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ABSTRACT

Large-scale text-to-image models have demonstrated the potential for performing
text-to-3D synthesis. However, existing approaches, e.g., DreamFusion, suffer
from unstable 3D optimization due to the limitations of current text-to-image
models that they struggle to synthesize images from certain viewpoints even when
specified in the text prompt. Obtaining a view-aligned image-text pair dataset is
challenging due to the limited availability of such data, and the inherent subjectivity
and ambiguity of view-alignment. In this paper, we propose to enhance text-to-
3D generation by learning from human feedback for generating desired views.
We generate multi-view images with the text-to-image model and engage human
labelers to select a valid viewpoint. Using the human-labeled dataset, we train
a reward model designed to verify whether the generated image aligns with the
viewpoint specified in the text prompt. Finally, we fine-tune the text-to-image
model to maximize the reward score. We find that our text-to-image diffusion
models fine-tuned with human feedback, coined HFDream, consistently generate
diverse viewpoints without the need for multi-view datasets created from 3D assets.
This leads to high-quality text-to-3D generations with consistent geometry, when
combined with view-dependent prompting in DreamFusion.

1 INTRODUCTION

Large-scale pre-trained text-to-image diffusion models (Saharia et al., 2022; Rombach et al., 2022;
Nichol et al., 2021) have demonstrated the potential in text-to-3D generation (Poole et al., 2022; Wang
et al., 2023a; Lin et al., 2023), which allows to synthesize 3D content with only textual descriptions.
Notably, even without using any 3D data, providing view-dependent prompts (e.g., front view, side
view, back view) (Poole et al., 2022) to the text-to-image diffusion models can guide the optimization
of a 3D representation, such as Neural Radiance Field (NeRF;Mildenhall et al. 2021).

However, since current text-to-image models often fail to generate images that are aligned with the
designated viewpoint, the generated 3D contents can have inconsistent 3D geometry, such as multi-
face Janus problem (Armandpour et al., 2023). To address this problem, several recent works (Shi
et al., 2023; Liu et al., 2023b) proposed to utilize 3D data prior, which finetune diffusion models
with 3D data. While this approach enhances the geometric consistency of text-to-3D generation, the
finetuned diffusion models lose sample diversity and fidelity due to the distribution shift between
pretrained image data and 3D data. To overcome this fundamental limitation, we ask the following
question: How to improve the geometric consistency of 3D generation without using such 3D data?

To properly answer this question, we utilize learning from human feedback framework (Lee et al.,
2023; Fan et al., 2023) to create multi-view 2D datasets by filtering outputs of text-to-image models
with human feedback. This provides more realistic and diverse multi-view images and eliminates
the need for using a 3D asset-based dataset. We then fine-tune the text-to-image model using
human-labeled multi-view datasets to generate desired views for enhancing text-to-3D generation.
Specifically, our approach involves the following steps (see Figure 1). (a) We generate multi-view
images using text-to-image models and collect human feedback to select a valid viewpoint. (b) With a
human-labeled dataset, we train a reward model to assess whether the generated image aligns with the
viewpoint specified in the text prompt. (c) We fine-tune the text-to-image model to maximize reward
scores using a reward-weighted loss (Lee et al., 2023). (d) We integrate the fine-tuned text-to-image
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Figure 1: Overview of our method. HFDream consists of four stages: (1) We generate multi-view
images using the text-to-image model and engage human annotators to select a valid viewpoint. (2)
We train a reward model that verifies whether the image aligns with the viewpoint specified in the
text prompt. (3) We fine-tune the text-to-image diffusion models by maximizing the reward through
reward-weighted loss (Lee et al., 2023; Fan et al., 2023). (4) We perform text-to-3D generation by
using DreamFusion (Poole et al., 2022) with our view-aligned diffusion models.

models with view-dependent prompting in DreamFusion (Poole et al., 2022) for 3D generation. Our
fine-tuned model consistently generates diverse viewpoints and enables high-quality 3D generation.

‘We summarize our main contributions as follows:

* We propose a simple fine-tuning method to improve the multi-view generation ability of the
text-to-image model using human feedback, leading to better text-to-3D generation when it is
combined with DreamFusion.

* We demonstrate that our reward function predicts human assessments of view alignment more
accurately than ImageReward, which is pre-trained on extensive human preference datasets.

* Fine-tuned text-to-image model, HFDream, significantly improves the learned reward scores, over
the original model, implying its ability to produce view-aligned images.

» The improved ability to generate view-aligned images resulted in an improvement in text-to-3D
quality. In human evaluation, HFDream achieves a 31% gain in text alignment and 26% gain in
3D quality, compared to DreamFusion.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Diffusion models have demonstrated their capacity to effectively learn data distributions and sub-
sequently generate high-fidelity image samples from Gaussian noise by mastering the denoising
process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). Furthermore, significant
advancements have been made in the development of various guidance methods (Kawar et al., 2022;
Ho & Salimans, 2022; Bansal et al., 2023; Kim et al., 2022), which enhance conditional image
generation. The integration of diffusion models with pre-trained text encoders (Radford et al., 2021;
Raffel et al., 2020) has led to impressive results in text-to-image generation (Ramesh et al., 2022;
Rombach et al., 2022; Saharia et al., 2022).

2.2  VIEW-CONSISTENT 2D GENERATION FOR TEXT-TO-3D GENERATION

Recent work has demonstrated the capability of text-to-image models to generate multi-view images
and optimize implicit neural networks such as NeRF (Mildenhall et al., 2021) and InstantNGP (Milden-
hall et al., 2021; Miiller et al., 2022) as representations for 3D scenes. DreamFusion (Poole et al.,



Under review as a conference paper at ICLR 2024

2022), for instance, proposed a new method of training NeRF using a score distillation loss obtained
from a text-to-image diffusion model. Subsequent studies Wang et al. (2023a); Lin et al. (2023) have
explored various distillation techniques.

In the context of these 2D-lifted text-to-3D generation methods, ensuring view consistency in
generated images is crucial. However, achieving this consistency remains challenging due to inherent
viewpoint biases in current text-to-image models. Addressing this challenge, PerpNeg (Armandpour
et al., 2023) introduced a perpendicular gradient sampling algorithm, effectively eliminating undesired
attributes (e.g., wrong viewpoints) indicated by negative textual prompts. However, PerpNeg is
limited in that it does not explicitly address the view-consistency problem in text-to-image generation.
Another line of research centers on novel view synthesis based on the image-to-image diffusion
model. These approaches can be seamlessly integrated with text-to-image generation to produce view-
consistent images. Liu et al. (2023a) and Shi et al. (2023), in particular, leverage the Objaverse dataset
(Deitke et al., 2023) to fine-tune image-to-image models. These models are conditioned on a single
source view image and a novel viewing direction to generate new view image. Additionally, Liu et al.
(2023b) introduced an image-to-image diffusion model capable of generating multiple views within a
single reverse process. Despite achieving view consistency, these methods require the acquisition of
costly 3D assets. Moreover, the process of fine-tuning generative model on object-centric 3D assets
may potentially compromise the generalization of the pre-trained diffusion models.

2.3 ALIGNING TEXT-TO-IMAGE MODELS WITH HUMAN FEEDBACK

Reinforcement learning from human feedback (RLHF) has demonstrated the alignment capabilities
inherent in large-scale language models (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022).
Recent work has also applied such methods to improve the alignment of text-to-image models (Lee
et al., 2023; Fan et al., 2023; Xu et al., 2023; Kirstain et al., 2023). Lee et al. (2023) showed
that simple fine-tuning pre-trained models using the reward-weighted likelihood can enhance the
alignment of text and generated image pairs concerning attributes such as object colors, counts, and
backgrounds specified within the text. Xu et al. (2023) and Kirstain et al. (2023) have scaled up
this direction by collecting large-scale human feedback datasets and training reward functions from
human preference data. Building on these advancements, Fan et al. (2023) and Black et al. (2023)
have introduced reinforcement learning (RL) algorithms for fine-tuning text-to-image models using
reward functions. Motivated by the successes of these methods, we propose a fine-tuning method with
human feedback for improving the multi-view generation, leading to better text-to-3D generation.

3 MAIN METHOD

In this section, we outline our approach to fine-tuning a text-to-image diffusion model for generating
desired views and enhancing text-to-3D generation. First, we generate multi-view images using the
text-to-image model and engage human labelers to select a valid viewpoint (Section 3.1). Subse-
quently, we train a reward model specifically designed to verify whether the generated image aligns
with the viewpoint specified in the text prompt (Section 3.2). Following this, we update the text-to-
image models to maximize the reward score through a reward-weighted loss (Section 3.3). Finally, we
integrate the fine-tuned text-to-image models with view-dependent prompting in DreamFusion (Poole
et al., 2022) for 3D generations (Section 3.4).

3.1 MULTI-VIEW DATA COLLECTION WITH HUMAN FEEDBACK

Multi-view image dataset. To create a multi-view image dataset, we use text prompts generated
by combining one viewpoint from {front, side, back, overhead} with an object. Specifically, given
viewpoint A and object B, we form them into natural language using the template: A photo of
a <B>, <A> view;forexample, A photo of a dog, front view. In total, we use 162
text prompts for 18 objects and 9 scenes, and about 1200 annotated images were gathered per
direction. Because the diffusion model has a low chance of successful generations, especially for
backside views, we generate more images until we gather enough ground truth images. Details
regarding labeling can be found in Appendix B.

Human feedback collection. We ask human annotators to select a valid viewpoint for the generated
image from the options {front, side, back, overhead}. In contrast to previous methods that rely solely
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on binary (good/bad) feedback (Lee et al., 2023) or preferences (Xu et al., 2023; Kirstain et al., 2023)
to assess model outputs, this allows us to gather a more fine-grained assessment of the viewpoint of
generated images. Once a valid viewpoint is determined by the human annotator, we reassign the text
prompt accordingly using the same template.

3.2 MULTI-VIEW REWARD LEARNING

Using images with a valid viewpoint, we train a reward model 74(x,y) specifically tailored to
assess whether the generated image x aligns with the viewpoint described in the corresponding
text prompt y. For the reward learning process, we augment our image-text dataset by introducing
negative examples. For each image-text pair (x,y) associated with a valid viewpoint, we choose
a negative image x’, with a different viewpoint as indicated in the original text prompt y. This
process generates a dataset D*™ = {(x,x’,y)}. We follow the basic framework for learning
rewards from preferences (Christiano et al., 2017), which is commonly applied in both the language
domain (Stiennon et al., 2020; Ouyang et al., 2022) and text-to-image domain (Xu et al., 2023;
Kirstain et al., 2023). The reward model 4(x, y) is trained by minimizing the following negative
log-likelihood loss:

ﬁreward(¢) _ —E(x,x’,y)NDh“’““ [log(a (r(j)(xy Y) - T¢(X’,y)))]a

where o denotes the logistic function. We remark that augmenting our dataset with negative images
can prevent model bias and trivial guessing by balancing the training data. Text-to-image models
frequently struggle with producing certain viewpoints, such as the back view, leading to dataset imbal-
ance. This imbalance can make the reward model susceptible to trivial guessing. Our augmentation
strategy involves oversampling (Chawla et al., 2002) minority samples to alleviate this issue.

In our experiments, instead of learning a reward model from scratch, we fine-tune ImageReward (Xu
et al., 2023), which is an open-source reward model pre-trained on an extensive dataset of human
preferences. To mitigate overfitting to our human dataset, we also incorporate the ImageReward-2k
dataset from pretraining into our reward learning process.

3.3 FINE-TUNING TEXT-TO-IMAGE MODELS

We fine-tune a text-to-image diffusion model pg using learned reward model r4 by minimizing the
reward-weighted negative log-likelihood (Lee et al., 2023) with KL regularization (Fan et al., 2023):

£t2i (9) = IEp(y)]Eppm(x\y) [_rd)(xv y) logp9 (X‘y) -7 10gp0 (X|y)}’ (1)

where p(y) is the distribution of prompts, v > 0 is the KL penalty, and pyre denotes the initial text-
to-image diffusion model. However, we empirically observe that directly using the learned reward
model often makes the training unstable since the reward values vary across different viewpoints'. To
address this issue, we introduce a simple normalization scheme which utilizes the softmax function
of rewards for different viewpoints. Formally, our normalized reward is given by

exp (ro(%,y) / 7)
y' ey(y) CXP (ro(x,y')/7)°

so(%,y) = D @

where 7 > 0 is a temperature parameter that controls the disparity between views, and ) (y) represents
the set of text prompts with four possible viewpoints {front, side, back, overhead} for the same object
in the original prompt y. This normalization step helps stabilize the fine-tuning process by addressing
the issues of varying reward values associated with different viewpoints. We replace the reward
r4(x,y) with normalized score s4(x,y) in equation 1.

Due to the complexity of computing the exact log-likelihood for text-to-image diffusion models
like Imagen (Saharia et al., 2022), Stable Diffusion (Rombach et al., 2022) and DALL-E (Ramesh
et al., 2022), we employ an alternative approach. Specifically, we minimize the supervised training
objective with KL-O, which is introduced in Fan et al. (2023) and corresponds to an upper bound of
equation 1.

"For example, we find that text prompts with a front view usually have higher reward scores than text prompts
with a back view.
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Table 1: View-aligned image generation. We measure and compare the softmax reward score for
Text-to-image generation.

Front view Side view Back view Overhead view
Seen  Unseen Seen  Unseen Seen  Unseen Seen  Unseen

DeepFloyd-IF  0.498 0.421 0.504 0.452 0.129 0.166 0.866 0.695
HFDream 0.812  0.590 0.900 0.646 0.360  0.339 0.903 0.862

3.4 TEXT-TO-3D GENERATION

We employ DreamFusion (Poole et al., 2022) as our main framework for generating 3D models
using our fine-tuned diffusion model, HFDream. DreamFusion updates the parameters of a NeRF
model (Mildenhall et al., 2021) by introducing noise to a NeRF rendering output image, which is
sampled from a randomly selected camera position. Text-to-image models refine this noisy NeRF
rendering through image-to-image generation, conditioned on input text prompt. The refined image
is then used to train the NeRF model, thereby gradually guiding its learning process. To improve
geometric consistency in the refinement step, DreamFusion uses view-dependent prompts based
on the random camera position, adding a viewpoint suffix that corresponds to the camera position.
For example, if the azimuth value falls within the range of [-45, 45], then a directional suffix
front view is appended to the prompt, constructing a view-dependent prompt A photo of
<A>, front view. While this view-dependent prompting can improve the geometric consistency
of the generated 3D rendering when text-to-image models consistently generate desired views, prior
text-to-image models often fail to generate images that are aligned with the designated viewpoint.
This results in 3D inconsistency problems such as the Janus problem (Armandpour et al., 2023).
However, HFDream mitigates these problems by generating view-aligned images.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The reward model is fine-tuned from ImageReward-v1.0 (Xu et al., 2023), which was trained using
over 140K expert-annotated preference pairs. Our human-labeled dataset consists of over 200K
augmented preference pairs after minority oversampling. We sample 200 pairs per prompt, resulting
in roughly 32K pairs. The reward model is then trained using both our dataset and ImageRewardDB
2K dataset, which has 35.5K preference pairs. Each minibatch is balanced to ensure equal sampling
from both datasets. The reward model is trained with a batch size of 128 and learning rate 1 x 1075,
and we choose the best validation checkpoint based on view-direction classification accuracy after
training for 30 epochs on the validation set.

We use DeepFloyd-IF (Saharia et al., 2022) as our baseline text-to-image model, which is a pixel-level
diffusion model trained on large image-text datasets. For fine-tuning, we utilize Low-Rank Adaptation
(LoRA; Hu et al. 2021), which introduces trainable weights to the UNet of the diffusion model and
updates only these added weights. We use a total batch size 128 and learning rate 1 x 10~ during
fine-tuning for 5K steps. 25K images are generated per direction, which are then filtered based on the
top 20% normalized rewards. For text-to-3D generation, we follow DreamFusion (Poole et al., 2022),
with the backbone text-to-image model replaced by our fine-tuned text-to-image model, HFDream.

For evaluation we construct a comprehensive text prompt set to examine HFDream’s ability to
generate view-aligned images and enhance the geometric consistency in 3D generation. We split the
evaluation set into two subgroups seen and unseen, based on whether the object in the prompt was
encountered during the training of the text-to-image model. The evaluation prompt set consists of 61
distinct text prompts (23 seen text prompts and 38 unseen text prompts).

Details about the evaluation prompts can be found in Appendix A.
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Figure 2: Qualitative comparison of HFDream and vanilla DeepFloyd-IF, with 4 random seeds.

4.2  VIEW-DEPENDENT TEXT-TO-IMAGE GENERATION

In this section, we evaluate HFDream’s ability to generate view-aligned images, comparing it to
the baseline model, DeepFloyd-IF. For evaluation, we create view-dependent prompts by adding
viewpoint prefixes to 61 text prompts (described in Section 4.1), resulting in the generation of a total
of 1952 images (8 images for each view-dependent prompt). We then report the average normalized
reward score (equation 2) per direction in Table 1. While DeepFloyd-IF faces challenges in generating
images from specific viewpoints such as side and back, HFDream significantly improves view-
dependent generation across all directions. Notably, HFDream consistently outperforms the original
model even on unseen prompts. However, its performance drop on unseen prompts (from 0.900 to
0.646 for side view) does suggest the potential need for larger and more diverse human datasets. Figure
2 indeed shows HFDream consistently achieves view-aligned text-to-image generation, regardless of
whether the concept was seen during training or not, overcoming the predominant bias in the original
model. For example, HFDream can generate a back view of a 1ion riding a bicycle based
on novel text prompts with counterfactual concepts.

4.3 TEXT-TO-3D GENERATION

To evaluate the benefits of consistent multi-view generation in text-to-3D generation, we combine
HFDream with DreamFusion (Poole et al., 2022) (denoted as DF-HFDream). For comparison,
we also consider DreamFusion in combination with two other methods: pre-trained DeepFloyd-IF
(denoted as DF-IF) and pre-trained DeepFloyd-IF with PerpNeg (Armandpour et al., 2023) (denoted
as DF-PerpNeg). PerpNeg is a negative prompting algorithm that can remove unwanted attributes
(undesired views in our case). For each text prompt in 61 evaluation prompts mentioned in Section 4.1,
we show two 3D outputs generated based on the text prompt (one from DreamFusion with HFDream
and one from the baseline) to human raters. Then human raters indicate which one is better, or tie
(i.e., two outputs are similar) in terms of the 3D quality (both geometric consistency and texture
detail) and text alignment, respectively. Each of the 244 3D asset (4 seeds per prompt) is evaluated by
4 independent human raters. Details about the human evaluation regarding 3D quality and Alignment
with text is elaborated in Appendix C.

Figure 5a shows win-tie-lose rates across the raters. Our method demonstrates significant improve-
ments in both 3D quality and text alignment, achieving up to 31% improvement (45%-14% win-lose
rate) in text alignment and 26% improvement (51%-25% win-lose rate) in 3D quality compared to
DF-IF. As shown in Figure 3, our DF-HFDream consistently produces 3D renderings with geometric
consistency, whereas DF-IF often fails to generate high-quality outputs. We remark that a similar
trend is observed when comparing DF-HFDream with DF-PerpNeg. DF-HFDream also mitigates the
Janus problem effectively. In Figure 4, we compare the output of DF-HFDream against DF-IF, using
same text prompt A zoomed out DSLR photo of a snail, where images from the four
pre-defined viewpoints (front, back, side, and overhead) are placed in order. Notably, the baseline
output exhibits the Janus problem, most prominently visible in the rightmost image (overhead view),
where the snail appears to have two heads.
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Unseen prompt: “A zoomed out DSLR photo of a penguin snowboarding down a mountain.”

Unseen prompt: “A zoomed out DSLR photo of a crocodile.”

Unseen prompt: “A zoomed out DSLR photo of a bicycle.”

Unseen prompt: “A zoomed out DSLR photo of a tortoise.”

Figure 3: Qualitative comparison of DF-HFDream and DF-IF.

View-alignment of the output. We also verify whether the 3D outputs are view-aligned by conducting
a human survey. To this end, we select 4 rendered views of 3D output from { front, left side, right
side, back} based on viewing coordinate.” Human raters evaluate the set of four images and judge
whether all four images are view-aligned. They are instructed to skip the query when it is hard to
make a clear decision and provide binary feedback: “good” if all four images are view-aligned or
“bad” otherwise. We generate a total 244 3D assets from 61 prompts (4 seeds from each prompt) and
each query is evaluated by 4 independent human raters. We report the average fraction of good and
bad queries across the raters. As shown in Figure 5b, 50% of the outputs generated by DF-HFDream
are indicated as perfectly view-aligned, while only 32% of the outputs generated by DF-IF exhibit
the same level of view alignment. Although DF-PerpNeg shows better view alignment compared to
DF-IF, DF-HFDream still outperforms it.

To precisely evaluate geometric consistency, we use both left and right sides.
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Seen prompt: “A zoomed out DSLR photo of a snail.”

Figure 4: Qualitative visualization of the Janus problem. HFDream mitigates the Janus problem
by generating view-aligned images.
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Figure 5: Human survey evaluation of DF-HFDream and baseline methods. For text alignment
and 3D quality, DF-HFDream consistently shows a higher win rate over baseline methods. The
percentage of perfectly view-aligned generations is also significantly improved.

Quantitative result. We also perform quantitative evaluations using two key metrics: normalized
reward scores and CLIP R-Precision (Poole et al., 2022). For normalized reward scores, we select 4
images of 3D output from each viewpoint and measure the learned reward score, which serves as a
metric for 3D view alignment. For CLIP R-Precision, we measure the accuracy of the CLIP model
in retrieving the input prompt from among other text prompts, utilizing image embeddings derived
from RGB renderings (referred to as Color) and textureless renderings (referred to as Normal), in
combination with text embeddings. Specifically, CLIP R-Precision (Color) serves as a metric for
overall fidelity in 3D rendering, while CLIP R-Precision (Normal) serves as a metric for geometric
fidelity. We refer to Appendix C for details of evaluation metrics. We report all evaluation metrics on
both seen and unseen text prompts in Table 2, showing that DF-HFDream outperforms all baselines
across, consistent with the human evaluation.

4.4 REWARD MODEL EVALUATION

This section evaluates the reward model’s ability to predict the alignment between an image and a
view-dependent prompt. We compare our fine-tuned version of ImageReward against the default
ImageReward-v1.0. In the training step, reward model is guided to return a higher score for the
image that is aligned better with the text prompt, and this ability is measured by using “preference
accuracy”. Preference accuracy counts the cases where 74(x1,y) > 74(x2,y) if the human prefers
X1 over Xo, for the same prompt y. In addition, we measure the classification accuracy: predicting a
view direction based on reward scores. Higher classification accuracy requires the reward model to
return lower scores for all incorrect directions. In practice, we find the classification accuracy to be a
better measure of the model’s overall performance. Here, we report the validation accuracy of the
reward model on its training dataset with 5K images.

In Figure 6, the original ImageReward model is unable to categorize some views at all, achieving
less than 10% accuracy. In contrast, our fine-tuned version achieves around 90% accuracy for all
directions, regardless of whether the object was encountered or not during the reward model training.
Note that the "seen" and "unseen" sets are different from the ones we’ve used in 2D and 3D evaluation;
in this figure, they denote whether they were seen in the training of the reward model. Finally, the
preference accuracy for the default ImageReward model is still deceivingly high, which reveals that
classification accuracy is a better measure of the model’s performance.
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Table 2: Text-to-3D generation comparison.

CLIP R-Prec. CLIP R-Prec. Normalized
Color (1) Normal (1) Reward Score (1)
Seen Unseen | Seen Unseen | Seen  Unseen
DF-IF 65.3 64.1 29.8 33.1 0.480 0.358
DF-PerpNeg 61.3 56.3 28.8 314 0.481 0.362
DF-HFDream | 70.5 70.2 40.5 38.8 0.531 0.413
Classification accuracy Classification accuracy
Seen objects Unseen objects Preference accuracy
100 100 A 100
P
g
2 50+ 50 1 501(98 98
I3 74 76
<
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Front Side Back Overhead Front Side Back Overhead Seen Unseen
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Figure 6: Comparison of our fine-tuned reward model and the ImageReward model.
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Figure 7: Text-to-3D DreamBooth generation. HFDream is able to perform personalized text-to-3D
generation even without specialized techniques.

4.5 HFDREAMBOOTH3D

An interesting application of HFDream involves fine-tuning it on personalized object datasets,
using tools like DreamBooth (Ruiz et al., 2023). However, directly applying text-to-3D generation
with a DreamBooth-tuned text-to-image model is often unstable due to the text-to-image model’s
susceptibility to overfitting (Raj et al., 2023). Consequently, such models struggle with view-
dependent generation. We demonstrate that HFDream consistently generates view-dependent images,
making it a promising choice for personalized text-to-3D generation after simple DreamBooth tuning,
without the need for additional algorithms. We name this simple method HFDreamBooth3D, and
compare it to the original DeepFloyd-IF model used in the same manner. As shown in Figure 7,
HFDream successfully produces personalized 3D outputs through this straightforward and cost-
efficient approach, outperforming the original DeepFloyd-IF model, which fails to deliver satisfactory
results under the same conditions.

5 CONCLUSION

In this work, we have demonstrated that fine-tuning with human feedback can effectively improve
multi-view image generation and enhance text-to-3D generation. We create multi-view 2D datasets
by filtering outputs of text-to-image models with human feedback, resulting in more realistic and
diverse images. Without using a 3D asset-based dataset, we efficiently fine-tune the text-to-image
diffusion model for generating desired views. Our text-to-image diffusion models fine-tuned with
human feedback, coined HFDream, consistently generate diverse viewpoints without the need for
multi-view datasets created from 3D assets. This leads to high-quality text-to-3D generations with
consistent geometry, when combined with view-dependent prompting in DreamFusion.
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ETHICS STATEMENT

Text-to-image or Text-to-3D models hold promise for various applications such as art, graphics, VR,
movies, and gaming. However, current models have several limitations in generating multi-view
images or rendering 3D data with consistent geometry. Our research offers a solution by enabling
fine-tuning of these models to improve specific properties and align their behaviors with human
intentions. However, at the same time, this process can be socially harmful depending on the human
data collection and learned reward functions. For example, one can expect that users could train
models to produce fake images/3D data or copy contents without permission.

To prevent this, details of human labeling and data generation should be clearly documented. It is also
critical to clarify potential bias and failure cases of reward models. In this work, we provide all details
of data generation and labeling instructions in Section 3, Section 4, Appendix B and Appendix C.
We also discuss the limitations of our learned reward model (e.g., slightly low accuracy in unseen
prompts and specific viewpoints like back) and failure cases of our fine-tuned models in Section 4.
We believe that our research can provide helpful insights in aligning text-to-image and text-to-3D
models with human intentions and improving their ability in image and 3D synthesis.

REPRODUCIBILITY STATEMENT

We provide the experimental setup in detail, including how we collected human feedback data,
how we trained the reward model and the text-to-image diffusion model, and the methods that we
employed to evaluate our method and the baseline methods in Section 4 and Appendix A.
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A EVALUATION PROMPT

In this section, we present the set of textual prompts utilized in the evaluation of HFDream’s
view-dependent text-to-image and text-to-3D generation capabilities. A total of 61 prompts were
carefully composed for this evaluation, encompassing 23 prompts related to objects encountered
during the fine-tuning process and 38 prompts featuring objects that were not part of the fine-tuning
dataset. To examine HFDream’s generation capability in handling textual prompts spanning a
spectrum of complexity, ranging from succinct descriptions to more intricate ones, we employed
two distinct templates, namely, “A zoomed-out DSLR photo of a <object>.” and “A
zoomed-out DSLR photo of a <object> <attribute>.”,to construct the prompts.
Entire concepts used for constructing prompts are described in 3.

Table 3: Evaluation prompts.

Simple concept ‘ Complex concept
bear. bear reading a book.
bird. lion riding a bicycle.
cat. rabbit juggling oranges.
dog. pig rolling in the mud.
fish. snail crawling on a leaf.
Seen prompt lion. bear watching a smartphone.
pig. rabbit nibbling on a carrot.
rabbit. bird made out of fruit.
wolf. fish made out of stone.
snail. pig made out of salad.
tiger. -
car.
shoe.
giraffe. ostrich made out of salad.
kangaroo. dolphin made out of stone.
koala. penguin made out of fruit.
dolphin. polar bear playing a saxophone.
octopus. octopus riding a unicycle.
penguin. ostrich skateboarding down a hill.
rhinoceros. dolphin playing chess with robot dolphin.
crocodile. gorilla playing a piano.
gorilla . penguin snowboarding down a mountain.
ostrich. kangaroo wearing a boxing glove.
peacock. -
seahorse.
chimpanzee.
Unseen prompt lamp.
laptop.
camera.
toaster.
books.
bicycle.
candelabra.
bonsai tree.
easel with a painting.
tortoise.
whale.
castle.
teapot.
hot air balloon.
spider.

B LABELING INSTRUCTION

Human annotators were given a single image at a time, randomly sampled from the four direction
categories. Annotators then answer what direction the image is viewed from, among the four
directions. Annotators were instructed to skip images with more than 1 image, images that are not

aligned with the text prompt, images where the prompted object is not recognizable, or images that
feel uncertain.

C EVALUATION DETAILS
C.1 HUMAN SURVEY

For the evaluation of (1) 3D quality and (2) Alignment with text based on human survey, users were
presented with pairs of 3D items, one generated by a baseline method and the other by HFDream.
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For (1) 3D quality, users were asked to select the item that has better consistency and more detailed
texture. The question posed was: “Which item has better geometric consistency and texture detail?”.
For (2) Alignment with text, participants chose the 3D item that is better aligned with the input text
prompt. The question for this task was: “Which 3D item is well aligned with the input text prompt?”.

C.2 CLIP R-PRECISION.

CLIP R-Precision is an automated metric that measures the fidelity of the image in relation to its text
input. It is the accuracy of CLIP model’s retrieval of the ground truth caption among ‘distractors’
(captions not corresponding to the image). Poole et al. (2022) measure this value on both RGB
renderings and textureless renderings, and found that using textureless renderings better measure the
geometric quality, as the CLIP model is forced to retrieve the text without using any color information.
Although Poole et al. (2022) used 153 captions from the COCO validation set following Dream
Fields (Jain et al., 2022), we use 61 prompts introduced in 4.1. As the prompts in our evaluation set
are more similar to each other, it is more challenging to retrieve the ground truth text among them.
For each method including HFDream, we generate 244 3D assets (61 prompts x 4 seeds per prompt).
For each 3D asset, we render the object from 120 viewpoints, each with the same elevation and
equally distributed azimuth values. Then we calculate CLIP R-Precision values for every rendered
views, and average them to produce averaged CLIP R-Precision for each 3D asset. We repeat this
process with normal map renderings, as they contain more information about surface geometry than
textureless renderings while eliminating the color information.

D EVALUATION RESULTS OF MAGIC3D-HFDREAM.

To demonstrate that our method is compatible with any text-to-3D method, we apply our method on
Magic3D (Lin et al., 2023). Magic3D consists of two steps: (1) First, a NeRF model is trained in low-
resolution image space to capture coarse outlines and (2) then, it is further fine-tuned in high-resolution
image space to create fine details of the model. Specifically, an open source implementation (Guo
et al., 2023) of Magic3D uses DeepFloyd-IF-I-XL with a resolution of 64 for step 1, and Stable
Diffusion 2.1 with a resolution of 512 for step 2. We denote this as Magic3D-IF-SD. We compare
this baseline to HFDream combined with Magic3D, denoted as Magic3D-HFDream. For Magic3D-
HFDream, we use HFDream-tuned DeepFloyd-IF and Stable Diffusion 2.1 for each of the two stages.
As shown in Table 4, our method consistently improves both CLIP R-Precision and normalized
reward scores for both seen and unseen evaluation sets. Additionally, Figure 8 shows that the Janus
problem is greatly alleviated in Magic3D-HFDream. For example, the bear has 3 legs and the tortoise
has 2 heads in the case of the original Magic3D method (highlighted with a yellow circle), while our
method does not exhibit these issues.

Magic3D-HFDream Magic3D-IF-SD

Unseen prompt: “A zoomed out DSLR photo of a tortoise.”

Figure 8: Qualitative comparison of DF-HFDream with DF-IF (above), and Magic3D-HFDream
with Magic3D-IF-SD (below).
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Table 4: Text-to-3D generation comparison.

CLIP R-Prec.
Normal (1)
Seen  Unseen

Normalized
Reward Score (1)
Seen Unseen

Color (1)

CLIP R-Prec.
Seen  Unseen

Magic3D-IF-SD } 63.6 62.0 } 32.1 34.1 } 0.343 0.539

Magic3D-HFDream | 65.6 72.9 43.8 35.9 0.427 0.578
E QUALITATIVE RESULTS
E.1 2D GENERATION RESULTS OF HFDREAM.

Side Back Overhead

Whale
Figure 9: HFDream text-to-image generation samples for unseen objects, with 8 random seeds.
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Bear reading a book
Figure 10: HFDream text-to-image generation samples for seen objects, with 8 random seeds.

E.2 3D GENERATION RESULTS WITH DREAMFUSION-HFDREAM.

Snail

Figure 11: DF-HFDream text-to-3D generation example with 3 random seeds.
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Crocodile

Figure 12: DF-HFDream text-to-3D generation example with 3 random seeds.

E.3 QUALITATIVE COMPARISON OF HFDREAM AND VARIOUS BASELINES

We compare HFDream to various baselines including MVDream (Shi et al., 2023). The baseline
images and prompts are from the MVDream [link] in Figure 13, Figure 14 and Figure 15. Overall,
our Magic3D-HFDream demonstrates consistently better results in terms of geometric consistency
and text alignment. For example, in Figure 13, MVDream sacrifices text alignment for geometric
consistency (rocket is missing), and other methods, such as DreamFusion-IF, Magic3D-IF-SD,
TextMesh (Tsalicoglou et al., 2023), ProlificDreamer (Wang et al., 2023b), have the Janus problem.

DreamFusion-HFDream (ours) Magic3D-HFDream (ours)

DreamFusion-IF Magic3D-IF-SD Text2Mesh-IF ProlificDreamer MVDream

M

Prompt: "Corgi riding a rlocket"

Figure 13: Comparison of HFDream to various baselines. Note that images for azimuth value 0°,
90°, 180°, 270° (front, left side, back, right side) are shown.
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DreamFusion-HFDream (ours) Magic3D-HFDream (ours)

S T
L & |

DreamFusion-IF Magic3D-IF-SD Text2Mesh-IF ProlificDreamer

‘ a DSLR photo of a squirrel playing guitar

Figure 14: Comparison of HFDream to various baselines. Note that images for azimuth value 0°,
90°, 180°, 270° (front, left side, back, right side) are shown.

DreamFusion-HFDream (ours) Magic3D-HFDream (ours)

R -

R

DreamFusion-IF Magic3D-IF-SD Text2Mesh-IF ProlificDreamer MVDream

Flying Dragon, highly detailed, breathing fire

Figure 15: Comparison of HFDream to various baselines. Note that images for azimuth value 0°,
90°, 180°, 270° (front, left side, back, right side) are shown.
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Table 5: Text-to-3D generation comparison on random 50 prompts from DreamFusion prompts.

CLIP R-Prec. | CLIP R-Prec. Normalized
Color (1) Normal (1) Reward Score (1)
DF-IF 55.4 18.1 0.264
DF-HFDream 59.7 23.1 0.281

F EVALUATION RESULTS ON DREAMFUSION EVALUATION PROMPTS

We evaluate our method on DreamFusion evaluation prompt. We measure normalized reward score,
and CLIP R-Precision for RGB video rendering and normal map. As presented in Table 5, our method
achieves the highest scores in all metrics.

G EXPERIMENTS FOR HFDREAM WITH STABLE DIFFUSION

We conduct experiments with Stable Diffusion 2.1 (Rombach et al., 2022) to verify that our method
can be used with other text-to-image diffusion models using human feedback. First, we update Stable
Diffusion 2.1 using a reward model, which is fine-tuned with our human feedback datasets, via
supervised fine-tuning (SFT) based on reward-weighted loss. As shown in Figure 16, the proposed
method also improves the view-alignment of Stable Diffusion 2.1.

HFDream-SD2.1 Stable Diffusion 2.1 HFDream-SD2.1 Stable Diffusion 2.1

= - 5 "{i

Horse (Unseen) Tractor

Figure 16: Qualitative comparison of HFDream applied to Stable Diffusion 2.1 and vanilla Stable
Diffusion 2.1. View directions are: back (top left), front (top right), overhead (bottom left), side
(bottom right) for each grid image.

However, supervised fine-tuning leads to a degradation in image quality (e.g., over-saturation) as
also observed in several prior works (Lee et al., 2023; Fan et al., 2023). Recently, Fan et al. (2023)
demonstrated that adapting reinforcement learning (RL), which involves online sample generations,
can mitigate such failure cases. Inspired by this, we fine-tune Stable Diffusion 2.1 using RL
methods (Black et al., 2023; Fan et al., 2023) with our reward model (denoted as HFDream-SD?2.1-
DDPO). As shown in Figure 17, HFDream-SD2.1-DDPO generates natural images that are also
aligned with view-dependent prompts. This result shows the synergy between our method and RL
fine-tuning.
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Stable Diffusion 2.1

i

HFDream-SD2.1-DDPO Stable Diffusion 2.1 HFDream-SD2.1-DDPO
: N e\ [ 1
/

Lion Shoe

Figure 17: Qualitative comparison of HFDream applied to Stable Diffusion 2.1 by using DDPO
and vanilla Stable Diffusion 2.1. View directions are: back (top left), front (top right), overhead
(bottom left), and side (bottom right) for each grid image.
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