD ALIGNMENT IMPROVES GENER-
ALIZATION OF MIXTURE-OF-EXPERTS LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large lan-
guage models since it can efficiently scale up the model capability without increas-
ing the inference cost. However, evaluations on broad downstream tasks reveal a
consistent suboptimality of the routers in existing MoE LLMs, which results in a
severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this
paper, we show that aligning the manifold of routing weights with that of task em-
bedding via post-training can effectively reduce the gap and improve MoE LLMs’
generalization performance. Our method, “Routing Manifold Alignment (RoMA)”,
introduces an additional manifold regularization term in the post-training objective
and only requires lightweight finetuning of routers (with other parameters frozen).
Specifically, the regularization encourages the routing weights of each sample to
be close to those of its successful neighbors (whose routing weights lead to correct
answers) in a task embedding space. Consequently, samples targeting similar tasks
will share similar expert choices across layers. Building such bindings between
tasks and experts over different samples is essential to achieve better generalization.
Moreover, RoMA demonstrates the advantage of unifying the task understanding
(by embedding models) with solution generation (by MoE LLMs). In experiments,
we finetune routers in three recent MoE LLMs using RoMA. Evaluations on di-
verse benchmarks and extensive comparisons with baselines show the substantial
improvement brought by RoMA.

1 INTRODUCTION

Sparse Mixture-of-Experts (MoE) have emerged as a cornerstone architecture in scaling large lan-
guage models (LLMs), enabling significant capacity increases without proportional computational
overhead during inference (Fedus et al., 2022; Lepikhin et al., 2020). At the core of this mechanism
lies the router, which assigns input tokens to a small subset of experts through routing weights in each
layer. Despite the small portion of router parameters in MoE LLMs (e.g., 0.03% in a 7B model), they
are the key to the success of expert usage in MoE (Shazeer et al., 2017). However, evaluations across
broad downstream tasks reveal that routers in existing MoE LLMs cause major failures. As shown in
Table 1, their suboptimal routing weights lead to a performance gap of 10-20% in accuracy when
compared to the optimal routing weights (oracle). This gap underscores a major untapped bottleneck
in MoE LLMs, suggesting that improving routing is critical to boosting MoE LLMs’ generalization
performance on downstream tasks.

Our analysis further investigates the reasons behind the performance gap and the poor generalization
capabilities of pretrained routers. As illustrated in Figures 3(a) and (b), pretrained routers assign
semantically similar samples in the task embedding space to distinct experts with dramatically
different routing weights. Such misalignment between the task embedding manifold and routing
weight manifold hinders effective knowledge sharing across tasks and underutilize the collective
expertise of the experts. This misalignment between the targeted tasks and the assigned experts
undermines the generalization of MoE and its core principle, which is to leverage specialized experts,
share skills, and transfer knowledge for related inputs.

A natural solution is to finetune the routers. Existing approaches such as Dense BP (Panda
et al., 2025) developed more effective pretraining objectives for routers but do not address
the manifold misalignment between the targeted tasks and the routing weights across samples.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ARC-C

HellaSwag

MMLU

GSM-8K

BoolQ

WinoGrande

PIQA

ARC-E
86.7

67.2

88.0

85.8

81.8

81.7

49.7

69.0

51.373.8
77.9

80.7 57.8

72.2
45.5

75.4

Gemma2-3B Mistral-7B Vicuna-13B Llama2-34B

OLMoE-7B-A1B OLMoE-7B-A1B + RoMA RoMA Improvement

Figure 1: RoMA on OLMoE-7B-A1B vs. 7-
34B dense LLMs across eight benchmarks.
RoMA leads to 7-15% accuracy improve-
ment, consistently outperforming all mod-
els over eight benchmarks, demonstrating
the effectiveness of post-training by RoMA.

This limitation motivates our exploration of incorporat-
ing manifold alignment into the fine-tuning objective.
Specifically, our manifold alignment aims to enforce
the consistency between task understanding (encoded
by an embedding model) and task solving in an MoE
LLM (encoded by the routing weights). As illustrated
in Figure 2, for each training sample, in addition to min-
imizing its loss defined on the output, we encourage its
intermediate layers’ routing weights to move to those of
its “successful neighbors” (samples with correct MoE
predictions) in the task embedding space. These neigh-
bors are weighted by their similarity to the sample.
This training objective can be formulated as manifold
regularization (Belkin et al., 2006), a well-established
technique in machine learning that aims to preserve
the local neighborhood structure of high-dimensional
inputs on the manifold of low-dimensional representa-
tions or outputs. Unlike its original setting, we apply
such a regularization to the routing weights across MoE
layers rather than the final outputs, and establish coher-
ent bindings between the expert choices (weights) and
the task embedding instead of the raw inputs.

Training Objective:

❄️ Embedding Model

Routing Weights
Manifold

Router

Task Embedding
Manifold

Training Sample Successful Neighbor

Manifold Alignment

Expert1 Expert2 Expert3

🔥

❄️❄️❄️

Successful Neighborhood

🔥Trainable

❄️ Frozen

Figure 2: Overview of RoMA. RoMA finetunes routers
in MoE LLM (bottom, yellow) with a training objective
defined on each sample (xi, yi), which is composed of
(1) the task loss Ltask(i) defined on the model output
f(xi, ri); and (2) the manifold alignment regulariza-
tion Lmanifold(i), which aligns the manifolds of rout-
ing weights (right, green) and the task embedding (left,
blue). It improves MoE’s generalization by unifying
solution generation in MoE with task understanding.

To this end, we propose “Routing Manifold
Alignment (RoMA)”, a router post-training
method that aligns the manifold of routing
weights with task embeddings through
lightweight fine-tuning of a few routers
in MoE LLMs. RoMA introduces a
manifold regularization term to the training
objective that encourages routing weights
of each sample to approximate those of
its successful neighbors with similar task
embedding, thereby promoting consistent
expert selection for semantically related
inputs. Extensive experiments on three re-
cent MoE LLMs (OLMoE, DeepSeekMoE,
Qwen3-MoE) demonstrate that RoMA
brings substantial improvements (7-15%
in accuracy) across diverse benchmarks
and outperforms SOTA routing methods,
as shown in Figure 1, by merely finetuning
0.0095% parameters of the base model,
without affecting inference cost. Notably,
RoMA-finetuned MoE LLMs with only
1-3B active parameters achieve competitive
or superior performance over much larger
dense models with 34B parameters. We

conduct comprehensive ablation studies that further investigate the effects of key designs in RoMA,
including layer selection, neighborhood configuration, and regularization strategies, validating the
effectiveness of RoMA in bridging the performance gap between pretrained routers and optimal
routing for MoE LLMs.

2 RELATED WORK

MoE LLMs Mixture of Experts (MoE) architectures have been extensively incorporated into
large language models (LLMs) to enhance computational efficiency and task-specific specializa-
tion (Shazeer et al., 2017). Recent work such as OLMoE (Muennighoff et al., 2024) and DeepSeek-
MoE (Dai et al., 2024a) demonstrate the effectiveness of sparse MoE layers in reducing active

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

parameters while maintaining model capacity. These MoE models fundamentally rely on routers to
determine expert selection, typically employing token-choice routing that selectively activates subsets
of experts for each input token (Fedus et al., 2022; Lepikhin et al., 2020). Beyond training MoE
models from scratch, MoEfication (Zhang et al., 2022) proposes converting pretrained dense models
into MoE architectures by splitting feed-forward network parameters into functional partitions as
experts. However, the quality of these routing decisions remains a critical bottleneck. Our study
shows current routers often produce suboptimal routing weights that fail to fully leverage expert
specialization, resulting in load imbalance and expert underutilization.

Manifold Regularization of LLMs Recent work reveals that LLM embeddings exhibit stratified
manifold structures with varying dimensions across semantic domains (Li & Sarwate, 2025; Robinson
et al., 2025). While traditional manifold regularization assumes smooth global structures (Belkin et al.,
2006), LLMs require more sophisticated approaches. Methods like I-STAR (Rudman & Eickhoff,
2023) control isotropy in embedding spaces, while CROW (Min et al., 2024) enforces consistency
across layers. However, these techniques do not explicitly leverage manifold structures to improve
MoE routing. The geometric insights from stratified manifolds suggest that different experts naturally
align with different embedding strata, yet current routing mechanisms fail to exploit this alignment.
This gap motivates our routing manifold alignment approach, which guides routing decisions based
on the data’s inherent geometric structure.

Routing Optimization in MoE architectures has emerged as a critical component for achieving
efficient expert utilization and balanced computation. Routing optimization methods have evolved
from simple load balancing (Fedus et al., 2022; Lepikhin et al., 2020) to sophisticated strategies in-
cluding differentiable top-k selection (Zhou et al., 2022) and test-time optimization such as C3PO (Li
et al., 2025) that dynamically re-weights expert pathways. However, these approaches optimize
routing without considering the embedding space’s geometric structure. Moreover, C3PO introduce
additional computational overhead for task embedding and nearest neighbor search, requiring 6-7x
the cost of standard inference by the base model.

3 TASK-EXPERT ROUTING MANIFOLD MISALIGNMENT

Task Cluster 1 Task Cluster 2 Task Cluster 3 Task Cluster 4

(a) Task Embedding (d) Optimal Routing Weights (Oracle)(b) Routing Weights (Before RoMA) (c) Routing Weights (After RoMA)

Figure 3: UMAP visualization of task embedding and routing weights manifolds for samples in
ARC-C. (a) Their task embedding shows cluster structures. (b) Routing weights by pretrained MoE
are scattered and misaligned with the task embedding clusters. (c) RoMA aligns routing weights with
the task embedding manifold’s cluster structure. (d) RoMA also achieves a similar manifold structure
as that of the optimal routing weights (oracle), which explains the improvement in generalization.

MoE LLMs employ routers to assign input tokens to a small subset of experts through routing weights
in each layer. For a sample (xi, yi), let h(ℓ)

i denote the hidden representation at layer ℓ. The router at
each layer ℓ produces a routing weight vector:

r
(ℓ)
i = R(h

(ℓ)
i ; θ

(ℓ)
router) ∈ RK (1)

where K is the number of experts, R(·; ·) denotes the router function, and θ
(ℓ)
router represents the router

parameters at layer ℓ. The routing weight matrix ri is computed as the concatenation of routing
weights across L MoE layers:

ri = [r
(1)
i ; r

(2)
i ; . . . ; r

(L)
i] ∈ RL×K (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Notation clarification. Throughout this paper, ri denotes the routing weights (the softmax output
used to aggregate expert outputs for sample xi), while θrouter denotes the router parameters (the
learnable weights in the router network). Our method optimizes θrouter to align the manifold of ri
with task embeddings.

As shown in Table 1, evaluations across broad downstream tasks reveal that routers in existing MoE
LLMs produce suboptimal routing weights ri, which lead to a performance gap of 10-20% in accuracy
when compared to the optimal routing weights (oracle) r∗i :

r∗i ≜ argmin
r

LCE(f(xi, r), yi), (3)

where f(·, ·) represents the MoE model that takes input xi and routing weight vector r to produce
output, yi is the ground truth label for input xi, and LCE is the cross-entropy loss. We obtain r∗i by
initializing r with the pretrained routing weights and performing gradient descent with access to the
ground truth label until convergence. This oracle serves as an empirical upper bound to quantify the
untapped potential of existing routers.

To investigate the root causes behind the observed performance gap in MoE LLMs, we conduct a
comprehensive analysis of the relationship between task embeddings and routing weights in Figure 3.

The comparison between task embeddings (Figure 3(a)) and pretrained routing weights (Figure 3(b))
reveals a severe misalignment. While the task embedding space presents clear cluster structures
where semantically similar samples are grouped together, the pretrained routing weights show no
corresponding clustering patterns. Instead, samples from the same semantic cluster are scattered
across the routing weights space. This manifold misalignment indicates that the pretrained routers
fail to capture the underlying task structure, leading to inconsistent expert selection for semantically
related inputs. To further substantiate this visual intuition, we provide quantitative alignment metrics
(e.g., CKA similarity, Trustworthiness) in Appendix A.3, which consistently confirm the misalignment
in baselines and the improvement brought by RoMA.

In contrast, the oracle routing weights (Figure 3(d)) demonstrate clear cluster structure to the task
embedding structure, with samples from the same semantic group receiving similar routing patterns.
This alignment between task understanding and expert assignment is precisely what enables the oracle
to achieve superior performance, highlighting that the task-expert routing manifold misalignment is
the key bottleneck limiting router generalization in MoE LLMs.

4 ROUTING MANIFOLD REGULARIZATION (ROMA)

To address this limitation, we propose “Routing Manifold Alignment (RoMA)”, a post-training
method that aligns the manifold of routing weights with task embeddings through lightweight router
fine-tuning. Our key insight is that samples with similar task embeddings should share similar
routing patterns to leverage specialized expertise effectively. To achieve this, we introduce a manifold
regularization term that encourages alignment between the routing weight manifold and the task
embedding manifold. Given a training set D = {(xi, yi)}ni=1 and their associated routing weights
{ri}ni=1 (where ri denotes the concatenated routing weights across multiple layers), our goal is to
optimize the routers such that samples with similar task embeddings share similar routing patterns.

4.1 SUCCESSFUL NEIGHBORHOOD TO IMITATE

We first identify the subset of training samples where the MoE produces correct predictions:

S = {j ∈ [n] : f(xj , rj) = yj} (4)

This filtering ensures that our finetuning only imitates from routing patterns for samples in S that
lead to successful outputs, preventing the propagation of suboptimal routing strategies.

Given the set of successful samples S , we construct a neighborhood N (xi) for each sample xi based
on the task similarity in an embedding space. Let E(·) denote a pre-trained embedding model that
maps input task descriptions/instructions to a semantic representation space. The neighborhood of xi

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

can be defined via k-Nearest Neighbors or ϵ-ball:

k-NN: N (xi) = arg max
A⊆S,|A|≤k

∑
j∈A

sim(E(xi), E(xj)) (5)

ϵ-ball: N (xi) = {j ∈ S : sim(E(xi), E(xj)) ≥ ϵ} (6)

where sim(·, ·) is a similarity metric, for example, the Gaussian similarity is defined as

sim(E(xi), E(xj)) = exp

(
−∥E(xi)− E(xj)∥22

2σ2

)
. (7)

4.2 TRAINING OBJECTIVE WITH MANIFOLD REGULARIZATION

Having identified the successful neighborhood for each sample, our next step is to incorporate this
structure into the training objective to align routing behaviors with the task embedding geometry. The
key idea is that semantically similar samples should not only cluster in the embedding space but also
share consistent routing patterns. To achieve this, we introduce a manifold regularization term that ex-
plicitly aligns the routing weights manifold with the task embedding manifold by encouraging samples
to follow the routing patterns of their successful neighbors, weighted by their semantic similarity.

The (normalized) adjacency Wi,j between sample xi and xj is defined as

Wi,j ≜
sim(E(xi), E(xj))∑

j∈N (xi)
sim(E(xi), E(xj))

, ∀j ∈ N (xi), (8)

where higher weights indicate stronger semantic similarity in the task embedding space. Given Wi,j ,
the manifold regularization applied to the routing weight ri of sample xi is defined as

Lmanifold(i) ≜
∑

j∈N (xi)

Wi,j∥ri − rj∥22. (9)

By penalizing routing discrepancies ∥ri−rj∥2 between semantically similar samples with large Wi,j ,
Lmanifold(i) enforces the routing weights manifold to be aligned with the task embedding manifold.
Moreover, it moves each sample’s routing weights to those of its “successful neighbors” in the task
embedding space.

As a consequence, the manifold regularization consolidates the bindings between tasks and their
expert choices, and thus improves the generalization.

To ensure that aligned routing patterns also lead to correct predictions, the training objective in RoMA
applies the manifold regularization to the cross-entropy loss LCE defined on the outputs.

Ltask(i) = LCE(f(xi, ri), yi). (10)

With a regularization coefficient λ ≥ 0, the final objective on sample xi is

LRoMA(i) = Ltask(i) + λ · Lmanifold(i) (11)

During training, we only update router parameters while keeping all expert parameters frozen. The
gradient update is performed via backpropagation on LRoMA with respect to router parameters:

θ
(t+1)
router = θ

(t)
router − η∇θrouterLRoMA, (12)

where θrouter represents the parameters of routers and η is the learning rate. While router parameters
represent only a small fraction of the total model parameters (0.0095%), we empirically find that only
finetuning routers in the last five layers achieves superior performance while significantly saves the
training cost, as demonstrated in Figure 6.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Models We evaluate three recent MoE LLMs: OLMoE-7B-A1B, DeepSeekMoE-16B-A3B, and
Qwen3-30B-A3B. OLMoE features a 16-layer transformer with 64 experts per layer, activating

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

8 per token, totaling 6.9B parameters with 1.3B active per token. DeepSeekMoE uses a 28-layer
transformer with 2 shared and 64 routed experts per layer, activating all shared plus 6 routed experts
per token, totaling 16.4B parameters with 2.8B active per forward pass. Qwen3-30B-A3B employs a
48-layer transformer with 128 experts per layer, activating 8 per token, totaling 30.5B parameters
with 3.3B active per token. These models exemplify distinct MoE designs and scales, enabling a
comprehensive evaluation of routing dynamics and generalization behavior.

Baselines We evaluate RoMA against both different adaptation methods (See Table 1) and other mod-
els (See Table 2) across eight benchmarks. For adaptation methods, we compare with: (1) In-Context
Learning (ICL) (Brown et al., 2020) with embedding-based retrieval for few-shot demonstrations;
(2) Router Tuning that directly updates the routers; (3) Oracle Tuning that fine-tunes routers with
access to optimal routing weights (oracle); (4) Prefix Tuning (Li & Liang, 2021) and Soft Prompt
Tuning (Lester et al., 2021) that introduce lightweight trainable parameters while keeping the base
model frozen; (5) Dense Backpropagation (Dense BP) (Panda et al., 2025) that enables gradient flow
through the full model while updating few parameters; (6) C3PO (Li et al., 2025), a state-of-the-art
test-time routing weights optimization method. For model comparison, we evaluate against models
grouped by active parameters (1B, 3B, 7-8B, 13-14B, 27-34B) including recent models like Llama3.2,
Gemma2, Qwen2, and Mistral to assess the efficiency of MoE architectures enhanced with RoMA.

Training Set

General Knowledge (40.8%)

Commonsense (32.7%)

Coreference (6.1%)

Science QA (12.2%)

Reading (8.2%)

BIG-Bench (10,000)
SuperGLUE (10,000)

CommonsenseQA (8,000)
SocialIQA (8,000)

OpenbookQA (3,000)
SciQ (3,000)

KnowRef (3,000)

MultiRC (4,000)

Figure 4: Training set statistics.

Training Set comprises 49,000 samples distributed across
five task categories, as shown in Figure 4. The dataset in-
cludes General Knowledge tasks (BIG-Bench and Super-
GLUE), Commonsense reasoning (CommonsenseQA and
SocialIQA), Science QA (OpenBookQA and SciQ), Read-
ing comprehension (MultiRC), and Coreference resolution
(KnowRef). This diverse composition ensures comprehen-
sive coverage across different reasoning capabilities for ef-
fective training.

Benchmarks We evaluate RoMA on eight diverse benchmarks. The evaluation suite includes MMLU,
HellaSwag, PIQA, ARC-Challenge, ARC-Easy, WinoGrande, BoolQ and GSM8K. Notably, GSM8K
serves as an Out-Of-Distribution (OOD) benchmark since our training set doesn’t contain math-related
data. Details about training set and benchmarks is in Appendix A.8 and A.9.

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E

86.7

67.2

88.0

88.0

82.7

81.7

50.8

69.0

66.3
87.4

85.3

85.8 65.5

81.8 49.4

79.6

BoolQ

77.9

57.8

45.5
75.4

72.2

80.7

85.3
51.3

OLMoE Base OLMoE + C3PO OLMoE + RoMA

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E
12.9

14.6

13.2

12.4

16.3

13.7

17.9

15.8

BoolQ

1.9

2.3

2.6
1.8

2.4

1.6

2.3

2.1
2.1

1.9

2.4

1.9
2.6

2.5

1.6
1.6

(a) Accuracy (b) Inference Cost

Figure 5: Performance and inference cost of OLMoE (base model), OLMoE + C3PO and OLMoE
+ RoMA across eight benchmarks. (a) Accuracy: RoMA consistently improves the base model’s
performance to be comparable or better than C3PO. (b) Inference cost (in FLOPs ×1011): RoMA
maintains nearly the same efficiency as the base model, while C3PO requires test-time optimization
and induces 6–7× more FLOPs. These results highlight the effectiveness and efficiency of RoMA.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 MAIN RESULTS

Advantage of RoMA over different adaptation methods. Table 1 compares adaptation methods on
OLMoE, DeepSeekMoE, and Qwen3-MoE across eight benchmarks. Lightweight methods (ICL,
Router/Prefix/Prompt Tuning) yield only modest gains, while Oracle tuning and Dense BP achieve
stronger, though still limited, improvements relative to the Oracle upper bound. C3PO performs
better than these baselines, yet RoMA achieves the highest overall accuracy. On MMLU, RoMA
boosts DeepSeekMoE from 46.2% to 56.8% (+10.6%) and OLMoE from 57.8% to 69.0% (+11.2%),
surpassing C3PO by +1.4% and +3.5%, respectively. Although C3PO achieves comparable accuracy
as RoMA, its inference cost is 6–7× higher than both RoMA and the base model (See Figure 5),
highlighting RoMA ’s superior efficiency–effectiveness trade-off. In addition, RoMA shows more
advantages over C3PO on larger models such as DeepSeekMoE and Qwen3-MoE. The accuracy
and cost of the other two models are reported in Appendix A.1 and A.2. We further compare
RoMA with parameter-efficient fine-tuning (PEFT) methods, including LoRA, DoRA, and MoLE,
applied to the router parameters. As detailed in Appendix A.4, RoMA outperforms these methods
by significant margins (+7.5% ∼ +8.6% on average) while introducing zero new parameters,
highlighting that manifold alignment is more effective than merely increasing parameter capacity for
routing optimization.

Comparison of routing weights manifold before and after RoMA. Figure 3 illustrates the effect of
RoMA on routing weights. After applying RoMA, routing weights form clear clusters (Figure 3(a))
that closely align with the task embedding structure (Figure 3(c)). In contrast, the pretrained routing
weights show little alignment with task clusters in Figure 3(b), highlighting that RoMA effectively
resolves the manifold misalignment problem. Furthermore, the post-RoMA routing patterns closely
resemble the oracle routing weights as shown in Figure 3(d), suggesting that our optimization moves
the model toward theoretically optimal expert assignments. As a result, samples within the same
task cluster receive similar routing patterns, enabling more consistent and efficient use of specialized
expertise and bridging the performance gap between suboptimal pretrained routing and ideal oracle
routing.

Advantage of RoMA over State-of-the-Art models. Table 2 reports LLM performance across eight
benchmarks with varying active parameter counts. Notably, OLMoE-7B-A1B+RoMA, with only 1B
active parameters, achieves 69.0% on MMLU and 86.7% on HellaSwag, surpassing several 7–8B and
even 13B dense models. Similarly, DeepSeekMoE-16B-A3B+RoMA (3B active) delivers substantial
gains, matching or exceeding the performance of dense LLMs up to 34B parameters. These results
demonstrate that RoMA consistently improves routing quality, enabling small active-parameter MoEs
to rival or outperform much larger dense counterparts. Details of models are in Appendix A.10.

5.3 ABLATION STUDY

We perform a series of ablation studies to systematically analyze the design choices behind RoMA.
Specifically, we investigate: (i) which layers to regularize, (ii) which token positions to use for routing
guidance, (iii) how to select neighbors for manifold alignment, (iv) the effect of training set size, and
(v) the choice of regularization method. These ablations help identify the most effective and efficient
configuration, revealing which factors are critical for performance. All experiments are conducted on
OLMoE, and experiment results on DeepSeekMoE are provided in the Appendix A.11.

Layer Selection Figure 6 examines how applying routing manifold regularization to different subsets
of layers affects model performance. Applying RoMA to a single layer yields only modest gains
(69.1–69.7%), while extending it to two layers improves accuracy above 71%. Performance continues
to increase as more layers are regularized, with the last five layers (L5) achieving the highest accuracy
of 76.2%, even surpassing the All-Layer configuration (75.1%). These results highlight that the
final layers are particularly critical for routing quality, and that selectively regularizing a small set
of strategically important layers is both more effective and more efficient than uniformly applying
RoMA across all layers.

Token Selection Figure 7 presents the effect of different token selection strategies when applying
RoMA. Using multiple tokens (e.g., the first three or middle three) provides moderate improvements
over the baseline, with last 3 tokens (Last3) reaching 74.5%. Among single-token choices, the last 1
token (Last1) performs best (76.2%), outperforming both the first one token (First1) (71.4%) and
the middle one token (Middle1) (69.2%). These results indicate that the final tokens contain richer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of RoMA with the Base model, Oracle, test-time adaptation methods (ICL,
C3PO), training-based methods (Router/Oracle/Prefix/Prompt Tuning), across eight benchmarks on
DeepSeekMoE, OLMoE, and Qwen3-30B-A3B. Details of the baselines and benchmarks are provided
in Section 5.1. Bold numbers denote the best performance (excluding Oracle), and underlined
numbers denote the second best. RoMA improves DeepSeekMoE from 46.2% to 56.8% (+10.6%),
improves OLMoE from 57.8% to 69.0% (+11.2%), and improves Qwen3-30B-A3B from 74.2% to
78.8% (+4.6%) on MMLU, outperforming C3PO on all three models.

Method MMLU Hella-
Swag ARC-C ARC-E PIQA Wino-

Grande BoolQ GSM8K Avg

DeepSeekMoE-16B-A3B

Base model 46.2 78.0 50.3 73.8 79.9 70.1 72.3 62.2 66.6
Oracle 63.8 92.5 70.8 85.2 90.3 82.1 83.2 71.8 80.0

ICL 49.0 81.6 56.3 76.2 81.4 72.3 75.8 65.7 69.8
C3PO 55.4 85.7 61.6 80.7 85.8 77.5 78.2 68.5 74.2

Router Tuning 49.3 81.5 57.2 76.6 82.0 73.8 74.5 64.8 70.0
Oracle Tuning 54.2 84.3 60.1 79.5 84.0 76.0 77.5 66.2 72.7
Prefix Tuning 47.8 77.9 52.4 73.8 79.2 70.3 73.1 64.8 67.4
Prompt Tuning 49.3 78.6 55.1 74.7 80.5 72.0 74.2 65.5 68.7
Dense BP 50.1 80.2 54.8 77.3 81.7 74.2 76.1 63.9 69.8

RoMA (Ours) 56.8 87.9 61.4 81.5 85.2 76.8 80.6 67.4 74.7

OLMoE-7B-A1B

Base model 57.8 77.9 51.3 79.8 80.7 72.2 75.4 45.5 67.6
Oracle 72.2 91.5 74.8 91.4 93.6 87.7 84.5 53.2 81.1

ICL 60.3 80.6 58.1 82.5 83.6 76.8 78.9 48.5 71.2
C3PO 65.5 85.3 66.3 87.4 88.0 82.7 79.6 50.8 75.7

Router Tuning 63.2 81.7 62.5 83.8 80.9 75.3 77.8 47.2 71.6
Oracle Tuning 66.8 84.2 65.4 86.1 86.2 80.5 79.9 49.0 74.8
Prefix Tuning 59.3 78.2 54.5 80.4 82.1 73.5 76.8 46.7 68.9
Prompt Tuning 59.7 79.5 55.9 81.3 82.4 74.1 77.2 47.3 69.7
Dense BP 61.8 82.4 57.3 84.1 83.9 76.9 75.2 48.1 71.2

RoMA (Ours) 69.0 86.7 67.2 88.0 85.8 81.8 81.7 49.4 76.2

Qwen3-30B-A3B

Base model 74.2 68.5 56.8 84.3 78.5 65.2 81.3 83.4 74.0
Oracle 82.5 80.3 69.2 92.6 87.4 77.3 90.5 90.9 83.8

ICL 75.8 70.7 59.3 86.1 80.2 67.8 83.5 84.7 76.0
C3PO 77.9 74.1 63.4 88.1 81.7 71.9 85.4 86.0 78.6

Router Tuning 75.3 70.3 60.1 85.7 79.8 68.5 82.8 84.2 75.8
Oracle Tuning 77.2 73.5 62.8 87.6 81.3 71.2 84.9 85.5 78.0
Prefix Tuning 74.5 68.9 57.9 84.8 79.1 66.3 82.1 83.8 74.7
Prompt Tuning 75.0 69.6 58.6 85.2 79.6 67.0 82.7 84.0 75.2
Dense BP 76.1 71.4 59.8 86.5 80.5 69.2 83.8 84.9 76.5

RoMA (Ours) 78.8 74.8 65.5 88.6 83.1 73.8 85.1 86.3 79.5

task-relevant information for guiding expert routing than earlier or middle tokens. Moreover, the
superiority of Last1 over Last3 highlights that a single, well-chosen token can be more effective and
efficient than aggregating multiple tokens.

Neighborhood Selection Figure 8 compares different strategies for selecting neighbors in RoMA.
Random neighbor selection yields almost no improvement over the baseline (67.8% vs. 67.6%).
Using ϵ-neighborhoods shows sensitivity to the choice of radius: performance improves steadily
from 68.9% (ϵ=0.3) to a peak of 74.1% at ϵ=0.5, but drops slightly when the radius grows larger
(ϵ=0.7). In contrast, k-nearest neighbor selection provides more stable gains, with k=3 achieving
the best overall accuracy of 76.2%. Notably, this surpasses both smaller (k=1) and larger (k=5)
settings, suggesting that a moderate number of neighbors balances robustness and noise. These results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of LLMs with varying active parameters (1B, 3B, 7–8B, 13–14B, 27–34B)
evaluated on eight benchmarks. MoE models post-trained by RoMA achieve strong performance,
surpassing or matching the performance of much larger dense models. For example, OLMoE-7B-A1B
(1B active) achieves 69.0% on MMLU and 86.7% on HellaSwag, outperforming several 7–8B and
even 13B dense counterparts. Qwen3-30B-A3B (3B active) achieves 78.8% on MMLU, surpassing
even 27–34B dense models, highlighting the effectiveness of MoE+RoMA.

MMLU Hella-
Swag ARC-C ARC-E PIQA Wino-

Grande BoolQ GSM8K

∼1B active parameters

Llama3.2-1B 27.4 57.9 32.1 53.9 72.4 57.4 63.7 39.4
OLMo-1B 24.1 61.8 29.6 55.7 75.6 56.8 64.2 28.5
OLMoE-7B-A1B 57.8 77.9 51.3 79.8 80.7 72.2 75.4 45.5

∼3B active parameters

Gemma2-3B 43.7 66.3 58.4 75.2 71.8 64.5 73.1 41.4
DeepSeekMoE-16B-A3B 46.2 78.0 50.3 73.8 79.9 70.1 72.3 62.2
Qwen3-30B-A3B 74.2 68.5 56.8 84.3 78.5 65.2 81.3 83.4

∼7-8B active parameters

Qwen2-7B 53.4 74.9 45.8 69.7 77.2 68.1 84.8 79.9
Mistral-7B 59.6 81.0 53.8 79.6 82.2 74.0 68.1 37.9
Llama3.1-8B 57.7 77.9 48.7 80.8 81.4 73.5 81.9 49.6

∼13-14B active parameters

Llama2-13B 53.8 78.6 50.1 74.5 79.1 70.1 75.7 35.2
Vicuna-13B 51.3 76.2 47.4 72.8 78.0 68.2 71.5 32.2
Qwen1.5-14B 66.7 81.5 58.0 85.3 82.1 76.9 81.3 58.4

∼27-34B active parameters

Gemma2-27B 75.2 86.4 71.4 88.9 83.2 79.0 84.5 61.3
Yi-34B 73.5 83.1 58.2 82.6 82.6 78.9 83.1 63.5
Llama2-34B 62.6 79.4 54.5 77.5 81.9 76.0 78.1 42.2

RoMA (Ours)

DeepSeekMoE-16B-A3B 56.8 87.9 61.4 81.5 85.2 76.8 80.6 67.4
OLMoE-7B-A1B 69.0 86.7 67.2 88.0 85.8 81.8 81.7 49.4
Qwen3-30B-A3B 78.8 74.8 65.5 88.6 83.1 73.8 85.1 86.3

Base F1 M1 L1
F1M

1
F1L

1
M1L

1 F2 M2 L2
F2M

3
F2L

3
M2L

3 F5 M5

L5 (
Ours

)
All1

6
65
67
69
71
73
75
77

Av
g

A
cc

ur
ac

y
(%

)

67.6
69.1 68.4

69.7 70.2
71.4 70.8 70.6 69.9

71.8 72.1 72.6 72.3
73.8 72.9

76.2
75.1Base

1 Layer
2 Layers
5 Layers

All Layers
Ours

Figure 6: Applying RoMA at different layers (F: early layers, M: middle layers, L: late layers).
Fine-tuning the routers in the last five layers (L5, RoMA) achieves the best performance.

highlight that careful neighborhood design is crucial for effective manifold alignment, and that our
chosen k=3 strategy offers the most reliable improvement.

Training Set Size Figure 9 examines how the size of the training set used for RoMA affects
performance. Starting from the baseline accuracy of 67.6%, even using only 10% of the training
data yields a noticeable gain (68.5%). Performance improves steadily as more data is available,
reaching 70.8% at 30% and 73.6% at 50%. With 70% of the data, accuracy rises further to 75.0%,
and using the full dataset achieves the best performance of 76.2%. These results demonstrate that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Base First3 Middle3 Last3 First1 Middle1 Last1
65

70

75

Av
g

A
cc

ur
ac

y
(%

)

67.6

70.1
68.7

74.5

71.4
69.2

76.2
Baseline
3 Tokens
1 Token
Ours

Figure 7: Applying RoMA to routing weights of
tokens at different positions. Regularizing the
Last1 token’s routing weights performs the best.

Base Rand =0.3 =0.5 =0.7 k=1 k=3 k=5
65

70

75

Av
g

A
cc

ur
ac

y
(%

)

67.6 67.8
68.9

74.1
72.5 72.3

76.2
74.9Baseline

-neighbor
k-neighbor
Ours

Figure 8: Comparing neighbor selection strategies
in RoMA. Rand—random neighbors. k-NN with
k = 3 achieves the best performance.

Base 10% 30% 50% 70% 100%
65

70

75

Av
g

A
cc

ur
ac

y
(%

)

67.6 68.5
70.8

73.6
75.0

76.2
Baseline
Set Size
Ours

Figure 9: Comparing different training set sizes
for RoMA on OLMoE. While the full training set
(100%) yields the best performance, 30% suffices
to achieve substantial gains over the baselines.

Base L1 L2 Entropy Manifold
65

70

75

Av
g

A
cc

ur
ac

y
(%

)

67.6 68.2

71.5 70.7

76.2
Baseline
Regularization
Ours

Figure 10: Comparing different regularization
methods with RoMA. RoMA’s manifold regular-
ization achieves the best performance.

RoMA benefits consistently from additional training data, but also that substantial improvements can
already be obtained with a relatively small fraction of the dataset, highlighting its data efficiency.

Regularization Methods Figure 10 compares different regularization strategies applied to the router.
Standard techniques such as L1 and L2 penalties yield only modest improvements over the baseline
(68.2% and 71.5%, respectively), while entropy regularization reaches a similar level (70.7%).
In contrast, our proposed manifold regularization achieves the best result of 76.2%, substantially
outperforming all alternatives. This demonstrates that aligning routing weights in the task embedding
space provides a more effective inductive bias than generic sparsity or entropy-based constraints,
highlighting the unique advantage of RoMA’s manifold perspective.

Embedding Models We further investigate the sensitivity of RoMA to the choice of embedding
models. We evaluate RoMA using diverse embedding models ranging from 22M to 7.8B parameters
(including all-MiniLM, BGE, and Qwen-embedding). As detailed in Appendix A.7, RoMA achieves
consistent accuracy improvements (+3.6% ∼ +8.6%) across all tested models. Notably, even a
lightweight embedding model (22M) yields substantial gains, confirming that RoMA is robust to the
embedding quality and does not heavily rely on specific large-scale embedding models.

6 CONCLUSIONS

Our work introduces RoMA, a lightweight router post-training method for sparse Mixture-of-Experts
LLMs. By aligning routing weights with the underlying task embedding manifold through manifold
regualarization, RoMA addresses the fundamental misalignment between task understanding and
expert utilization in MoE models. Our approach requires updating only router parameters while
keeping experts frozen, yet consistently improves accuracy across diverse benchmarks by 7–15%
without increasing inference cost. Extensive experiments demonstrate that RoMA enables small
active-parameter MoEs to rival or even surpass much larger dense models, highlighting both the
efficiency and effectiveness of RoMA. Beyond performance gains, our findings underscore the
importance of geometric alignment between task representation and expert selection, offering new
insights for advancing routing strategies in future MoE architectures.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All experiments in this paper are con-
ducted on publicly available datasets, and detailed descriptions of model architectures, training data

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

composition and experimental setups are provided in the main text and Appendix. To further facilitate
reproduction, we include the implementation of our proposed method RoMA in the Supplementary
Materials.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, et al. Vicuna: An open-source chatbot impressing gpt-4 with
90% chatgpt quality. Blog post, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. In arXiv preprint arXiv:2110.14168,
2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024a.

Wenxuan Dai et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models. arXiv preprint arXiv:2401.06066, 2024b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Ali Emami, Paul Trichelair, Adam Trischler, Kaheer Suleman, Hannes Schulz, and Jackie Chi Kit
Cheung. The knowref coreference corpus: Removing gender and number cues for difficult
pronominal anaphora resolution. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Dirk Groeneveld, Kyle Lo, et al. Olmo: Accelerating the science of language models. arXiv preprint
arXiv:2402.00838, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations (ICLR), 2021.

Albert Jiang et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2018.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xin Li and Anand Sarwate. Unraveling the localized latents: Learning stratified manifold structures
in llm embedding space with sparse mixture-of-experts. arXiv preprint arXiv:2502.13577, 2025.

Zhongyang Li, Ziyue Li, and Tianyi Zhou. C3po: Critical-layer, core-expert, collaborative pathway
optimization for test-time expert re-mixing. arXiv preprint arXiv:2504.07964, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2018.

Nay Myat Min, Long H Pham, Yige Li, and Jun Sun. Crow: Eliminating backdoors from large
language models via internal consistency regularization. arXiv preprint arXiv:2411.12768, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

Ashwinee Panda, Vatsal Baherwani, Zain Sarwar, Benjamin Therien, Supriyo Chakraborty, and Tom
Goldstein. Dense backpropagation improves training for sparse mixture-of-experts. arXiv preprint
arXiv:2504.12463, 2025.

Michael Robinson, Sourya Dey, and Tony Chiang. Token embeddings violate the manifold hypothesis.
arXiv preprint arXiv:2504.01002, 2025.

William Rudman and Carsten Eickhoff. Stable anisotropic regularization. arXiv preprint
arXiv:2305.19358, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL), 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024a.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024b.

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Jason Wei et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. arXiv preprint arXiv:2206.04615, 2022.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text (W-NUT), 2017.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. In Findings of the Association for
Computational Linguistics: ACL 2022, pp. 877–890, 2022.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPARISON BETWEEN ROMA AND BASELINES ON DEEPSEEKMOE-16B-A3B AND
QWEN3-30B-A3B

ARC-C

HellaSwag

MMLU

GSM-8K

BoolQ

WinoGrande

PIQA

ARC-E 87.9

61.4

81.5

85.2

76.8

80.6

67.4

56.8

50.3
73.8 78.0

79.9 46.2

70.1

62.272.3

Gemma2-3B Mistral-7B Vicuna-13B Llama2-34B OLMoE-7B-A1B OLMoE-7B-A1B + RoMA RoMA Improvement

ARC-C

HellaSwag

MMLU

GSM-8K

BoolQ

WinoGrande

PIQA

ARC-E

74.8

65.5

88.6

83.1

73.8

85.1

79.5

78.8

56.8
84.3

68.5

78.5
74.2

65.2

74.0
81.3

(a) DeepSeekMoE-16B-A3B (b) Qwen3-30B-A3B

Figure 11: (a): Radar figure of DeepSeekMoE-16B-A3B, (b) Radar figure of Qwen3-30B-A3B.
RoMA consistently improves model’s performance on multiple benchmarks.

A.2 ACCURACY AND COST OF DEEPSEEKMOE-16B-A3B AND QWEN3-30B-A3B

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E
87.9

61.4

81.5

85.2

76.8

80.6

68.5

56.8

61.6

80.7 85.7

85.8 55.4

77.5
67.4

78.2

BoolQ

78.0

46.2

62.272.370.1

79.9

73.8
50.3

DeepSeekMoE Base DeepSeekMoE + C3PO DeepSeekMoE + RoMA

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E
39.2

47.5

54.2

41.8

49.4

37.8

40.3

44.1

BoolQ

8.3

6.4

5.9
4.7

7.3

5.5

7.8

6.8
9.2

6.2

7.5

5.4
6.7

7.0

5.0
5.3

(a) Accuracy (b) Inference Cost

Figure 12: (a) Accuracy: RoMA achieves similar accuracy improvement as C3PO on DeepSeekMoE-
16B-A3B. (b) Inference cost (in FLOPs ×1011): RoMA maintains nearly the same efficiency as the
base model, while C3PO requires test-time optimization and induces 6–7× more FLOPs.

A.3 QUANTITATIVE ALIGNMENT ANALYSIS

To supplement the UMAP visualizations in Figure 3, we conduct quantitative alignment analyses
on ARC-C and MMLU benchmarks. We report three metrics: (1) Subspace Similarity (CKA) to

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E 74.8

63.5

88.6

83.1

73.8

85.1

86.3

78.8

63.4

88.1 74.1

81.7 77.9

71.9 86.0

BoolQ

68.5

74.2

83.4
81.3

65.2

78.5

84.3
56.8

QwenMoE Base QwenMoE+ C3PO QwenMoE + RoMA

ARC-C

HellaSwag

MMLU

GSM-8KWinoGrande

PIQA

ARC-E
45.3

48.7

58.8

44.1

53.6

40.2

41.8

47.2

BoolQ

8.9

7.7

6.2
5.0

7.7

6.0

8.5

7.5
10.1

6.8

8.9
5.9

7.3

7.9

5.9

6.2

(a) Accuracy (b) Inference Cost

85.4

Figure 13: (a) Accuracy: RoMA achieves similar accuracy improvement as C3PO on Qwen3-30B-
A3B. (b) Inference cost (in FLOPs ×1011): RoMA maintains nearly the same efficiency as the base
model, while C3PO requires test-time optimization and induces 6–7× more FLOPs.

measure the similarity between routing-weight subspaces and task embeddings; (2) k-NN Neighbor
Consistency (k = 5) to measure how well routing decisions preserve semantic neighborhoods; and
(3) Trustworthiness Score (k = 10) to evaluate local structure preservation.

Table 3: Quantitative alignment metrics before and after RoMA. All metrics show significant
improvement, quantitatively confirming the manifold alignment.

CKA Similarity (↑) k-NN Consistency (↑) Trustworthiness (↑)

Dataset Base RoMA Base RoMA Base RoMA

ARC-C 0.18 0.47 24.3% 51.7% 0.53 0.76
MMLU 0.21 0.52 26.8% 54.2% 0.56 0.79

A.4 COMPARISON WITH PEFT METHODS

We compare RoMA with representative PEFT baselines (LoRA, DoRA, MoLE) applied to the router
parameters. The results are averaged over 8 benchmarks. As shown in Table 4, RoMA achieves
superior performance without introducing any new parameters during inference.

Table 4: Comparison with PEFT methods on OLMoE-7B-A1B (Last 5 Layers). RoMA outperforms
PEFT variants with fewer trainable parameters and 0 new parameters.

Method Rank Trainable Params New Params Avg. Acc (%) ∆ Acc

Baseline – – – 67.6 –
LoRA 16 331K 331K 71.2 +3.6
DoRA 16 334K 334K 71.6 +4.0
MoLE (3×LoRA) 16 1.00M 1.00M 72.5 +4.9

RoMA (Ours) – 658K 0 76.2 +8.6

A.5 TRAINING COST ANALYSIS

We provide a breakdown of the training cost for RoMA on OLMoE-7B-A1B (49K samples). The
training process consists of task embedding computation, k-NN search, and router fine-tuning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: FLOPs breakdown for RoMA training. The k-NN search cost is negligible.

Component FLOPs (×1015) Share

Task Embedding (Pre-computed) 3.8 3.0%
k-NN Search (FAISS) 0.002 < 0.01%
Router Fine-tuning 122 97.0%

Total 125.8 100%

As shown in Table 5, the overhead from k-NN search is negligible (< 0.01%) thanks to efficient
approximate nearest neighbor search (FAISS). The task embeddings are computed once and reused.

A.6 BIAS MITIGATION WITH CURRICULUM LEARNING

To address the concern that imitating only ”successful neighbors” might introduce confirmation bias,
we explored a curriculum learning strategy. We tested a 3-stage curriculum: (1) Early stage: include
neighbors from both correct and incorrect predictions (top-30% similarity); (2) Mid stage: top-50%
similarity mixed; (3) Late stage: strict filter (only correct predictions).

The curriculum strategy yields a slight improvement (76.4%) over the strict filter (76.2%), while
an always-soft filter degrades performance (74.1%). This suggests that while a strict filter is robust,
relaxing it early in training can provide marginal benefits. For simplicity and robustness, the main
results in the paper use the strict filter.

A.7 ROBUSTNESS ACROSS EMBEDDING MODELS

We evaluated RoMA on OLMoE-7B-A1B using various embedding models to assess its sensitivity.
The models include all-MiniLM-L6-v2 (22M), all-mpnet-base-v2 (110M), Qwen3-0.6B-embedding
(0.6B), bge-multilingual-gemma2 (2.6B), gte-Qwen2-7B-instruct (7B), and NV-Embed-v2 (7.8B).

Table 6: Performance of RoMA with different embedding models on OLMoE-7B-A1B. RoMA brings
consistent improvements across varying embedding model sizes.

Embedding Model Size Avg. Acc (%) ∆ Acc

Baseline (OLMoE) – 67.6 –
all-MiniLM-L6-v2 22M 71.2 +3.6
all-mpnet-base-v2 110M 72.5 +4.9
Qwen3-0.6B-embedding 0.6B 75.9 +8.3
bge-multilingual-gemma2 2.6B 73.4 +5.8
gte-Qwen2-7B-instruct 7B 75.1 +7.5
NV-Embed-v2 (Ours) 7.8B 76.2 +8.6

As shown in Table 6, RoMA consistently improves performance regardless of the embedding model
size. Larger embedding models generally bring better alignment (higher accuracy gain), but even
compact models provide meaningful improvements.

A.8 DETAILS OF TRAINING SET

Our training set comprises 49,000 samples distributed across five task categories, ensuring compre-
hensive coverage across diverse reasoning skills:

• BIG-Bench (Wei et al., 2022): A large-scale collaborative benchmark covering a wide range
of tasks such as logical reasoning, linguistic phenomena, and commonsense knowledge. It is
designed to probe broad generalization and emergent capabilities in large language models.

• SuperGLUE (Wang et al., 2019): A benchmark suite for general natural language under-
standing, consisting of challenging tasks such as natural language inference, word sense
disambiguation, and question answering. It extends the original GLUE benchmark to push
models toward higher-level reasoning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Training Set

General Knowledge (40.8%)

Commonsense (32.7%)

Coreference (6.1%)

Science QA (12.2%)

Reading (8.2%)

BIG-Bench (10,000)
SuperGLUE (10,000)

CommonsenseQA (8,000)
SocialIQA (8,000)

OpenbookQA (3,000)
SciQ (3,000)

KnowRef (3,000)

MultiRC (4,000)

Figure 14: Training Set by Task

Benchmarks Size

MMLU 14,042

HellaSwag 10,042
PIQA 1,838

ARC-C 1,172
ARC-E 2,376

WinoGrande 1,267

BoolQ 3,227

GSM8k 1,000

Figure 15: Overview of evaluation bench-
marks we use for router post-training.
Benchmarks are reserved strictly for eval-
uation.

• CommonsenseQA (Talmor et al., 2019): A multiple-choice dataset focusing on common-
sense reasoning, requiring models to connect concepts and apply everyday knowledge.

• SocialIQA (Sap et al., 2019): A benchmark for social commonsense reasoning, where
models must infer likely intents, reactions, and motivations of people in everyday situations.

• OpenBookQA (Mihaylov et al., 2018): A science-oriented QA dataset requiring both
retrieval from a small “open book” of facts and additional commonsense reasoning.

• SciQ (Welbl et al., 2017): A dataset of science exam-style questions covering physics,
biology, and chemistry, testing factual recall and reasoning in scientific contexts.

• MultiRC (Khashabi et al., 2018): A reading comprehension benchmark with multi-sentence
passages and multi-answer questions, requiring deeper reasoning across long contexts.

• KnowRef (Emami et al., 2019): A coreference resolution dataset where multiple entities are
mentioned, and models must resolve ambiguous pronouns using contextual cues.

A.9 DETAILS OF BENCHMARKS

We evaluate our method on eight widely used benchmarks covering general knowledge, commonsense
reasoning, science QA, and mathematical problem-solving:

• MMLU (Hendrycks et al., 2021): A comprehensive benchmark of 57 subjects spanning
STEM, humanities, social sciences, and professional domains. It measures models’ multitask
accuracy and general world knowledge.

• HellaSwag (Zellers et al., 2019): A commonsense benchmark requiring models to select
the most plausible continuation of a given context. It emphasizes grounded reasoning about
everyday scenarios.

• PIQA (Bisk et al., 2020): A physical commonsense reasoning dataset, where models must
infer the correct solution to physical problems from everyday settings.

• ARC-Challenge (Clark et al., 2018): A benchmark of challenging grade-school science
questions requiring reasoning, knowledge retrieval, and integration across multiple facts.

• ARC-Easy (Clark et al., 2018): The easier subset of ARC focusing on factual recall and
simpler reasoning in grade-school science.

• WinoGrande (Sakaguchi et al., 2020): A large-scale benchmark for pronoun resolution and
commonsense reasoning, designed to be adversarially filtered and less susceptible to dataset
artifacts.

• BoolQ (Clark et al., 2019): A reading comprehension dataset of yes/no questions paired
with passages from Wikipedia, requiring models to integrate text understanding with factual
reasoning.

• GSM8k (Cobbe et al., 2021): A dataset of grade-school math word problems requiring
multi-step numerical reasoning. We treat GSM8k as an out-of-distribution (OOD) evaluation
since math is not included in our training set.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.10 MODEL DESCRIPTIONS

In this section, we provide additional details of the models reported in Table 2. These models cover
a broad range of active parameters (1B, 3B, 7–8B, 13–14B, 27–34B), including dense LLMs and
sparse Mixture-of-Experts (MoE) variants. All results are reported in the main text (see Table 2).

Models with ∼1B Active Parameters

• Llama3.2-1B (Dubey et al., 2024): A 1B-parameter dense model in the Llama 3.2 family.

• OLMo-1B (Groeneveld et al., 2024): Dense model from the AllenAI OLMo family.

• OLMoE-7B-A1B Muennighoff et al. (2024): A sparse MoE variant of OLMoE with 7B
total parameters and ∼1B active per token.

Models with ∼3B Active Parameters

• Gemma2-3B (Team, 2024a): Google’s Gemma2 family dense model.

• Qwen1.5-14B-A3B (Bai et al., 2023): Sparse MoE variant of Qwen1.5 with 14B total
parameters and ∼3B active per token.

• DeepSeekMoE-16B-A3B (Dai et al., 2024b): Sparse MoE model with 16B total parameters
and ∼3B active per token.

Models with ∼7–8B Active Parameters

• Qwen2-7B (Team, 2024b): Dense model from the Qwen2 family.

• Mistral-7B (Jiang et al., 2023): Dense model emphasizing efficient training and inference.

• Llama3.1-8B (Dubey et al., 2024): A dense model from the Llama 3.1 family.

Models with ∼13–14B Active Parameters

• Llama2-13B (Touvron et al., 2023): Dense model from the Llama 2 release.

• Vicuna-13B (Chiang et al., 2023): Instruction-tuned LLM based on Llama2-13B.

• Qwen1.5-14B (Bai et al., 2023): Dense version of Qwen1.5.

Models with ∼27–34B Active Parameters

• Gemma2-27B (Team, 2024a): Largest Gemma2 dense variant.

• Yi-34B (Young et al., 2024): Dense model with 34B parameters.

• Llama2-34B (Touvron et al., 2023): Large dense model from the Llama 2 family.

A.11 DETAILS OF ABLATION STUDY ON DEEPSEEKMOE

In this section, we provide a detailed ablation study of RoMA on the DeepSeekMoE model.

Layer configurations (Table 7). When applying RoMA to different numbers of layers, we find that
using a single layer or two layers provides modest gains (e.g., F1 at 68.0%, L2 at 70.6%). Increasing
to five layers yields further improvements (up to 72.4%), while applying RoMA on all layers gives
73.7%. Interestingly, restricting the method to the last five layers achieves the best result (74.7%),
surpassing even the all-layer setting, which highlights the importance of critical-layer selection.

Token positions (Table 8). We next evaluate applying RoMA to the routing weights of different
tokens. Regularizing the first or middle tokens shows only limited improvements (69.0% and 67.6%,
respectively), while the last token positions provide stronger performance. In particular, Last1
achieves the best result (74.7%), indicating that the most informative supervision signal for routing
weights lies in the final tokens.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: DeepSeekMoE average accuracy (%) across different layer configurations

Group Configuration Avg. Acc. (%)

Base Base 66.6

1 Layer
F1 68.0
M1 67.4
L1 68.6

2 Layers

F1M1 69.0
F1L1 70.2
M1L1 69.6
F2 69.4
M2 68.8
L2 70.6

5 Layers

F2M3 70.8
F2L3 71.3
M2L3 71.0
F5 72.4
M5 71.6

All Layers All16 73.7

Ours L5 (Ours) 74.7

Table 8: DeepSeekMoE average accuracy (%)
when applying RoMA on different token posi-
tions.

Group Configuration Avg. Acc. (%)

Baseline Base 66.6

3 Tokens
First3 69.0
Middle3 67.6
Last3 73.1

1 Token First1 70.2
Middle1 68.1

Ours Last1 (Ours) 74.7

Table 9: DeepSeekMoE average accuracy (%)
with different neighbor selection strategies.

Group Configuration Avg. Acc. (%)

Baseline Base 66.6
Baseline Rand 66.8

ε-neighbor
ε = 0.3 68.0
ε = 0.5 72.8
ε = 0.7 71.2

k-neighbor
k=1 71.0
k=3 (Ours) 74.7
k=5 73.4

Neighbor selection (Table 9). We compare ε-neighbor and k-neighbor strategies. Small ε (0.3)
gives a minor improvement (68.0%), while moderate ε (0.5) achieves a strong 72.8%. For k-neighbors,
increasing k improves accuracy up to k = 3 (74.7%), after which performance saturates (k = 5 at
73.4%). This suggests that a balanced neighbor selection (neither too sparse nor too dense) is crucial
for generalization.

Training set size (Table 10). We investigate different proportions of training data used for regu-
larization. Performance grows steadily with larger set sizes, from 67.5% at 10% to 73.6% at 70%.
Using the full dataset (100%) achieves the best result (74.7%), confirming that more data consistently
strengthens the alignment of routing weights.

Regularization methods (Table 11). We compare different regularization objectives. L1 and L2

losses improve the baseline to 67.2% and 70.3%, respectively, while entropy regularization achieves
69.8%. Our proposed manifold regularization significantly outperforms all alternatives, reaching
74.7%, which demonstrates the effectiveness of aligning routing weights with the manifold structure
of successful neighbors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: DeepSeekMoE average accuracy (%)
with different training set sizes.

Configuration Avg. Acc. (%)

Base 66.6
10% 67.5
30% 69.8
50% 72.2
70% 73.6
100% (Ours) 74.7

Table 11: DeepSeekMoE average accuracy (%)
with different regularization methods.

Configuration Avg. Acc. (%)

Base 66.6
L1 67.2
L2 70.3
Entropy 69.8
Manifold (Ours) 74.7

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely for grammar checking and language polishing. No
part of the research design, methodology, experimental results, or core writing was generated by
LLMs. All scientific ideas, analyses, and conclusions are entirely the work of the authors.

20

	Introduction
	Related Work
	Task-Expert Routing Manifold Misalignment
	Routing Manifold Regularization (RoMA)
	Successful Neighborhood to Imitate
	Training Objective with Manifold Regularization

	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusions
	Appendix
	Comparison between RoMA and baselines on DeepSeekMoE-16B-A3B and Qwen3-30B-A3B
	Accuracy and Cost of DeepSeekMoE-16B-A3B and Qwen3-30B-A3B
	Quantitative Alignment Analysis
	Comparison with PEFT Methods
	Training Cost Analysis
	Bias Mitigation with Curriculum Learning
	Robustness Across Embedding Models
	Details of Training Set
	Details of Benchmarks
	Model Descriptions
	Details of Ablation Study on DeepSeekMoE

