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Abstract
We propose a cost-efficient, Bayesian-inspired001
approach for re-ranking documents with large002
language models (LLMs) with pair-wise003
comparisons under strict inference budgets.004
Our method incorporates BM25 priors and005
TrueSkill-based uncertainty sampling to select006
the most informative pairs for LLM compari-007
son. It surpasses classical sorting and binary008
baselines in achieving higher nDCG@10 with009
fewer comparisons.010

1 Introduction011

Large language models (LLMs) have transformed012

language understanding and enabled zero-shot re-013

ranking capabilities that enhance information re-014

trieval (IR) pipelines (Brown et al., 2020; Zhu et al.,015

2024). However, because each pairwise document016

comparison relies on a costly LLM inference, it017

is essential to enforce a strict budget on the num-018

ber of feasible queries. This constraint is espe-019

cially critical in both cloud-based and on-premises020

deployments of Retrieval-Augmented Generation021

(RAG), where re-ranking forms a performance-022

critical component that must avoid excessive la-023

tency and expense.024

The high cost of LLM inferences makes tradi-025

tional sorting algorithms(Qin et al., 2024; Zhuang026

et al., 2024)—involving O(n log n) or even O(n2)027

comparisons—very costly. Relying on such algo-028

rithms for Pairwise Ranking Prompting (Qin et al.,029

2024) is therefore unrealistic in practical settings.030

Instead, there is a need for novel strategies that se-031

lectively prioritize comparisons to achieve robust032

re-ranking accuracy with minimal LLM usage.033

To address these challenges, we focus on a fam-034

ily of partial ranking algorithms that generate035

strong partial rankings on the fly. This approach en-036

sures that even if the query budget is exhausted be-037

fore all comparisons are completed, a high-quality038

ordering of the documents is still returned. Our039

specific contributions are as follows:040

• We propose a Bayesian-inspired, partial sort- 041

ing algorithm based on Thurstone’s Case V 042

model (Thurstone, 1927) for pairwise docu- 043

ment comparisons. Dynamically choosing the 044

most informative pairs to execute the costly 045

LLM comparison on based on Herbrich et al. 046

(2006). 047

• We demonstrate that our approach achieves 048

improved re-ranking performance even un- 049

der budget constraints. Our method lever- 050

ages BM25 scores as priors and integrates 051

TrueSkill-based uncertainty sampling. 052

• We systematically analyze the trade-offs be- 053

tween batch size and total budget, showing 054

that simple batching strategies and efficient 055

partial orderings can significantly reduce in- 056

ference costs while maintaining accuracy. 057

2 Related Work 058

LLMs have enabled zero-shot re-ranking via the 059

Pairwise Ranking Process (PRP) (Qin et al., 2024), 060

which compares document pairs through zero-shot 061

prompting. However, these pairwise comparisons 062

are expensive, motivating cost-aware strategies. 063

Sorting-based PRP methods (Qin et al., 2024; 064

Zhuang et al., 2024) reduce comparisons, yet LLM 065

inference costs remain high, and traditional algo- 066

rithms (e.g., HeapSort) can be suboptimal under 067

noisy conditions. Luo et al. (2024) introduced a 068

round-based framework that limits inferences per 069

round to the number of documents, offering con- 070

trolled costs but lacking the flexibility to target 071

only the most uncertain pairs. Cost-awareness is 072

similarly critical in retrieval-augmented generation 073

(RAG) pipelines (Lewis et al., 2020; Zhu et al., 074

2024). 075

Active sampling and Bayesian ranking methods 076

(e.g., ASAP (Mikhailiuk et al., 2020)) have shown 077

promise for efficient pairwise inference. However, 078

1



these methods have not yet been adapted to LLMs,079

where each comparison is costly yet reflects a con-080

sistent underlying preference despite uncertainty or081

model error. We bridge this gap with a Bayesian-082

inspired framework that selectively queries pairs,083

integrates prior knowledge, and permits any natu-084

ral number of comparisons. A full discussion is085

provided in Appendix A.086

3 Algorithms087

Pairwise comparisons for ranking documents re-088

semble tournaments for skill estimation, where sta-089

tistical methods model uncertainty (Nikolenko and090

Sirotkin, 2011). We adapt these methods by updat-091

ing posterior distributions after each comparison to092

robustly re-rank documents.093

ASAP (Mikhailiuk et al., 2020) models each094

item with a latent Gaussian score and employs Ap-095

proximate Message Passing (AMP) for joint poste-096

rior updates. Although computationally expensive097

relative to LLM calls, it selects informative pairs by098

computing Expected Information Gain (EIG) for099

all candidates and constructing a minimum span-100

ning tree (MST) to prioritize uncertain pairs while101

maintaining broad coverage.102

Our Bayesian-Inspired Reranking Strategy103

extends Thurstone’s Case V model (Thurstone,104

1927) and TrueSkill-based uncertainty sampling105

(Herbrich et al., 2006) to learn pairwise preferences106

under tight LLM query budgets. Each document107

is assigned a latent score, seeded by a prior (e.g.,108

BM25). We identify uncertain pairs (i, j) with109

preference probabilities Pij ≈ 0.5 and query the110

LLM using randomized order to mitigate bias. The111

LLM outputs are converted to z-scores Φ−1(pij)112

and used in a regularized least-squares update of113

the latent scores. Pre-processing BM25 scores be-114

fore using them as priors and post-processing fi-115

nal rankings with BM25 can further boost perfor-116

mance.117

To manage query budgets, we batch pairs into118

groups of size B, with each batch producing K×B119

comparisons. Batching amortizes overhead, reuses120

model states, and balances update frequency. We121

further address potential positional bias by query-122

ing both (i, j) and (j, i) or by randomizing docu-123

ment order.124

The LLM-derived probabilities, once converted125

to z-scores, are fed into a least-squares solver for126

all document scores, preserving interpretability by127

explicitly modeling priors, likelihoods, and pos-128

teriors. Our approach is competitive with PRP- 129

Graph (Luo et al., 2024), outperforming it on some 130

datasets while underperforming on others, yet it 131

flexibly handles any number of pairwise compar- 132

isons. Full details and pseudocode are provided in 133

Appendix H. 134

4 Experimental Setup 135

We focus on re-ranking n BM25-retrieved docu- 136

ments {d1, . . . , dn} for a given query to identify 137

the top-10 relevant ones. Each inference call to 138

a Large Language Model (LLM) can handle B 139

pairwise comparisons (producing preference prob- 140

abilities pij), and we measure total cost by count- 141

ing these calls. Following we treat each call as 142

a single cost unit, ignoring token usage or mone- 143

tary factors. We evaluate Flan-T5-L and Flan-T5- 144

XL (Chung et al., 2022) under different batch sizes 145

(B ∈ {1, 2, 5}) to explore the trade-off between 146

update frequency and efficiency. We compare 147

sorting methods from Qin et al. (2024); Zhuang 148

et al. (2024), ASAP (Mikhailiuk et al., 2020), and 149

our proposed active ranking approach, analyzing 150

both binary preferences vs. LLM logits, uniform 151

vs. BM25 priors, and varying batch sizes under 152

different cost constraints. Experiments are con- 153

ducted on multiple BEIR (Thakur et al., 2021) 154

subsets (Webis-Touche2020, NFCorpus, Large- 155

Scifact, TREC-COVID, FiQA, DBpedia-Entity), 156

re-ranking the top 100 BM25-retrieved documents 157

per query. Full methodological details, including 158

our BM25 pre-/post-processing strategies and abla- 159

tion settings, are in Appendix B. 160

5 Results 161

5.1 Comparison to Sorting-Based Methods 162

We evaluated our partial sorting Thurnstone score 163

algorithm against a binary version of the same al- 164

gorithm and also traditional sorting-based meth- 165

ods—specifically, Quicksort and Bubblesort, with 166

the adaptation of early stopping when budget is ex- 167

ceeded. In this experiment, we fixed the batch size 168

to 1 to ensure that all methods performed an iden- 169

tical number of pairwise comparisons. As shown 170

in Figure 1, our Thurnstone score algorithm consis- 171

tently achieves higher nDCG@10 scores than both 172

sorting-based baselines and binary adapatations of 173

Thurnstone. These findings indicate that our ap- 174

proach is able to extract more informative pairwise 175

comparisons under strict LLM query budgets, lead- 176

ing to superior re-ranking performance. 177
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Method Inferences * Covid Touche SciFact DBPedia NFCorpus FiQA

BM25 – 59.5 44.2 67.9 31.8 32.2 23.6

Fl
an

-T
5-

L

HeapSort 1328 76.1 44.9 70.0 41.3 33.9 31.4
BubbleSort 9900 71.4 45.4 69.0 41.6 34.1 29.7

Allpair 9900 77.0 44.0 70.4 43.8 34.1 33.2
PRP-Graph-10 1000 76.3 48.6 70.9 44.9 34.7 33.2

ThurstoneMostellerSortScore 1000 77.6 33.6 69.5 43.7 34.5 31.6
PRP-Graph-20 2000 78.1 49.1 70.4 45.6 35.3 33.7

ThurstoneMostellerSortScore 2000 77.8 34.0 71.6 44.8 34.2 32.7

Fl
an

-T
5-

X
L

HeapSort 1328 77.9 43.9 73.7 41.7 35.2 38.3
BubbleSort 9900 76.3 44.0 73.4 43.2 35.9 38.3

Allpair 9900 75.9 44.7 72.2 43.0 35.9 38.2
PRP-Graph-10 1000 77.0 45.2 74.2 42.8 35.6 36.9

ThurstoneMostellerSortScore 1000 77.1 31.0 70.7 41.1 35.3 36.0

Table 1: Performance comparison of various methods across multiple datasets, with added comparisons column.

* Inferences are measured for sorting 100 documents per query.

Figure 1: Comparison of the Thurnstone score algorithm
with it’s binary adaptation and sorting-based methods
(Quicksort and Bubblesort) using the same number of
comparisons and a batch size of 1.

We also highlight the trend observed in the178

TREC-COVID dataset (from BEIR) with the first179

100 comparisons: there is a nearly linear gain in180

nDCG@10. In contrast, round-based methods (e.g.,181

PRP-Graph) jump in increments of 100 inferences—182

missing out on the opportunity to stop earlier while183

already achieving strong performance. Figure 2184

illustrates this effect.185

5.2 Batch Size Ablation186

To further clarify the impact of batch size B on our187

re-ranking performance, we conducted two comple-188

mentary experiments. These experiments elucidate189

the trade-off between update frequency and the ef-190

fective number of comparisons, a balance already191

discussed in our method description.192

Fixed Total Comparisons. When the total com-193

parison budget is fixed (e.g., 400 comparisons),194

increasing the batch size B reduces the num-195

Figure 2: TREC-COVID dataset: nDCG@10 gains for the
first 100 LLM comparisons. Our method shows consistent
improvements with far fewer than 100 comparisons, whereas
PRP-Graph must use 100 comparisons per round.

ber of sequential update iterations (e.g., a batch 196

size of 10 yields only 40 iterations, versus 400 197

iterations for a batch size of 1). As a result, 198

smaller batches—allowing for more frequent up- 199

dates—lead to higher nDCG@10 scores. This in- 200

dicates that a more sequential approach performs 201

better. Detailed results are provided in Appendix F. 202

Fixed LLM Inferences. In a separate experi- 203

ment, we fixed the number of LLM inferences, 204

so that the total number of comparisons scales as 205

K × B (with K being the number of inferences). 206

Under this condition, larger batch sizes yield a 207

higher effective comparison budget, which trans- 208

lates into improved re-ranking performance. Fig- 209

ure 3 illustrates that, for the Thurnstone-with-score 210

variant, increasing the batch size leads to higher 211

nDCG@10 when the number of inferences is the 212

limiting factor. (See Appendix D for corresponding 213

results on the Thurnstone binary variant.) 214
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Figure 3: Re-ranking performance (nDCG@10) as a
function of the number of LLM inferences for different
batch sizes for the Thurnstone-with-score variant.

Prior Regularization Tuning We performed a215

sweep over the regularization parameter that bal-216

ances the BM25 prior with LM-based comparisons.217

For TREC DL 2019 and TREC DL 2020, our218

model achieves peak performance at a moderate219

regularization value (see Appendix G for the full220

hyperparameter-sweep plot).221

Priors relevance and pre/post-processing We222

evaluated the impact of BM25 priors and our pre-223

/post-processing techniques under various compar-224

ison budgets. Our findings indicate that:225

• Using BM25 priors notably improves perfor-226

mance in budget-constrained settings (see Ap-227

pendix C for detailed comparisons).228

• The RankTransformPrior, which assigns each229

document a score in the set { 1− k/N | k ∈230

{0, . . . , N − 1}}, outperforms the alternative231

pre-processing variants.232

• A simple weighted interpolation with α = 0.9233

yields the best nDCG@10 scores.234

Detailed tables and figures, including a full abla-235

tion study (Tables 2 and 3) and comparison plots236

(Figure 6), are provided in Appendix C.237

5.3 Comparison to ASAP238

ASAP and other iterative message-passing ap-239

proaches aim to minimize the number of pairwise240

comparisons by adaptively selecting the most infor-241

mative ones. However, as shown in Figure 4, these242

techniques require roughly 10–100 times more243

computation than our proposed approach. This244

significant runtime increase renders them impracti-245

cal when LLM query budgets are strict or computa-246

tional resources are limited. In contrast, our method247

delivers competitive re-ranking performance while248

operating at a fraction of the computational cost.249

Figure 4: Runtime (on a logarithmic scale) versus the
number of comparisons for different algorithms. The
ASAP methods (shown in blue and orange) require
around 100 times longer than our proposed approach
for any given number of comparisons.

Figure 5 further compares the ranking perfor- 250

mance of the ASAP methods with our approach 251

across various comparison budgets. Although the 252

ASAP variants—both the general method and the 253

version optimized for the top-10 items—typically 254

deliver higher ranking accuracy when ample com- 255

parisons are available, their high computational 256

demands limit their practical applicability. 257

Figure 5: Ranking performance versus the number
of comparisons. Both ASAP variants (the general
method and the top-10 focused version) tend to achieve
higher ranking performance than the Thurstone-based
approaches across a range of comparison budgets.

6 Conclusion 258

This work examined document re-ranking under 259

LLM inference budgets, demonstrating that partial 260

ranking algorithms can significantly outperform 261

traditional sorting methods when comparisons are 262

costly. Our experiments revealed three key insights: 263

first, that leveraging BM25 priors and uncertainty- 264

based pair selection leads to better nDCG@10 265

scores than deterministic sorting approaches; sec- 266

ond, that while ASAP provides superior theoretical 267

guarantees, its computational overhead makes it im- 268

practical for real-world applications; and third, that 269

batching strategies offer crucial trade-offs between 270

update frequency and total comparison count. 271

4



7 Limitations272

While our methods offer practical advantages over273

classical sorting-based or message-passing-based274

algorithms, they do carry some limitations that275

open interesting directions for future work. First,276

our approach does not provide the strict theoret-277

ical guarantees (e.g., exact ordering) afforded by278

classical sorting or advanced active ranking frame-279

works, instead offering flexible use of any budget or280

partial ordering. Moreover, our experiments were281

conducted with a limited set of batch sizes, and al-282

though careful batching strategies were employed,283

the results may not fully generalize to scenarios284

requiring extremely large or dynamic batching. An285

expanded investigation of more complex batching286

regimes would be beneficial.287

In our experiments, we observed that using the288

logit of the LLM is far more informative than a bi-289

nary order classification; however, our method does290

not incorporate a more sophisticated mechanism291

to exploit this advantage. Specifically, we do not292

refine pair selection to focus on items most likely to293

influence top-k results, nor do we directly optimize294

for nDCG@10 to prioritize costly inferences for295

the most impactful comparisons. Moreover, the ab-296

sence of a probability calibration stage for the LLM297

logit may cause suboptimal performance, as uncal-298

ibrated logits might either over- or underestimate299

the true confidence of comparisons. These factors300

limit the current approach’s ability to fully leverage301

the LLM’s predictive power and highlight the need302

for more sophisticated selection, optimization, and303

calibration strategies.304

We also acknowledge that our testing was lim-305

ited to a particular set of language models and306

benchmark datasets. While these choices are rep-307

resentative, performance in other domains or with308

differently calibrated LLMs remains an open ques-309

tion. Finally, like most LLM-based approaches,310

our method may inherit potential biases from the311

underlying model prompts and responses. Address-312

ing these biases, through systematic prompt engi-313

neering or post-hoc adjustments, is an important314

direction for future work.315
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A Extended Related Work 404

Traditional IR & Cross-Domain Generalization. 405

Traditional information retrieval (IR) systems of- 406

ten rely on extensive labeled data and struggle with 407

cross-domain generalization (Matveeva et al., 2006; 408

Dinarelli and Rosset, 2011). In contrast, large 409

language models (LLMs) have enabled zero-shot 410

re-ranking capabilities, reducing dependence on 411

domain-specific labeled data. 412

Pairwise Ranking Process (PRP). The advent of 413

LLMs has led to Pairwise Ranking Process (PRP) 414

(Qin et al., 2024), which compares document pairs 415

through simple prompting, removing the need for 416

fine-tuning or specialized model access. This ap- 417

proach can achieve strong re-ranking performance 418

but incurs a high computational cost because each 419

pairwise comparison requires a separate LLM infer- 420

ence, often scaling quadratically with the number 421

of documents. 422

Efficient PRP and Cost Models for Re-Ranking. 423

To address PRP’s high computational overhead, re- 424

cent works have explored sorting-based approaches 425

(Qin et al., 2024; Zhuang et al., 2024). Although 426

such methods reduce the number of comparisons 427

in principle LLM inference—rather than the raw 428

number of comparisons—dominates actual run- 429

time costs. Moreover, classical sorting algorithms 430

(e.g., HeapSort, BubbleSort) assume noise-free or 431

minimal-noise comparisons. This assumption is of- 432

ten violated in LLM-based ranking, where outputs 433

can be inconsistent or biased. 434

Round-Based Re-Ranking Approaches. Luo 435

et al. (2024) propose a method that divides the re- 436

ranking process into a fixed number of rounds, each 437

requiring two inference per each pair of documents. 438

This controlled structure simplifies cost estimation 439

per round and can reduce excessive all-pairs com- 440

parisons. However, it does not allow selectively 441

querying only the most uncertain pairs, they rely on 442

matching documents with similar scores, not limit- 443

ing efficiency when some comparisons are already 444

well-resolved. In contrast, our Bayesian approach 445

enables adaptive decisions on both the number of 446

queries and which pairs to compare, leveraging 447

interpretable priors, likelihoods, and posteriors to 448

guide ranking under noisy conditions. 449

Retrieval-Augmented Generation (RAG) 450

and LLM-Based Re-Ranking. LLM-based 451

re-ranking is especially valuable in retrieval- 452
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augmented generation (RAG) pipelines (Lewis453

et al., 2020), in which even small improvements454

in selecting relevant documents can yield sub-455

stantial performance gains. While current efforts456

emphasize effective retrieval (Zhu et al., 2024),457

computational efficiency remains underexplored.458

Our cost-aware approach addresses this gap by459

explicitly considering LLM querying budgets.460

Active Sampling and Bayesian Ranking.461

Bayesian models have been used to handle sce-462

narios where the number of possible comparisons463

is large, but the system is restricted to only a464

subset of them. ASAP (Mikhailiuk et al., 2020)465

is a prime example: it selects pairs via expected466

information gain, prioritizing those that reduce467

global uncertainty the most. Although ASAP468

offers clear statistical advantages, we discuss469

practical limitations—such as elevated local470

computation overhead—in LLM-based contexts.471

Beyond Sorting: Cost-Aware Statistical Rank-472

ing. Our work advances this line of research by473

proposing a Bayesian-inspired ranking framework474

that explicitly factors in LLM inference costs. Un-475

like sorting-based solutions, which rigidly follow476

comparison rules that can lead to many unnecessary477

queries, our method adaptively chooses which pairs478

to compare, integrates BM25 priors, and employs479

TrueSkill-based uncertainty sampling to maximize480

each LLM inference. This approach capitalizes on481

partial knowledge, yielding more robust rankings482

under strict computational constraints.483

B Detailed Experimental Setup 484

B.1 BM25 Pre-processing Variants 485

Following Luo et al. (2024), re-ranking methods 486

can benefit from converting raw BM25 outputs into 487

a different numerical scale before using them as 488

priors: 489

1. StandardizePrior: Subtract the mean and 490

divide by the standard deviation (mean 0, std. 491

1). 492

2. MinMaxScalePrior: Scale scores to the 493

range [0, 1]. 494

3. RankTransformPrior: Rank documents by 495

BM25 score and assign values uniformly 496

spaced between 1.0 and 0, ignoring raw score 497

magnitudes. 498

B.2 Post-processing Score Interpolation 499

To blend re-ranking outputs Sfinal with BM25 500

scores Sbm25, we use: 501

Sinterp = α · Sfinal + (1− α) · Sbm25, 502

where α ∈ [0, 1] controls the relative influence of 503

the learned scores versus BM25. 504

B.3 Experimental Factors 505

We consider: 506

• Binary vs. Logit Preferences: Direct binary 507

preferences from the LLM versus extracting 508

logits to represent preference strengths. 509

• BM25 vs. Uniform Priors: Initializing the 510

Thurstone model with either BM25-based 511

scores or uniform ones. 512

• Batch Size with Fixed Budget: Varying B 513

under a constant total number of LLM calls 514

(i.e., K calls each handling B comparisons). 515

• Batch Size with Fixed Iterations: Varying B 516

under a fixed K, allowing total comparisons 517

to grow with batch size. 518

B.4 Datasets and Evaluation 519

We use the top 100 BM25-retrieved documents 520

from six BEIR datasets (Thakur et al., 2021): 521

Webis-Touche2020, NFCorpus, Large-Scifact, 522

TREC-COVID, FiQA, and DBpedia-Entity. Our 523

goal is to re-rank these to identify the top-10 most 524

relevant ones. All metrics reported are averaged 525

across datasets and LLMs, with standard deviations 526

shown. Individual dataset and LLM breakdowns 527

are provided in the extended results. 528
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C Detailed Results529

C.1 Effect of BM25 Priors Across Budgets530

Figure 6 compares the standard Thurnstone re-531

ranker (with BM25 priors) against a variant us-532

ing non-informative priors. For smaller budgets533

(around 100 comparisons), the lack of informa-534

tive priors degrades performance, while the perfor-535

mance gap narrows as the budget increases.536

Figure 6: Thurnstone re-ranking with BM25 priors vs.
non-informative priors (score logits version).

C.2 Ablation Study: BM25 Pre-processing537

Table 2 presents the nDCG@10 results across four538

datasets (TREC DL 2019, TREC DL 2020, TREC-539

COVID, DBpedia) using Flan-T5-L under 1000540

comparisons. The RankTransformPrior shows the541

highest average nDCG@10.542

Pre-processing Strategy nDCG@10 (Mean)

MinMaxScalePrior 60.9
StandardizePrior 60.6
RankTransformPrior 61.7

Table 2: BM25 pre-processing strategies comparison
over four datasets.

C.3 Ablation Study: Post-processing543

Interpolation544

Table 3 summarizes the performance of various545

interpolation methods on TREC-COVID with Flan-546

T5-L. The best performance (77.5 nDCG@10) is547

achieved by the simple weighted post-processor548

with α = 0.9.549

Post-processor nDCG@10

No Post-processing (Ours) 75.5
HarmonicMeanPostProcessor 68.6
MultiplicativePostProcessor 68.2
RankSumPostProcessor 73.5
SimpleWeightedPostProcessorα=0.5 72.8
SimpleWeightedPostProcessorα=0.7 76.3
SimpleWeightedPostProcessorα=0.9 77.5
SumScorePostProcessor 72.3
WeightedMixPostProcessorα=0.7 76.2
WeightedMixPostProcessorα=0.9 75.7

Table 3: Comparison of interpolation post-processors
on TREC-COVID.

D Thurnstone Binary Variant Results 550

Figure 7: Re-ranking performance (nDCG@10) as a
function of the number of LLM inferences for different
batch sizes for the Thurnstone binary variant.

E Additional Figures for BM25 Priors 551

Comparison (Binary Variant) 552

Figure 8: Comparison of Thurnstone-based re-ranking
with BM25 priors versus a no-prior variant for the binary
version.
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F Detailed Results for Fixed Total553

Comparisons in Batch inference554

Figure 9: Performance versus batch size when the total
comparison budget is held constant. Larger batches re-
duce the number of update iterations, generally resulting
in lower nDCG@10.

G Hyperparameter Tuning555

Figure 10: nDCG@10 performance across different val-
ues of the prior regularization parameter. Both Thurn-
stone variants show an inverted-U relationship, indi-
cating an optimal balance between BM25 priors and
LM-based comparisons. We see that the performance
of TREC DL 2019 and 2020 peaks at 10−2.

H Supplementary Algorithm Details 556

For completeness, we note that our method lever- 557

ages Thurstone’s probabilistic framework com- 558

bined with TrueSkill’s uncertainty sampling to 559

specifically target pairs with maximal uncertainty. 560

Unlike ASAP—which uses AMP to jointly up- 561

date all item posteriors via an MST built on Ex- 562

pected Information Gain—our algorithm processes 563

LLM responses by converting probabilities to z- 564

scores and performing regularized least-squares 565

updates, thereby decoupling the high cost of LLM 566

queries from local computations. Additionally, our 567

query design includes bidirectional (or randomized) 568

comparisons to mitigate positional bias. Although 569

ASAP achieves slightly higher ranking accuracy, 570

its computational overhead is approximately 100 571

times greater than that of our approach. The full 572

pseudocode and additional experimental implemen- 573

tation details are provided elsewhere in this ap- 574

pendix. 575
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Algorithm 1 Thurstone-Mosteller Sorting Algo-
rithm
Require: Data set D, initial scores S0, comparator

function f , LLM inference budget B, regular-
ization parameter λ

Ensure: Sorted data set D∗

1: Set S ← S0

2: Initialize win counts W and comparison counts
C

3: comparisons_made← 0
4: while comparisons_made < B do
5: Compute preliminary probabilities: Pij ←

Φ(Si − Sj) for all pairs (i, j)
6: Evaluate pairwise uncertainty: Uij ←

Pij(1− Pij)
7: Select the pairs with highest Uij to request

from LLM in a batch
8: Execute the batch comparison via

f(q, di, dj) on the selected pairs
9: Update W and C with the new wins and

total comparisons
10: Estimate empirical probabilities from up-

dated counts: pij = Wij/Cij

11: Compute zij ← Φ−1(pij)
12: Formulate the regularized least-squares

system:

(ATA+ λI)x = AT b,

where b encodes the zij values and A encodes
pairwise relationships

13: Solve for x and update S accordingly
14: comparisons_made← updated count of

total comparisons
15: end while
16: return D∗ sorted according to the final scores

S
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