Budget-Constrained Document Re-ranking with Bayesian LM-Based
Pairwise Comparisons

Anonymous ACL submission

Abstract

We propose a cost-efficient, Bayesian-inspired
approach for re-ranking documents with large
language models (LLMs) with pair-wise
comparisons under strict inference budgets.
Our method incorporates BM25 priors and
TrueSkill-based uncertainty sampling to select
the most informative pairs for LLM compari-
son. It surpasses classical sorting and binary
baselines in achieving higher nDCG@ 10 with
fewer comparisons.

1 Introduction

Large language models (LLMs) have transformed
language understanding and enabled zero-shot re-
ranking capabilities that enhance information re-
trieval (IR) pipelines (Brown et al., 2020; Zhu et al.,
2024). However, because each pairwise document
comparison relies on a costly LLM inference, it
is essential to enforce a strict budget on the num-
ber of feasible queries. This constraint is espe-
cially critical in both cloud-based and on-premises
deployments of Retrieval-Augmented Generation
(RAG), where re-ranking forms a performance-
critical component that must avoid excessive la-
tency and expense.

The high cost of LLM inferences makes tradi-
tional sorting algorithms(Qin et al., 2024; Zhuang
et al., 2024)—involving O(nlogn) or even O(n?)
comparisons—yvery costly. Relying on such algo-
rithms for Pairwise Ranking Prompting (Qin et al.,
2024) is therefore unrealistic in practical settings.
Instead, there is a need for novel strategies that se-
lectively prioritize comparisons to achieve robust
re-ranking accuracy with minimal LLM usage.

To address these challenges, we focus on a fam-
ily of partial ranking algorithms that generate
strong partial rankings on the fly. This approach en-
sures that even if the query budget is exhausted be-
fore all comparisons are completed, a high-quality
ordering of the documents is still returned. Our
specific contributions are as follows:

* We propose a Bayesian-inspired, partial sort-
ing algorithm based on Thurstone’s Case V
model (Thurstone, 1927) for pairwise docu-
ment comparisons. Dynamically choosing the
most informative pairs to execute the costly
LLM comparison on based on Herbrich et al.
(2006).

* We demonstrate that our approach achieves
improved re-ranking performance even un-
der budget constraints. Our method lever-
ages BM25 scores as priors and integrates
TrueSkill-based uncertainty sampling.

* We systematically analyze the trade-offs be-
tween batch size and total budget, showing
that simple batching strategies and efficient
partial orderings can significantly reduce in-
ference costs while maintaining accuracy.

2 Related Work

LLMs have enabled zero-shot re-ranking via the
Pairwise Ranking Process (PRP) (Qin et al., 2024),
which compares document pairs through zero-shot
prompting. However, these pairwise comparisons
are expensive, motivating cost-aware strategies.
Sorting-based PRP methods (Qin et al., 2024;
Zhuang et al., 2024) reduce comparisons, yet LLM
inference costs remain high, and traditional algo-
rithms (e.g., HeapSort) can be suboptimal under
noisy conditions. Luo et al. (2024) introduced a
round-based framework that limits inferences per
round to the number of documents, offering con-
trolled costs but lacking the flexibility to target
only the most uncertain pairs. Cost-awareness is
similarly critical in retrieval-augmented generation
(RAG) pipelines (Lewis et al., 2020; Zhu et al.,
2024).

Active sampling and Bayesian ranking methods
(e.g., ASAP (Mikhailiuk et al., 2020)) have shown
promise for efficient pairwise inference. However,

these methods have not yet been adapted to LLMs,
where each comparison is costly yet reflects a con-
sistent underlying preference despite uncertainty or
model error. We bridge this gap with a Bayesian-
inspired framework that selectively queries pairs,
integrates prior knowledge, and permits any natu-
ral number of comparisons. A full discussion is
provided in Appendix A.

3 Algorithms

Pairwise comparisons for ranking documents re-
semble tournaments for skill estimation, where sta-
tistical methods model uncertainty (Nikolenko and
Sirotkin, 2011). We adapt these methods by updat-
ing posterior distributions after each comparison to
robustly re-rank documents.

ASAP (Mikhailiuk et al., 2020) models each
item with a latent Gaussian score and employs Ap-
proximate Message Passing (AMP) for joint poste-
rior updates. Although computationally expensive
relative to LLM calls, it selects informative pairs by
computing Expected Information Gain (EIG) for
all candidates and constructing a minimum span-
ning tree (MST) to prioritize uncertain pairs while
maintaining broad coverage.

Our Bayesian-Inspired Reranking Strategy
extends Thurstone’s Case V model (Thurstone,
1927) and TrueSkill-based uncertainty sampling
(Herbrich et al., 2006) to learn pairwise preferences
under tight LLM query budgets. Each document
is assigned a latent score, seeded by a prior (e.g.,
BM25). We identify uncertain pairs (7, j) with
preference probabilities P;; ~ 0.5 and query the
LLM using randomized order to mitigate bias. The
LLM outputs are converted to z-scores ®1(p;;)
and used in a regularized least-squares update of
the latent scores. Pre-processing BM25 scores be-
fore using them as priors and post-processing fi-
nal rankings with BM25 can further boost perfor-
mance.

To manage query budgets, we batch pairs into
groups of size B, with each batch producing K x B
comparisons. Batching amortizes overhead, reuses
model states, and balances update frequency. We
further address potential positional bias by query-
ing both (4, 7) and (j,4) or by randomizing docu-
ment order.

The LLM-derived probabilities, once converted
to z-scores, are fed into a least-squares solver for
all document scores, preserving interpretability by
explicitly modeling priors, likelihoods, and pos-

teriors. Our approach is competitive with PRP-
Graph (Luo et al., 2024), outperforming it on some
datasets while underperforming on others, yet it
flexibly handles any number of pairwise compar-
isons. Full details and pseudocode are provided in
Appendix H.

4 Experimental Setup

We focus on re-ranking n BM25-retrieved docu-
ments {dy,...,d,} for a given query to identify
the top-10 relevant ones. Each inference call to
a Large Language Model (LLM) can handle B
pairwise comparisons (producing preference prob-
abilities p;;), and we measure total cost by count-
ing these calls. Following we treat each call as
a single cost unit, ignoring token usage or mone-
tary factors. We evaluate Flan-T5-L and Flan-T5-
XL (Chung et al., 2022) under different batch sizes
(B € {1,2,5}) to explore the trade-off between
update frequency and efficiency. We compare
sorting methods from Qin et al. (2024); Zhuang
et al. (2024), ASAP (Mikhailiuk et al., 2020), and
our proposed active ranking approach, analyzing
both binary preferences vs. LLM logits, uniform
vs. BM25 priors, and varying batch sizes under
different cost constraints. Experiments are con-
ducted on multiple BEIR (Thakur et al., 2021)
subsets (Webis-Touche2020, NFCorpus, Large-
Scifact, TREC-COVID, FiQA, DBpedia-Entity),
re-ranking the top 100 BM25-retrieved documents
per query. Full methodological details, including
our BM25 pre-/post-processing strategies and abla-
tion settings, are in Appendix B.

S Results
5.1 Comparison to Sorting-Based Methods

We evaluated our partial sorting Thurnstone score
algorithm against a binary version of the same al-
gorithm and also traditional sorting-based meth-
ods—specifically, Quicksort and Bubblesort, with
the adaptation of early stopping when budget is ex-
ceeded. In this experiment, we fixed the batch size
to 1 to ensure that all methods performed an iden-
tical number of pairwise comparisons. As shown
in Figure 1, our Thurnstone score algorithm consis-
tently achieves higher nDCG @ [0 scores than both
sorting-based baselines and binary adapatations of
Thurnstone. These findings indicate that our ap-
proach is able to extract more informative pairwise
comparisons under strict LLM query budgets, lead-
ing to superior re-ranking performance.

Method Inferences * Covid Touche SciFact DBPedia NFCorpus FiQA
BM25 - 59.5 44.2 67.9 31.8 32.2 23.6
HeapSort 1328 76.1 44.9 70.0 41.3 33.9 314
= BubbleSort 9900 714 454 690 416 341 297
a. Allpair 9900 77.0 44.0 70.4 43.8 34.1 33.2
g PRP-Graph-10 ~ 1000 763 486 709 449 347 332
= ThurstoneMostellerSortScore 1000 77.6 33.6 69.5 43.7 34.5 31.6
PRP-Graph-20 ~ 2000 781 49.1 704 456 353 337
ThurstoneMostellerSortScore 2000 77.8 34.0 71.6 44.8 34.2 32.7
HeapSort 1328 77.9 43.9 73.7 41.7 35.2 38.3
5 BubbleSort 9900 763 440 734 432 359 383
@ Allpair S__9%00 759 447 722 430 359 382
§ PRP-Graph-10 1000 77.0 45.2 74.2 42.8 35.6 36.9
& ThurstoneMostellerSortScore 1000 771 31.0 70.7 41.1 35.3 36.0

Table 1: Performance comparison of various methods across multiple datasets, with added comparisons column.

* Inferences are measured for sorting 100 documents per query.

0.70

0.65

—e— ThurstoneMostellerSort

ThurstoneMostellerSortScore
—e— bubblesort_with_budget
—e— quicksort_with_budget

Average NDCG@10

200 300 400 500 600 700 800 900
Comparisons

1000

Figure 1: Comparison of the Thurnstone score algorithm
with it’s binary adaptation and sorting-based methods
(Quicksort and Bubblesort) using the same number of
comparisons and a batch size of 1.

We also highlight the trend observed in the
TREC-COVID dataset (from BEIR) with the first
100 comparisons: there is a nearly linear gain in
nDCG@10. In contrast, round-based methods (e.g.,
PRP-Graph) jump in increments of 100 inferences—
missing out on the opportunity to stop earlier while
already achieving strong performance. Figure 2
illustrates this effect.

5.2 Batch Size Ablation

To further clarify the impact of batch size B on our
re-ranking performance, we conducted two comple-
mentary experiments. These experiments elucidate
the trade-off between update frequency and the ef-
fective number of comparisons, a balance already
discussed in our method description.

Fixed Total Comparisons. When the total com-
parison budget is fixed (e.g., 400 comparisons),
increasing the batch size B reduces the num-

—— beir/trec-covid

Average NDCG@10

20 40 60 80 100
Inferences

Figure 2: TREC-COVID dataset: nDCG@ 10 gains for the
first 100 LLM comparisons. Our method shows consistent
improvements with far fewer than 100 comparisons, whereas
PRP-Graph must use 100 comparisons per round.

ber of sequential update iterations (e.g., a batch
size of 10 yields only 40 iterations, versus 400
iterations for a batch size of 1). As a result,
smaller batches—allowing for more frequent up-
dates—Ilead to higher nDCG@ [0 scores. This in-
dicates that a more sequential approach performs
better. Detailed results are provided in Appendix F.

Fixed LLM Inferences. In a separate experi-
ment, we fixed the number of LLM inferences,
so that the total number of comparisons scales as
K x B (with K being the number of inferences).
Under this condition, larger batch sizes yield a
higher effective comparison budget, which trans-
lates into improved re-ranking performance. Fig-
ure 3 illustrates that, for the Thurnstone-with-score
variant, increasing the batch size leads to higher
nDCG @ [0 when the number of inferences is the
limiting factor. (See Appendix D for corresponding
results on the Thurnstone binary variant.)

°
=
S

0
14
o
&

4
o
£

/

o
o
ES

// '//.“\'7.
ST
%

Average NDCG@1.
g

/ —— ThurstoneMostellerSortScore, batch_size=1
/ ThurstoneMostellerSortScore, batch_size=2
—— ThurstoneMostellerSortScore, batch_size=5

14
o
3

100 400 800 1200 1600 3200
Inferences

Figure 3: Re-ranking performance (nDCG@10) as a
function of the number of LLM inferences for different
batch sizes for the Thurnstone-with-score variant.

Prior Regularization Tuning We performed a
sweep over the regularization parameter that bal-
ances the BM25 prior with LM-based comparisons.
For TREC DL 2019 and TREC DL 2020, our
model achieves peak performance at a moderate
regularization value (see Appendix G for the full
hyperparameter-sweep plot).

Priors relevance and pre/post-processing We
evaluated the impact of BM25 priors and our pre-
/post-processing techniques under various compar-
ison budgets. Our findings indicate that:

» Using BM25 priors notably improves perfor-
mance in budget-constrained settings (see Ap-
pendix C for detailed comparisons).

* The RankTransformPrior, which assigns each
document a score in the set { 1 — k/N | k €
{0,..., N — 1}}, outperforms the alternative
pre-processing variants.

* A simple weighted interpolation with o = 0.9
yields the best nDCG@10 scores.

Detailed tables and figures, including a full abla-
tion study (Tables 2 and 3) and comparison plots
(Figure 6), are provided in Appendix C.

5.3 Comparison to ASAP

ASAP and other iterative message-passing ap-
proaches aim to minimize the number of pairwise
comparisons by adaptively selecting the most infor-
mative ones. However, as shown in Figure 4, these
techniques require roughly 10-100 times more
computation than our proposed approach. This
significant runtime increase renders them impracti-
cal when LLM query budgets are strict or computa-
tional resources are limited. In contrast, our method
delivers competitive re-ranking performance while
operating at a fraction of the computational cost.

\

-
3

|

=
2

—e— ThurstoneMostellerSort
—e— ThurstoneMostellerSortScore

Mean Time (seconds) - log scale

/ ASAPSortScore
ASAPSortScoreTopK

200 400 600 800 1000 1200 1400 1600
Comparisons

Figure 4: Runtime (on a logarithmic scale) versus the
number of comparisons for different algorithms. The
ASAP methods (shown in blue and orange) require
around 100 times longer than our proposed approach
for any given number of comparisons.

Figure 5 further compares the ranking perfor-
mance of the ASAP methods with our approach
across various comparison budgets. Although the
ASAP variants—both the general method and the
version optimized for the top-10 items—typically
deliver higher ranking accuracy when ample com-
parisons are available, their high computational
demands limit their practical applicability.

0.80

e
S
>

e
S
Y

/

—e— ASAPSortScore
ASAPSortScoreTopK

—e— ThurstoneMostellerSort

—e— ThurstoneMostellerSortScore

Mean ndcgl0
s o o
3 8 =

o
o
&

200 400 600 800 1000 1200 1400 1600
Comparisons

Figure 5: Ranking performance versus the number
of comparisons. Both ASAP variants (the general
method and the top-10 focused version) tend to achieve
higher ranking performance than the Thurstone-based
approaches across a range of comparison budgets.

6 Conclusion

This work examined document re-ranking under
LLM inference budgets, demonstrating that partial
ranking algorithms can significantly outperform
traditional sorting methods when comparisons are
costly. Our experiments revealed three key insights:
first, that leveraging BM25 priors and uncertainty-
based pair selection leads to better nDCG@10
scores than deterministic sorting approaches; sec-
ond, that while ASAP provides superior theoretical
guarantees, its computational overhead makes it im-
practical for real-world applications; and third, that
batching strategies offer crucial trade-offs between
update frequency and total comparison count.

7 Limitations

While our methods offer practical advantages over
classical sorting-based or message-passing-based
algorithms, they do carry some limitations that
open interesting directions for future work. First,
our approach does not provide the strict theoret-
ical guarantees (e.g., exact ordering) afforded by
classical sorting or advanced active ranking frame-
works, instead offering flexible use of any budget or
partial ordering. Moreover, our experiments were
conducted with a limited set of batch sizes, and al-
though careful batching strategies were employed,
the results may not fully generalize to scenarios
requiring extremely large or dynamic batching. An
expanded investigation of more complex batching
regimes would be beneficial.

In our experiments, we observed that using the
logit of the LLM is far more informative than a bi-
nary order classification; however, our method does
not incorporate a more sophisticated mechanism
to exploit this advantage. Specifically, we do not
refine pair selection to focus on items most likely to
influence top-k results, nor do we directly optimize
for nDCG @10 to prioritize costly inferences for
the most impactful comparisons. Moreover, the ab-
sence of a probability calibration stage for the LLM
logit may cause suboptimal performance, as uncal-
ibrated logits might either over- or underestimate
the true confidence of comparisons. These factors
limit the current approach’s ability to fully leverage
the LLM’s predictive power and highlight the need
for more sophisticated selection, optimization, and
calibration strategies.

We also acknowledge that our testing was lim-
ited to a particular set of language models and
benchmark datasets. While these choices are rep-
resentative, performance in other domains or with
differently calibrated LLMs remains an open ques-
tion. Finally, like most LLM-based approaches,
our method may inherit potential biases from the
underlying model prompts and responses. Address-
ing these biases, through systematic prompt engi-
neering or post-hoc adjustments, is an important
direction for future work.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. Ad-
vances in Neural Information Processing Systems

(NeurlPS), 33:1877-1901.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Marco Dinarelli and Sophie Rosset. 2011. Models cas-
cade for tree-structured named entity detection. In
Proceedings of 5th International Joint Conference
on Natural Language Processing, pages 1269—-1278,
Chiang Mai, Thailand. Asian Federation of Natural
Language Processing.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
Trueskill™: A bayesian skill rating system. In Ad-
vances in Neural Information Processing Systems,
volume 19. MIT Press.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau
Yih, Tim Rocktidschel, Sebastian Riedel, and
Douwe Kiela. 2020. Retrieval-augmented gener-
ation for knowledge-intensive NLP tasks. CoRR,
abs/2005.11401.

Jian Luo, Xuanang Chen, Ben He, and Le Sun. 2024.
Prp-graph: Pairwise ranking prompting to llms with
graph aggregation for effective text re-ranking. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), volume
1: Long Papers, pages 57665776, Bangkok, Thai-
land. Association for Computational Linguistics.

Irina Matveeva, Chris Burges, Timo Burkard, Andy Lau-
cius, and Leon Wong. 2006. High accuracy retrieval
with multiple nested ranker. pages 437—444.

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Perez-
Ortiz, Dingcheng Yue, and Rafal Mantiuk. 2020. Ac-
tive sampling for pairwise comparisons via approx-
imate message passing and information gain maxi-
mization. Preprint, arXiv:2004.05691.

Sergey Nikolenko and Alexander Sirotkin. 2011. A new
bayesian rating system for team competitions. pages
601-608.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael

https://doi.org/10.48550/ARXIV.2210.11416
https://aclanthology.org/I11-1142/
https://aclanthology.org/I11-1142/
https://aclanthology.org/I11-1142/
https://proceedings.neurips.cc/paper_files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1148170.1148246
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691

Bendersky. 2024. Large language models are effec-
tive text rankers with pairwise ranking prompting. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1504-1518, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogenous benchmark for zero-shot evalu-
ation of information retrieval models. CoRR,
abs/2104.08663.

Louis Leon Thurstone. 1927. A law of comparative
judgement. Psychological Review, 34:278-286.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Haonan Chen, Zheng
Liu, Zhicheng Dou, and Ji-Rong Wen. 2024. Large
language models for information retrieval: A survey.
Preprint, arXiv:2308.07107.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,
and Guido Zuccon. 2024. A setwise approach for
effective and highly efficient zero-shot ranking with
large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
2024, page 38-47. ACM.

A Extended Related Work

Traditional IR & Cross-Domain Generalization.
Traditional information retrieval (IR) systems of-
ten rely on extensive labeled data and struggle with
cross-domain generalization (Matveeva et al., 2006;
Dinarelli and Rosset, 2011). In contrast, large
language models (LLMs) have enabled zero-shot
re-ranking capabilities, reducing dependence on
domain-specific labeled data.

Pairwise Ranking Process (PRP). The advent of
LLMs has led to Pairwise Ranking Process (PRP)
(Qin et al., 2024), which compares document pairs
through simple prompting, removing the need for
fine-tuning or specialized model access. This ap-
proach can achieve strong re-ranking performance
but incurs a high computational cost because each
pairwise comparison requires a separate LLM infer-
ence, often scaling quadratically with the number
of documents.

Efficient PRP and Cost Models for Re-Ranking.
To address PRP’s high computational overhead, re-
cent works have explored sorting-based approaches
(Qin et al., 2024; Zhuang et al., 2024). Although
such methods reduce the number of comparisons
in principle LLM inference—rather than the raw
number of comparisons—dominates actual run-
time costs. Moreover, classical sorting algorithms
(e.g., HeapSort, BubbleSort) assume noise-free or
minimal-noise comparisons. This assumption is of-
ten violated in LLM-based ranking, where outputs
can be inconsistent or biased.

Round-Based Re-Ranking Approaches. Luo
et al. (2024) propose a method that divides the re-
ranking process into a fixed number of rounds, each
requiring two inference per each pair of documents.
This controlled structure simplifies cost estimation
per round and can reduce excessive all-pairs com-
parisons. However, it does not allow selectively
querying only the most uncertain pairs, they rely on
matching documents with similar scores, not limit-
ing efficiency when some comparisons are already
well-resolved. In contrast, our Bayesian approach
enables adaptive decisions on both the number of
queries and which pairs to compare, leveraging
interpretable priors, likelihoods, and posteriors to
guide ranking under noisy conditions.

Retrieval-Augmented Generation (RAG)
and LLM-Based Re-Ranking. LILM-based
re-ranking is especially valuable in retrieval-

https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2308.07107
https://arxiv.org/abs/2308.07107
https://arxiv.org/abs/2308.07107
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813

augmented generation (RAG) pipelines (Lewis
et al., 2020), in which even small improvements
in selecting relevant documents can yield sub-
stantial performance gains. While current efforts
emphasize effective retrieval (Zhu et al., 2024),
computational efficiency remains underexplored.
Our cost-aware approach addresses this gap by
explicitly considering LLM querying budgets.

Active Sampling and Bayesian Ranking.
Bayesian models have been used to handle sce-
narios where the number of possible comparisons
is large, but the system is restricted to only a
subset of them. ASAP (Mikhailiuk et al., 2020)
is a prime example: it selects pairs via expected
information gain, prioritizing those that reduce
global uncertainty the most. Although ASAP
offers clear statistical advantages, we discuss
practical limitations—such as elevated local
computation overhead—in LLM-based contexts.

Beyond Sorting: Cost-Aware Statistical Rank-
ing. Our work advances this line of research by
proposing a Bayesian-inspired ranking framework
that explicitly factors in LLM inference costs. Un-
like sorting-based solutions, which rigidly follow
comparison rules that can lead to many unnecessary
queries, our method adaptively chooses which pairs
to compare, integrates BM25 priors, and employs
TrueSkill-based uncertainty sampling to maximize
each LLM inference. This approach capitalizes on
partial knowledge, yielding more robust rankings
under strict computational constraints.

B Detailed Experimental Setup

B.1 BM2S Pre-processing Variants

Following Luo et al. (2024), re-ranking methods
can benefit from converting raw BM25 outputs into
a different numerical scale before using them as
priors:

1. StandardizePrior: Subtract the mean and
divide by the standard deviation (mean 0, std.

1).

2. MinMaxScalePrior:
range [0, 1].

Scale scores to the

3. RankTransformPrior: Rank documents by
BM25 score and assign values uniformly
spaced between 1.0 and 0, ignoring raw score
magnitudes.

B.2 Post-processing Score Interpolation

To blend re-ranking outputs Sy with BM25
scores Spm2s, WE use:

Sinterp = Q- Sﬁnal + (1 - a) : Sbm25:

where « € [0, 1] controls the relative influence of
the learned scores versus BM25.

B.3 Experimental Factors
We consider:

* Binary vs. Logit Preferences: Direct binary
preferences from the LLM versus extracting
logits to represent preference strengths.

e BM25 vs. Uniform Priors: Initializing the
Thurstone model with either BM25-based
scores or uniform ones.

* Batch Size with Fixed Budget: Varying B
under a constant total number of LLM calls
(i.e., K calls each handling B comparisons).

* Batch Size with Fixed Iterations: Varying B
under a fixed K, allowing total comparisons
to grow with batch size.

B.4 Datasets and Evaluation

We use the top 100 BM25-retrieved documents
from six BEIR datasets (Thakur et al., 2021):
Webis-Touche2020, NFCorpus, Large-Scifact,
TREC-COVID, FiQA, and DBpedia-Entity. Our
goal is to re-rank these to identify the top-10 most
relevant ones. All metrics reported are averaged
across datasets and LLMs, with standard deviations
shown. Individual dataset and LLM breakdowns
are provided in the extended results.

C Detailed Results

C.1 Effect of BM2S5 Priors Across Budgets

Figure 6 compares the standard Thurnstone re-
ranker (with BM25 priors) against a variant us-
ing non-informative priors. For smaller budgets
(around 100 comparisons), the lack of informa-
tive priors degrades performance, while the perfor-
mance gap narrows as the budget increases.

Average NDCG@10
2
g

14
kS
&

—— ThurstoneMostellerSortScore
0.40 ThurstoneMostellerSortScoreNoPrior

100 400 800 1200 1600 3200
Comparisons

Figure 6: Thurnstone re-ranking with BM25 priors vs.
non-informative priors (score logits version).

C.2 Ablation Study: BM2S5 Pre-processing

Table 2 presents the nDCG@10 results across four
datasets (TREC DL 2019, TREC DL 2020, TREC-
COVID, DBpedia) using Flan-T5-L under 1000
comparisons. The RankTransformPrior shows the
highest average nDCG@10.

Pre-processing Strategy nDCG @10 (Mean)

MinMaxScalePrior 60.9
StandardizePrior 60.6
RankTransformPrior 61.7

Table 2: BM25 pre-processing strategies comparison
over four datasets.

C.3 Ablation Study: Post-processing
Interpolation

Table 3 summarizes the performance of various
interpolation methods on TREC-COVID with Flan-
T5-L. The best performance (77.5 nDCG@10) is
achieved by the simple weighted post-processor
with o = 0.9.

Post-processor nDCG@10
No Post-processing (Ours) 75.5
HarmonicMeanPostProcessor 68.6
MultiplicativePostProcessor 68.2
RankSumPostProcessor 73.5
SimpleWeightedPostProcessory,—g 5 72.8
SimpleWeightedPostProcessor,—g 7 76.3
SimpleWeightedPostProcessor,—g.9 71.5
SumScorePostProcessor 72.3
WeightedMixPostProcessor,—g.7 76.2
WeightedMixPostProcessor,—g.9 75.7

Table 3: Comparison of interpolation post-processors
on TREC-COVID.

D Thurnstone Binary Variant Results

Average NDCG@10
&
a

043 ThurstoneMostellerSort, batch_size=2

—— ThurstoneMostellerSort, batch_size=1
/ —— ThurstoneMostellerSort, batch_size=5

0.40 .

100 400 800 1200 1600 3200
Inferences

Figure 7: Re-ranking performance (nDCG@10) as a
function of the number of LLM inferences for different
batch sizes for the Thurnstone binary variant.

E Additional Figures for BM25 Priors
Comparison (Binary Variant)

—e— ThurstoneMostellerSort
ThurstoneMostellerSortNoPrior

100 400 800 1200 1600 3200
Comparisons

Figure 8: Comparison of Thurnstone-based re-ranking
with BM25 priors versus a no-prior variant for the binary
version.

F Detailed Results for Fixed Total
Comparisons in Batch inference

I —e— ThurstoneMostellerSort
0.60 ThurstoneMostellerSortScore

Average NDCG@10
o
2

0.52 \

0 25 50 75 100 125 150 175 200
Batch size (constant Budget of 400 comparisons)

Figure 9: Performance versus batch size when the total
comparison budget is held constant. Larger batches re-
duce the number of update iterations, generally resulting
in lower nDCG@ 10.

G Hyperparameter Tuning

Average NDCG@10
o
a

0.52
—e— ThurstoneMostellerSort

0.50 ThurstoneMostellerSortScore

1074 10-3 1072 10-t 10°
Model Regularization Hyperparameter (log scale)

Figure 10: nDCG @]0 performance across different val-
ues of the prior regularization parameter. Both Thurn-
stone variants show an inverted-U relationship, indi-
cating an optimal balance between BM25 priors and
LM-based comparisons. We see that the performance
of TREC DL 2019 and 2020 peaks at 10~2.

H Supplementary Algorithm Details

For completeness, we note that our method lever-
ages Thurstone’s probabilistic framework com-
bined with TrueSkill’s uncertainty sampling to
specifically target pairs with maximal uncertainty.
Unlike ASAP—which uses AMP to jointly up-
date all item posteriors via an MST built on Ex-
pected Information Gain—our algorithm processes
LLM responses by converting probabilities to z-
scores and performing regularized least-squares
updates, thereby decoupling the high cost of LLM
queries from local computations. Additionally, our
query design includes bidirectional (or randomized)
comparisons to mitigate positional bias. Although
ASAP achieves slightly higher ranking accuracy,
its computational overhead is approximately 100
times greater than that of our approach. The full
pseudocode and additional experimental implemen-
tation details are provided elsewhere in this ap-
pendix.

Algorithm 1 Thurstone-Mosteller Sorting Algo-
rithm

Require: Data set D, initial scores .Sy, comparator

function f, LLM inference budget B, regular-
ization parameter A

Ensure: Sorted data set D*

1:
2:

Set S <+ Sy
Initialize win counts W and comparison counts

C

comparisons_made < 0

4: while comparisons_made < B do

10:

11:
12:

13:
14:

15:
16:

Compute preliminary probabilities: F;; <
O (S; — S;) for all pairs (4, j)

Evaluate pairwise uncertainty: U;; <
Pij(1 = Py)

Select the pairs with highest U;; to request
from LLM in a batch

Execute the batch comparison via
f(gq, d;, d;) on the selected pairs

Update W and C' with the new wins and
total comparisons

Estimate empirical probabilities from up-
dated counts: p;; = W;;/Ci;

Compute z;; < ®1(p;j)

Formulate the regularized least-squares
system:

(ATA4 M)z = ATb,

where b encodes the z;; values and A encodes
pairwise relationships
Solve for x and update S accordingly
comparisons_made < updated count of
total comparisons
end while
return D* sorted according to the final scores

S

10

	Introduction
	Related Work
	Algorithms
	Experimental Setup
	Results
	Comparison to Sorting-Based Methods
	Batch Size Ablation
	Comparison to ASAP

	Conclusion
	Limitations
	Extended Related Work
	Detailed Experimental Setup
	BM25 Pre-processing Variants
	Post-processing Score Interpolation
	Experimental Factors
	Datasets and Evaluation

	Detailed Results
	Effect of BM25 Priors Across Budgets
	Ablation Study: BM25 Pre-processing
	Ablation Study: Post-processing Interpolation

	Thurnstone Binary Variant Results
	Additional Figures for BM25 Priors Comparison (Binary Variant)
	Detailed Results for Fixed Total Comparisons in Batch inference
	Hyperparameter Tuning
	Supplementary Algorithm Details

