
Evaluating Step-by-step Reasoning Traces: A Survey

Anonymous ACL submission

Abstract

Step-by-step reasoning is widely used to en-001
hance the reasoning ability of large language002
models (LLMs) in complex problems. Eval-003
uating the quality of reasoning traces is cru-004
cial for understanding and improving LLM rea-005
soning. However, the evaluation criteria re-006
main highly unstandardized, leading to frag-007
mented efforts in developing metrics and meta-008
evaluation benchmarks. To address this gap,009
this survey provides a comprehensive overview010
of step-by-step reasoning evaluation, proposing011
a taxonomy of evaluation criteria with four top-012
level categories (groundedness, validity, coher-013
ence, and utility). We then categorize metrics014
based on their implementations, survey which015
metrics are used for assessing each criterion,016
and explore whether evaluator models can trans-017
fer across different criteria. Finally, we identify018
key directions for future research.019

1 Introduction020

Large language models (LLMs) have demonstrated021

remarkable capabilities in reasoning in complex022

problems, such as logic, math, and science. At the023

core of this versatility lies step-by-step reasoning024

(Wei et al., 2022b; Kojima et al., 2022), where025

the LLM generates an intermediate reasoning trace026

before presenting the final answer.027

The step-by-step reasoning ability of LLMs is of-028

ten measured in terms of answer accuracy, i.e. find-029

ing the correct answer in a problem that requires030

complex reasoning (OpenAI, 2024a; Groeneveld031

et al., 2024; DeepSeek-AI, 2025). However, an-032

swer accuracy is generally insufficient for measur-033

ing LLMs’ reasoning ability, as the correct answer034

does not imply the correctness of the preceding rea-035

soning trace (Lanham et al., 2023; Mirzadeh et al.,036

2024; Paul et al., 2024). Furthermore, the quality037

of the reasoning trace is crucial for improving the038

reasoning ability, in terms of reinforcement learn-039

ing (Lu et al., 2024; Qwen-Team, 2024; DeepSeek-040

Criteria definitions
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Figure 1: This survey aims to provide a comprehensive
view of different terminologies on criteria and metrics
designed for step-by-step reasoning evaluation.

AI, 2025) and inference-time search (Wang et al., 041

2023c; Yao et al., 2023). 042

Due to its importance, step-by-step reasoning 043

evaluation is a rapidly evolving field with numer- 044

ous new metrics and criteria actively proposed. Es- 045

tablishing the precise definition of the criterion 046

(what to evaluate) is crucial for correctly imple- 047

menting the metric (how to evaluate). However, 048

the terminologies in the field are highly unstandard- 049

ized, which has led to fragmented approaches in 050

implementing metrics and meta-evaluation bench- 051

marks. This current state motivates a systematic 052

review, which will serve as a foundation for general 053

criteria and metrics that can span diverse reasoning 054

tasks. 055

In this survey, we reorganize existing step-by- 056

step reasoning evaluation criteria defined within 057

diverse metrics and meta-evaluation benchmarks 058

into four distinct categories: factual groundedness 059

in the given information, logical validity of steps, 060

semantic coherence, and if the step contributes to 061

the correct answer (utility). Based on the proposed 062

taxonomy, we review and compare widely used 063

1



terms for criteria and metrics. Finally, we analyze064

the case of transferability, whether a single evalua-065

tor trained/optimized for one criterion can evaluate066

another, based on reported scores on three recent067

meta-evaluation benchmarks (Jacovi et al., 2024;068

Song et al., 2025; Zheng et al., 2024). Finally, we069

conclude the survey with open questions in the field070

of evaluating step-by-step reasoning.071

The key contributions of this survey are:072

• Defining the taxonomy of step-by-step evalu-073

ation criteria, and comparing it with existing074

terminologies (§3-§4).075

• Surveying existing metrics for step-by-step076

reasoning evaluation based on their implemen-077

tations, across diverse reasoning tasks and cri-078

teria (§5).079

• Analyzing transferability between criteria080

based on reported empirical results (§6).081

2 Background082

2.1 Step-by-step reasoning evaluation083

Step-by-step reasoning is where LLMs generate a084

series of intermediate natural language steps that085

lead to the final answer (Wei et al., 2022b). Each086

step-by-step reasoning consists of three parts, a087

query, a reasoning trace, and the answer (Fig-088

ure 2). Query refers to the entire input, which089

includes the question and retrieved evidence in090

fact-intensive reasoning tasks (Lewis et al., 2020).091

Upon seeing a query, the LLM autoregressively092

generates its solution as a long reasoning trace.093

Finally, a trace should output an answer, either ex-094

plicitly formatted (e.g. \boxed{15}) or implicitly095

stated (e.g. Therefore, John ate 15 apples).096

Various evaluation metrics require the reasoning097

trace to be segmented into steps. The step bound-098

ary can be determined using simple rules, e.g. sen-099

tences or double newlines (\n\n). However, the100

format of a reasoning trace is highly dependent on101

the format of the instruction tuning data, which102

might lead to inconsistent granularity of steps. As103

a solution, alternative segmentation strategies were104

proposed, including Semantic Role Labeling-based105

chunking Prasad et al. (2023) or prompting LLMs106

Zheng et al. (2024).107

Finally, metrics assess the quality of the step and108

assign a score. The details about different metrics109

are further described in Section 5. These scores110

can be used to improve answer accuracy in Best-of-111

N decoding (Cui et al., 2024; Zhang et al., 2025),112

StepQuery Step Step Answer

• Question
• Retrieved docs

(evidence)

Reasoning trace

• Explicit
• Implicit

Figure 2: Illustration of three elements of step-by-step
reasoning: query, reasoning trace (steps), and the an-
swer.

train LLMs via reinforcement learning (Wang et al., 113

2024b; Zhang et al., 2025), or guide inference-time 114

tree search (Yao et al., 2023; Yang et al., 2022). 115

2.2 Reasoning tasks 116

The concept of step-by-step reasoning was ini- 117

tially derived from factual/commonsense reason- 118

ing. These tasks include questions that can only 119

be answered by combining different information 120

from the query and performing multi-hop inference 121

(Mavi et al., 2024). Factual reasoning focuses on 122

combining facts to find the correct answer (Yang 123

et al., 2018; Talmor and Berant, 2018; Kwiatkowski 124

et al., 2019), while commonsense reasoning also 125

requires commonsense knowledge to complete the 126

inference (Clark et al., 2018; Talmor et al., 2019; 127

Geva et al., 2021; Trivedi et al., 2022). 128

Another important venue is symbolic reasoning, 129

where the reasoning process can be expressed us- 130

ing symbols (e.g. equations, logic, code) (Sprague 131

et al., 2024). This encompasses mathematical rea- 132

soning, including arithmetics, calculus, and num- 133

ber theory (Cobbe et al., 2021; Hendrycks et al., 134

2021; He et al., 2024a; Gao et al., 2024b); logical 135

reasoning, which involves performing complex se- 136

quence of deductive inference (Tafjord et al., 2021; 137

Han et al., 2024a; Saparov and He, 2023); and al- 138

gorithmic reasoning, which requires manipulating 139

strings or data structures (BIG-Bench-Team, 2023; 140

Suzgun et al., 2022; Valmeekam et al., 2023).1 141

Further details on reasoning tasks and bench- 142

marks are presented in Appendix A. 143

3 Taxonomy 144

This section aims to provide a clear taxonomy of 145

criteria for evaluating step-by-step reasoning. Ex- 146

isting criteria can be seen as falling into one of the 147

four categories, namely Groundedness, Validity, 148

1While symbolic reasoning may strictly refer to algorith-
mic reasoning (Wei et al., 2022b) depending on context, we
adopt the broader sense that includes math and logical reason-
ing.(Sprague et al., 2024).
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Query
The denominator of a fraction is 7 less 

than 3 times the numerator.
If the fraction is equivalent to 2/5,

what is the numerator?

Correct reasoning trace
Let the numerator be x.

The denominator is 3x -7.

We know that x/(3x -7) = 2/5.

Therefore, 5x = 6x -14.

Finally, we get x= 14. (Correct)

Groundedness:
Factually grounded to the query?

Coherence:
All preconditions presented in previous steps?

Let the numerator be x.

The denominator is 3x -7.

Validity:
Logically/arithmetically correct?

We know that x/(3x -7) = 2/5.

Therefore, 5x = 6x -14.

Finally, we get x=7.

Utility:
Leads to a correct final answer?

Step 1

Step 2

Step 3

Step 4

Step 5

Query
Step 3

Step 4

Step 5’

Step 1

Step 2

Step 4 Therefore, 5x=6x -14.

…fraction is equivalent to 2/5,…

The denominator is 3x -7.

We know that x/(3x -7) = 3/5.

Step 2

Step 3’

We know that x/(3x -7) = 2/5.

2/5 is 0.4.

Answer: 0.4.

Step 3

Step 4’

Step 5’

Step 4

Step 5 7.

…

Figure 3: Illustration of the proposed categories of step-by-step reasoning evaluation criteria, i.e. groundedness,
validity, coherence, and utility. The left shows an example of a query and a reasoning trace. The other four blocks
demonstrate examples that fail to suffice the respective metric. Red filled rectangles indicate the error’s location,
and the outlined boxes and arrows show the cause of the error.

Coherence, and Utility. These definitions are inde-149

pendent (aim at different objectives – Section 4.1),150

but not mutually exclusive (a step can fail to suffice151

multiple criteria at once).152

3.1 Groundedness153

Groundedness evaluates if the step is factually154

true according to the query (Lewis et al., 2020;155

Gao et al., 2024d). A step can be ungrounded to156

any part of the query, e.g. the question (Figure157

3-Groundedness) or evidence (e.g. falsely stating158

that Buddy Rich was born in Chicago, where the159

retrieved document states that he was born in New160

York).161

3.2 Validity162

Validity evaluates if a reasoning step contains no163

errors.164

The validity of a reasoning step can be defined in165

terms of entailment (Bowman et al., 2015), which is166

widely accepted in factual/commonsense reasoning.167

Under this definition, a step is considered valid168

if it can be directly entailed from previous steps169

(Tafjord et al., 2021; Dalvi et al., 2021; Saparov170

and He, 2023) or at least does not contradict them171

(Golovneva et al., 2023a; Prasad et al., 2023; Zhu172

et al., 2024b).173

The notion of validity often used in symbolic174

tasks is correctness, e.g. performing accurate cal-175

culations in math reasoning (Lightman et al., 2024;176

Jacovi et al., 2024; Zheng et al., 2024) or infer-177

ring the correct logical conclusion based on the178

provided premises (Wu et al., 2024b; Jacovi et al.,179

2024; Song et al., 2025).180

3.3 Coherence 181

Coherence measures if a reasoning step’s precon- 182

ditions are satisfied by the previous steps (Wang 183

et al., 2023a). For instance, if a trace includes the 184

reasoning step "Next, we add 42 to 16." but the 185

origin of the value 42 was never explained in the 186

previous steps, this step is considered incoherent. 187

An intuitive way to obtain an incoherent trace is 188

randomly shuffling a coherent trace (Wang et al., 189

2023a; Nguyen et al., 2024), as the premise of some 190

steps will not appear anywhere in the previous steps 191

even though it can be eventually deduced (valid). 192

Note that coherence judgment is inherently sub- 193

jective and pragmatic compared to other crite- 194

ria. For instance, seemingly trivial steps like "A 195

part of something is present in that something" in 196

WorldTree V2 (Xie et al., 2020) is annotated as 197

necessary in Dalvi et al. (2021) but not necessary 198

in Ott et al. (2023). 199

3.4 Utility 200

Utility measures whether a reasoning step con- 201

tributes to getting the correct final answer (answer 202

correctness). 203

One interpretation of utility is progress, or 204

whether the step is correctly following the ground 205

truth solution. For instance, in Game of 24 (mak- 206

ing the number 24 using 4 natural numbers and 207

basic arithmetic operations) (Yao et al., 2023), a 208

solution can be defined as a sequence of operations 209

(e.g. 5+7=12→12-6=6→6*4=24.). In this task, the 210

utility of a step (making 5 + 7 = 12 from 5 and 7) 211

can be directly assessed by checking if it is a part 212

of a correct solution. 213
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Utility can also be interpreted as value function214

(estimated reward), which is proportional to the215

probability of reaching the correct answer starting216

from the step (Hao et al., 2023; Wang et al., 2024b;217

Xie et al., 2024; Chen et al., 2023). This black-box218

interpretation of utility offers high scalability as it219

only requires the gold answer, without any human220

annotation or ground-truth solutions (Wang et al.,221

2024b; Lai et al., 2024).222

4 Comparative analysis223

4.1 Comparison between proposed categories224

Groundedness↔Validity. Groundedness focuses225

on the explicit information in the query while valid-226

ity focuses on the inference. For instance, Given an227

incorrect step Albert Einstein died in 1965 (he died228

in 1955), this step is not grounded if the query ex-229

plicitly mentions that Einstein died in 1955. Apart230

from that, if the previous steps provide the premises231

for reaching 1955, i.e. Einstein was born in 1879,232

and he died at the age of 76, the step is invalid.233

Validity↔Coherence. Existing works often234

treat coherence as a subtype of validity (Golovneva235

et al., 2023a; Zhu et al., 2024b; Kim et al., 2024b;236

Jacovi et al., 2024), as both criteria judge a step237

based on its previous steps. However, validity and238

coherence are different by definition, as validity239

focuses on the logical correctness of a step while240

coherence focuses on the pragmatic aspect of in-241

formativeness. For instance (Figure 3-Coherence),242

omitting a step (Step 3) from the correct trace will243

make the subsequent step (Step 4) incoherent, but244

Step 4 is still valid since it can be eventually de-245

duced from the query and previous steps.246

Validity↔Utility. Previous studies have contin-247

uously pointed out that validity does not necessar-248

ily lead to utility and vice versa (Lyu et al., 2023;249

Nguyen et al., 2024). One case is shortcut reason-250

ing (Schnitzler et al., 2024; Lee and Hwang, 2025),251

where LLM generates invalid Chain-of-thoughts252

but guesses the correct answer directly from the253

query. ProcessBench (Zheng et al., 2024) reports254

that invalid traces with correct answers can be eas-255

ily found in challenging problems, reaching 51.8%256

in the olympiad-level Omni-MATH (Gao et al.,257

2024b).258

4.2 Comparison to existing terminologies259

Factuality is often defined as "model’s capabil-260

ity of generating contents of factual information,261

grounded in reliable sources" (Wang et al., 2023b,262

Groundedness

Validity

Coherence

Utility

Entailment

Correctness

Progress

Value function

Factuality

Hallucination

Faithfulness

Logical consistency

Internal reasoning

Informativeness

Redundancy

Relevance

Query grounded

Evidence grounded

Figure 4: A Sankey diagram displaying the relationship
between commonly used terminologies (left) to the pro-
posed taxonomy (right).

2024c), which originates from other text generation 263

tasks such as abstractive summarization. However, 264

this definition fails to include groundedness to the 265

question, e.g. using the exact numbers provided in 266

the math problem (Zhu et al., 2024b). 267

Hallucination is most commonly defined as 268

"models either generating (1) nonsensical or (2) un- 269

faithful to the source content" (Ji et al., 2023; Baner- 270

jee et al., 2024; Huang et al., 2024), which corre- 271

sponds to (1) validity/coherence and (2) grounded- 272

ness. However, some works restrict the meaning 273

of hallucination to groundedness errors, i.e. "mod- 274

els generating description tokens that are not sup- 275

ported by the source inputs" (Xiao and Wang, 2021; 276

Akbar et al., 2024). 277

Faithfulness is also used in different contexts. 278

The most common definition for faithfulness is 279

"logical consistency between the generated text 280

and the query/previous steps" (Maynez et al., 2020; 281

Creswell and Shanahan, 2022; Huang et al., 2024), 282

which includes both groundedness (query) and va- 283

lidity (previous step). Instead, faithfulness can be 284

used as "accurately representing the model’s inter- 285

nal reasoning process" (Lyu et al., 2023; Lanham 286

et al., 2023). Under this definition, the final step 287

containing the answer is unfaithful if it is not sup- 288

ported by the previous steps, which falls under the 289

definition of coherence. 290

Informativeness is defined as "providing new 291

information that is helpful towards deriving the gen- 292

erated answer" (Golovneva et al., 2023b; Prasad 293

et al., 2023). Lack of informativeness is often de- 294

scribed as redundancy "removing the step does 295

not affect the reasoning process" (Chiang and Lee, 296

2024; Song et al., 2025; Zhou et al., 2024) or ir- 297
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relevance "unrelated to the query’s topic or task"298

(Wang et al., 2023a; Zhou et al., 2024; Jacovi et al.,299

2024). Informativeness is highly related to utility,300

as it aims to evaluate the contribution of a step to301

reaching the final answer.302

5 Metric implementations303

Metric impl. G V C U

Rule-based ▲ ▲ ▲ ▲

Uncertainty • ▲

V-information ▲ •
Cross-encoder • • ▲ ▲

PRM ▲ • ▲ •
Critic models • • • •
Generative verifiers •
LLM-as-value-function •

Table 1: Mapping between each metric implementation
type to the category commonly used. For each combina-
tion of metric and implementation, • denotes that there
are at least 3 published works, and ▲ denotes that there
are 1 or 2. The full table can be found in Appendix C.

Numerous metrics have been proposed to evalu-304

ate and quantify the quality of a reasoning trace be-305

yond the answer correctness. This section provides306

an overview of these methods, from rule-based met-307

rics to neural models.308

5.1 Rule-based matching309

For tasks where the ground truth solution can be310

expressed as a graph of entities, one can view a311

step as a directed edge between two entities. Typ-312

ical examples include knowledge graphs for fac-313

tual reasoning Nguyen et al. (2024) or computation314

graphs in arithmetic problems (Li et al., 2023). In315

this setting, groundedness corresponds to having316

the necessary entities given in the query, validity317

to predicting the relation between entities, coher-318

ence to the correct ordering of steps, and utility319

to the existence of the step in the gold reasoning320

chain (Nguyen et al., 2024; Saparov and He, 2023).321

However, this approach may not generalize well for322

tasks that do not have a straightforward graph repre-323

sentation, e.g. commonsense reasoning or complex324

math reasoning beyond arithmetic word problems.325

5.2 Intrinsic properties326

Uncertainty. Uncertainty of the model can be327

used as an intrinsic proxy about the generated con-328

tent’s quality (Xiao and Wang, 2021; Zhang et al.,329

2023b). Qiu et al. (2024) and Wu et al. (2024a) use330

token probability entropy (Figure 5(a)), defined as331

Σt∈V p(t)log(p(t)) where p is the probability dis- 332

tribution of all tokens in vocabulary V . Farquhar 333

et al. (2024) and Kossen et al. (2024) extend the ap- 334

proach by clustering semantically similar answers 335

and calculating the entropy with respect to the clus- 336

ters. Another variant of uncertainty uses confi- 337

dence, i.e. maxt∈V p(t) (Wu et al., 2024a; Wang 338

et al., 2024d). In this setting, higher confidence 339

implies that the step is more grounded/correct. 340

V-information. (Chen et al., 2023; Prasad et al., 341

2023) use Conditional V-information (CVI) (He- 342

witt et al., 2021) to evaluate reasoning traces. CVI 343

can be informally defined as the amount of informa- 344

tion the evaluation target text t adds to the model. 345

Formally, given a model g trained to predict the an- 346

swer with t (calculates g(a | q, t)) and g′ trained to 347

predict the answer a without t (calculates g′(a | q)), 348

the CVI is calculated by 349

CVI (t → a | q) = −logg′(a | q) + logg(a | q, t) 350

which is maximized when predicting the answer 351

without the target is hard (smaller g′(a | q)) but it 352

becomes easier with the target (larger g(a | q, t)) 353

(Figure 5(b)). While this definition directly corre- 354

sponds to utility (Chen et al., 2023), Prasad et al. 355

(2023) leverages CVI to evaluate validity in an en- 356

semble with cross-encoders (introduced below). 357

5.3 Neural evaluator models. 358

Cross-encoders. Cross-encoders are neural mod- 359

els that simultaneously encode two sentences using 360

a single network (Figure 5(c)). They have been 361

widely applied to solve tasks such as natural lan- 362

guage inference (Bowman et al., 2015) and fact 363

verification (Thorne et al., 2018), where one has to 364

determine if the hypothesis can be inferred from 365

the given premise. Cross-encoders trained on these 366

off-the-shelf tasks are used to evaluate a reasoning 367

step based on the query (groundedness) or previous 368

steps (validity) (Wu et al., 2024a; Zha et al., 2023; 369

Prasad et al., 2023). Instead of using an off-the- 370

shelf model, Zhu et al. (2024b) perturbs correct 371

traces with LLMs and uses the synthetic data to 372

train the cross-encoder. 373

Process reward models. While process reward 374

model (PRM) is defined as "a model that provides 375

feedback/evaluation for each step" in the broadest 376

sense, in practice, it commonly refers to an LLM 377

with a lightweight head attached to the final layer 378

and trained to predict a numeric score in a super- 379

vised manner (Lightman et al., 2024; Wang et al., 380
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(c) Cross-encoders

(a) Uncertainty

(b) Conditional -Information

(d) Process reward models (Validity)

(e) Process reward models (Utility)

(f) LLM-as-value-function Step-DPO (Lai et al., 2024)

LabelHypo.Premise
Entail……

Contradict……
Neutral……

Train

Query Current stepPrev.step

LLM

Query Step 3Step 1 Step 2

Cross-encoder
(e.g. BERT/T5)

Prob. Prob. Prob.

High uncertaintyLow uncertainty

Token prob Token prob

LLM

Query AnswerStep 1 Step 2

Prob.

LLM’

Query AnswerPrev.step Step

Prob.
Δ

We should calculate…

Then, add 1 to 10. 

Answer: 45.  

Stepwise annotation data

LLM

Query Step 3Step 1 Step 2

Score Score Score

Train

MLP MLP MLP

NLI-style data

MCTS-style value function

LLM

Query Step 3Step 1 Step 2

Score Score Score

Train

MLP MLP MLP

S1 S2’ S3’ Ans

S2 S3

S2’’ S3’’

Ans

Ans

S1 S2
S3 Ans

S3’ Ans

Pairwise preference data
Win

Lose

Train
(DPO)

Score

MLP LLM
Query Step 3Step 1 Step 2

Prob. Prob. Prob.

LLM
Query Step 3’Step 1 Step 2

Prob. Prob. Prob.

Figure 5: Illustration of six representative metric implementations. (a) and (b) use the token probabilities of the LLM
generating the trace, and (c)-(e) train a separate evaluator model. (f) trains the LLM so that the token probabilities
can be interpreted as scores.

2024b; Setlur et al., 2024). The training data can be381

categorized as (1) validity data including correct-382

ness annotations for each step (Hendrycks et al.,383

2021) (Figure 5(d)), or (2) utility data (Wang et al.,384

2024b) providing the value function obtained from385

Monte Carlo Tree Search (MCTS) and its variants386

(Figure 5(e)). We discuss the difference and trans-387

ferability between these PRMs in Section 6.3.388

Critic models (LLM-as-a-judge). LLM-as-a-389

judge (Zheng et al., 2023; Kim et al., 2024a) is a390

widely accepted paradigm for evaluate long texts.391

In reasoning trace evaluation, the term critic mod-392

els often refers to the same concept (Zheng et al.,393

2024; Lin et al., 2024). Jacovi et al. (2024); Wu394

et al. (2024d); Niu et al. (2024); Yao et al. (2023)395

showed that prompting instruction-tuned LLMs can396

effectively evaluate groundedness, validity, coher-397

ence, and utility in diverse reasoning tasks with398

Chain-of-thoughts prompting (Wei et al., 2022b).399

The specific format of evaluation can vary from400

(1) evaluating if the entire trace is correct or not,401

(2) finding the location of the first erroneous step402

given the entire trace, or (3) judging a single step’s403

correctness based on the query and previous steps.404

Generative Verifiers. This paradigm lies in the405

middle ground of PRMs and critic models, by first406

generating the evaluation rationale and then using407

a small head to predict the numerical scores con-408

ditioned on the self-generated rationales (Ankner409

et al., 2024; Zhang et al., 2024b).410

LLM-as-value-function. LLMs can be directly411

trained to align sequence probabilities (relative to412

the initial model’s probability) to the value func- 413

tion as shown in Direct Preference Optimization 414

(DPO; Rafailov et al. (2023)) (Figure 5(f)). Con- 415

sequently, LLMs trained to distinguish traces with 416

correct answers from incorrect ones by DPO can 417

directly serve as a utility evaluator (Mahan et al., 418

2024; Lai et al., 2024; Xie et al., 2024; Pang et al., 419

2024; Cui et al., 2025), where the relative sequence 420

probability is the utility score. Unlike PRMs that 421

are not fine-tuned for generation, these models re- 422

tain (and improve) the ability to generate. However, 423

these models require an additional forward pass to 424

obtain the initial model probability, doubling the 425

computation cost during the evaluation phase. 426

6 Analysis on reported meta-evaluation 427

Based on the taxonomy provided in Section 3, we 428

observe that a single evaluator model, with iden- 429

tical implementation design, model, and training 430

data/prompt, is often used to evaluate different met- 431

rics. For instance, a single cross-encoder model is 432

used to evaluate the groundedness and validity in 433

Golovneva et al. (2023b); Zhu et al. (2024b). 434

However, such transferability, i.e. an evaluator 435

tuned for one metric being able to generalize to 436

another, is not trivial because the criteria defini- 437

tions are independent. Transferability is important 438

in terms of designing metrics and meta-evaluation 439

benchmarks, as (metric) using the same model for 440

evaluating non-transferable criteria will lead to sub- 441

optimal performance, and (meta-evaluation bench- 442

mark) annotating non-transferable errors as same 443
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Figure 6: Meta-evaluation scores of the same evaluator model in two different criteria. (a) Results from REVEAL
Jacovi et al. (2024) show that validity and groundedness are not transferrable, and cross-encoders fall behind critic
models in evaluating validity. (b) PRMBench Song et al. (2025) shows that validity and coherence evaluation are
highly transferable. (c) Zhang et al. (2025) shows that utility-based PRMs often fail to evaluate validity, but the two
criteria can synergize when jointly considered.

categories might disrupt the meta-evaluation re-444

sults. Note that high correlation does not imply445

that the criteria are duplicates, as their definition446

significantly differ (Section 3).447

We investigate if there is evidence of transfer-448

ability between criteria proposed in Section 3 by449

analyzing reported empirical results in three meta-450

evaluation settings, namely REVEAL (Jacovi et al.,451

2024), PRMBench (Song et al., 2025), and Process-452

Bench + BoN decoding (Zhang et al., 2025).453

6.1 Validity-Groundedness454

REVEAL (Jacovi et al., 2024) is a meta-evaluation455

benchmark based on commonsense reasoning. It456

evaluates a cross-encoder model (Honovich et al.,457

2022) and various critic models (LLM-as-a-judge)458

(Brown et al., 2020; Wei et al., 2022a; Anil et al.,459

2023) upon reasoning traces sampled from four460

commonsense reasoning benchmarks. The results461

(Figure 6(a)) show that the correlation between the462

two scores is weak, indicating that using a single463

model for both methods can result in suboptimal464

evaluation performance.465

Notably, the cross-encoder model (Figure 6(a)466

•) achieves significant accuracy in groundedness467

but falls over 10p behind critic models in evaluat-468

ing validity. This result indicates that it might not469

be feasible to employ off-the-shelf cross-encoders470

trained on NLI tasks for validity judgments, as op-471

posed to existing works (Golovneva et al., 2023a;472

Prasad et al., 2023).473

6.2 Validity-Coherence474

PRMBench (Song et al., 2025) defines nine fine-475

grained error classes in the PRM800k dataset476

(Lightman et al., 2024) and annotates 1̃50 sam- 477

ples per class for meta-evaluation. Among the nine 478

classes, we display the correlation between Step 479

Consistency (SC; Are the two steps contradictory?) 480

representing the validity error and Prerequisite Sen- 481

sitivity (PS; Are any critical premises, assumptions, 482

or necessary conditions absent?) representing co- 483

herence. The results (Figure 6(b)) show that the 484

correlation is high in diverse PRMs and critic mod- 485

els, indicating that the abilities to evaluate validity 486

and coherence are very likely transferable. 487

6.3 Validity-Utility 488

Recent works on process reward models do not ex- 489

plicitly disambiguate between validity-based and 490

utility-based PRMs. Consequently, training the 491

model with one data (e.g. validity) and evaluat- 492

ing with another (utility) has settled as a common 493

experimental practice (Lightman et al., 2024; Ma 494

et al., 2023; Zheng et al., 2024; Song et al., 2025). 495

In this setting, we analyze results on Process- 496

Bench (Zheng et al., 2024) and Best-of-N decoding 497

results, reported by Zhang et al. (2025). Process- 498

Bench is a meta-evaluation benchmark constructed 499

from human annotations on validity. In contrast, 500

Best-of-N decoding tests the ability of an evaluator 501

to select the reasoning trace with the highest utility 502

(chance of answer correctness) out of N samples. 503

In Figure 6(c), the correlation between two crite- 504

ria is weaker than validity-coherence (R2 = 0.69). 505

Furthermore, Zhang et al. (2025)’s analyses show 506

that if only comparing validity and utility PRMs 507

trained on the same base model (Qwen-2.5-MAth- 508

7B (Yang et al., 2024), models trained on utility2 509

2Figure 6(c) Math-Shepherd, Qwen-MCh, Qwen-MCs
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achieve significantly lower performance in valid-510

ity evaluation than validity PRMs3. They show511

that filtering the training samples with high validity512

and utility scores leads to powerful PRM4. These513

results indicate that validity and utility are comple-514

mentary, and considering both yields more robust515

evaluation results than using single criterion.516

7 Future directions517

Despite rapid progress on step-by-step reasoning518

evaluation, crucial questions remain to be solved.519

Resources for evaluating reasoning in chal-520

lenging real-world reasoning tasks. Datasets for521

training and evaluating neural reasoning trace eval-522

uators are generally restrained to tasks that are ei-523

ther overly simple (e.g. popular MHQA datasets)524

or restricted in domains (e.g. olympiad-level math525

reasoning). However, there are many real-world526

reasoning tasks such as complex science questions527

(Rein et al., 2024), repository-level coding (Zhang528

et al., 2023a), medicine (Savage et al., 2024), law529

(Holzenberger and Van Durme, 2021; Kim et al.,530

2024c), and finance (Li et al., 2024b). The rea-531

soning required for these tasks is complex, requir-532

ing both groundedness to retrieved documents and533

expert-level mathematic/logical skills. Develop-534

ing step-by-step reasoning evaluators and meta-535

evaluation benchmarks for such expert-level tasks536

will significantly enhance the generalizability and537

real-world applicability of LLM reasoning.538

Evaluation of long, complex reasoning traces.539

Due to the recent attention to OpenAI o1 (Ope-540

nAI, 2024b), numerous models have been trained541

to generate a long reasoning trace that includes hes-542

itation, backtracking, and lookahead assumptions543

(OpenAI, 2024b; Zhao et al., 2024; DeepSeek-AI,544

2025; Muennighoff et al., 2025). However, exist-545

ing step-by-step evaluation reasoning metrics are546

not designed to accommodate these complex traces.547

For instance, incorrect steps followed by correct548

self-correction (e.g. Wait, this reasoning is not549

correct.) will get low validity and utility scores be-550

cause the step will lead to a contradiction and is se-551

mantically irrelevant to the final answer. While the552

necessity of trace evaluation in obtaining stronger553

long-trace models is under debate (DeepSeek-AI,554

2025), the effort to develop evaluation resources555

for such trace will lead to a better understanding of556

long-trace models’ behaviors and further improve-557

3Figure 6(c) PRM800K, Qwen-Critic
4Figure 6(c) Qwen-MCh∩Critic

ment in reasoning performance. 558

Symbol-grounded evaluation of reasoning 559

traces. Reasoning tasks often have a symbolic 560

ground truth solution. For instance, deductive rea- 561

soning tasks can be represented with formal logic, 562

and arithmetic problems can be expressed as a se- 563

ries of equations or symbolic theorems. These 564

solutions provide precise, formal ways to define 565

metrics, including validity and utility (progress). 566

However, not much work has been done to exploit 567

the parallel between reasoning traces and the under- 568

lying symbolic solution. While several rule-based 569

approaches parse reasoning traces for evaluation 570

in relatively easier reasoning tasks (Saparov and 571

He, 2023; Nguyen et al., 2024; Li et al., 2023), no 572

attempts have been made to extend this paradigm 573

to evaluate reasoning traces for first-order logic 574

reasoning (Han et al., 2024a,b) and math problems 575

formalized using theorem provers, e.g. Lean (Yang 576

et al., 2023; Gao et al., 2024c). 577

Objective metrics for coherence evaluation. 578

LLMs often omit trivial inference steps in their 579

reasoning (Saparov and He, 2023), but there is no 580

consensus about to what extent can the step be omit- 581

ted (Section 3.3). This widespread ambiguity led 582

to a deprivation of objective coherence evaluation 583

metrics. A large-scale annotation of omittable and 584

non-omittable steps will facilitate the development 585

of precise coherence evaluators and comprehen- 586

sive meta-evaluation based on human perception 587

of coherence. 588

8 Conclusion 589

This survey aims to organize the scattered termi- 590

nologies and methods for step-by-step reasoning 591

evaluation, which is crucial for understanding and 592

improving LLM’s reasoning capabilities. This sur- 593

vey provides a unified taxonomy for evaluation cri- 594

teria, a comprehensive review on existing metrics 595

and their implementation, and tackle transferability 596

between different metrics. 597

Still, there are diverse challenges left in the field 598

of evaluating step-by-step reasoning. As the rea- 599

soning trace becomes longer and more complex 600

to solve challenging problems, existing methods 601

might fail to capture the complex structure of the so- 602

lution. As the step-by-step reasoning performance 603

and trustworthiness of LLMs improve, proper and 604

careful evaluation will surely remain crucially im- 605

portant. 606
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9 Limitation607

This survey aims to provide a comprehensive view608

of step-by-step evaluation reasoning by focusing on609

criteria definition and metric implementations. In610

return, this work does not fully address the role of611

human judgments in the task, including the human612

annotation process (Lightman et al., 2024; Zheng613

et al., 2024; Song et al., 2025), human correlation614

(Zha et al., 2023; Golovneva et al., 2023a; Prasad615

et al., 2023), and inter-annotator agreement (Jacovi616

et al., 2024). Furthermore, while this work analyzes617

reported empirical results in Section 6, it does not618

perform additional experiments to compare more619

diverse metrics in a fair and comprehensive set-620

ting.621
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A Tasks 1569

This section aims to describe different reasoning 1570

tasks and datasets in more detail. 1571

A.1 Multi-hop Question Answering 1572

This section focuses on the metrics proposed for 1573

evaluating the reasoning traces for multi-hop ques- 1574

tion answering (MHQA) tasks. MHQA is often 1575

divided into two subcategories, factual reasoning 1576

and commonsense reasoning. 1577

Inference in factual MHQAs is finding the se- 1578

quence of bridging entities that leads to the final an- 1579

swer (Yang et al., 2018; Talmor and Berant, 2018; 1580

Kwiatkowski et al., 2019). For example, to solve 1581

a factual MHQA question "The Argentine PGA 1582

Championship record holder has won how many 1583

tournaments worldwide?", one must first find who 1584

(bridging entity) is the Argentine PGA champi- 1585

onship record holder and determine how many tour- 1586

naments he has won worldwide. 1587

In contrast, an inference step in commonsense 1588

MHQAs (Clark et al., 2018; Mihaylov et al., 2018; 1589

Talmor et al., 2019; Bisk et al., 2019; Geva et al., 1590

2021; Trivedi et al., 2022) can require information 1591

that is not present in the provided facts. The form 1592

of such commonsense knowledge can be diverse, 1593

ranging from well-known facts (Paris is in France.) 1594

to logical rules (If A was born after B was dead, 1595

they have never met each other). 1596

LLMs are known to achieve strong performance 1597

in challenging datasets such as ARC-Challenge and 1598

PIQA (OpenAI, 2024a; Anil et al., 2023), some- 1599

times exceeding human performance. However, de- 1600

spite the high performance, multiple studies report 1601

that even modern LLMs like GPT-4 are vulnera- 1602

ble to errors, such as failing to correctly adhere to 1603

long evidence (Zhu et al., 2024a), leveraging short- 1604

cuts (Schnitzler et al., 2024), or ignoring temporal 1605

relation between events (Li et al., 2024a). There- 1606

fore, identifying and categorizing mistakes made 1607

by LLMs can still be considered relevant tasks. 1608

A.2 Symbolic Reasoning 1609

Due to the improvement of LLMs’ reasoning ability 1610

since the discovery of Chain-of-thought prompting 1611

(Wei et al., 2022b; Kojima et al., 2022), step-by- 1612

step reasoning has proven effective in symbolic 1613

reasoning tasks5 such as mathematical reasoning, 1614

5While symbolic reasoning may strictly refer to algorith-
mic reasoning (Wei et al., 2022b), we adopt the broader sense
including math and logical reasoning that can be readily ex-
pressed in symbols (equation, logic) (Sprague et al., 2024).
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logical reasoning, and algorithmic reasoning.1615

Arithmetic reasoning, where the model has to1616

predict the correct answer from arithmetic word1617

problems, is the most recognized variant of math1618

reasoning. Popular benchmarks include MathQA1619

(Amini et al., 2019) and GSM8k (Cobbe et al.,1620

2021), which provide long, diverse natural lan-1621

guage queries. Game of 24 (Yao et al., 2023) and1622

Mathador (Kurtic et al., 2024) ask to combine given1623

numbers and arithmetic operations to generate the1624

target number, requiring thorough exploration and1625

backtracking in the exponential solution space.1626

The rapid saturation of LLMs in arith-1627

metic word problems facilitated more challeng-1628

ing mathematical reasoning benchmarks from1629

olympiad/graduate-level problems, covering fields1630

like calculus, probability and statistics, geometry,1631

number theory, and more (He et al., 2024a; Gao1632

et al., 2024b; Glazer et al., 2024; Zhang et al.,1633

2024a). Recent reasoning-focused (a.k.a. slow-1634

thinking) LLMs (OpenAI, 2024b; Qwen-Team,1635

2024; DeepSeek-AI, 2025) achieve unprecedented1636

performance in these benchmarks by generating1637

long reasoning traces with self-verification and cor-1638

rection.1639

Deductive logical reasoning (Tafjord et al.,1640

2021; Tian et al., 2021; Saparov and He, 2023;1641

Han et al., 2024a) mainly focuses on logical deduc-1642

tion, where repeatedly applying the provided rules1643

to facts will reach the correct answer. Constraint-1644

based reasoning (Zhong et al., 2021; Tyagi et al.,1645

2024) is a variant of deductive reasoning where1646

one must find the solution that suffices the pro-1647

vided initial constraints (also referred to as grid1648

puzzle). These datasets have an exponentially sized1649

solution space that significantly reduces the LLM’s1650

reasoning performance in plain Chain-of-thought1651

setting (Kang et al., 2024).1652

Finally, algorithmic (symbolic) reasoning tasks1653

include manipulating strings and data structures,1654

such as concatenating the last letters of the given1655

words (Wei et al., 2022b) or completing the in-1656

complete Dyck language. BIG-Bench-Hard (BBH;1657

Suzgun et al. (2022)) and NPHardEval (Fan et al.,1658

2024) includes 11 and 9 algorithmic reasoning1659

tasks, respectively, which is challenging for even1660

modern LLMs like GPT-4 and PaLM-540B.1661

A.3 Uncovered tasks1662

Science reasoning tasks lie between fac-1663

tual/commonsense reasoning tasks and symbolic1664

reasoning tasks, as they often require addressing1665

very complicated facts and performing precise 1666

math/logical reasoning (Rein et al., 2024; He et al., 1667

2024a). The most popular benchmark in this field, 1668

GPQA-Diamond (Rein et al., 2024), contains 546 1669

questions from physics, chemistry, and biology 1670

where human experts only get 65% of the problem 1671

correct. 1672

Programming/coding is closely related to al- 1673

gorithmic reasoning tasks. Popular benchmarks 1674

regarding programming include competitive cod- 1675

ing where one has to solve an algorithm problem 1676

given in natural language and test codes (Chen 1677

et al., 2021; Li et al., 2022), and practical coding 1678

that covers tasks of software engineers and devel- 1679

opers (Zhang et al., 2023a; Jimenez et al., 2024; 1680

Chan et al., 2024). While writing a correct program 1681

requires reasoning ability, coding differs from other 1682

reasoning tasks in various aspects including: (1) 1683

there is a strict syntax requirement for code, and (2) 1684

the result is evaluated by the execution result, not 1685

the final answer. These constraints lead to several 1686

issues when (1) segmenting the trace (code) into 1687

steps, or (2) applying metrics that require explicitly 1688

stated answers, i.e. V-information. 1689

B Resources 1690

This section enumerates useful resources contain- 1691

ing stepwise annotation. These datasets can be used 1692

to train an evaluator or perform meta-evaluation on 1693

different metrics. 1694

B.1 Factual/Commonsense reasoning 1695

For meta-evaluating metrics in fac- 1696

tual/commonsense reasoning, human annotations 1697

on LLM-generated outputs are provided by 1698

ROSCOE (Golovneva et al., 2023a), REVEAL 1699

(Jacovi et al., 2024), and MR-Ben (Zeng et al., 1700

2024b) (MMLU portion). 1701

B.2 Symbolic Reasoning 1702

Training data for validity evaluators. The most 1703

popular validity dataset used for training PRMs is 1704

PRM800k (Lightman et al., 2024), which contains 1705

800k human-anntoated stepwise labels (75k rea- 1706

soning traces) in MATH (Hendrycks et al., 2021) 1707

dataset. It classifies each step into three labels, 1708

positive, neutral, and negative, where negative de- 1709

notes a clearly incorrect step and neutral is used 1710

to defer the annotator’s uncertainty in borderline 1711

cases. Other than PRM800k, MATH-Minos (Gao 1712

et al., 2024a) provides LLM-generated validity 1713

judgments for 440k reasoning traces. 1714

18



Dataset Train Eval Base task Criteria # Trace Human

ROSCOE (Golovneva et al., 2023b) • GSM8k, DROP, eSNLI,
COSMOS-QA, SemEval-2018
Task11

(GV)U 1.0k •

REVEAL (Jacovi et al., 2024) • StrategyQA, MuSiQue, Sports,
Fermi

G(VC) 3.4k •

PRM800k (Lightman et al., 2024) • • MATH V 75k •
MATH-Minos (Gao et al., 2024a) • GSM8k, MATH V 440k ×
SCDPO (Lu et al., 2024) • GSM8k, MATH U 30k ×
MR-GSM8k (Zeng et al., 2024a) • GSM8k V 3.0k •
MR-Ben (Zeng et al., 2024b) • MMLU (science), LogiQA,

MHPP (coding)
V 6.0k •

MR-MATH (Xia et al., 2025) • MATH V 0.1k •
BIG-Bench-Mistake (Tyen et al.,
2024)

• BIG-Bench (algorithmic) (VC)U 2.2k •

ProcessBench (Zheng et al., 2024) • GSM8k, MATH, Olympiad-
Bench, Omni-MATH

V 3.4k •

PRMBench (Song et al., 2025) • MATH VCU 6.2k ▲

Math-Shepherd (Wang et al., 2024b) • GSM8k, MATH U 440k ×

Table 2: List of PRM training data and meta-evaluation benchmarks with step-wise annotation. Train/Eval columns
denote if the dataset is used for training or meta-evaluation. Base task indicates what tasks are used to sample
the reasoning trace. Criteria column shows the criteria used to annotate the data classified according to Section
3, where GVCU stands for groundedness, validity, coherence, and utility, respectively. Parentheses indicate that the
criteria group is not explicitly distinguished in the labels. Human column indicates human annotation, where
• ▲ × denotes full human annotation, automatic annotation with human verification, and no human intervention,
respectively.

Meta-evaluating validity evaluators. There are1715

multiple validity meta-evaluation benchmarks that1716

incorporate human evaluation. PRM800K (Light-1717

man et al., 2024), MR-GSM8k (Zeng et al., 2024a),1718

MR-Ben (Zeng et al., 2024b), MR-MATH (Xia1719

et al., 2025), BIG-Bench-Mistake (Tyen et al.,1720

2024), ProcessBench (Zheng et al., 2024), and1721

PRMBench (Song et al., 2025). PRM800k, BIG-1722

Bench-Mistake, and PRMBench formulate the task1723

as stepwise classification, where one has to evalu-1724

ate each step logically correct or not. In contrast,1725

ProcessBench and MR-* series are set to identify1726

the index of the first erroneous step in the reasoning1727

trace.1728

Training data for utility evaluators. Training1729

data for utility evaluators. The most popular op-1730

tion is Math-Shepherd (Wang et al., 2024b), which1731

includes 445k reasoning traces with labels assigned1732

by MCTS. A step’s label is positive if any of the1733

N = 8 rollouts starting from the step leads to a1734

correct answer, and negative otherwise. Also, Step-1735

Controlled DPO (Lu et al., 2024) provides a large1736

set of correct and incorrect reasoning traces, where1737

incorrect ones are obtained by slowly increasing1738

the LLM’s temperature.1739

Meta-evaluating utility evaluators. The stan-1740

dard approach for utility meta-evaluation in sym-1741

bolic reasoning is applying Best-of-N (BoN) decod-1742

ing on challenging math reasoning datasets (Wang 1743

et al., 2024b; Cui et al., 2024; Zhang et al., 2025). 1744

In this setting the evaluator should choose the best 1745

trace among N sampled candidates, and the answer 1746

accuracy is determined from the selected one. A 1747

slight variant, weighted voting (Yuan et al., 2024a), 1748

decides the final answer based on the sum of eval- 1749

uation scores instead of choosing the one with the 1750

highest score. In both settings, the upper bound 1751

of utility evaluators’ performance is pass@N score, 1752

which counts when at least one from N traces has 1753

a correct answer. 1754

C Metrics 1755
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Criterion Implementation Works

Groundedness Rule-based PrOntoQA† (Saparov and He, 2023), Nguyen et al. (2024)
Uncertainty SynCheck (Wu et al., 2024a), Qiu et al. (2024), Zhang et al. (2023c),

Semantic entropy probes (Farquhar et al., 2024; Kossen et al., 2024)
Cross-encoders ROSCOE-LI (Golovneva et al., 2023b), ReCEval (Prasad et al., 2023),

DBS (Zhu et al., 2024b), SynCheck (Wu et al., 2024a), As a baseline
(Jacovi et al., 2024)

PRMs As a baseline (Song et al., 2025)
Critic models RAGTruth (Niu et al., 2024), OCEAN (Wu et al., 2024c), F2-Verification

(Wang et al., 2024a), As a baseline (Ling et al., 2023; Jacovi et al., 2024;
Song et al., 2025, inter alia.)

Validity Rule-based PrOntoQA† (Saparov and He, 2023), Nguyen et al. (2024), DiVeRSe (Li
et al., 2023)

V-information ReCEval (Prasad et al., 2023)
Cross-encoders ROSCOE-LI (Golovneva et al., 2023a), ReCEval (Prasad et al., 2023),

DBS (Zhu et al., 2024b), As a baseline (Jacovi et al., 2024)
PRMs PRM800K (Lightman et al., 2024), MATH-Minos (Gao et al., 2024a),

ReasonEval (Xia et al., 2025), Qwen-PRM (Zhang et al., 2025), As a
baseline (Zheng et al., 2024; Zeng et al., 2024b; Xia et al., 2025; Song
et al., 2025, inter alia.)

Critic models F2-Verification (Wang et al., 2024a), As a baseline (Ling et al., 2023; Jacovi
et al., 2024; Zheng et al., 2024; Song et al., 2025, inter alia.)

Generative verifiers CLoud (Ankner et al., 2024), Generative verifier (Zhang et al., 2024b)

Coherence Rule-based PrOntoQA† (Saparov and He, 2023), Nguyen et al. (2024)
Cross-encoders ROSCOE-LI∗ (Golovneva et al., 2023a), DiVeRSe (Li et al., 2023), DBS

(Zhu et al., 2024b)
PRMs As a baseline (Wang et al., 2024b)

Critic models Verify-CoT (Ling et al., 2023), As a baseline (Song et al., 2025)

Utility Rule-based PrOntoQA† (Saparov and He, 2023), DiVeRSe (Li et al., 2023), Nguyen
et al. (2024)

Uncertainty Chain-of-probe (Wang et al., 2024d)
V-information REV (Chen et al., 2023), ReCEval (Prasad et al., 2023), As a baseline (Yao

and Barbosa, 2024)
Cross-encoders DBS (Zhu et al., 2024b)

PRMs Math-Shepherd (Wang et al., 2024b), RLHFlow-PRM (Xiong et al., 2024),
Skywork-o1-Open-PRM (o1 Team, 2024), Eurus-PRM (Yuan et al., 2024b),
Qwen-PRM (Zhang et al., 2025)

Critic models Tree-of-thoughts (Yao et al., 2023), CPO (Zhang et al., 2024c), CriticBench
(Lin et al., 2024), As a baseline (Song et al., 2025)

LLM-as-value-function GenRM (Mahan et al., 2024), Step-DPO (Lai et al., 2024), MCTS-DPO
(Xie et al., 2024), IRPO (Pang et al., 2024) Tree-PLV (He et al., 2024b),
Step-Controlled DPO (Lu et al., 2024), PRIME (Cui et al., 2025)

Table 3: Metrics for step-by-step reasoning evaluation, sorted by criteria and implementation. If a work falls into
multiple categories because it ensembles different metrics or proposes/tests multiple implementations, it appears as
duplicate entities in the table. For the construction of Table 1, we do not count works with the following marks:
∗While not explicitly claimed, the training instances might include errors about the criterion. †While the work
proposes a metric, the implementation is not transferable to other datasets.
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