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Abstract:
Large language models (LLMs) have garnered increasing popularity owing to their
remarkable reasoning capabilities. However, their primary utility within the field
of robotics has predominantly been constrained to tasks related to manipulation
planning, primarily due to their inherent text-based outputs. To overcome this
limitation, this paper explores the potential of LLMs in the realm of numerical
predictions in robotics, with a specific focus on the task of robotic grasping. We
propose Reasoning Tuning, a novel approach that harnesses the extensive prior
knowledge embedded within LLMs, optimizing them for tasks involving numeri-
cal prediction. This method empowers LLMs, notably with multi-modal capabil-
ities, to generate precise numerical outputs, such as grasp poses for robot arms.
The proposed method is extensively validated on the grasping benchmark and
real-world grasping experiments, demonstrating that multi-modal LLMs can be
adapted for numerical prediction tasks in robotics. This not only extends their ap-
plicability but also bridges the gap between text-based planning and direct robot
control utilizing LLMs. More details and videos of this work are available on our
project page: https://sites.google.com/view/rt-grasp.
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1 Introduction
The growth of artificial intelligence in recent years has been significantly driven by the emergence of
large language models (LLMs). These models, with their immense knowledge, have been transform-
ing how we approach various tasks, especially those involving language. In the world of robotics,
the potent reasoning capabilities of LLMs have become indispensable for robot manipulation plan-
ning [1, 2, 3], enhancing adaptability across diverse real-world scenarios and fostering interactive
engagements with humans. However, despite the potential that LLMs bring to the field of robotics,
their application has predominantly been limited to planning tasks. A notable bottleneck lies in the
textual nature of LLM outputs, which often presents challenges in integration with the numerical
requisites essential for direct robot control.

Concurrently, multi-modal large language models have captured significant attention [4, 5]. These
models equipped with the capability to understand not just text but also images, have redefined
what we thought was possible with LLMs. In the realm of robotics, they bridge the gap between
perception and planning, then address a variety of embodied reasoning tasks [6, 7]. However, their
image understanding is mostly general, meaning they can tell what is the object in a picture but not
where exactly it is located, as illustrated in Figure 1. Consequently, while robots can leverage the
linguistic wisdom of LLMs in planning tasks, they have yet to capitalize on their potential for direct
numerical manipulation.
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Figure 1: Comparing three robotic grasping ap-
proaches: 1) Traditional CNN-based algorithms
produce fixed poses, which lack adaptability in
practical situations. 2) Multi-model LLMs out-
put adaptable grasping strategies but lack precise
numerical predictions. 3) Ours combines the best
of both, predicting adaptable numerical grasping
informed by reasoned strategies.

On the other hand, traditional methods for
robotic numerical prediction tasks face restric-
tions in real-world applications due to their ab-
sence of reasoning capabilities. Take the case
of robotic grasping task: most existing meth-
ods [8, 9] use CNN-based architectures to pre-
dict the grasp pose. While some of them ex-
cel in experimental accuracy on benchmark
datasets, their real-world applications remain
constrained. For instance, traditional models
might produce theoretically correct predictions,
but these could be impractical for real scenarios
like grippers with width constraints, as illus-
trated in Figure 1. Furthermore, these models
also lack the capability to refine their predic-
tions according to different situations because
of their absence of reasoning faculties.

Here a question is posed: can the reasoning
capabilities inherent in LLMs be utilized for
numerical prediction tasks in robotics? This
paper offers a positive answer, showcasing an
adaptation of multi-modal LLMs to robotic
grasping tasks. Multi-modal LLMs provide
more than just advanced image understanding;
they also possess rich prior knowledge and rea-
soning capabilities. These traits make them ex-
cellent candidates for robotic tasks.

To efficiently utilize the reasoning capability of
LLMs for numerical predictions, we introduce
a novel approach, Reasoning Tuning. This ap-
proach introduces a crucial reasoning phase be-
fore the numerical prediction step during training, directing the model to base its predictions on
sound logical reasoning, thereby unlocking the valuable information encapsulated within LLMs.
Reasoning Tuning aims to amplify the existing wealth of knowledge on object concepts, shapes,
structures, and materials already embedded within LLMs, thus enhancing their efficacy in numeri-
cal predictions for robotic tasks.

Furthermore, another benefit of adding a reasoning phase prior to numerical prediction is data ef-
ficiency. Typically, large-scale datasets are essential for training or fine-tuning LLMs, posing a
challenge for adapting them to downstream tasks. However, a pre-trained LLM already contains
high-level information about object attributes. Thus, a reasoning phase that capitalizes on this prior
knowledge effectively reduces the need for expansive visual datasets. In this paper, we exemplify
this approach using the robotic grasping task, demonstrating that the method not only can harness
the prowess of multi-modal LLMs for precise numerical predictions but also requires only a limited
dataset.

Moreover, we explore two economical training strategies: pre-training and Low-Rank Adaptation
(LoRA) fine-tuning [10]. Our intent behind this investigation is to present a more resource-efficient
method for transferring the capabilities of multi-modal LLMs to downstream robotic tasks.

In summary, we adapt multi-modal LLMs for numerical prediction tasks, with a focus on robotic
grasping. Our approach not only enables reasoning capabilities but also allows for refinable predic-
tions, as illustrated in Figure 1. The main contributions can be summarized as follows:
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• We introduce Reasoning Tuning, a novel and data-efficient methodology that leverages
the inherent prior knowledge of pre-trained LLMs, facilitating their adaptation to tasks
requiring numerical predictions.

• We investigate two computationally efficient training strategies: pre-training and LoRA
fine-tuning, designed to adapt multi-modal LLMs seamlessly into the downstream applica-
tions.

• We validate the efficacy of our proposed method on the grasp benchmark dataset and also
conduct hardware experiments on real robots to demonstrate the performance.

2 RELATED WORK

2.1 Robotic Grasping

Traditionally, robotic grasping has leaned heavily on analytical approaches [11, 12, 13]. These
techniques primarily focus on understanding the geometry of objects or analyzing the contact force
to find a grasp that maximizes stability. However, these methods often struggle to generalize well to
unseen objects and can fail when faced with irregular objects.

Data-driven methods, especially those using convolutional neural networks (CNNs), have shown
promising results in recent years [14, 15, 16, 17, 9, 8, 18]. These approaches leverage large datasets
of labeled grasping examples to train models capable of making grasp predictions. Despite their
success, these models often suffer from overfitting. They cannot also reason the usage, category,
material, and other properties of objects beyond their shape. This limitation restricts their effec-
tiveness in real-world scenarios, particularly when grasping objects with unusual shapes or those
requiring special handling due to their material properties or intended use.

2.2 Language Grounding for Robotics

Language-conditioned Robotic Manipulation. In recent years, the appeal of natural language
has propelled research into language-conditioned robotic manipulation. Studies [19, 20, 21, 22]
have explored grasp detection grounded following language instructions in scattered scenes. [23]
performs grasping prediction based on language descriptions of an object’s properties. And building
on advancements in language models [24, 25], recent studies [26, 27, 28, 29, 30, 31] have success-
fully grounded more flexible language instructions into long-horizon manipulation tasks. However,
these methods require lots of demonstrations to master image-based policies and additionally, they
have to address the challenges of sim2real.

LLMs for Robotic Manipulation. With the rise of LLMs, there has been a surge in research
exploring their capabilities for manipulation. Many studies [2, 3, 32] have integrated LLMs into
closed-loop planning structures, decomposing language-conditioned long-horizon tasks into small
steps. Yet, the gap between language instructions and actions still remains. Furthermore, some
studies [33, 34, 35] have employed program-like specifications to prompt LLMs, melding planning
and action using a predefined library of action functions. While intriguing, these methods are often
constrained by the limitations of basic action functions and typically require extra perception mod-
els, reducing both system efficiency and flexibility. Recent studies [7] have made strides in bridging
the planning-action gap using multi-modal LLMs, but the method has high data and computational
requirements, which hinder its applicability in real-world scenarios. Different from the above, our
work is able to utilize the prior knowledge embedded within pre-trained LLMs and achieve precise
numerical predictions in the field of robotics.

3 ROBOTIC GRASPING

In this work, the robotic grasping problem is defined as finding an antipodal grasp, perpendicular to
a planar surface, given an n-channel image. Similar to [36, 9], the grasp pose can be parameterized
as g = {x,y,θ ,w}, where (x,y) indicates the 2D coordinates signifying the center point of the grasp
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Figure 2: Overview. The proposed method processes RGB images and user instructions to yield text
outputs, which comprise both a reasoning phase and a numerical grasp pose prediction p = {x,y,θ}.
The reasoning phase analyzes the object’s shape and structure based on its category and generates
corresponding grasping strategies. Figure illustrates examples of reasoning templates in the training
set for three distinct categories.

pose; θ denotes the rotation angle of the gripper compared to the horizontal axis; w represents
the width of the grasping box. In many related studies, the inclusion of w within the predicted
grasp pose g is usually considered non-essential [37], due to the variations in grippers and camera
configurations. To this end, our study, with its primary focus on probing the efficacy of LLMs in
robotic grasping tasks, assumes w equals the maximum width of the gripper. Hence, the grasp pose
considered in this paper can be defined by p = {x,y,θ}. Here (x,y) coordinates are normalized by
image width and image height respectively, and rotation angle θ is represented in radians scaling to
(−π

2 ,
π

2 ), as shown in Figure 2.

4 RT-Grasp

In this section, we introduce Reasoning Tuning for robotic grasping (RT-Grasp), a method specif-
ically designed to bridge the gap between the inherent text-centric nature of LLMs and the precise
numerical requirements of robotic tasks. Its primary objective is to exploit the vast prior knowl-
edge encapsulated within LLMs to their maximum potential, optimizing it for numerical prediction.
Through this method, the multi-modal LLM is able to generate precise numerical outputs, comple-
mented by accompanying reasoning.

Our model builds upon the multi-modal LLM, specifically the Large Language and Vision Assis-
tant (LLaVA) [5]. This model connects a visual encoder and LLaMA [38], an open-source LLM
that matches the performance of GPT-3 [39]. LLaVA is originally trained on image-text paired
datasets for general-purpose visual and language understanding. In alignment with this, we propose
a novel method, Reasoning Tuning, and create our image-text dataset, named Reasoning Tuning
VLM (Visual Language Model) Grasp dataset, aiming to utilize the intrinsic knowledge of LLMs.
More details are introduced in section 4.1. In addition, to address the challenge of computational
costs, we have ventured into two different frameworks, pre-training and LoRA fine-tuning, which
are discussed in section 4.2.
4.1 Reasoning Tuning

An intuitive approach to adapting language models for numerical predictions is to directly train
them using numerical values in textual form. However, our preliminary exploration of this approach
yields limited performance, producing invalid outputs like exceedingly large values. We conjecture
that the LLM finds it challenging to align numerical outcomes with their semantic significance. To
this end, we introduce Reasoning Tuning, a methodology that integrates a reasoning phase before
the model provides its numerical predictions. It compels the LLM to engage in reasoning about
the image and task before producing any precise numbers. In our Reasoning Tuning VLM Grasp
dataset, the target text was structured to include a reasoning segment, followed by the textual grasp
pose, as illustrated in Figure 3 under the With Reasoning dataset variant.
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Figure 3: Reasoning Tuning VLM Grasp dataset.
This image-text paired dataset contains three vari-
ants based on target texts and sources its RGB im-
ages from the Cornell Grasp dataset [14].

This integrated reasoning phase is designed to
leverage LLM’s intrinsic knowledge and rea-
soning capability, thereby generating a grasp
pose tailored to the specific object in the image.
For example, consider cups, which may exhibit
varied appearances in terms of color, design, or
material. But a general grasping strategy for
them – targeting the handle or the upper edge –
is universal for robotic manipulation. Contem-
porary LLMs, such as LLaMA, are reposito-
ries of comprehensive knowledge about object
properties such as shapes and structures. Utiliz-
ing this knowledge, the reasoning phase directs
LLMs to first establish the grasping strategies,
setting the stage for a more informed numerical prediction in the subsequent step.

In our Reasoning Tuning VLM dataset, the reasoning texts commence by identifying the object’s
category and overarching shape. Then it outlines the general grasping strategy based on this specific
category. For every object category in the dataset, we create a series of reasoning templates. To
ensure the quality of these templates, we adopted a multi-step approach. First, we prompt ChatGPT
[40] to generate a collection of templates tailored to each category. This was followed by instructing
it to refine these drafts, excising redundant or irrelevant sentences. As a final quality check, we man-
ually verify the correctness and relevance of generated templates. Some examples of our reasoning
templates used in the training set are shown in Figure 2. The full collection and ChatGPT prompts
can be found on our project page.

Additionally, we introduce two dataset variants for the ablation study: Numbers Only and With
Prompts. Neither of these variants includes the reasoning phase in their target texts, as illustrated
in Figure 3.

• Numbers Only: The target texts contain solely textual grasp poses p in this variant.
While this approach is straightforward for adapting a language model to numerical predic-
tion, its performance is unsatisfying.

• With Prompts: This variant enriches the textual grasp poses with added prompts. For
instance, it specifies that (x,y) denotes center point coordinates, and θ indicates rotation
angles. Although this modification led to an improvement in performance compared to
Numbers Only, it remains suboptimal.

As for the input texts in our VLM dataset, we also employ ChatGPT to automatically generate a
series of consistent instruction templates pertaining to the robotic grasping task, and an example
template is shown in Figure 3. Notably, the methodology behind creating this Reasoning Tuning
VLM dataset is adaptable to other numerical prediction tasks beyond robotic grasping. Adjusting
the strategies in the reasoning phase can draw upon the appropriate prior knowledge embedded
within LLMs tailored for different tasks.

4.2 Training Strategy

In our setup, for each image I, we have a single round conversation data form (S,A), where S
represents the input instruction and A is the associated target answer. This paper performs two
training strategies: pre-training and LoRA fine-tuning, as illustrated in Figure 4. Both strategies
utilize an auto-regressive training objective following LLaVA. To elaborate, for a sequence of length
l, the probability of producing the target answer A is formulated as

p(A|I,S) =
l

∏
i=1

pθm(ai|I,S,A<i), (1)

where θm is trainable parameters in the model; ai represents the current prediction token; A<i indi-
cate answer tokens before the current token ai. During training, let A = {Ar,An} represent the texts
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Figure 4: Two training strategies. 1) Pre-training: only parameters of the projection layer are train-
able; 2) LoRA fine-tuning: only parameters of the projection layer and LoRA model are trainable.

for the reasoning phase Ar and the numerical prediction An. Then the equation (1) can be rewritten
as

p(A|I,S) = p(Ar|I,S) · p(An|I,S,Ar) =
|Ar |

∏
i=1

pθm(ai|I,S,Ar<i) ·
|An|

∏
j=1

pθm(a j|I,S,Ar,An< j) (2)

where p(Ar|I,S) denotes the probability of producing the reasoning texts, and p(An|I,S,Ar) is the
probability of producing numerical predictions conditioned on the input image I, instruction S, and
reasoning phase texts Ar. And the entire answer length l = |Ar|+ |An|.

4.2.1 Pre-training

Within this training strategy, both the visual encoder and weights of the LLM are maintained in
a frozen state. Only weights of the projection layer, which aligns image features with the word
embedding space of the LLM, are updated.

4.2.2 LoRA Fine-tuning

To further enhance the performance, we adopt LoRA [10] fine-tuning, a computationally efficient
technique that adds an external model to the existing LLM. Specifically, we inject LoRA into all
linear layers within the LLMs. Notably, both the vision encoder and the original LLM remain
frozen. Only weights of added LoRA and the projection layer are set as trainable parameters.

5 Experiments

In this section, we assess the performance of the proposed approach using both grasping datasets
(Section 5.1) and household test objects on real robots (Section 5.2). Moreover, we have devel-
oped three variants of the Reasoning Tuning VLM Grasp dataset for an ablation study. This study
underscores the enhanced performance achieved by introducing the reasoning phase.

5.1 Evaluation on Reasoning Tuning VLM grasp datasets

5.1.1 Setup

For all experiments, we utilize LLaVA-7B-v0 [5] as the base model, which is derived from the large
language model LLaMA-7B [38]. For the vision encoder, we employ the CLIP ViT-L/14 [25] to
extract image features. During the pre-training, we set the batch size to 32 with a learning rate of
2×10−3. During the LoRA fine-tuning, the batch remains 32 and the learning rate is 5×10−4. And
we choose a rank r = 64 and α = 32 for LoRA configurations.
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5.1.2 Datasets

We evaluate the proposed method using the Reasoning Tuning VLM Grasp dataset that we devel-
oped. This dataset sources its RGB images from the benchmark Cornell Grasp dataset [14], which
consists of 885 color images representing 240 distinct objects. We’ve manually divided these objects
into 74 different categories, formulating specific grasping strategies for each category as introduced
in Section 4.1. Given the relatively limited number of images, we have implemented data augmenta-
tion techniques such as image rotation, zooming, and random cropping, by following related studies
[9, 41, 42]. Consequently, we have crafted three variants of the Reasoning Tuning VLM grasp
dataset, with each containing 76k image-text paired grasp samples. And only positively labeled
grasps were included during training.

5.1.3 Evaluation metrics

We follow a cross-validation setup as in previous works and partition the datasets into 5 folds. Both
image-wise and object-wise splits are utilized for evaluation. Performance is reported using the
rectangle metric [14]. And a grasp pose is deemed valid if fulfills the following two conditions: 1)
The Intersection over Union (IoU) score between the predicted and target rectangles exceeds 25%.
2) The angular deviation between the orientations of the predicted and target rectangles is less than
30 degrees. This metric requires a grasp rectangle representation, while our method predicts the
grasp pose without the width w. Thus, to evaluate the accuracy, we convert the pose p combined
with the ground truth w into the rectangle representation.

5.1.4 Results

In Table 1, we present the grasp prediction accuracy of our method on the Reasoning Tuning VLM
Grasp dataset, including three variants for an ablation study. Given that our VLM dataset origi-
nates from images of the Cornell Grasp dataset, we also include results from traditional grasping
algorithms on this dataset. Notably, our method directly generates precise numerical values and is
trained on RGB images only, while traditional grasping algorithms output heatmaps which require
post-processing to obtain grasp poses and are trained on RGB-D images. As Table 1 shows, our
method offers a promising grasping accuracy without extra depth information, demonstrating the
potential of multi-modal LLMs in numerical prediction. Moreover, variant With Reasoning en-
hances accuracy by 9−26% across all settings compared to variant Numbers Only, highlighting
the effectiveness of our proposed Reasoning Tuning method. Our method bridges the gap between
planning and action in robotics, coupled with LLM’s reasoning ability.

Table 1: Results on grasping datasets.

Method Modality Grasp Accu (%)
Image-Wise (IW) Object-Wise (OW)

Traditional grasping algorithms on Cornell Grasp dataset
SAE, struct [15] RGB-D 73.90 75.60
GG-CNN2 [8] RGB-D 84.00 82.00
GR-ConvNet [9] RGB-D 97.70 96.60

Our Pre-training on RT VLM Grasp dataset (mean±std)
Numbers Only RGB, text 65.70±0.87 61.55±1.32
With Prompts RGB, text 72.94±2.08 67.04±3.46
With Reasoning RGB, text 74.41±0.88 72.61±2.78

Our LoRA Fine-tuning on RT VLM Grasp dataset (mean±std)
Numbers Only RGB, text 58.44±6.04 50.31±14.34
With Prompts RGB, text 69.15±11.00 67.44±9.99
With Reasoning RGB, text 84.05±0.78 77.02±0.93
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5.2 Evaluation on real-world experiments

5.2.1 Setup
In the real-world experiments, the traditional method GR-ConvNet [9] and our proposed method
were thoroughly assessed. A 7-DoF Franka Emika Panda equipped with a Franka Hand parallel
gripper was utilized for grasping. To perceive the object, one Azure Kinect was positioned in front
of the robot. A cropped 400× 400 RGB image of the workspace was utilized as the input to each
method to predict the grasp pose.

5.2.2 Household test objects

Figure 5: Household test objects for
real-world grasping experiments.

A diverse set of 27 household objects (Figure. 5) was se-
lected to examine the grasping performance. These objects
exhibited variability in several attributes including category,
size, shape, and material. Notably, all of these objects are
unseen instances from the training dataset. To ensure a
comprehensive analysis, each object was tested under 5 dis-
tinct positions and orientations, resulting in 135 grasps in
total for each method.

5.2.3 Results
Table 2: Results on real-world evaluation.

Method Grasp Accu (%)
GR-ConvNet [9] 85.2 (115/135)
RT-Grasp Pre-training 80.0 (108/135)
RT-Grasp LoRA Fine-tuning 83.7 (113/135)

Here we draw attention to the performance
gap between grasping dataset accuracy (Ta-
ble 1) and real-world experimental results
(Table 2). Specifically, in real-world exper-
iments the traditional method GR-ConvNet
achieved an 85.2% success rate, marking a noticeable degradation in performance compared to its
results on the Cornell Grasp dataset. This underscores its limitations in effectively reasoning about
attributes of unseen objects. On the other hand, our proposed RT-Grasp achieved success rates of
80.0% and 83.7% for the pre-training and LoRA fine-tuning strategy, respectively, aligning closely
with its performance on VLM grasping datasets. These results not only demonstrate competitive
accuracy in grasping household objects when compared to traditional algorithms but also emphasize
the model’s ability to generalize its capabilities on unseen objects. It is noteworthy that some of
the objects tested here belong to unseen categories not present in the training dataset. Additionally,
in this testing, we utilize the initial predictions from RT-Grasp without any subsequent refinement,
highlighting the effectiveness of adapting multi-modal LLMs to numerical robotic grasping tasks.

5.3 Interactive refinement and reasoning
In this section, we showcase the proficiency of our model in reasoning, as it outputs novel grasping
strategies for unseen categories. In addition, it possesses the flexibility to refine the grasp poses
through real-time interaction with users. The case in Figure 1 highlights our model’s capacity to
generate a novel grasping strategy for an object belonging to a category not encountered during
training. Figure 6 (in Appendix) illustrates two cases showing the dynamic interaction between
users and the model, enabling adaptable and refinable grasp predictions through multiple rounds of
conversation.

6 CONCLUSIONS
This research underscores the potential of LLMs beyond their traditional text-centric domains. The
proposed method utilizes the vast prior knowledge of LLMs for numerical predictions. We verified
its efficacy on robotic grasping tasks through extensive experiments on both benchmark datasets
and real-world scenarios. For future work, we aim to further validate this method by applying it to
grasping datasets featuring a broader array of objects, such as the Jacquard dataset [43]. Moreover,
the adaptation of multi-modal LLMs for numerical predictions in various other robotic manipulation
tasks is also a promising research direction.

8



Acknowledgments

We would like to express our heartfelt gratitude to our colleagues at Baidu Research, USA for their
support and assistance throughout the research process. Their expertise, insights, and assistance
were instrumental in shaping the direction of this research. We also would like to extend our sincere
appreciation to the reviewers for their invaluable comments and constructive feedback, which greatly
contributed to the refinement of this paper.

References
[1] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language

instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[3] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[4] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.

[5] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023.

[6] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023.

[7] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[8] D. Morrison, P. Corke, and J. Leitner. Learning robust, real-time, reactive robotic grasping.
The International journal of robotics research, 39(2-3):183–201, 2020.

[9] S. Kumra, S. Joshi, and F. Sahin. Antipodal robotic grasping using generative residual con-
volutional neural network. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 9626–9633. IEEE, 2020.

[10] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[11] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detection
based on multiple-view geometric cues with application to robotic towel folding. In 2010 IEEE
International Conference on Robotics and Automation, pages 2308–2315. IEEE, 2010.

[12] Y. Domae, H. Okuda, Y. Taguchi, K. Sumi, and T. Hirai. Fast graspability evaluation on single
depth maps for bin picking with general grippers. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1997–2004. IEEE, 2014.
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7 Appendix

7.1 Interactive refinement and reasoning

We illustrate two test cases on unseen categories (Figure 6) to show the proficiency of our model in
reasoning. Predicted grasping results can be refined according to real-world scenarios via dynamic
interaction between users and the model.

For the case of the screwdriver, initially, our model outputs a grasp point located on the metallic
part of the screwdriver, which is considered a valid grasp for the robot arm based on the training
dataset. However, recognizing the potential insecurity of this grasp, the user instructs the model to
refine its grasping prediction, specifically to avoid the metallic tip. Leveraging its reasoning ability,
our model successfully generates a distinct grasp pose in response to the user’s new instruction.

In the case of grasping a cup, the model initially suggests a grasp pose on the handle. Nevertheless,
this pose may be unstable when grippers attempt to grasp the cup from the top. Responding to the
user’s guidance, the model refines the grasp pose by identifying the cup’s edge, resulting in a more
stable grasp when approached from the top.

For effective grasping, find the optimal grasp point [x,y] on the 
object and the end effector rotation angle in radians.

This is a screwdriver. The gripper should be perpendicular to 
its length for a balanced grasp. 
Grasping point  coordinates: [0.5941, 0.4888] 
Rotation angle in radians: -1.4944

Regenerate a secure grasp pose avoiding the metallic tip.

A grip on its handle, avoiding the metallic tip, is ideal. The 
gripper should align orthogonally to its axis.
Grasping point  coordinates: [0.3505, 0.4711] 
Rotation angle in radians: -1.5121

ExecuteInteractive

Refinement

User

User

RT-Grasp

RT-Grasp

Calculate the best-suited grasping point coordinates and the 
end effector rotation angle in radians for the robot arm.

The object in the image is a cup. Its handle is the ideal 
grasping point for a stable hold.
Grasping point  coordinates: [0.3035, 0.4533] 
Rotation angle in radians: 0.5989

Regenerate the grasp pose by identifying the cup’s upper edge.

Its top edge is the best grasping point, and the rotation angle 
should be orthogonal to the edge.
Grasping point  coordinates: [0.3320, 0.3876] 
Rotation angle in radians: -0.0967

ExecuteInteractive

Refinement

User

RT-Grasp

User

RT-Grasp

Figure 6: Reasoning and interactive refinement. Outputs from RT-Grasp include a reasoning phase
(in blue) and a numerical grasp pose. The initial predicted grasp is indicated in red, while the grasp
after refinement is denoted in green.
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7.2 Validation accuracy

We present a visualization of the validation accuracy along with the training steps for the With
Reasoning variant in Figure 7, which encompasses both pre-training and LoRA fine-tuning strate-
gies. Our aim is to offer a clear and insightful visualization of the validation accuracy dynamics
throughout the training process, shedding light on the effectiveness of our model. The consistent
ascent in validation accuracy serves as a testament to the robustness and adaptability of our model.

Figure 7: Validation accuracy for two training strategies on With Reasoning.

7.3 Reasoning template examples

We present a selection of reasoning templates employed during the training of our model. These
reasoning templates were meticulously generated through a multi-step pipeline outlined in Section
4, initially created by ChatGPT, and subsequently subjected to rigorous manual verification. It is
crucial to emphasize that these reasoning templates were tailored to specific categories, as they may
exhibit distinct geometric properties and characteristics. The entire collection can be found on our
project page.

Category:   <banana>
Templates: -- There is a banana in the image. Given its elongated and curved nature, grasping near the 

middle offers a secure grip. The gripper rotation should be orthogonal to the curve direction.
-- Identified object in the image is a banana. Its unique curved shape suggests grasping it in a 
way that aligns with its length for stability. The ideal gripper orientation would be perpendicular 
to its longitudinal curve.

Category:   <bottle>
Templates: -- There is a bottle in the near center of the image, usually cylindrical with a narrow neck. The 

midsection offers the most stability for a grip. The gripper should align with the bottle's axis.
-- Recognized object in the image is a bottle. Its cylindrical shape suggests that a grip around its 
body is most stable. the grippers rotation should be perpendicular to its length.

Category:   <toothbrush>
Templates: -- The object is a toothbrush, long with bristles on one end. Grasping the handle, away from 

the bristles, ensures a firm grip. The gripper should be perpendicular to its length.
-- This is a toothbrush. The handle, avoiding the bristled end, is the best grasping point. The 
gripper should align orthogonally to its main axis.

Category:   <lime>
Templates: -- The object is a lime, typically spherical. A grasp near the center would be stable.

-- This is a lime. Its rounded nature means targeting the midpoint provides a balanced grip.

Figure 8: Examples of reasoning templates.
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