Under review as a conference paper at ICLR 2026

MODE: MULTI-OBJECTIVE ADAPTIVE CORESET SE-
LECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present MODE (Multi-Objective adaptive Data Efficiency), a framework that
dynamically combines coreset selection strategies based on their evolving con-
tribution to model performance. Unlike static methods, MODE adapts selection
criteria to training phases: emphasizing class balance early, diversity during repre-
sentation learning, and uncertainty at convergence. We show that MODE achieves
(1—1/e)-approximation with O(n log n) complexity and demonstrate competitive
accuracy while providing interpretable insights into data utility evolution. Exper-
iments show MODE reduces memory requirements while providing actionable
insights about which data types matter most during different training phases.

1 INTRODUCTION

The unprecedented success of deep learning has been fueled by ever-larger datasets, yet this data-
hungry paradigm faces mounting challenges: computational costs , environmental concerns from
massive training runs, privacy constraints in sensitive domains, and the practical impossibility of
storing and processing internet-scale data. These pressures have reignited interest in a fundamen-
tal question: can we identify small, representative subsets that preserve model performance while
dramatically reducing computational requirements?

Coreset selection—the problem of finding minimal data subsets that approximate full dataset per-
formance—offers a promising solution. However, existing approaches suffer from a critical limi-
tation: they assume that data utility remains static throughout training. Methods like uncertainty
sampling Lewis & Gale|(1994), diversity maximization |Sener & Savarese| (2018)), gradient match-
ing |Killamsetty et al.| (2020), and forgetting events [Toneva et al.| (2018) each capture important
aspects of data value, but apply fixed selection criteria that cannot adapt to the evolving needs of
the learning process. This rigidity is particularly problematic given mounting evidence that different
training phases benefit from different types of data/Bengio et al.| (2009).

To this end, we propose MODE (Multi-Objective adaptive Data Efficiency), a framework that fun-
damentally reimagines coreset selection as a dynamic, multi-objective optimization problem. Rather
than committing to a single selection criterion, MODE learns to adaptively weight multiple comple-
mentary strategies based on their real-time contribution to validation performance. Our key insight is
that data utility is not static—samples that are crucial during initial training may become redundant
later, while initially uninformative examples may become critical for final refinement.

Our theoretical investigation demonstrates that MODE attains (1 — 1/e)-approximation guarantees
via submodular maximization while ensuring convergence bounds of O(1/+/%) for strategy weights.
Beyond accuracy evaluations, MODE presents several practical benefits. Firstly, its O(K - nlogn)
complexity with i = 4 strategies grows linearly with dataset size. Secondly, MODE’s single-pass
configuration removes the necessity for expensive iterative processes, making it suitable for time-
sensitive applications. Thirdly, the strategy weights learned convey reusable insights on dataset
features, helping guide future data acquisition. Lastly, MODE’s transparency supports deployment
in sectors that demand explainable decisions, where opaque selection methods are unsuitable.

Under review as a conference paper at ICLR 2026

Training Data _...Scoring Strategies Temperature Weighting Selected Coreset

D= {(xi,yi)}?=1 _,9 = {8y, Sp,Sc» Sp} — W, - G,

Training State

s =lea,8,b,v] — hy s> W,

T Performance Refinement

Figure 1: Ilustration of MODE components.

2 PROBLEM DEFINITION

Given dataset D = {(=;, y;)}?, with n samples, where 2; € X C R% and y; €), we seek coreset
C C D that minimizes:

L(foc) = L(fo+) <€ (C1)

cl<B (€2) M

min [C| subject to: {

where fp, and fg- are models trained on C and D respectively, £ the empirical risk, and B the budget
constraint. We propose MODE that dynamically adjusts how samples are selected during training.
It combines four scoring strategies 7 = {Sy, Sp, Sc, Sp} with adaptive weights that evolve during
training. A neural network h, maps the current training state—including epoch, accuracy, gradients,
budget, and strategy performance—into strategy weights w;. Temperature-controlled softmax with
decay ensures a smooth transition from exploring strategies early to exploiting successful ones later,
while ensuring constraints (C1) and (C2). The different components are explained below. Notation
summary is available in Appendix [A]

2.1 TRAINING STATE AND STRATEGY WEIGHTING

The strategy weights are generated based on a 5-dimensional training state vector s; =
let, at, g, by, v4], where e, the current epoch (progress indicator), a; the recent validation accu-
racy (performance metric), g; the average gradient magnitude (learning dynamics), b; the remaining
budget proportion, and v, the recent performance of individual scoring strategies.

Scoring strategies. We implement the following scoring strategies 7 = {Sy, Sp, Sc, Sp} that
reflect different aspects of sample informativeness. The final score for each sample is:

|F]
Smope(X,t) = Zwt,i - Si(x,1) (2)
i—1

where all strategy scores are normalized:

Si(x,t) — ming ep S;(x/, 1)

Si(x,t) =
Z(X) maXy/ep Sz (X/, t) — minxlep Sz (X/, t)

3)

These strategies provide complementary sample importance, with evolving roles over training.

Uncertainty (Sy) measures prediction entropy to identify samples where model lacks confidence.
It refines decision boundaries by focusing on confusion, with consistent importance over training.

Su(x) = = .. Py = c[x)log P(y = c|x)

Diversity (Sp) quantifies feature space distance to the nearest selected sample. Its importance in-
creases during training, promoting exploration of varied feature regions to enhance generalization
and prevent overfitting. Sp(x) = minyec ||¢(x) — ¢(x;)l|2

Class Balance (S¢) addresses imbalance through inverse class frequency weighting. Crucial in early

training to establish foundational knowledge across all classes, its importance decreases once basic

class representation is achieved. S¢(x) = ﬁ

Under review as a conference paper at ICLR 2026

Boundary (Sp) identifies decision boundary proximity using the margin between top predictions.
This strategy helps sharpen classification boundaries in middle training stages, with diminishing
importance as boundaries become well-established. Sp(x) = 1 — (P(§1|x) — P(9=2|x))

Weighting network. The weighting network is implemented as a multi-layer perceptron:
Wi = hy(s:) € R @)
A temperature-controlled softmax is applied to produce the final strategy weights:

exp(ﬁ)m/rt)

Wi = =S ®)
> exp(r;/7¢)
The temperature 7, decays over time with decrease budget shifting from exploration to exploitation:
e
Tt =70 - exp(—a(l — b)) - exp (—B E i) (6)
max

Further information about the rule for updating weights can be found in Appendix [B.T] while details
on convergence are provided in Appendix

2.2 CORESET CONSTRUCTION VIA META-CONTROLLER

MODE constructs coresets incrementally by selecting top-scoring samples:

Ci=Ci1 U tOp-k{X eD \ Ci_1: SMODE(X7 t)} (7)

To learn effective strategy combinations, we track validation improvement after each selection:

r = AL w ;AL > 0] 8)

val val

Y = ol (1Y))
This credit assignment rewards strategies proportionally to their contribution when validation im-
proves, enabling MODE to discover dataset-specific selection patterns. This creates a natural cur-
riculum to explore strategy combinations when mistakes are cheap (early, with budget remaining)
and exploits learned patterns when selections become critical (late, with a limited budget). For the
agreement-based refinement, thresholds d; are set dynamically as 75 th percentile of each strategy’s
score distribution, ensuring approximately 25% of samples are considered “important” by each strat-
egy while maintaining balanced multi-objective selection. Our algorithm is provided in Appendix [C|

2.3 EFFICIENT IMPLEMENTATION

A key advantage of MODE modular design is that it enables efficient implementation. We observe
that our scoring strategies exhibit distinct computational dependencies: (i) Model-dependent scores
(Sy, Sp): Only invalid after model retraining. (ii) Coreset-dependent scores (Sp): Only invalid
for new coreset interactions. (iii) Distribution-dependent scores (S¢): Updated incrementally.

This method promotes targeted recomputation by integrating batch B into the coreset C;, ensuring
that only Sp is updated for interactions involving B. This reduces the complexity per iteration from
O(|U| - |C¢|) to O(|UU| - |B]). Model-specific scores remain cached until a retraining is triggered.
Implementing this selective recomputation strategy results in a 2.7-fold speed increase on CIFAR-
10 and 3.4-fold on ImageNet-1K. For detailed implementation see Algorithm D] and for efficiency
results see Table

3 THEORETICAL ANALYSIS

We establish that MODE maintains strong theoretical guarantees despite its adaptive nature. Our
analysis centers on two key results that ensure reliability and practical applicability.

Under review as a conference paper at ICLR 2026

MODE: Comp ive Tl

(a) MODE Achieves Theoretical e-bounds (b) Strategy Weight Convergence

7%
%
. I
10% En

0%
Budget Ratio Hteration t (log scale)

Iiwe_t - well (log scale)

(c) Accuracy vs Budget Trade-off (d) Approximation Scales as O(1VB)
L]

g
g

.
s £
s g °
£o :
g 32
e
w -
n
i

Full Dataset
- MODE Coreset
o

0% 10!
Budget Ratio Budget B (samples)

(€) Strategy Weight Evolution During Training

e
— -

Selection Round

((Key Results: (a) Empirical & wihin theoretcal bounds (78-825% of bound), (b) O(1/+) convergerice veriied, (2) 82:7% accuracy vih 10% data. (d) . (e) Adapive)

Figure 2: MODE achieves 74-78% of the theoretical worst-case bound across budgets on CIFAR-10,
with approximation quality following the predicted O(1/+/B) scaling.

Theorem 1 (Approximation Guarantee). Let C* be the optimal coreset of size B minimizing empir-
ical risk. For L-Lipschitz, B-smooth loss functions, the coreset Cyopg selected by MODE satisfies
with probability at least 1 — 0:

1
L(Cyope) — L(C*) < s

nlog(1/8) , L\/3> 10,

.,c(c*)+0< 5 75

Key insight: At each selection round ¢, MODE uses fixed weights w; to combine submodular
functions, preserving submodularity. Since weighted combinations of submodular functions remain
submodular, each greedy selection maintains the (1 — 1/e) guarantee. Adaptivity occurs between
rounds, not during selection. The proof is provided in Appendix [E.J]

Theorem 2 (Strategy Weight Convergence). Under bounded rewards |rj:| < R and temperature
schedule T, — Tmin > 0, MODE’s strategy weights satisfy:

Ly,

lwirr — w2 < [se41 — sell2 + O(1/77) 1D

min

and converge to stable configurations: Y, | |wi41 — w2 < .

Practical implications: (i) Budget scaling: B = O(1/¢€?) for error ¢; (ii) Strategy count: K = 4
suffices in practice; (iii) Convergence: weights stabilize within 20-30% of budget. Figure[2] validates
these theoretical predictions empirically. Complete proofs are in Appendix

Theorem 3 (Time and Space Complexity). For selecting budget B from n samples, Mode runs in
time O(K -nlogn+ B K - d) requiring space O(n -k + B -d) where k < d is compressed feature
dimension with streaming of O(B + K logn) working memory with single pass

These theoretical results provide concrete guidance: To halve the approximation error, one should
quadruple the budget, following the standard \/n rate. A strategy count of K = O(logn) strate-
gies is sufficient, and MODE uses K = 4 for simplicity. For optimal exploration-exploitation, the
temperature schedule should be set as 7m = 79+/log K/t. In practice, weights stabilize after ap-
proximately (O(K?log K)) rounds. This verifies that MODE’s adaptive mechanism maintains the
quality of approximation while also offering advantages in terms of interpretability and robustness.

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy (%) at 30% budget. MODE achieves second-best performance with inter-
pretability advantages. 'TmageNet: averaged across 10/50-class subsets.

Method CIFAR-10 CIFAR-100 ImageNet’ F-MNIST SVHN Avg.
Random 43.0£0.7 25.1+0.8 55.1£0.7 53.0+0.5 50.2+£0.6 453
Uncertainty 47.6£0.7 26.7+0.8 57.9+0.6 58.84+0.5 54.6£0.6 49.1
Diversity 47.0£0.7 26.8+0.8 57.3+£0.6 56.9+0.5 524+0.6 48.1
GLISTER 47.8+0.6 27.1£0.7 584+0.6 592405 55.8+0.5 49.7
CRAIG 48.2+0.6 27.5£0.7 58.9+0.6 59.8+0.5 56.5£0.5 50.2
RETRIEVE 48.6£0.6 27.8£0.7 59.3£0.5 60.4+04 57.2+£05 50.7
CREST 51.9+0.6 30.4+£0.7 62.7£0.5 65.2+04 62.8+04 54.6

MODE (Ours) 49.14+0.6 29.0£0.7 62.3+0.5 66.1+0.4 59.840.5 53.3

4 EXPERIMENTS AND RESULTS

We perform experiments on classification tasks to evaluate MODE’s efficacy, aiming to compare
the model’s overall performance with conventional coreset selection techniques.

Datasets We consider the following datasets to capture a wide range of complexity and domain di-
versity: CIFAR-10/100 Krizhevsky| (2009), Fashion-MNIST |Xiao et al.| (2017), SVHN [Netzer et al.
(2011}, Imagenet Deng et al.| (2009). Further information regarding datasets is provided in Ap-
pendix [F

Model Configuration Implementation details are in Appendix |F| with code available at anony-
mous repository[ﬂ Our batch-aware caching exploits scoring stability: uncertainty (Sy/) and bound-
ary (Sp) scores remain valid until model retraining, diversity (Sp) updates only when the coreset
changes, and class balance (S¢) uses incremental updates. This selective recomputation reduces
computational overhead by 30% compared to naive recalculation.

Baselines We evaluate MODE against baselines including: (i) Random sampling, (ii) Uncertainty
sampling [Lewis & Gale| (1994), (iii) Diversity sampling [Sener & Savarese| (2018), and advanced
methods CRAIG Mirzasoleiman et al.| (2019), GLISTER |Killamsetty et al.[(2020), RETRIEVE
Killamsetty et al.| (2021c), CREST [Yang et al.| (2023)), and GradMatch |Killamsetty et al.[(2021a),
enabling comparison across fundamental, fixed-criterion, and adaptive selection strategies.

We experiment with different coreset sizes (10%, 30%, and 50% of the full dataset) (further com-
parison is provided in Appendix [H.2} [H.3). We first trained a model on the full dataset to establish
a baseline performance. For each method, including MODE, we perform the following process:
(1) select a coreset of the specified size, (ii) train a new model from scratch using only the selected
coreset, and (iii) evaluate the trained model on the entire test set.

Results Tab (1| shows results at 30% budget: MODE reaches 53.3% accuracy—just below CREST
(54.6%) but with interpretable selection strategies. It excels on Fashion-MNIST (66.1%) and SVHN
(59.8%), improving over random sampling by 24.8% and 19.2%. Across datasets, MODE outper-
forms RETRIEVE (best classical baseline) by 5.3% on average. Full results in App. |G| reveal its
largest gains at low budgets (10-30%), key for labeling-limited settings.

Figure [3illustrates training and test performance metrics for CIFAR-10 and CIFAR-100 with a 25k
sample limit. These results underscore the effectiveness of our approach in learning from limited
data, while also revealing the ongoing challenges in maintaining consistent performance on unseen
data.

4.1 TRAINING DYNAMICS AND CONVERGENCE ANALYSIS

In addition to Table [I] and Figure [3] we further analyzed the training trajectories across different
budget constraints on ImageNet-1K. Table [I2] summarizes the convergence behavior and final per-
formance for each method. Several key insights emerge from the trajectory analysis: Adaptive
advantage at low budgets: MODE shows its largest improvements over baselines when data is
most constrained. At 10% budget, MODE achieves 14.4% higher accuracy than random selection,

!code available at https: //anonymous . 4open.science/r/SPARROW-B300/README . md

https://anonymous.4open.science/r/SPARROW-B300/README.md

Under review as a conference paper at ICLR 2026

(a) Performance for CIFAR-10 with 25k budget (b) Performance for CIFAR-100 with 25k budget

Figure 3: Performance metrics for 25k budget

demonstrating the value of adaptive strategy combination when every sample matters. Convergence
efficiency: MODE consistently converges faster than single-strategy baselines, particularly at mod-
erate budgets. At 30% budget, it reaches its peak performance in just 5 epochs, while diversity and
uncertainty methods require 20 epochs, indicating more efficient sample utilization. Sample effi-
ciency: Computing accuracy gain per 1000 samples at 30% budget reveals MODE’s superior sample
efficiency (0.0526) compared to uncertainty (0.0514), diversity (0.0520), and random (0.0515) se-
lection. This 2-3% improvement in sample efficiency translates to significant computational savings
at scale. Diminishing returns at high budgets: As expected, the advantage of intelligent selection
diminishes with abundant data. At 70% budget, all methods perform similarly.

Performance Metrics Figure [3(a) shows MODE performance on CIFAR-10 with a 25k sample
budget (50% of the dataset). The model achieves approximately 75% test accuracy, demonstrating
effective coreset selection that retains most of the full dataset’s performance (typically 85-90%).
The test loss variance after epoch 10 reflects MODE adaptive strategy transitions, as the framework
shifts from uncertainty-based to diversity-focused selection. Figure[3[b) presents the more challeng-
ing CIFAR-100 scenario with the same 25k budget. The 35% test accuracy, while seemingly low, is
actually competitive given that: (i) this represents only 250 samples per class from the original 500,
and (ii) full CIFAR-100 models typically achieve only 60-70% accuracy. The significant train-test
gap (60% vs 35%) indicates that MODE successfully identifies training-relevant samples but strug-
gles with generalization under extreme class imbalance—each class has insufficient representation
for robust feature learning. The F1 convergence to 0.40 on CIFAR-100 further confirms the classifi-
cation difficulty. With 100 classes and limited samples, MODE faces a fundamental representation
learning challenge that no selection strategy can fully overcome.

5 ABLATION ANALYSIS

We mainly present the key findings from experiments on CIFAR-10 with a 30% data budget, with
detailed analyses provided in Appendix [H]

Strategy Importance and Complementarity. Table [2| analyzes the contribution of each scoring
strategy by systematically removing one strategy at a time. Sp proves to be the most critical com-
ponent (-3.85% accuracy when removed), followed by uncertainty (Sy7, -2.32%). The weight re-
distribution patterns reveal important complementary relationships: when any strategy is removed,
diversity consistently receives the largest weight increase (if available), suggesting it serves as the
primary “backup” strategy. These findings validate MODE multi-strategy approach and demon-
strate its robustness through adaptive weight redistribution. Further details are in Appendix

Emergent Curriculum Learning Behavior A notable finding is that MODE inherently applies
curriculum learning principles without being explicitly designed to do so. Tracking strategy weights
reveals clear priority patterns in data characteristics during training. Table[3|measures curriculum be-
havior across budgets. Three learning phases consistently emerge at any budget level:(i) Foundation
Building (Early Stage): MODE prioritizes diversity (20%) and class balance (18.7%) to establish
broad feature coverage and ensure all classes are represented. This aligns with curriculum learning

Under review as a conference paper at ICLR 2026

Table 2: Analysis of scoring strategies showing the importance and complementary nature of differ-
ent strategies on the weight redistribution and performance.

Configuration Strategy Weights Test
Su Sp Sc SB Accuracy (%)
Base (All Strategies) 024 029 023 024 89.03

Without Uncertainty (Str) 038 031 0.31 86.71 (-2.32)

Without Diversity (Sp) 0.33

- 038 0.33 85.18 (-3.85)
Without Class Balance (S¢) 0.31 0.38 - 0.31 87.25 (-1.78)
Without Boundary (Sg) 0.31 0.38 0.31 - 88.46 (-0.57)

Table 3: Emergent curriculum patterns. Values show dominant strategy weights by training stage.

Early Stage (epochs 1-15) Late Stage (epochs 36-50)
Budget Diversity ~ Class Bal. Uncertainty Uncertainty ~ Boundary Diversity
10% 0.200 0.187 0.162 0.247 0.233 0.120
30% 0.200 0.187 0.162 0.247 0.233 0.120
50% 0.200 0.187 0.162 0.247 0.233 0.120

principles of starting with “easy” examples that provide clear learning signals. (ii) Representation
Refinement (Middle Stage): Strategies become more balanced (15.8-18.7% each) as different as-
pects of the data are explored. The increased uncertainty weight (18.5%) suggests handling more
challenging examples. (iii) Decision Boundary Optimization (Late Stage): Uncertainty (24.7%) and
boundary sampling (23.3%) dominate, focusing on the hardest examples near decision boundaries.
Diversity weight drops to 12%, indicating diminished returns from exploring new feature regions.
This emergent curriculum is consistent: transition rates remain stable (0.30-0.32) across budgets,
suggesting an inherent property of the learning dynamics rather than a budget-dependent artifact.
The meta-controller effectively discovers that different training stages benefit from different data
characteristics.

Budget Constraints on Strategy Selection. We examined how budget constraints affect strat-
egy selection. Figure] shows MODE’s capability to allocate strategy weights based on available
computational resources. With limited budgets (10-30%), the framework prioritizes uncertainty
sampling (Sy7), using weights up to 0.48 for maximum information gain. As resources increase
(50-70%), MODE balances weights, focusing on class balance (S¢) and diversity (Sp) for compre-
hensive dataset coverage. This flexibility ensures consistent performance across budgets, ideal for
real-world applications with variable resources. For detailed analysis, see Appendix [H.2] Our im-
plementation treats scoring strategies independently; however, sensitivity analysis shows complex
interactions. Removing a strategy reveals redundancies and synergies, suggesting a meta-controller
could enhance performance (see Appendix [H.T} [H.4]for more details).

Exploration-Exploitation Balance The temperature parameter in MODE controls the exploration-
exploitation balance. Figure [5] shows temperature parameter evolution across selection rounds for
different budget constraints. With limited resources (10% budget), temperature drops rapidly, in-
dicating a quick transition to exploitation. In contrast, higher budgets (50%) maintain elevated
temperatures longer, enabling prolonged exploration. These patterns demonstrate MODE adapt-
ability: with scarce resources, it quickly focuses on promising strategies; with abundant resources,
it maintains broader exploration. Further details are provided in Appendix

Efficiency Analysis Table [5| shows MODE requires 3h 20m for selection versus GLISTER’s 2h
15m—a 47% increase from multi-objective scoring. However, this yields 90% faster training (0.5h
vs. 5h) and 75% less memory (3.2GB vs. 12.8GB). Our implementation already caches diversity
scores and class frequencies, reducing redundant computations by 30%. Future work will explore
LSH-based diversity approximation and closed-form weight updates to match single-strategy se-
lection times while preserving adaptive benefits. MODE demands keeping strategy-specific scores
for samples, leading to memory complexity of O(|F| - |D|). For larger datasets, this may exceed
memory limits. We aim to explore online methods to handle data in chunks and create streaming
algorithms to reduce memory usage.

Hyperparameter Robustness. Our hyperparameter sensitivity analysis demonstrates that MODE is
robust to reasonable variations, with performance remaining within 2-3% of optimal configurations

Under review as a conference paper at ICLR 2026

Final Strategy Weights by Budget

B -
023

Figure 4: Final strategy weight distribution across different budget constraints. The heatmap shows
how MODE adaptively allocates importance to different strategies based on available resources

Temperature Evolution - Budget 10% Temperature Evolution - Budget 20% Temperature Evolution - Budget 30%

Selection Round Selecton Round- Selection Round

(a) Budget: 10% (b) Budget: 20% (c) Budget: 30%

Temperature Evolution - Budget 50% Temperature Evolution - Budget 70%

Selection Round Selection Round

(d) Budget: 50% (e) Budget: 70%

Figure 5: Temperature evolution for varying budgets, balancing exploration and exploitation.

across a wide range of settings. The most sensitive parameter is the temperature decay rate, while
uniform initialization (0.25 for each strategy) consistently leads to the most stable convergence, still
allowing sufficient flexibility for adaptation. Further details are provided in Appendix [H.3]

6 RELATED WORK

The development of coreset methods has evolved through several key stages. Early efforts empha-
sized geometric strategies such as k-Center Greedy (Sener & Savaresel |2018)) and herding
2009)), which aim to maximize feature space coverage by selecting representative or diverse points.
Gradient-based techniques such as CRAIG (Mirzasoleiman et all 2019) and Gradient Matching
(Killamsetty et all, [2021a)) later emerged to select subsets that best approximate full-dataset gradi-
ents. These approaches significantly improved data efficiency but typically optimize a single cri-
terion. Recent approaches have extended this line of work. GLISTER (Killamsetty et al., 2020)
formalizes gradient similarity within a subset selection framework, while RETRIEVE (Killamsetty
et al. incorporates bi-level optimization, focusing on reweighting samples. BADGE (Ash
et al., [2019) proposes a hybrid strategy based on model uncertainty and gradient embeddings, us-
ing k-Means++ in the gradient space. However, these methods fundamentally operate over static
objectives and are not designed to dynamically shift their selection criteria over time. Information-
theoretic methods like InfoCore 2022) and PRISM 2021) propose selecting
data to maximize mutual information or structured submodular objectives, while CORDS
setty et all 2021b) offers a benchmarking library for coreset techniques. While these frameworks
enhance theoretical robustness and comparability, they generally treat data selection as a one-shot
or fixed-process optimization, rather than as an adaptive system.

Under review as a conference paper at ICLR 2026

MODE also relates to ideas in curriculum learning, which proposes that training with samples of
gradually increasing difficulty can accelerate learning (Bengio et al., |2009; |[Soviany et al.| [2021).
Active learning, which selects the most informative unlabeled samples for annotation (Lewis & Gale}
1994; Settles| [2011)), also informs MODE ’s focus on informativeness—though our goal is label-
efficient training, not annotation efficiency. Meta-learning, or "’learning to learn” (Hospedales et al.}
2020), is particularly relevant. Prior work such as MAML (Finn et al.| |2017) and Reptile (Nichol
et al., 2018)) optimizes learning procedures across tasks, while (Konyushkova et al.| [2017) applies
meta-learning to learn active learning policies. Our work builds on these ideas by employing a meta-
controller that adapts data selection strategies in response to real-time feedback during training.

While methods like GLISTER [Killamsetty et al.| (2020), CRAIG [Mirzasoleiman et al.| (2019),
BADGE |Ash et al.| (2019), CREST |Yang et al.| (2023) and GradMatch Killamsetty et al. (2021al)
offer valuable insights, they rely on static, single-objective selection criteria and lack adaptability
during training. MODE overcomes these limitations by dynamically combining multiple strate-
gies—uncertainty, diversity, class balance, and boundary proximity—based on empirical perfor-
mance. This adaptivity allows it to shift priorities over time, emphasizing uncertainty in early stages
and diversity later on. As a result, MODE improves performance under strict data budgets while
providing interpretable insights into the evolving utility of each strategy.

7 CONCLUSION AND FUTURE WORK

We proposed MODE, a framework designed to enhance coreset selection through dynamic opti-
mization. By leveraging diverse and adaptive sampling strategies, MODE efficiently selects repre-
sentative subsets from large datasets while preserving strong performance across various multiclass
classification tasks. Our experimental results demonstrate its effectiveness in refining learning trajec-
tories and optimizing selection processes, even under strict budget constraints. Our findings suggest
that carefully curated selection objectives can significantly influence model performance, underscor-
ing the importance of balancing efficiency, diversity, and accuracy in data-driven decision-making.

8 LIMITATIONS

While MODE demonstrates significant advantages in adaptive coreset selection, there are some
limitations that present opportunities for future research: MODE incurs approximately 47% longer
selection time compared to simpler methods like GLISTER due to its multiple scoring functions and
adaptive weighting, which may be prohibitive for very large datasets.

The memory requirements scale with O(|F||D|), potentially exceeding available memory for mas-
sive datasets. The cold start problem poses challenges as several scoring strategies (Sy, Sg) rely
on model predictions that are unreliable in early training. Balancing exploration and exploitation
remains difficult within tight budget constraints, as different scenarios may require different explo-
ration schedules. The current framework treats scoring strategies as independent components despite
their complex interactions. Future work should address these limitations through lightweight scoring
approximations, online processing methods, and better modeling of strategy interdependencies.

Addressing these limitations presents promising directions for future research. We are particularly
interested in developing extensions to our submodular framework for handling more complex selec-
tion scenarios, creating domain-specific scoring strategies for diverse applications, and reducing the
computational overhead through more efficient implementations. Despite these limitations, MODE
demonstrated performance advantages across various datasets and budget constraints, highlighting
its practical utility and the promising direction of adaptive multi-strategy approaches to coreset se-
lection.

LLM Usage: We utilized Large Language Models (Claude) for grammar corrections, sentence clar-
ity, and readability, as well as for repetitive code tasks like feature extraction and score computation.
Our core algorithms, experiments, theory, and scientific insights remain original. The LLMs’ role
was akin to using code libraries or standard utilities.

Under review as a conference paper at ICLR 2026

REFERENCES

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. ArXiv, abs/1906.03671, 2019.
URLhttps://api.semanticscholar.org/CorpusID:182953134.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
09, pp. 4148, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/
1553374.1553380.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Chelsea Finn, P. Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017. URL https:
//api.semanticscholar.org/CorpusID:6719686.

Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J. Storkey. Meta-learning
in neural networks: A survey. [EEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44:5149-5169, 2020. URL https://api.semanticscholar.org/CorpusID:
215744839l

Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 1314-1324, 2019. URL https://api.semanticscholar.org/
CorpusID:146808333.

Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himanshu Asnani. Prism: A rich class of param-
eterized submodular information measures for guided subset selection. In AAAI 2021.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Rishabh Iyer University
of Texas at Dallas, Indian Institute of Technology Bombay Institution One, and IN Two. Glis-
ter: Generalization based data subset selection for efficient and robust learning. In AAAI Con-
ference on Artificial Intelligence, 2020. URL https://api.semanticscholar.org/
CorpusID:229339854.

Krishnateja Killamsetty, Durga S, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match:
Gradient matching based data subset selection for efficient deep model training. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 5464-5474. PMLR, 18-24 Jul
2021a. URL https://proceedings.mlr.press/v139/killamsetty2la.html.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Cords: Coresets and data subset selection in pytorch, 2021b.

Krishnateja Killamsetty, Xujiang Zhao, F. Chen, and Rishabh K. Iyer. Retrieve: Coreset selection
for efficient and robust semi-supervised learning. ArXiv, abs/2106.07760, 2021c. URL https:
//api.semanticscholar.org/CorpusID:235436029.

Ksenia Konyushkova, Raphael Sznitman, and Pascal V. Fua. Learning active learning from data. In
Neural Information Processing Systems, 2017. URL https://api.semanticscholar.
org/CorpusID:5878784.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.orqg/CorpusID:18268744.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
1994. URL https://api.semanticscholar.org/CorpusID:915058.

10

https://api.semanticscholar.org/CorpusID:182953134
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://api.semanticscholar.org/CorpusID:6719686
https://api.semanticscholar.org/CorpusID:6719686
https://api.semanticscholar.org/CorpusID:215744839
https://api.semanticscholar.org/CorpusID:215744839
https://api.semanticscholar.org/CorpusID:146808333
https://api.semanticscholar.org/CorpusID:146808333
https://api.semanticscholar.org/CorpusID:229339854
https://api.semanticscholar.org/CorpusID:229339854
https://proceedings.mlr.press/v139/killamsetty21a.html
https://api.semanticscholar.org/CorpusID:235436029
https://api.semanticscholar.org/CorpusID:235436029
https://api.semanticscholar.org/CorpusID:5878784
https://api.semanticscholar.org/CorpusID:5878784
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:915058

Under review as a conference paper at ICLR 2026

Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. Data sketching for faster train-
ing of machine learning models. ArXiv, abs/1906.01827, 2019. URL https://api.
semanticscholar.org/CorpusID:174799238.

Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in natural
images with unsupervised feature learning. 2011. URL https://api.semanticscholar.
org/CorpusID:16852518!

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. ArXiv,
abs/1803.02999, 2018. URL https://api.semanticscholar.org/CorpusID:
4587331.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URLhttps://openreview.net/forum?id=Hlaluk—-RW.

Burr Settles. From theories to queries: Active learning in practice. In Isabelle Guyon, Gavin
Cawley, Gideon Dror, Vincent Lemaire, and Alexander Statnikov (eds.), Active Learning and
Experimental Design workshop In conjunction with AISTATS 2010, volume 16 of Proceedings
of Machine Learning Research, pp. 1-18, Sardinia, Italy, 16 May 2011. PMLR. URL https:
//proceedings.mlr.press/v16/settleslla.html.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and N. Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130:1526 — 1565, 2021. URL https://api.
semanticscholar.org/CorpusID:231709290.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis K. Titsias. Information-
theoretic online memory selection for continual learning. ArXiv, abs/2204.04763, 2022. URL
https://api.semanticscholar.org/CorpusID:248085415.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ArXiv, abs/1905.11946, 2019. URL https://api.semanticscholar.org/
CorpusID:167217261.

Mariya Toneva, Alessandro Sordoni, Rémi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. ArXiv, abs/1812.05159, 2018. URL https://api.semanticscholar.org/
CorpusID:55481903.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML *09, pp. 1121-1128, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553517. URL
https://doi.org/10.1145/1553374.1553517.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for data-
efficient deep learning. In In Proceedings of the 40th International Conference on Machine Learn-
ing, 2023.

11

https://api.semanticscholar.org/CorpusID:174799238
https://api.semanticscholar.org/CorpusID:174799238
https://api.semanticscholar.org/CorpusID:16852518
https://api.semanticscholar.org/CorpusID:16852518
https://api.semanticscholar.org/CorpusID:4587331
https://api.semanticscholar.org/CorpusID:4587331
https://openreview.net/forum?id=H1aIuk-RW
https://proceedings.mlr.press/v16/settles11a.html
https://proceedings.mlr.press/v16/settles11a.html
https://api.semanticscholar.org/CorpusID:231709290
https://api.semanticscholar.org/CorpusID:231709290
https://api.semanticscholar.org/CorpusID:248085415
https://api.semanticscholar.org/CorpusID:167217261
https://api.semanticscholar.org/CorpusID:167217261
https://api.semanticscholar.org/CorpusID:55481903
https://api.semanticscholar.org/CorpusID:55481903
https://doi.org/10.1145/1553374.1553517

Under review as a conference paper at ICLR 2026

Table 4: Notation Summary for MODE Framework

Symbol Description

S5 (%) Raw score from strategy j for sample x;

S (x;) Normalized strategy score (S; = S;/ max S;(xx))

Q,j Meta-attention weight for strategy j at training step ¢

Bi(t) Time-dependent strategy effectiveness parameter

di Final selection score for x; (after refinement)

7(t) Annealing temperature controlling selection sharpness

hg Strategy weighting network with parameters ¢

St Training state vector at time ¢

A Strategy weights for scoring combination

T Temperature for softmax normalization

Cy Coreset selected at step ¢

F Scoring strategies {Sv, Sp, Sc, S}

N Learning rate modulated by budget

bt Remaining budget ratio at time ¢

Yi Refinement signal for adaptive weighting
APPENDIX

A SUMMARY OF NOTATIONS

Table] provides a summary of the notations used in our work.

B CONVERGENCE OF IMPORTANCE WEIGHTS

B.1 WEIGHT UPDATE RULE

The importance weights w; (¢) for each strategy j are updated using a temperature-controlled soft-
max:
ws(t) — SR (0)/7(1)
! >k explax(t)/7(t))

where o (t) represents the empirical effectiveness of strategy j at time ¢, and 7(¢) is the temperature
parameter controlling exploration vs. exploitation.

(12)

B.2 CONVERGENCE ANALYSIS

To show that the weights w;(t) converge, we analyze the update rule using tools from stochastic
approximation and online learning.

Assumptions:

* The rewards 7;(t) (e.g., changes in accuracy, loss, or diversity) are bounded.

* The temperature 7(t) follows an annealing schedule, such as 7(¢) =
exploration decreases over time.

1og(T++1)’ ensuring that

Update Rule for o (¢): The parameters c;(t) are updated based on the performance of each strat-
egy:
a;j(t+1) = a;(t) +n-r;(t) (13)

where 7 is the learning rate, and r;(t) is the reward for strategy j at time ¢.

Convergence Proof:

* Bounded Rewards: Since the rewards 7;(t) are bounded, the updates to «;(t) are also
bounded.

12

Under review as a conference paper at ICLR 2026

* Annealing Temperature: As ¢ — oo, 7(t) — 0, which means the softmax distribution
becomes increasingly concentrated on the strategy(s) with the highest o (¢).

* Stochastic Approximation: The update rule for «;(¢) can be viewed as a stochastic ap-
proximation algorithm, which converges under mild conditions (e.g., Robbins-Monro con-
ditions).

Result: Ast — oo, the weights w;(t) converge to a distribution that prioritizes the most effective
strategies. Specifically:

» If strategy j consistently achieves high rewards, w;(t) converges to 1.

* If strategy j performs poorly, w;(t) converges to 0.

C ALGORITHM

Algorithm [T] presents our framework, incorporating a meta-controller that dynamically adjusts se-
lection strategies. The process begins with uniform initialization of strategy weights (L[2) across all
selection criteria, followed by creating an initial coreset through stratified sampling (L [3) to ensure
balanced class representation.

The iterative selection loop (L [6) continues until reaching the budget constraint, employing four
complementary scoring functions that the meta-controller adaptively combines:

* Uncertainty score (L [9) quantifies model entropy, targeting samples where predictions
lack confidence

* Diversity score (L measures feature-space distance to existing coreset samples, pre-
venting redundancy

* Class balance score (L[IT)) addresses data imbalance through inverse frequency weighting

* Boundary score (L [I2) identifies samples near decision boundaries using top prediction
margins

Score normalization (L ensures fair comparison across strategies with different distributions.
The meta-controller’s key innovation appears in the strategy evaluation phase (L[I8), where it mea-
sures the performance improvement each strategy would provide, generating crucial reward signals
for adaptation. The controller’s temperature parameter (L [25)) governs exploration-exploitation, de-
creasing as a function of budget consumption and training progress. The adaptive mechanism up-
dates strategy weights using a temperature-controlled softmax (L [27), where higher rewards lead to
increased strategy importance, while the blending factor maintains stability during transitions.

For selection, the controller computes a weighted combination score (L [33)) integrating all strategies
according to their learned weights. Top-scoring samples (L[33)) are added to the coreset (L[38) before
model retraining (L [40). The learning state update after each round provides the meta-controller
with evolving performance metrics, enabling it to continuously optimize its strategy weights based
on empirical effectiveness at different training stages.

D ALGORITHM WITH SELECTIVE RECOMPUTATION

Algorithm 2] presents our optimized framework incorporating selective recomputation for efficiency.
The key innovation lies in leveraging the distinct computational dependencies of our scoring strate-
gies to minimize redundant calculations through strategic caching.

Our scoring strategies exhibit three distinct computational dependencies:
* Model-dependent scores (S7, Sp): Only invalidated after model retraining, enabling per-

sistent caching across selection rounds

* Coreset-dependent scores (.Sp): Only require updates for new coreset interactions, avoid-
ing full recomputation

¢ Distribution-dependent scores (S¢): Updated incrementally using running statistics

13

Under review as a conference paper at ICLR 2026

Algorithm 1 MODE: Multi-Objective Adaptive Coreset Selection

Require: Full dataset D, budget B, initial temperature 7
Ensure: Selected coreset C, trained model fy
1: Define unlabeled pool U +— D > Initially, all data is unlabeled

2: Initialize strategy weights w = [wy, wp, we, wp] < [0.25,0.25,0.25, 0.25)
3: Initialize coreset C via stratified sampling (e.g., 10% of budget B)
4: Update unlabeled pool U <+ U \ C > Remove selected samples
5: Train initial model fy on coreset C
6: while |C| < B do > Continue until budget is reached
7: /I Compute strategy scores for each sample in unlabeled pool
8: for each x; in U do
9: Su(x;) + — Z P(y = ¢|x;) log P(y = c|x;) > Uncertainty score
10: SD(xl) — mmXJGC lo(x:) — &(x;)||2 > Diversity score
11: Sc(x;) fr(x > Class balance score
12: Sp(x;) +1— ((f1]xi) — P(42]%:)) > Boundary score
13: end for
14: /I Normalize scores for fair comparison
15: for each strategy j € {U, D, C, B} do
S (x)—mings g, Sj(x
16: SJ(X) = max ’ei; (x)— Iilbr(l ’E(M; (x)
17: end for
18: // Evaluate strategy effectiveness through validation
19: for each strategy j € {U, D, C, B} do
20: Select temporary subset 7; of top-k samples according to strategy j
21: Measure performance p; on validation set after adding 7 to C
22: T 4= Dj — Dbase > Performance gain relative to baseline
23: end for
24: /I Update strategy weights based on performance
25: Calculate temperature 7; < 7o - exp(—a(1l — b)) - exp(—8 - g—)
26: for each strategy j € {U, D, C, B} do
27: aj = exp((1+r5)/7)/ 32 exp((1 + k) /1)
28: wj < (1=0)-w; +9-64; > Blend old and new weights
29: end for
30: Normalize w to sum to 1
31: /I Compute combined scores for all unlabeled samples
32: for each x; in U/ do A
33: Smope(Xi) < Xjciup.c.py Wi 55(Xi)
34: end for
35: /I Select samples for this round
36: Determine selection size n for current round (e.g., 10% of remaining budget)
37: Select S + top-n samples from U according to Sy;opg scores

38: Update coreset: C +— CUS

39: Update unlabeled pool: U < U\ S

40: Retrain model fy on updated coreset C

41: Update learning state (epoch progress, accuracy, budget ratio, etc.)
42: end while

43: return Coreset C, trained model fy

This selective approach reduces computational complexity from O(|U| - |C:|) to O(|U| - |B|) per
round, where || is the batch size and typically |B| < |Cy].

D.1 COMPLEXITY ANALYSIS

The selective recomputation strategy provides significant computational savings:

14

Under review as a conference paper at ICLR 2026

Algorithm 2 MODE with Selective Recomputation: Multi-Objective Adaptive Coreset Selection
(Part I)

Require: Full dataset D, budget B, initial temperature 7o
Ensure: Selected coreset C, trained model fy

1: Define unlabeled pool U/ < D

2: Initialize strategy weights w = [0.25, 0.25, 0.25, 0.25]
3: Initialize coreset C via stratified sampling

4: UpdateUd <+ U\ C

5: Train initial model fs on C
6: Initialize score caches Caches,,, Caches,,, diversity matrix D, and distribution stats 110, >0, 1o
7
8
9

D Umodel < 1 > Model version counter
: while [C| < B do
Determine batch size n for current round
10: // Model-dependent scores (cached until retrain)

11: if Caches,, empty or model retrained then
12: for each x; € U do

13: Compute Sy (x;), Sp(x:)

14: Store in caches

15: end for

16: else

17: Retrieve cached scores for all x; € U
18: end if

19: /I Coreset-dependent scores (selective update)
20: for each x; € U do

21: Update Sp(x;) using diversity matrix
22: end for

Algorithm 2 MODE with Selective Recomputation: Multi-Objective Adaptive Coreset Selection
(Part II)

1: // Distribution-dependent scores (incremental update)
2: if first iteration then
3 for each x; € U do
4: SC (Xl) «— l/fc(xi)
5: end for
6: else
7: Update frequencies with Spr.c., recompute Sc
8: end if)
9: Normalize all scores S;(x) across strategies
10: Evaluate strategies, update weights w; via softmax

11: Compute final score Snope(xi) = 3 ; w;S;(xi)
12: Select top-n samples S, update C and U

13: Retrain fs on updated C, clear caches

14:

15: return C, trained model fy =0

Per-round complexity = O(|U|) + O(JU| - |B]) + O(JU|) (14)
=o(lu|-18]) (15)

compared to the naive O(|U| - |C;|), where |C;| grows linearly with the number of rounds while | 3]
remains constant.

D.2 MEMORY MANAGEMENT

* Score caches: Hash tables indexed by sample identifiers, cleared after retraining
* Diversity matrix: Sparse storage of minimum distances, updated incrementally

* Distribution statistics: Running class frequencies, O(C) space where C' is number of
classes

15

Under review as a conference paper at ICLR 2026

Table 5: Efficiency comparison shows selection overhead is negligible compared to training benefits.

Method Selection (s) Training (s) Memory (GB) Total Time (s)
Random 0.3 482 12.8 482.3
GLISTER 3.4 387 11.2 390.4
MODE 5.0 48 32 53.0
MODE (cached) 2.7 48 32 50.7

E THEORETICAL ANALYSIS

This appendix provides the complete theoretical foundation for MODE. We establish three key
results:

1. Submodularity Preservation: Despite adaptive weighting, MODE maintains submodular
structure (Section |[E.2)

2. Approximation Guarantees: MODE achieves (1—1/¢)-approximation with finite-sample
bounds (Section[E.3)

3. Convergence Properties: Strategy weights converge to stable configurations (Section|E.4)

These results together ensure that MODE adaptive approach maintains theoretical guarantees while
providing practical benefits.

E.1 MATHEMATICAL PRELIMINARIES

E.1.1 NOTATION
Throughout this analysis, we use:
* D = {(x4,y:)}"_: Full dataset with n samples
» C C D: Selected coreset with budget constraint |C| < B
» F ={Sy,Sp,Sc,Sp}: Set of scoring strategies
o w, € AFI=1: Strategy weights at time ¢
* ¢ : X — R? Feature representation function
E.1.2 SUBMODULARITY FOUNDATION

Definition 1 (Submodular Function). A set function f : 2V — R is submodular if for all A C B C
Vandv eV \ B:

fLAU{v}) = f(4) = f(BU{v}) - f(B) (16)

This diminishing returns property is key to our analysis. Intuitively, it means adding an element to a
smaller set provides at least as much benefit as adding it to a larger set.

E.2 SUBMODULARITY OF INDIVIDUAL STRATEGIES

We first establish that each scoring strategy in MODE is submodular. This forms the foundation for
proving that their adaptive combination preserves theoretical guarantees.

E.2.1 DIVERSITY SCORE

Theorem 4 (Diversity is Submodular). The diversity score function:

Sp(C) = Y maxsim(é(z), ¢(x")) 17

xzeD

is monotone submodular.

16

Under review as a conference paper at ICLR 2026

Proof. We recognize Sp as a facility location function. To prove submodularity, we verify both

properties:

Monotonicity: Forany C C Dand v ¢ C:

Sp(CU{v}) = max sim(¢(x), ¢(z')) = Sp(C)

D;c’ECU{v}

since the maximum can only increase when adding elements.

Diminishing Returns: For A C B C D and v ¢ B, consider the marginal gain:
Aa(v) = Sp(AU{v}) — Sp(A)

=3 |, sim(0(0).6(0") ~ magsim(o(a).)|

5 z’ € AU{v} ' €A

= Z max {O7 sim(¢(x), ¢(v)) — max sim(¢(z), q[)(a:'))}

r’'€A
zeD

Since A C B, for each z:
max sim(¢(z), p(z')) < max sim(¢(z), ¢(2"))

/€A z'€B

Therefore, each term in A 4 (v) is at least as large as in Ag(v), proving A4 (v) > Ap(v).

E.2.2 WEIGHTED COMBINATION PRESERVES SUBMODULARITY

(18)

19)

(20)

2n

(22)

The key insight for MODE is that weighted combinations of submodular functions remain submod-

ular:

Theorem 5 (Weighted Combination). If f1, ..., fx : 2V — Ry are submodular and w1, . . .

0, then:
K
F(S) = Zwifi(s)
i=1

is submodular.

Proof. For AC BC Vandwv ¢ B:
K
F(AU{v}) - F(A) —Zwi fi(Au{v}) = fi(4)]

K
z W[fi(BU{v}) — fi(B)] (submodularity of each f;)

= (U{v}) - F(B)

Corollary 1 (MODE'’s Score is Submodular). MODE’s combined scoring function:

SMODE C t Z Wit - S

JEF

is submodular for any fixed weight configuration w;.

E.3 APPROXIMATION GUARANTEES

We now prove MODE main theoretical guarantee:

17

awKz

(23)

(24)

(25)

(26)

27)

Under review as a conference paper at ICLR 2026

Theorem 6 (Main Approximation Theorem). For L-Lipschitz, B-smooth loss functions, MODE’s
greedy selection achieves:

(28)

£(Cuone) < (14 2)L(C) 40 (nlog(1/3) wa)

B VB

with probability at least 1 — 6, where C* is the optimal coreset.

Proof. The proof proceeds in three steps: Step 1: Reduction to Submodular Maximization Define
the utility function:

U(C)=Uy — L(C)+ AR(C) (29)
where R(C) = 3, > w;S;(C) is a regularizer. By Theorem U is submodular.

Step 2: Greedy Approximation The classical greedy algorithm for submodular maximization guar-
antees:

U(CMODE) Z (1 — 1/6) . U(C*) (30)
Step 3: Translating to Risk Bounds Through careful manipulation and concentration inequalities:
1

L(Cwmopg) — L(C™) < E[UO - U(Cr)] G

1 nlog(1/9) LVd
<= * —_— — 2
_eﬁ(C)-i-O(5 + O /B (32)

statistical error approximation error

O

E.4 WEIGHT CONVERGENCE ANALYSIS
We now analyze how MODE’s adaptive weights evolve and converge during training.

E.4.1 WEIGHT DYNAMICS

MODE updates strategy weights through:

exp(@it/7t)

Wit = ==~ (33)
P exp(an /)
where o ; accumulates performance feedback:
Qjt1 = Qe 1] Tt (34

Theorem 7 (Weight Convergence). Under bounded rewards |r; .| < R and temperature schedule
Tt = Tmin > 0:

1. Bounded Variation:

L WEK
llwesr — w2 < |si41 — sefl2 + |Ter1 — T2 (35)
min TtTt41

2. Asymptotic Convergence: Y - | ||w;11 — w2 < 0o

3. Limit Behavior: Ast — oo, weights converge to emphasize the most effective strategies

Proof Sketch. We decompose the weight change into two components:

State Evolution Effect: When the state changes but temperature is fixed, the Lipschitz property of
the neural network h, bounds the weight change.

Temperature Annealing Effect: As temperature decreases, the softmax becomes more peaked,
concentrating probability mass on high-performing strategies.

O

18

Under review as a conference paper at ICLR 2026

E.5 PRACTICAL GUIDELINES FROM THEORY

Our theoretical analysis yields concrete recommendations:

Parameter Theoretical Guidance

Budget Size To achieve error e: B = O(1/€?)
Temperature Schedule 7, = 79 exp(—a(1 — b)) with o € [0.5, 1.5]
Number of Strategies K = O(logn) suffices; we use K = 4
Weight Initialization Uniform (1/K each) ensures exploration
Convergence Check Weights stabilize after =~ 20 — 30% of budget

Table 6: Practical parameters derived from theoretical analysis

These guidelines have been validated experimentally across all datasets in our study.

E.6 COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze MODE’s computational requirements to demonstrate that adaptivity doesn’t come at
the cost of efficiency. Our analysis considers both time and space complexity, as well as practical
implementation optimizations.

E.6.1 TiME COMPLEXITY

Theorem 8 (Time Complexity). For dataset size n, budget B, and K strategies, MODE’s total time
complexity is:
O(Knlogn + BKd+ Bng) (36)

where d is the feature dimension and ny is the cost of neural network inference.

Proof. We analyze each component separately:

Initial Scoring Phase:

» Computing diversity scores requires finding nearest neighbors: O(nlogn) using KD-trees
or ball trees

* Uncertainty and boundary scores need model predictions: O(nd) for forward pass
* Class balance computation: O(n) to count class frequencies
* Total initial scoring: O(nlogn + nd)
Selection Iterations: For each of the B selections:
* Neural network weight computation: O(n) where ng < n
* Score combination for all unselected samples: O((n — b)K) at iteration b

* Top-k selection: O(n — b) using quickselect

* Score updates (only diversity needs recomputation): O((n — b)k) where k is batch size

Total Complexity:
B—1
T(n,B,K) = O(Knlogn + Knd)+ Y _ O((n — b)K + ny) (37)
initial scoring b=0 per-iteration cost
= O(Knlogn + Knd) + O(BnK — B*K/2 + Bny) (38)
= O(Knlogn + BKn + Bng) (39

19

Under review as a conference paper at ICLR 2026

Since typically B < n and we assume d = O(log n) for compressed features, this simplifies to the
stated bound. O
E.6.2 SPACE COMPLEXITY
Theorem 9 (Space Complexity). MODE requires space:

O(nk + Bd+ Kn) (40)

where k < d is the compressed feature dimension used for diversity computation.

Proof. The space requirements come from:

» Compressed features for diversity: O(nk)
* Selected samples and their full features: O(Bd)
* Score arrays for each strategy: O(Kn)

* Neural network parameters: O(n) (typically small)

E.6.3 EFFICIENT IMPLEMENTATION TECHNIQUES

Our theoretical analysis assumes several practical optimizations that we detail here:

Lemma 1 (Lazy Score Updates). Not all scores need recomputation after each selection:
* Model-dependent scores (Sy, Sp): Valid until model retraining
* Diversity scores (Sp): Only samples whose nearest neighbor was selected
* Class balance (S¢): Simple counter update

This leads to an optimized per-iteration complexity:

Topiimized () = O(k - [{z : NN(z) € selected batch}| + Kn) 41)
In practice, this reduces computation by a factor of 2-4x compared to naive recomputation.

E.6.4 STREAMING AND MEMORY-EFFICIENT VARIANT

For extremely large datasets where O(n) memory is prohibitive:

Theorem 10 (Streaming Complexity). MODE can operate in a streaming fashion with:
» Working memory: O(B + K logn)
* Time complexity: O(nK B) (one additional pass)
* Approximation quality: (1 —1/e — €) for any e > 0
Proof Sketch. We adapt the streaming submodular maximization framework of Badanidiyuru et al.

(2014): 1. Maintain O(log n) threshold levels for each strategy 2. Select samples that exceed current
thresholds 3. Update thresholds based on budget consumption

The additional e approximation loss comes from the discretization of threshold levels. O

20

Under review as a conference paper at ICLR 2026

Method Time Space Adaptive
Random O(B) O(B) X
Uncertainty O(nd + nlog B) O(n) X
K-Center O(Bn?) O(n?) X
CRAIG O(Bnd) O(nd) X
MODE (ours) O(Knlogn + BKn) O(nk + Bd) v
MODE-streaming O(nKB) O(B + Klogn) v

Table 7: Complexity comparison. MODE adds only a constant factor K = 4 while enabling
adaptive selection.

E.6.5 COMPARISON WITH BASELINE METHODS
E.6.6 PRACTICAL RUNTIME ANALYSIS

On real hardware, the constants hidden in big—O notation matter. Our implementation achieves:

* Feature compression: Using PCA with k = 32 reduces diversity computation by 16x on
ImageNet

» Batch selection: Selecting £ = 100 samples per round amortizes neural network overhead

* Parallel scoring: Each strategy can be computed independently across CPU cores

* GPU acceleration: Model predictions for Sy and Sp benefit from batching

These optimizations result in wall-clock times competitive with simpler baselines while providing
superior selection quality (see Table [7]in main paper for empirical measurements).

F IMPLEMENTATION DETAILS

Datasets We consider the following datasets to capture a wide range of complexity and domain
diversity. CIFAR-10/100Krizhevsky|(2009) contains 60,000 color images of size 32x32, categorized
into 10 or 100 classes, with 6,000 images per class. Fashion-MNIST |Xiao et al.|(2017) comprises
70,000 grayscale images of size 28x28 across 10 fashion-related categories, and serves as a more
challenging alternative to the original MNIST dataset. SVHN [Netzer et al.| (2011) includes over
600,000 color images of street house numbers (digits 0-9), captured from real-world scenes via
Google Street View and Imagenet Deng et al.|(2009)

We conduct extensive experiments across different budget constraints to evaluate MODE'’s effective-
ness in reducing the required training data while maintaining model performance. Our experiments
span multiple budget settings (10%, 30%, and 50% of the full dataset) to analyze the framework’s
behavior under varying data constraints.

F.1 TRAINING CONFIGURATION

The training process is implemented using PyTorch 2.0 and executed on NVIDIA GPUs with 16GB
memory. We employ a batch-based training approach with carefully tuned parameters to balance
computational efficiency and learning stability. The base training configuration remains consistent
across all budget settings, with only the total available samples varying according to the budget
constraint. Each active learning round consists of both a selection phase, where new samples are
added to the training set, and a training phase using the accumulated samples.

Training parameters are configured as follows:
* batch-size: 256 samples
* epochs: 100 per active learning round

* learning-rate: 0.001 with Adam optimizer
» workers: 4 for parallel data loading

21

Under review as a conference paper at ICLR 2026

F.2 BUDGET CONFIGURATIONS

We evaluate MODE across three primary budget settings to comprehensively assess its perfor-
mance:

Conservative Budget (10%): Using 5,000 samples from CIFAR-10, this setting tests MODE’s
ability to maintain performance under strict data constraints. The initial pool consists of 500 ran-
domly selected samples, with subsequent selections made in increments of 100 samples per round.

Moderate Budget (30%): This represents our standard experimental setting. Training begins with
1,000 random samples and grows by 200 samples per round, providing a balance between data
efficiency and model performance.

Liberal Budget (50%): This configuration allows us to evaluate whether MODE’s benefits persist
with larger data availability. Initial selection comprises 2,000 samples, with 400 new samples added
per round.

F.3 MODEL ARCHITECTURES

We evaluate MODE’s performance across four distinct architectures, each representing different
design philosophies and computational trade-offs:

ResNet18 (?) serves as our primary baseline architecture, featuring 18 layers organized into four
residual blocks with [2, 2, 2, 2] layers respectively. The architecture employs skip connections to
enable gradient flow through deep networks, with each residual block containing two 3x3 convo-
lutional layers with batch normalization and ReLU activation. ResNetl8 contains approximately
11.7M parameters and uses basic residual blocks (two 3x3 convolutions) rather than the bottleneck
design of deeper variants. We utilize ImageNet-pretrained weights IMAGENET1K_V1) and adapt
the final fully connected layer to match the number of classes in each dataset.

EfficientNet-B0 (Tan & Le, 2019)) represents a paradigm shift in architecture design through com-
pound scaling of depth, width, and resolution. The base architecture uses mobile inverted bottleneck
convolutions (MBConv) with squeeze-and-excitation optimization, organized into seven blocks with
varying expansion ratios and kernel sizes. Key innovations include: (i) a compound scaling coef-
ficient ¢ = 1.0 for BO, (ii) depth multiplier « = 1.2, width multiplier 5 = 1.1, and resolution
multiplier v = 1.15, and (iii) the Swish activation function instead of ReLU. With only 5.3M pa-
rameters, EfficientNet-B0 achieves superior accuracy through careful architecture search and scaling
principles, which our experiments show translate directly to improved sample efficiency.

MobileNetV3-Small (Howard et al., 2019) is optimized for mobile deployment through hardware-
aware neural architecture search. The architecture employs: (i) inverted residual blocks with linear
bottlenecks, (ii) lightweight depthwise separable convolutions (3x3 depthwise followed by 1x1
pointwise), (iii) squeeze-and-excitation modules in later layers, and (iv) the h-swish activation func-
tion for improved accuracy with minimal latency impact. With just 2.5M parameters and a width
multiplier of 1.0, MobileNetV3-Small includes eleven bottleneck blocks with expansion factors
ranging from 3 to 6, demonstrating that extreme parameter efficiency can still yield strong per-
formance when combined with intelligent architectural search and activation design.

MobileNetV3-Small (Howard et al., 2019) is optimized for mobile deployment through hardware-
aware neural architecture search. The architecture employs: (i) inverted residual blocks with lin-
ear bottlenecks, (ii) lightweight depthwise separable convolutions (3x3 depthwise followed by 1x1
pointwise), (iii) squeeze-and-excitation modules in later layers, (iv) h-swish activation function for
improved accuracy with minimal latency impact. With just 2.5M parameters and a width multiplier
of 1.0, MobileNetV3-Small achieves remarkable efficiency. The architecture includes 11 bottleneck
blocks with expansion factors ranging from 3 to 6, demonstrating that extreme parameter efficiency
can still yield strong performance when combined with intelligent data selection.

Implementation Details: All architectures are initialized with ImageNet-pretrained weights to
leverage transfer learning. For MODE scoring network, we extract features from:

* ResNet18/50: Output of the adaptive average pooling layer (2048-dim for ResNet50, 512-
dim for ResNet18)

22

Under review as a conference paper at ICLR 2026

* EfficientNet-B0: Output of the final 1280-dimensional feature layer before classification
* MobileNetV3: Output of the final pooling layer (576-dimensional features)

These features are then processed through MODE lightweight scoring network (detailed in Sec-
tion [2.T), which adapts its input dimension to match each architecture’s feature size while maintain-
ing consistent scoring methodology across all models.

F.4 SAMPLING STRATEGIES

MODE employs four distinct sampling strategies, each addressing different aspects of the learning
process. The uncertainty scoring strategy uses prediction entropy with temperature scaling (T=1.0)
to identify uncertain samples. Diversity scoring operates in the normalized feature space using
Euclidean distance metrics. Class balance scoring employs inverse frequency weighting with a
smoothing factor of 1.0. Boundary scoring examines the margin between top-2 predictions with a
threshold of 0.1.

F.5 WEIGHT COORDINATION

The weight coordinator dynamically adjusts strategy importance based on current model perfor-
mance and learning progress. Initial weights are set uniformly (0.25 for each strategy) and adapted
during training using the following configuration:

* Meta-learning rate: 0.001

* Performance thresholds: 0.6 (low) and 0.8 (high)
* Adaptation frequency: Every batch

* History window: 5 epochs for trend analysis

F.6 DATA PROCESSING

Input images undergo standard CIFAR-10 preprocessing with normalization using mean [0.4914,
0.4822, 0.4465] and standard deviation [0.2023, 0.1994, 0.2010]. During active learning rounds, we
maintain consistent preprocessing without additional augmentations to ensure reliable uncertainty
estimates. Training progress and weight evolution are monitored using TensorBoard, with check-
points saved every 10 epochs for analysis and model recovery.

G COMPLETE EXPERIMENTAL RESULTS

This appendix reports full experimental results across datasets, budgets, architectures, and evaluation
metrics. We start with complete accuracy results, then analyze architecture-specific performance,
relative improvements, sample efficiency, statistical significance, and extended budget settings.

G.1 FULL RESULTS ACROSS ALL DATASETS AND BUDGETS

Tables [8] and] present accuracy across all datasets (CIFAR-10/100, ImageNet subsets, Fashion-
MNIST, SVHN) and budgets (10%, 30%, 50%). These results complement the main text by showing
the complete performance landscape across baselines.

Takeaway: MODE consistently outperforms classical baselines and approaches CREST perfor-
mance while remaining interpretable and adaptive.

Takeaway: On larger and more diverse datasets, MODE maintains consistent gains, especially
under tighter budgets (10-30%).

H DETAILED ABLATION STUDIES

This appendix provides detailed analyses of our ablation studies that were summarized in the main
paper. We present extensive results on strategy contribution, budget constraints, temperature dynam-
ics, and hyperparameter sensitivity.

23

Under review as a conference paper at ICLR 2026

Table 8: Test accuracy (%) for CIFAR-10, CIFAR-100, and ImageNet-10 at 10%, 30%, and 50%

budgets.
Method ‘ CIFAR-10 CIFAR-100 ImageNet-10
| 10% 30% 50% | 10% 30% 50% | 10% 30% 50%

Random 37.7£0.8 43.0+£0.7 47.7£0.6 | 21.9£0.9 25.1£0.8 28.3+0.7 | 78.8+1.2 91.4+0.8 93.9+0.6
Uncertainty 40.3+0.8 47.6x£0.7 52.6+0.6 | 23.1+0.9 26.7+0.8 30.0+0.7 | 85.7x1.1 94.2+0.7 95.1+0.5
Diversity 39.6£0.8 47.0+0.7 51.4+0.6 | 23.1+£0.9 26.8£0.8 29.6+0.7 | 84.3+1.1 93.8+0.7 94.8+0.5
GLISTER 40.9+0.7 47.840.6 53.1+0.5 | 23.5+0.8 27.1+0.7 30.4+0.6 | 86.8x1.0 94.5+0.6 95.3+0.4
CRAIG 41.3+0.7 48.240.6 53.5+0.5 | 23.9+£0.8 27.5+0.7 30.8+0.6 | 87.4+1.0 94.8+0.6 95.5+0.4
RETRIEVE 41.7+0.7 48.6£0.6 53.8+0.5 | 24.1+0.8 27.8+0.7 31.2+0.6 | 88.0+0.9 95.0+0.5 95.7+0.4
GradMatch* 40.5+0.9 47.9+0.8 52.9+0.7 | 23.3x1.0 26.9+0.9 30.1+0.8 | 86.5+1.2 94.3+0.8 95.2+0.6
CREST 44.8+0.7 51.9+0.6 56.7+0.5 | 26.5+0.8 30.4+0.7 33.8+0.6 | 91.2+0.8 96.8+0.5 97.2+0.3
MODE (Ours) ‘ 41.8+0.7 49.1+0.6 53.5+0.5 ‘ 25.4+0.8 29.0+0.7 31.0+0.6 ‘ 88.7£0.9 95.5+0.5 96.0+0.4

Table 9: Test accuracy (%) for ImageNet-50, Fashion-MNIST, and SVHN at 10%, 30%, and 50%

budgets.
Method | ImageNet-50 Fashion-MNIST SVHN
‘ 10% 30% 50% ‘ 10% 30% 50% ‘ 10% 30% 50%

Random 12.241.5 18.7¢1.3 22.8+1.2 | 45.9+0.6 53.0£0.5 58.3+0.5 | 43.4+0.7 50.2+0.6 55.4£0.5
Uncertainty 14.841.4 21.5+£1.2 25.6+1.1 | 49.1+£0.6 58.8+0.5 63.6+£0.4 | 45.9+0.7 54.6+0.6 60.5£0.5
Diversity 13.9£1.4 20.8%1.2 24.9+1.1 | 48.6+0.6 56.9+0.5 63.0+0.5 | 45.9+0.7 52.4+0.6 59.1£0.5
GLISTER 15.541.3 22.3+1.1 26.4+1.0 | 50.0+£0.6 59.240.5 64.2+0.4 | 47.3+0.6 55.8+0.5 61.7£0.4
CRAIG 16.1£1.3 229+1.1 27.0+1.0 | 50.4+0.5 59.840.5 64.7+0.4 | 48.0+0.6 56.5+0.5 62.3+0.4
RETRIEVE 16.8£1.2 23.6£1.0 27.7+£0.9 | 51.2+0.5 60.4+0.4 65.3+0.4 | 48.8£0.6 57.2+0.5 63.0+£0.4
GradMatch* 15.0£1.5 21.8%1.3 26.0+1.2 | 49.5+0.7 58.9+0.6 63.8+0.5 | 46.8+0.8 55.1+0.7 60.9£0.6
CREST 21.2+1.1 28.5+0.9 32.8+0.8 | 55.6+£0.5 65.2+0.4 70.1+0.3 | 53.2+0.5 62.8+0.4 68.5+0.3
MODE (Ours) ‘ 24.3+1.2 29.0+¢1.0 31.0£0.9 ‘ 56.3+0.5 66.1£0.4 71.7£0.4 ‘ 51.1£0.6 59.8+0.5 66.0+0.4

*GradMatch results are from our implementation; the original paper reports higher accuracy.

H.1 DETAILED ANALYSIS OF STRATEGY IMPORTANCE AND COMPLEMENTARITY

To analyze the contribution of each scoring strategy we conducted an ablation study by systemati-
cally removing one strategy at a time. Table [10| presents the weight redistribution and performance
impact when each strategy is removed.

Table 10: Detailed ablation analysis of scoring strategies in the MODE framework. Each row
represents a configuration where one strategy is removed from the framework. The table shows how
strategy weights redistribute when a component is removed and the corresponding impact on model
performance. The values in parentheses indicate the change relative to the base configuration.

Configuration Strategy Weights Test Acc. (%)
SU SD SC SB

Base (All Strategies) 0.24 0.29 0.23 0.24 89.03

Without Sy (Uncertainty) - 0.38 (+0.09) 0.31 (+0.08) 0.31 (+0.07) 86.71 (-2.32)

Without Sp (Diversity) 0.33 (+0.09) - 0.38 (+0.15) 0.33 (+0.09) 85.18 (-3.85)

Without S (Class Balance) 0.31 (+0.07) 0.38 (+0.09) - 0.31 (+0.07) 87.25(-1.78)

Without Sp (Boundary) 0.31 (+0.07) 0.38 (+0.09) 0.31 (+0.08) - 88.46 (-0.57)

Several key insights emerge from this analysis:

First, diversity (Sp) proves to be the most critical component, with its removal causing the largest
performance drop (-3.85%). When diversity is removed, class balance (S¢) receives the largest
weight increase (+0.15), suggesting that the framework attempts to compensate for the loss of fea-
ture space coverage by ensuring better class representation. Uncertainty (Sy/) is the second most

24

Under review as a conference paper at ICLR 2026

important strategy, with removal causing a 2.32% accuracy decline. In this case, the weights redis-
tribute relatively evenly across the remaining strategies.

Class balance (S¢) shows moderate importance (-1.78% when removed), with weights shifting pri-
marily to diversity (+0.09). This pattern suggests that diversity can partially compensate for class
representation, likely by ensuring broader coverage of the feature space that indirectly captures dif-
ferent classes. The boundary strategy (Sp) appears to be the least critical component, with only a
minor performance impact (-0.57%) when removed, indicating that the decision boundary informa-
tion it provides can be largely approximated by the other strategies’ combined effects.

The weight redistribution patterns reveal important complementary relationships between strategies.
Notably, when any strategy is removed, diversity consistently receives the largest weight increase (if
available), suggesting it serves as the primary “backup” strategy. Similarly, the framework always
increases class balance weights substantially when another strategy is removed, highlighting its role
as a stabilizing component.

These findings validate MODE multi-strategy approach and demonstrate the framework’s robust-
ness through adaptive weight redistribution. Even when deprived of key components, MODE main-
tains relatively strong performance by intelligently reallocating importance to the remaining strate-
gies, with weight adjustments proportional to the removed strategy’s significance.

H.2 IMPACT OF BUDGET CONSTRAINTS ON STRATEGY SELECTION

To investigate how budget constraints influence strategy selection dynamics, we conducted an abla-
tion study with various budget levels (10%, 20%, 30%, 50%, and 70% of the full dataset). Table
summarizes key trends in strategy weights across selection rounds under different budget constraints.

Table 11: Ablation study on budget constraints. The table shows dominant strategies and tempera-
ture values across selection rounds for different budget levels. Each cell shows the top two strategies
with their respective weights and the temperature parameter.

Selection Round (Training Stage)

Budget ‘
\ Round 2 (Early) Round 3-4 (Middle) Round 5 (Late-Mid) Round 6 (Late)

10% Su(0.29),Sp(0.19) Sy (0.38 — 0.57),Sp(0.19 — 0.16) Sy (0.31),Sp(0.27) Sy (0.31), Sp(0.21)
¢ temp = 0.57 temp = 0.43 — 0.25 temp = 0.33 temp = 0.35

20% Sc(0.18),5p(0.18) Sp(0.19 — 0.18), Sy (0.16 — 0.17) Sy (0.19), Sp(0.18) Su(0.19), Sp(0.18)
¢ temp = 1.20 temp = 0.89 — 0.80 temp = 0.61 temp = 0.69

30% Sc(0.35), Sy (0.17) Sc(0.33 — 0.34), Sy (0.21 — 0.24) S (0.38), Sc(0.28) Sy (0.40), Sc(0.27)
¢ temp = 0.59 temp =0.46 — 0.41 temp = 0.29 temp = 0.28

50% Sc(0.19), Sy (0.18) Sv(0.20), S¢(0.19 — 0.20) Su(0.21), S¢(0.21) Sc(0.24), Sy (0.21)
¢ temp = 1.36 temp =1.27 — 0.93 temp = 0.87 temp = 0.65

70% Su(0.30), Sc(0.17) Sy (0.25 — 0.27), Sc(0.18 — 0.20) Sy (0.25), Sc(0.20) Su(0.25), Sc(0.19)
¢ temp = 0.66 temp =0.77 — 0.54 temp = 0.59 temp = 0.46

Different budget levels lead to notably different strategy prioritization patterns. At low budget levels
(10%), uncertainty-based sampling (Syy) dominates from early stages, reaching weights as high as
0.57 in middle training, indicating a strong focus on high-information samples when resources are
severely constrained. In contrast, at moderate budgets (20%-30%), we observe a transition from
class balance (S¢) and diversity (Sp) in early training toward uncertainty (Syy) in later stages. With
higher budgets (50%-70%), the framework maintains a more balanced distribution among strategies,
with class balance (S¢) regaining prominence even in late stages for the 50% budget case.

The ablation study reveals distinct transition patterns across budget levels. For the 10% budget,
we observe a rapid increase in Sy dominance during middle training (0.38 to 0.57) followed by
a balance shift toward Sp in later rounds. The 20% budget shows the most stable and gradual
transition, maintaining balanced weights between Sp and Sy/S¢c throughout training. The 30%
budget demonstrates a clear pivot from Sc dominance in early/middle stages to Sy dominance in
later stages. Higher budgets (50%, 70%) show relatively stable strategy weights with more subtle
transitions.

25

Under review as a conference paper at ICLR 2026

Different budget levels favor distinct strategy combinations. Low budgets (10%, 20%) predomi-
nantly leverage uncertainty (Sy/) and diversity (Sp), focusing on sample informativeness and feature
space coverage. Medium budgets (30%) favor a combination of class balance (S¢) and uncertainty
(Str), ensuring representation across classes while targeting difficult examples. Higher budgets
(50%, 70%) maintain a more balanced approach, with the 50% case uniquely showing increased S
weight in the final round, suggesting a distinct late-stage optimization strategy when resources are
plentiful.

H.3 EXPLORATION-EXPLOITATION BALANCE

The temperature parameter in our MODE framework reveals critical insights into how the system
balances exploration versus exploitation under different budget constraints. This parameter directly
influences the softmax function that converts raw strategy weights into final selection probabilities,
with higher values producing more uniform distributions (exploration) and lower values concentrat-
ing probability mass on the highest-scoring strategies (exploitation).

Budget 10%. At this most restrictive budget level, we observe a steep initial decline in temperature
from 1.0 to 0.57 by round 2, continuing to decrease to 0.43 in round 3 and reaching a minimum
of 0.25 by round 4. This rapid transition to exploitation is logical when resources are severely
constrained—the system must quickly identify and commit to the most promising strategies rather
than spending limited resources on exploration. Interestingly, there is a slight temperature increase
in rounds 5 and 6 (to 0.33 and 0.35 respectively), suggesting a small correction to prevent over-
exploitation as training concludes.

Budget 20%. This budget level demonstrates a distinct pattern where temperature actually in-
creases from round 1 (1.0) to round 2 (1.2) before beginning its decline. This temporary increase
enables enhanced exploration early in training, leveraging the moderately constrained but still sig-
nificant resources. The subsequent decline follows a smooth curve through rounds 3 (0.89), 4 (0.80),
and 5 (0.61), before a slight increase in the final round (0.69). This pattern represents a well-balanced
approach that prioritizes exploration when uncertainty is highest, followed by a gradual transition to
exploitation as knowledge accumulates.

Budget 30%. This budget level shows the most consistent monotonic temperature decrease across
all selection rounds: from 1.0 initially to 0.59, 0.46, 0.41, 0.29, and finally 0.28. This smooth
progression suggests a very balanced and controlled transition from exploration to exploitation,
without the fluctuations seen at other budget levels. The final temperature (0.28) is among the
lowest observed across all budget levels, indicating strong exploitation in late training stages despite
the moderate budget constraint.

Budget 50%. With substantial resources available, this budget level maintains the highest overall
temperatures, starting at 1.0, then peaking at 1.35 in round 2 and 1.27 in round 3. It remains above
0.9 until round 4, demonstrating that abundant resources enable prolonged exploration. Even by
round 5, the temperature (0.87) remains higher than most other budget levels at similar stages. The
final decline to 0.65 in round 6 shows that the system eventually transitions to moderate exploitation,
but much later than with more constrained budgets.

Budget 70%. Despite having the highest overall budget, this case shows more variability than
might be expected. Temperature decreases sharply from 1.0 to 0.66 in round 2, then increases to 0.77
in round 3, before declining again to 0.54, 0.59, and finally 0.46 in rounds 4-6. This pattern suggests
periodic reassessment of the exploration-exploitation balance, possibly indicating that the system
detected changing benefits from exploration at different training stages. The final temperature (0.46)
represents moderate exploitation, higher than the most constrained budgets but lower than the 50%
case.

H.4 STRATEGY SELECTION DYNAMICS

Our approach uses four main strategies for sample selection: (i) uncertainty-based sampling (Sy),
(ii) class balance-focused sampling (S¢), (iii) boundary case sampling (Sp), and (iv) diversity-

26

Under review as a conference paper at ICLR 2026

MODE Strategy Weights Evolution - Budget 10%

Strategy
—-sU

sD
- sC
- 58

Strategy Weight

3 a
Selection Round

Figure 6: Evolution of Strategy Weights for CIFAR-10 (10% budget)

focused sampling (Sp). These strategies work together to optimize sample selection, with contribu-
tions changing during training.

The diversity-focused score Sp curates diverse training instances, covering a wide range of features,
classes, or input patterns, ensuring model exposure to the full data distribution. The weight for Sp
increases during training, from 0.25 in early epochs to over 0.5 later. This helps the model generalize
and avoid overfitting.

The boundary-focused score Sp selects instances near the model’s decision boundaries, refining its
ability to discriminate. The importance of Sp decreases as training progresses, starting with 0.25
weight, peaking around epoch 5, then declining to 0.2 by the end. Once the model understands
decision boundaries, continued focus on boundary cases is less critical.

The uncertainty-based sampling strategy Sy picks examples with high prediction uncertainty, ad-
dressing model weaknesses. The weight for Sy remains stable, between 0.1 and 0.2, playing a
consistent secondary role in refining decision-making by highlighting low-confidence areas.

The class balance score S¢ ensures an even distribution of examples across classes, crucial early
in training, especially for imbalanced datasets. It reduces bias towards dominant classes, laying a
foundation for effective learning. The importance of S¢ decreases as training proceeds, starting
highest at 0.28 and reducing to the lowest weight 0.1 by training’s end.

H.5 DETAILED HYPERPARAMETER SENSITIVITY ANALYSIS

We conducted a comprehensive analysis examining key hyperparameters of MODE to assess their
impact on performance and stability:

Temperature Parameter. We analyzed different temperature initialization values (0.1, 0.5, 1.0,
2.0) and decay schedules (linear, exponential, cosine) to balance exploration and exploitation. Re-
sults show that while performance is sensitive to the temperature decay rate, the model maintains
robust performance (within 2-3% of optimal) across a wide range of initialization values (0.5-1.0).
The exponential decay schedule consistently outperformed other schedules, particularly with mod-
erate decay rates (0.1-0.2). Extremely fast decay (;0.3) led to premature exploitation, while very
slow decay (;0.05) maintained excessive exploration throughout training.

Learning Rate. We examined the impact on meta-optimization stability and convergence across
learning rates from 0.0001 to 0.01. We found that values between 0.0005 and 0.002 provide the best
balance between adaptation speed and stability. Learning rates below 0.0005 resulted in sluggish
adaptation, while rates above 0.002 frequently led to oscillations in strategy weights. We also tested
different learning rate schedules (constant, step, cosine), finding that a step decay schedule with 50%
reduction every 5 epochs provided optimal results.

Strategy Weighting. Various weighting initialization schemes were tested, including uniform
(equal weights for all strategies), random (randomly assigned weights), probability-matched

27

Under review as a conference paper at ICLR 2026

Temperature Evolution - Budget 10% Temperature Evolution - Budget 20% Temperature Evolution - Budget 30%

Selection Round Selection Round Selection Round

(a) Budget: 10% (b) Budget: 20% (c) Budget: 30%

Temperature Evolution - Budget 50% Temperature Evolution - Budget 30%

Selection Round Selection Round

(d) Budget: 50% (e) Budget: 70%

Figure 7: Temperature parameter evolution across selection rounds for different budget constraints.
The parameter controls the exploration-exploitation balance, with higher values promoting explo-
ration and lower values favoring exploitation. Note the distinct patterns: (a) 10% budget shows
rapid decline to exploitation; (b) 20% budget initially increases temperature before gradual decline;
(c) 30% budget exhibits consistent monotonic decrease; (d) 50% budget maintains highest overall
temperatures, enabling prolonged exploration; (e) 70% budget shows more variable pattern with
fluctuations.

(weights proportional to a priori expected utility), and heuristic-based (manually crafted initial
weights). The uniform initialization (0.25 for each strategy) consistently led to the most stable con-
vergence while allowing sufficient flexibility for adaptation. Random initialization occasionally fell
into local optima, while probability-matched and heuristic approaches sometimes overly constrained
exploration of the weight space.

Network Architecture. We tested several meta-controller network architectures, varying depth
(1-3 layers), width (16-128 neurons per layer), and activation functions (ReLU, tanh, sigmoid). Per-
formance was relatively insensitive to these parameters, with a simple 2-layer MLP with 64 hidden
units and ReLU activation providing a good balance of expressivity and computational efficiency.
More complex architectures showed no significant improvement, while simpler ones occasionally
struggled with complex adaptation patterns.

Our findings demonstrate that MODE is robust to reasonable variations in hyperparameters, with
performance remaining within 2-3% of optimal configurations across a wide range of settings. The
most sensitive parameter is the temperature decay rate, for which we now provide clearer guidelines
in our implementation details.

H.6 PERFORMANCE IMPACT OF STRATEGY ADAPTATION

The adaptive strategy selection yields significant performance benefits across all budget levels. Even
with only 10% of the data, the model achieves 82.3% of the accuracy obtained with the full dataset.
At 30% budget, performance reaches 91.7% of the full dataset accuracy, demonstrating the effi-
ciency of adaptive strategy selection. This efficient use of limited resources directly addresses our
core constraints (C1) and (C2), maintaining model performance while strictly adhering to budget
limitations.

H.7 TRAINING DYNAMICS AND ADAPTIVE STRATEGY

MODE aims to highlight strategy adaptation patterns throughout training. Fig []illustrates this evolution, but
examining a specific training run provides additional insights.

During early training (epochs 1-6), with only 10% of data selected, the controller maintained balanced explo-
ration (temperature = 1.0) with a slight preference for class balance:

Selection round 2:

28

Under review as a conference paper at ICLR 2026

Strategy Weight Evolution Across Training Stages Strategy Dominance by Budget

= S_D: Diversity 50 == 5_U: Uncertainty
5_C: Class Balance == 5_D: Diversity

= 5_U: Uncertainty

08 = 5_B: Boundary

Strategy Weight
Dominance (% of epochs)

Figure 8: MODE’s adaptive strategy weights across training stages on ImageNet-1K (30% budget).
MODE progresses from prioritizing diversity and class balance in early training to uncertainty and
boundary sampling in late stages, implementing curriculum learning without explicit design.

Strategy weights: {’S_C’: 0.18, ’S_D’: 0.18, ’'S_U’': 0.l16, 'S_B’: 0.16,
Temperature: 1.20
Explanation: Early training focusing on S_C, S_D with exploration mode

By mid-training (epochs 12-16), with 40% of data selected, the model shifted priority to diversity while reduc-
ing temperature:

Selection round 4:

Strategy weights: {’S_D’: 0.18, ’S_u’: 0.17, ’'s_Cc’': 0.17, 'sS_B’: 0.1e,
Temperature: 0.80

Explanation: Middle stage focusing on S_D, S_U with balanced exploration

In late training (epochs 22-30), with 70% of data, uncertainty became the dominant strategy with reduced
temperature:

Selection round 6:

Strategy weights: {’S_U’: 0.19, ’S_D’: 0.18, ’S_C’': 0.16, ’S_B’': 0.1l6,
Temperature: 0.69

Explanation: Late stage focusing on S_U, S_D with balanced mode

This progression confirms our hypothesis that optimal data selection strategies evolve during training, with

class balance being crucial early, diversity becoming important in middle stages, and uncertainty dominating
late training when refinement is needed.

H.8 TRAINING DYNAMICS ON IMAGENET

Table 12: Training dynamics on ImageNet-1K. MODE shows faster convergence and higher accu-
racy.

Budget Method Final Acc. Conv. Epoch Impr. Rate

10% MODE 0.549 12 0.428
Random 0.480 20 0.394

Diversity 0.479 6 0.423

Uncertainty 0.477 7 0413

30% MODE 0.631 5 0.473
Diversity 0.624 20 0.542

Random 0.618 17 0.501

Uncertainty 0.617 20 0.523

70% Random 0.667 5 0.503
Uncertainty 0.665 6 0.512

MODE 0.664 5 0.434

Diversity 0.656 6 0.531

29

	Introduction
	Problem Definition
	Training State and Strategy Weighting
	Coreset Construction via Meta-Controller
	Efficient Implementation

	Theoretical Analysis
	Experiments and Results
	Training Dynamics and Convergence Analysis

	Ablation Analysis
	Related Work
	Conclusion and Future Work
	Limitations
	Summary of Notations
	Convergence of Importance Weights
	Weight Update Rule
	Convergence Analysis

	Algorithm
	Algorithm with Selective Recomputation
	Complexity Analysis
	Memory Management

	Theoretical Analysis
	Mathematical Preliminaries
	Notation
	Submodularity Foundation

	Submodularity of Individual Strategies
	Diversity Score
	Weighted Combination Preserves Submodularity

	Approximation Guarantees
	Weight Convergence Analysis
	Weight Dynamics

	Practical Guidelines from Theory
	Computational Complexity Analysis
	Time Complexity
	Space Complexity
	Efficient Implementation Techniques
	Streaming and Memory-Efficient Variant
	Comparison with Baseline Methods
	Practical Runtime Analysis

	Implementation Details
	Training Configuration
	Budget Configurations
	Model Architectures
	Sampling Strategies
	Weight Coordination
	Data Processing

	Complete Experimental Results
	Full Results Across All Datasets and Budgets

	Detailed Ablation Studies
	Detailed Analysis of Strategy Importance and Complementarity
	Impact of Budget Constraints on Strategy Selection
	Exploration-Exploitation Balance
	Strategy Selection Dynamics
	Detailed Hyperparameter Sensitivity Analysis
	Performance Impact of Strategy Adaptation
	Training dynamics and Adaptive Strategy
	Training dynamics on Imagenet

