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Abstract

We present prioritized representation learning (PRL), a method to enhance unsu-
pervised representation learning by drawing inspiration from intrinsic motivations
and active exploration. PRL re-weights training samples based on an intrinsic
priority function embodying preferences for certain inputs. We show how common
human perceptual biases across different sensory modalities emerge through a pri-
ority function promoting compression. We also demonstrate that the same priority
function establishes an early exposure effect where stimuli that are seen early in
training become preferred. Our results reveal that PRL can mimic the results of
active representation learning even in the absence of active control over the input.

1 Introduction

Throughout their lives, humans develop a range of perceptual preferences. While some of these are
rather universal and shared with other animal species (e.g. finding symmetries aesthetically pleasing
[1]), others are shaped by an individual’s culture and/or personal experiences (e.g. a baby’s joy when
looking at their mom but not at strangers [2] or an adult’s preference for foods they used to eat in
their youth [3]). Are there general mechanisms driving the development of such preferences?

Humans and non-human animals interact with their environments and thus control the statistics of
their sensory inputs. This gives them the opportunity to preferentially sample specific experiences at
the expense of others. An initial preference for certain stimuli (even if small) may therefore result
in preferential sampling of similar stimuli, which, under certain conditions, can further amplify
this preference, establishing a positive feedback loop. From an evolutionary perspective, such a
mechanism of preference development may prevent unnecessary risks associated with overly curious
sampling of ever new experiences, which might waste precious resources on learning too many
things (and none of them well). Such a mechanism of preference formation is also consistent with
results on perceptual fluency, i.e. the idea that perceptual inputs that have been well-practiced and
are easy to process are associated with positive affect [4, 1]. Crucially, while an active learner can
selectively sample inputs based on its preferences, the opposite is true for passive learners, where
such preferences may be hard to establish.

In this work we present prioritized representation learning (PRL), a model to explain the origins
of common human perceptual preferences. Drawing inspiration from prioritized experience replay
in reinforcement learning [5], we propose that standard (passive) representation learning can be
enhanced by means of a priority function that re-weights inputs in a training batch according to
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Algorithm 1: Prioritized representation learning (PRL)
Input dataset X = {xi}, priority weighting function
W , loss function L, total epochs E, batch size N ,
learning rate γ

Initialize representation model parameters θ
for epoch = 1,2, ...,E do

Sample batch B = {bi} from dataset: B ∼ X
for bi = b1,b2, ...,bN do

Compute element loss: Li = L(bi|θ)
Compute weighting: wi =W(bi|θ̄)

end
Compute weighted loss: L∗ =

∑
i wiLi /

∑
j wj

Update representation model: θ ← θ − γ∇θL∗

end
Output trained representation model parameters θ Figure 1: AEC sensorimotor loop (top)

and PRL equivalent (bottom)

a generic objective function. This re-weighting can also be interpreted as filtering out irrelevant
inputs in order to prioritize the representations of more relevant inputs, establishing a link to attention
mechanisms. The method is agnostic with respect to the chosen representation model, as long as its
loss function can be appropriately weighted. Thus, anything from a simple dimensionality reduction
algorithm [6] to a contrastive learning encoder [7] may benefit from PRL. By way of example,
we show how a deep autoencoder trained with an efficient coding priority favoring compressible
inputs explains the development of some well-known human perceptual preferences across different
modalities.

2 Prioritized representation learning (PRL)

Let R be a representation model with parameters θ and let L be a loss function used to train this
model with a dataset of inputs X = {xi}. The representation model learns to map the inputs xi into
latent encodings zi. The loss measures the quality of these representations given the inputs, typically
through a reconstruction [8] or contrastive [7] error. The parameters θ are updated by minimizing the
loss computed over individual batches of inputs using gradient descent.

To capture the effect of active representation learning in the absence of control over the input sampling,
we define a priority weighting functionW(xi|θ) that quantifies an “as-if active” preference for each
input. W can be any arbitrary function representing an intrinsic preference for certain stimuli. Below
we focus on compression as the intrinsic preference. In Appendix B.5 we comment on how different
categories of intrinsic motivations [9] can be used to derive priority functions. Using the priority
weighting functionW , we define the weighted loss function L∗, given by:

L∗ =

∑
iW(xi|θ̄) L(xi|θ)∑

jW(xj |θ̄)
, (1)

where the sums range over all elements in a batch. This weighted loss can be used instead of the
original loss to update the parameters of the representation model. Notice that, if the representation
model itself is used to compute the weights, its parameters must be frozen to prevent the flow of
the backpropagation through the priority function, as indicated by the symbol θ̄. From Eq. (1), the
terms with high priority weight, i.e. the terms corresponding to inputs that would be expected to be
preferred in active representation learning, have higher contributions to the weighted loss function
and thus should result in larger updates of the representation model. Algorithm 1 summarizes the
method.

3 Experiments: “As-if Active” Efficient Coding

We demonstrate how PRL with a generic compression objective explains common human perceptual
biases. Extensive experimental [10, 11], and computational [12, 13, 14] research points to coding
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a) Binocular disparity

b) Symmetry

c) Interaural time difference

d) Exposure onset

Figure 2: Examples of training data used for our experiments. The colors in the binocular disparity
and interaural time difference datasets are only added for visualization, with the two channels being
displayed as red and blue respectively. The colors in the exposure onset dataset are the actual colors
of the RGB inputs.

efficiency as a strong indicator for preference, also closely related to the idea perceptual fluency
[4, 1]. This principle is exploited in an active representation learning setting with the Active Efficient
Coding (AEC) framework [15, 16], where agents learn to self-calibrate active perception systems
with an intrinsic motivation to maximize coding efficiency. Our experiments show that PRL gives
rise to similar perceptual biases as AEC but in a passive learning setting. Hence we also refer to
this as “as-if Active” Efficient Coding (see Fig. 1). Below we give an overview of the experiments.
Additional details are provided in Appendix C.

3.1 Datasets

All experiments make use of calibrated data, either from the MNIST image dataset [17] or the audio
MNIST dataset [18]. We apply additional manipulations that vary binocular disparity, symmetry,
interaural time difference (ITD), and exposure onset. Examples of each dataset with random
manipulations are shown in Fig. 2. We ensure that the amount of information in the inputs remains
constant for all manipulations, although redundancies for some inputs but not others may facilitate
compression, and hence lead to a preference. From behavioral experiments with humans and non-
human animals, we consider that the preferred states for each of these are, respectively, zero binocular
disparity [19], symmetric views [1, 20], zero ITD [21], and familiar stimuli [22]. During training, the
manipulations are sampled uniformly, such that each training batch contains a combination of inputs
with different magnitudes of these manipulations.

3.2 Models

All models are deep autoencoders that compress the inputs of each dataset into latent encoding vectors.
We define the loss function for a single input as a squared reconstruction error with an additional
L1-regularization to induce sparsity [23, 24]:

L(x|θ) = ∥x− x̂∥2 + η∥θ(x)∥1 =
1

D

D∑
i=1

(xi − x̂i)
2 +

η

M

M∑
m=1

|θ(m)(x)| , (2)
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a) Binocular disparity b) Symmetry
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c) Interaural time difference d) Exposure onset
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Figure 3: classification accuracies (left), bias preferences (center), and reconstruction errors (left)
for the four experiments with different binocular disparities, symmetries, ITDs, and exposure onsets.
Blue, green and orange colors are used for full (F), uniform (U), and PRL (P) models, respectively.
Gray dashed lines indicate chance levels.

where the first sum ranges over all coordinates of the input of dimension D, the second term is the
mean absolute activation of all the M hidden units of the autoencoder, and η is a scaling factor for
sparsity. In our experiments we use η = 0.01.

The single-input loss from Eq. (2) is used to compute the weighted loss function for each training
batch with a priority function reflecting the compressibility of each input given the current parameters
of the autoencoder. More concretely, we measure compression as the quality of the representation
standardized with the total information in the input. We approximate these two quantities with
the negative reconstruction error of the autoencoder and the energy of the input, respectively (see
Appendix B.5 and [15]), and use their ratio to define the priority function:

W(x|θ̄) = ak,ϵ

[
−∥x− x̂∥2

E(x)

]
, (3)

where the energy function E computes the absolute sum of a Laplacian filtered version of the images
for the disparity, symmetry, and onset experiments, and the absolute sum of the magnitude of the
sound wave for the ITD experiment. The activation function ak,ϵ is a stochastic k-winners-take-all that
converts the priority weights of the best k(1− ϵ) inputs of a batch, plus another kϵ selected randomly,
to 1 and the remaining ones to 0. By default we use k = 50 for a batch size of 250. This priority
function guarantees that the model’s resources are spent on further improving the representations of
inputs with high compression by preventing inputs with low compression to contribute to the loss. A
stochasticity parameter ϵ = 0.04 is included, resulting in 2 of the 50 prioritized inputs being selected
uniformly at random (see Appendix B.3). Alternative activations are discussed in Appendix B.2.

3.3 Results

After training the models on their respective datasets, we evaluate the learned representations on
unseen test data to find human-like biases. Each input is given to the model with all possible
manipulations and the reconstruction errors are recorded as a proxy for preference. We quantify
the perceptual bias as the fraction of inputs which have lowest reconstruction error in the expected
manipulation, e.g., the fraction of binocular inputs where the zero-disparity state is preferred. We
also train linear classifiers to predict the labels from the representations of those preferred states,
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Figure 4: Analysis of the stochastic prioritization hyperparameter, ϵ. Plots show the average recon-
struction error for all disparities (left) and zero disparity (center) states, and the bias preferences
for zero disparity (right), for PRL models with increasing stochasticity in the k-winners-take-all
activation. Blue and green dashed lines indicate the average values for the full and uniform models,
respectively.

and evaluate them on the unseen test data. We compare PRL against two baselines trained without
a priority weighted loss: first, a uniform sample of k inputs from the batch; second, a standard
approach with full batches.

The main results are shown in Fig. 3. In all cases, we find that the models trained with PRL
achieve marginally better reconstruction errors for the preferred states relative to the uniform and full
models, but significantly higher perceptual biases and classification accuracies. However, for other
manipulation magnitudes, the reconstruction errors are higher, i.e. worse, when using PRL. This is
consistent with human representations [19, 1, 21] and highlights how many sensory biases can be
explained by an (as-if) active preference for compression.

To better understand the performance of PRL, we explore the effects of the stochasticity parameter.
Fig. 4 shows the reconstruction error and bias for the binocular disparity experiment. Using ϵ = 0
results in high overall reconstruction errors, while using a high stochasticity makes the bias for the
human preference disappear. From this analysis, we select ϵ = 0.04 as the default stochasticity for
our PRL models. Additional results are provided in Appendix C.5. We show that these human-like
biases originate in correlations between the magnitude of the manipulations and the priorities within a
batch. That is, we find that our method amplifies biases by selectively training on the preferred inputs,
since these have higher compression and hence contribute more to the PRL weighted loss function.

4 Conclusions

We have presented prioritized representation learning (PRL), a model of the formation of common
human perceptual preferences. PRL introduces a priority weighted loss function inspired by active
representation learning. This allows PRL to filter out uninteresting inputs in order to save model
resources and improve the representations of more interesting ones. PRL can therefore be linked to
human attentional mechanisms [25, 26]. We show that a priority function favoring compression of
sensory inputs captures common perceptual biases across different sensory modalities (vision: small
binocular disparities, audition: low interaural time differences), as well as aesthetic preferences for
symmetries and familiarity. The formalism and much of the procedure presented here can be readily
adapted to other priorities. Future work should explore the representations learned with alternative
priority functions, as well as the incorporation of PRL into active learning settings.

Code availability The code of the experiments is available at https://github.com/trieschlab/as-if-aec.
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A Related works

PRL uses a priority weighted loss function, where the priorities are computed over each batch sampled
from the dataset. This approach is reminiscent of a number of different machine learning methods,
detailed below.

A.1 Non-uniform sampling and weighted losses

As mentioned in the Introduction, this work draws inspiration from prioritized experience replay
(PER) [5] in reinforcement learning. PER introduces non-uniform sampling from an experience
replay buffer based on the rewards collected by the agent. Concretely, state-action-state transitions
are weighted by

P (i) =
pαi∑
j p

α
j

(4)

where pi = |δi|+ ϵ and δi is the temporal-difference error that can quantify the learning made during
that transition. ϵ is added as a stochastic prioritization. In PER, more relevant (i.e. highly informative)
transitions are used more to train the agent, which optimizes the learning. In PRL, we take inspiration
from this approach to likewise positively weight inputs that are deemed more relevant given the
priority function of choice. Extensions of PER show further improvements to this method, e.g. by
dynamically adjusting the priority weights [27] to accelerate convergence.

On the other hand, since PRL introduces priorities in a weighted loss, it is also relevant to comment
on the use of such weighted losses in unsupervised learning. This approach is most frequently used
to deal with class imbalance [28], where under-represented inputs in a dataset need to be positively
weighted. Additionally, weighted losses can accelerate training in the early training stages [29]
and enhance downstream tasks such as outlier detection [30]. Weighted losses are also common in
boosting techniques is that aim to minimize classification errors by training weak models to create
a strong classifier [31, 32]. The predictions of the weak models are combined sequentially and
weighted, so that further training can be performed on inputs with low accuracies. In particular, if a
single weak model is used, then boosting is equivalent to using a loss that positively weights inputs
with poor classification [31]. Overall, the methods mentioned here share a common goal of trying to
improve performance in the face of unbalanced or difficult data. While they share some common
ground with our work, these approaches cannot capture perceptual preferences in the same way that
PRL can.
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A.2 Actively learned representations

In the 1960s, Held and Hein showed that kittens who could voluntarily move in their environments
during early stages of their visual development learned better depth perception [33]. Similar benefits
for active learning are ubiquitous for humans and non-human animals across different modalities and
behaviors, including visual representations [34], navigation [35], hand-held object recognition[36],
and more [37]. However, for most of these behavioral experiments, it is difficult if not impossible to
determine exactly what the contribution of active learning is: is it merely that subjects learn better
representations because they can sample their sensory inputs voluntarily, or are they somehow also
encoding actions and their consequences? Recent approaches in self-supervised learning explore the
latter idea by learning joint representations for actions and sensory perceptions [38, 39] or by learning
equivariant representations from the consequences of those actions [40, 41, 42, 43]. However, these
aim to learn representations over an entire dataset and lack any control over input sampling.

On the other hand, the idea of active representation learning is also of key importance in the field
of reinforcement learning [44]. Intrinsic motivations can be particularly sensitive to representations,
since many rely on state representations and their distributions through active exploration [45, 46, 47,
48], information maximization [49, 50], pseudocounts [51, 52], efficient coding [15, 16], and other
representation-dependent metrics. A common denominator for these works is that the representations
are typically learned in parallel to the behaviors. That is, as an agent learns its policy, it also needs to
improve its representation model, e.g. updating the pseudocounts estimations [52]. A considerable
advantage of this concurrent learning of representations and behaviors is that the (typically limited)
resources of the representational model can be re-assigned to those states that are more useful given
the current policy of the agent. And since this policy is driven by the representations, the result is a
positive feedback loop optimized for exploration [52], skill-learning [53], or coordination [15].

B Formalism

B.1 A priority for compression

In this work we focus on efficient coding as a priority for compression. The idea of actively
maximizing coding efficiency as an intrinsic motivation is not new [15, 16, 54]. An efficient code
maximizes the mutual information between inputs x and their representations z. Fundamentally, an
agent driven by an efficient coding motivation will aim to maximize the marginal entropy of its inputs
(exploration) while minimizing the conditional entropy of the input given the latent representation
(reconstruction) [15]:

MI(x, z) = H(x)−H(x|z). (5)

To do so, an an agent should try to receive inputs with high entropy and represent them with as little
loss of information as possible. The two terms can be attributed to different behaviors. In the context
of binocular vision, [15] maximize the marginal entropy with accommodation actions that increase
the contrast of the image, while the conditional entropy is minimized with vergence actions that
reduce binocular disparity. Likewise, [16] also minimize the conditional entropy with vergences but
the marginal entropy of the inputs is maximized with saccades.

The experiments presented in this paper follow a similar approach. In line with [15], we approximate
the two terms of Eq. (5) with the total energy of an input and its representation loss, respectively (see
Appendix C.2). However, using the difference of the two values as a priority poses a problem: as the
representation quality improves, the conditional entropy term decreases and the priorities are only
determined by the energy of the inputs. This is not in the spirit of PRL. [16] also identify that the
development of representations introduce instabilities, and therefore use the relative change in the
reconstruction error of an autoencoder between two consecutive states as an intrinsically-motivated
reward; they find that this accelerates learning with respect to alternative rewards. This is not possible
with passive representations, since inputs are treated in isolation rather than as transitions between
two states.

We propose an alternative solution inspired by [16], whereby the representation loss is normalized by
the energy of the input. Intuitively, inputs with higher energy have more information to encode, and
thus should have higher representation errors. However, models that can learn to exploit redundancies
in the encoding process [55] can also achieve high-quality representations for inputs with high energy.
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In doing so, we define compression as the quality of the representation divided by the energy of the
input, given for example by:

w(x|θ) = −∥x− x̂∥
E(x)

, (6)

where x̂ is the reconstruction of the input by an autoencoder and the minus sign is used because
better representations have lower reconstruction errors. While this can in principle be used directly
to compute the relative preferences for different inputs, it is often beneficial to further segregate
inputs with high and low compressions by means of an activation function (see below). Thus, the
compression priority function shown in Eq. (3.2) becomesW(x|θ) = a[w(x|θ)].
Let us make one last comment with respect to the definition of compression given by Eq. 6. In
principle, one may be tempted to think that compression should be an intrinsic property of the
inputs. For example, as mentioned previously, inputs with redundancies should be more compressible,
i.e. have higher compressibility. This is the case for many perceptual properties. Out of the four
experiments presented in this work, three of them refer to universal properties that originate in the
exploit of such redundancies: binocular disparity and ITD exploit redundancies in binocular vision
and binaural hearing, respectively, while symmetry exploits redundancies within a single image.
However, in the exposure onset experiment, there are no such redundancies. It is entirely arbitrary
which particular inputs are preferred by the agent, since the bias only originates from the earlier
exposure. This demonstrates that it is the compression of the inputs given the current state of the
representation model, and not an intrinsic compressibility of the inputs a priori, that must be at the
basis of the development of these perceptual preferences.

B.2 Activation functions

Priority functions can be directly used to computed a weighted loss function. However, in most
practical cases, additional magnifications are required. By this, we mean that activation functions
can be applied on top of the priority functions to increase or decrease the weighting values. Here we
discuss three cases.

First, since unsupervised learning methods rely on batches of fixed length, it is reasonable to select
an activation function that changes the size of the batches. This is the case of the k-winners-take-all
used in the experiments of this paper. Hence, rather than using the entire batch of size N , a sub-batch
of size k is used to train the representation model. Since these are the inputs with k highest priorities,
training focuses on the most relevant inputs.

An alternative to using the inputs with the k highest priorities of a batch is to define a priority
threshold and train on all inputs of a batch exceeding this threshold. Since the priorities are expected
to change during training, the use of an adaptive threshold may be preferable.

Finally, a common procedure is to use a Softmax activation function στ (·), where the temperature
hyperparameter τ can be tuned to control the distribution of weights. The choice of temperature
in the Softmax has considerable consequences in the resulting weighted loss (see [56]). From
exploratory experiments (not shown) we find that the best approach may be to control the temperature
hyperparameter during training, e.g. to maintain a constant entropy of the batches.

B.3 Stochastic prioritization

The priority function ensures that some inputs provide higher contributions to the loss function and
thus the representation model is optimized for those inputs. A possible downside of this method is
that the representations of non-prioritized inputs may be too poor, making them virtually unusable
for downstream tasks. In PER [5], the authors introduce a stochastic prioritization term, which
fundamentally consists of adding a small value ϵ to all transitions’ priorities, increasing the chances
of sampling otherwise ignored transitions.

We follow a similar idea here by adding stochasticity to the priorities within a batch. The specific way
in which this is done depends on the activation function used. For example, for a Softmax activation,
the addition of random values to the weights can increase the priorities of ignored inputs. When using
a k-winners-take-all activation, as done in the experiments shown here, the stochastic prioritization
can instead be the fraction of those k inputs that are selected randomly from the batch, rather than
using the priority function. More specifically, we define a stochasticity parameter ϵ ∈ [0, 1] such that
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the activation function first selects the k(1− ϵ) inputs with highest priority, and another kϵ ones are
sampled uniformly from the N − k(1− ϵ) inputs remaining on the batch. By default we use ϵ = 0.04
in all experiments. In Appendix C.5.4 we evaluate representations learned with increasing values of ϵ.

B.4 PRL approximates active representation learning

Our method is largely inspired by active learning and its role in shaping representations. PRL can
prevent representational specificities from being lost when using passive approaches, i.e. supervised,
self-supervised, and unsupervised learning. Since the standard implementations of these methods
lack any kind of control over their input statistics, and instead these are sampled uniformly from a
predefined training dataset, the overall goal for passive approaches is to achieve better representations
over an entire dataset. This is rarely the case in active settings: states which are not interesting stop
being visited, and learning accurate representations for them becomes useless. Thus, at a coarse level,
PRL can be interpreted as a filtering mechanism for irrelevant inputs within a training dataset.

However, going beyond this coarse level, we find that PRL can be a testbed for new active learning
methods. The experiments shown in this paper can serve as an example. While implementing AEC
experiments requires creating an environment, defining an agent with its observation and action
spaces, and using reinforcement learning to train the agent’s policy, our as-if AEC approach only
involves unsupervised training on a fixed dataset – and yet the results achieved are comparable.
Admittedly it is not possible to evaluate behaviors without a trained agent, but nonetheless PRL can
facilitate the initial exploratory stages and proof-of-concept validations for innovative approaches.

B.5 From intrinsic motivations to priority functions

PRL requires a priority weighting function, but it does not provide any indications as to which
function to choose. Some specific experiments may benefit from the use of task-specific functions,
e.g. trying to enhance representations required for some external goal-directed behavior. Such cases
can incorporate extrinsic or supervised metrics that can be immediately converted into priority
functions. We will not comment on these any further. Instead, here we want to give some initial
insights into how different intrinsic motivations can be converted into priorities for open-ended
unsupervised learning. See [9] for a detailed review and examples of intrinsic motivations.

B.5.1 Novelty

Novelty is a common intrinsic motivation that promotes exploration. Seeking novelty means seeking
states which have not been visited before. In very large or continuous spaces, keeping track of
previously visited states is difficult if not impossible [57]. A more manageable approach is to rely
on pseudocounts within the learned representation space [51, 52]. Novelty can be interpreted as an
input being out-of-distribution relative to a previously trained-on dataset. That is, novel states in a
reinforcement learning framework can correspond to outliers in an unsupervised learning framework.
Thus, the literature on anomaly detection can be of use [58, 30, 59] for defining appropriate priorites.

There are multiple priority functions that can be derived from a novelty intrinsic motivation. First,
using the distance of each input to all other inputs within a batch, one can prioritize inputs that are
most different. Likewise, using an additional buffer memory that compares inputs from multiple
batches, the procedure can be extended to the entire dataset. More interesting priority functions can
rely on the learned representations themselves, e.g. prioritizing inputs with high reconstruction errors,
W(x|θ) = ∥x− x̂∥. Maximizing the entropy of the visited states is also possible using the loss of a
variational autoencoder [60, 48]:

log ρ(x) ≈ − log qdecoder(x|z) +DKL (qencoder(z|x)||p(z)) , (7)

where ρ(x) is the probability distribution over visited states, qencoder(·) and qdecoder(·) are the
encoder and decoder networks, DKL is the Kullback–Leibler divergence, and p(z) is the prior
distribution over latent vectors (see [9] for details). [48] use Eq. (7) to reward actions that move the
agent towards states that maximize this loss. In the context of PRL, it can also be used directly as
a priority function, i.e.W(x|θ) = − log ρ(x).. Interestingly, such a priority function should have
the opposite effect as the compression priority used in our experiments: accurate representations are
neglected in favor of novel ones. Thus, novelty-based priorities for unsupervised learning may have
similar results as boosting methods (see Appendix A).
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B.5.2 Surprise

Unlike novelty, surprise-based rewards are mainly associated with state transitions. That is, a state-
action-state transition (s, a, s′) transition is surprising if the new state is in any way unexpected given
the previous state and the action taken. Mathematically, surprise may be defined as the distance
between the new state and a prediction from a forward model ŝ′. This distance is commonly measured
in a representation space rather than the input space, , i.e. d = ∥f(s′)− f(ŝ′)∥, where the function
f(·) can be, for example, a representation encoder [50]. Some improvements to this basic approach
are possible, e.g. rewarding the improvement of the predictions of the forward model [61]. Regardless
of the intrinsic motivation, surprise always considers the transition to a new state. It is immediate to
see that such methods can not be accurately approximated with PRL, since only single inputs are
sampled randomly from a dataset.

Nevertheless, momentarily stepping away from intrinsic motivations, there is an alternative inter-
pretation of surprise that may be of use in PRL. Sensory inputs can be surprising by the context in
which they are presented. For example, one would be rather surprised to find a lion on the streets of
Berlin, but not in the African savanna. In this case, we suggest to measure surprise by the saliency of
the input itself. That is, parts of an input can be surprising (salient) given the rest of the input. As
far as we are aware, only few studies explore saliency as an intrinsic motivation and their success is
moderate, e.g. [62]. On the other hand, the literature on saliency detection is vast and varied, and
many of these models can serve as inspiration for priority functions. Of particular relevance here, and
related to the idea of surprise as indicative of an input being unexpected in its context, [63] detect
saliency using autoencoders that predict the contents of patches removed from an image. It remains
to be seen whether the use of saliency as a priority in such a model can lead to representations that
are optimized for saliency detection.

B.5.3 Skill-learning

Finally, many intrinsic motivations can be classed under the general umbrella of skill-learning. For
example, maximizing compression can be interpreted as intrinsically-motivated skill-learning, insofar
as it allows for the development of self-calibrated behaviors [14, 15, 16]. Likewise, compression can
be at the source of multimodal and multi-effector coordination [55].

[9] define skill-learning as the maximization of the mutual information between goals and state
trajectories. They propose a distinction between methods that learn to execute goals for different parts
of the state space and methods that derive goal spaces from state spaces. The latter is not particularly
relevant in the context of our work. The first methods typically try to minimize the distance between
a state and its corresponding goal – the goals themselves also need to be appropriately discovered.
Many of these methods rely on goal-conditioned policies [64, 65]. Likewise, using PRL it is possible
to learn goal-conditioned representations. Here, of course, the term “goal” is used rather liberally,
since there are no actions to be performed and thus no attainment possible. We use the term for
key or anchor inputs within certain subcategories of a dataset. Using the distance between each
input’s representation z and that of its corresponding goal zg, we can propose the skill-learning
priority W(x|θ) = ∥z − zg∥. This priory is somewhat reminiscent of contrastive losses in self-
supervised learning, e.g. [7], if we consider the goal xg to be one input of a class and expect other
inputs x to have similar representations. Thus, the use of this particular priority would focus the
learning on those inputs with dissimilar representations to that of their goals. As for the selection of
goal inputs, these can simply be other inputs with artificial [7], temporal [66], or multimodal [67]
augmentations. Alternatively goal representations can be directly sampled from the latent space
despite not corresponding to any particular input, e.g. by selecting cluster centers.

C Experiments

C.1 Datasets and models

Our experiments use calibrated datasets [17, 18] with additional manipulations. Here we detail each
of them and provide insights into the human preferences based on behavioral experiments. Examples
of the datasets and manipulations are shown in Fig. 2. We also describe the autoencoder used as
representation model for each dataset.
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C.1.1 Binocular disparity

When looking at a scene, humans align both eyes on an object to achieve a fused single representation
[19, 15], a configuration referred to as zero-disparity, whereas higher binocular disparities can produce
double images. This behavior has been extensively studied and reproduced in the AEC framework
[15, 55, 16]. For example, [16] use deep convolutional autoencoders to learn abstract representations
of binocular inputs within an active sensorimotor loop (see Fig. 1), and find a global minimum of
the reconstruction error at the zero-disparity state. This perceptual preference results in a learned
vergence behavior that aligns the two eyes on a target. Here, we aim to reproduce these results with
PRL. We explore the visual bias for zero-disparity states by augmenting a stereoscopic version of the
MNIST dataset with random binocular disparities, i.e. horizontal shifts in opposite directions for the
two channels (left and right). The original MNIST images have a resolution of 28× 28 pixels. To
prevent high disparities from moving the images beyond their borders, we add a padding of 8 pixels
on each side, then shift the images by magnitudes δ = {0,±2,±4,±6,±8} pixels, and then resize
the images to 28× 28 pixels.

The inputs to the autoencoder are therefore tensors of size (2× 28× 28), which are encoded into a
latent space of size (6). This is done by an encoder with three 2-dimensional convolutional layers
with parameters1 (16, 3, 2, 1), (32, 3, 2, 1), and (64, 3, 2, 0), followed by a two fully connected layers
of parameters2 (576, 256) and (256, 6). Additionally we use ReLU activations after each layer
except the last one and batch normalization after the convolutional layers. The decoder is a similar
architecture, with two fully connected layers of parameters (6, 256) and (256, 576) followed by
three 2-dimensional transpose convolutional layers of parameters3 (32, 3, 2, 0, 0), (16, 3, 2, 1, 1), and
(2, 3, 2, 1, 1), with ReLU activations and batch normalization after the first two transpose convolu-
tional layers.

C.1.2 Symmetry

Symmetric images are perceived as more aesthetically pleasing [1, 68] and symmetry axes are fixated
more often when available [20]. Ongoing work (unpublished) shows that these preferences can
emerge with AEC. In the experiment presented here, we evaluate the symmetry bias with increasingly
symmetric versions of the MNIST images, i.e. with additional axes of reflectional symmetry through
the center of the image. The manipulations consist of adding a horizontal symmetry, vertical
symmetry, or both. During training, the half of the image that is retained for the reflectional symmetry
is sampled randomly. When testing the model, we apply both reflections and take the average of their
reconstruction errors and classification accuracies.

The autoencoder used for the symmetry experiment is similar to the one used for the binocular
disparity experiments, with some minor differences since the symmetry inputs have a single channel,
i.e. tensors of size (1 × 28 × 28). The latent space in this case has a size of (5). For the encoder,
the number of filters of the convolutional layers are, respectively, 8, 16, 32, and the units of the fully
connected layers are, respectively, 288, 128, 5. Likewise, the same values are used for the decoder.

C.1.3 Interaural time difference (ITD)

Humans and non-human animals orient their heads in the direction of a sound source such as to
minimize the ITD, i.e. the temporal delay in the arrival of auditory stimuli to both ears [21]. Previous
work in the AEC framework explored the role of ITD in bat echolocation experiments [54]. There,
a bat model aligned its head orientation with a sound source based on an intrinsic motivation to
minimize the reconstruction error of binaural signals. The experiments showed that pointing the head
to the source of the sound, resulting in zero ITD, achieves the lowest reconstruction error. Here, we
create a binaural extension of the auditory MNIST dataset and randomly delay the phase of one of the
two channels by δ = {0, 40, 80, 160}ms. It should be noted that in real binaural scenarios there is
an additional interaural level difference (ILD), whereby the amplitude of the two signals is different.
This effect was also considered in [54] but we neglect it here for simplicity.

The audio time series are converted into the frequency domain by means of a mel-spectrogram [69].
Each audio is first resampled to a frequency of 12 kHz, clipped to a total duration of one second,

1Using the notation (filters, filter size, stride, padding) for convolutional layers
2Using the notation (in units, out units) for fully connected layers
3Using the notation (filters, filter size, stride, padding, output padding) for transpose convolutional layers
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and divided into 28 partially-overlapping time windows. A mel-spectrogram is computed for each
window with 28 frequency bands. The result is a spectrogram of dimensions 2× 28× 28, ordered
as binaural channel, frequency band, and time window. We build the spectrograms this way so that
we can use the same autoencoder architecture of the binocular disparity experiments (see Appendix
C.1.1).

C.1.4 Exposure onset

The last experiments explore the effects of exposure onset on perceptual preferences. Numerous
phenomena point to the times and orders in which different categories of stimuli are discovered as a
main source for perceptual preference. In particular, the mere-exposure effect is a well-established
psychological effect that explains affect based on familiarity [70]. This effect is most notorious as
the result of early experiences in childhood [22, 3], but can also develop on a shorter time scale as
a consequence of a perceptual fluency for common or repeated stimuli [4]. In this experiment, we
simulate the emergence of perceptual preferences based on exposure onsets using a color version
of the MNIST image dataset, with red, green, or blue images. The training is divided into 3 stages:
during the first 5 epochs, only red images are shown to all models; during the next 5 epochs, images
are either red or green. For the remaining 20 epochs, all 3 colors are used. Therefore, during the
sixth and eleventh epoch, the green and blue images respectively are completely new and present
an interesting conundrum for our PRL model: the priority weighting function should filter out these
new colors and continue updating its weights to accurately represent the familiar stimuli, i.e. the red
images.

The model is similar to the ones described previously, but with additional filters and a larger bottleneck.
The inputs have a dimensions 3× 28× 28. The encoder has three 2-dimensional convolutional layers
of parameters (24, 3, 2, 1), (48, 3, 2, 1), and (96, 3, 2, 0), followed by a two fully connected layers of
parameters (864, 384) and (384, 10). The latent representation of size (10) is reconstructed with a
decoder consisting of fully connected layers of parameters (10, 384) and (384, 864) followed by three
transpose convolutional layers of parameters (48, 3, 2, 0, 0), (24, 3, 2, 1, 1), and (3, 3, 2, 1, 1). All the
layers use ReLU activations, and we include batch normalization after the hidden convolutional and
transpose convolutional layers.

C.2 Implementation of the compression priority function

The priority function used in our experiments (see Appendix B.1) is given by:

W(x|θ̄) = ak

[
−∥x− x̂∥2

E(x)

]
. (8)

It has three main components: the reconstruction error, the energy term, and the activation function.
The reconstruction error is the same as in the loss function. That is, when computing the loss of a
single element (see Eq. (2) and Algorithm 1) we re-use the first term of the loss for the weighting
function but drop the L1-regularization. However, in order to do so, we detach the loss term so as to
prevent the gradient descent from being computed over the weighting terms instead of the loss itself.

Energy typically refers to a local change in intensity. The term differs between the image and audio
experiments. For images, local changes can be revealed through convolutions with different types
of filters, e.g. Laplacian, Gaussian, or Sobel filters. Here, we opt for a Laplacian filter of size 3× 3
given by

A =

[
0 1 0
1 −4 1
0 1 0

]
, (9)

that detects sharp edges and is reminiscent of center-surround receptive fields of retinal ganglion
cells. After convolving each input with this filter, we compute the absolute sum of the outcome as the
total energy of the image:

E(x) =

D∑
i=1

|x ∗A|i . (10)

For the audio experiments with ITD, the energy of the sound wave is measured directly by the total
activation of the mel-spectrogram of the inputM(x):

15



E(x) =

D∑
i=1

|M(x)|i . (11)

The total dimension of the inputs is given by D = d × 28 × 28, where d = 1 for the symmetry
experiments, d = 2 for the disparity and ITD experiments, and d = 3 for the exposure onset
experiments.

Finally, for the activation function, we use a k-winners-take-all, with k = 50 for a batch size 250
inputs. Doing so means the training is effectively performed on 1/5 of the total training data. If the
stochasticity prioritization ϵ is 0 (see B.3), then we assign a priority value of 1 to the k inputs with
highest compression and 0 to the remaining inputs in the batch. If ϵ > 0, we first assign values of 1
to the highest k × (1− ϵ), and then perform a uniform sample without replacement of k × ϵ inputs
within the rest that are also assigned a value of 1.

C.3 Baselines for comparison

Our PRL method is always compared with two different baselines. First, a so-called full model uses
the entire batches during training. Hence, this is equivalent to using a N -winners-take-all activation,
where N is the number of inputs in a batch. This baseline is trained on the same inputs as the PRL
model, but also on additional 200 inputs per batch. Therefore, this baseline allows us to understand
how important it is to save resources for the preferred inputs rather than trying to represent all possible
inputs. The second baseline consists of a uniform sampling of 50 inputs within each batch, equivalent
to performing a k-winners-take-all with ϵ = 1 stochasticity. This baseline tackles the question of how
important the prioritization of the weighted loss is, in comparison to randomly selected inputs. In this
sense, comparisons between the PRL and uniform models may be more informative about the role of
compression, since both are trained on the same amount of data. On the other hand, comparisons of
both the PRL and uniform models with the full model can provide insights about the role of batch
sizes in the learned representations.

C.4 Training

The training of the autoencoders is common to all datasets and models. The encoder and decoder
are trained together using the loss from Eq. (2), or its corresponding priority-weighted version. The
reconstruction error is computed as the mean squared error over the D =channels×height×width
dimensions of the inputs. For sparsity, we compute the mean absolute value of all the activations
of intermediate layers of the autoencoder after their corresponding ReLU activations (see model
architectures above). In total, each autoencoder is trained for 30 epochs, where one epoch consists
of presenting the entire training data once. We store the weights of the models every 5 epochs and
later evaluate them on test data. All models use the Adam optimizer with a learning rate of γ = 10−3

and a weight decay of λ = 10−5. By default, we use batches of N = 250 inputs, k = 50 for the
k-winners-take-all activations, and a sparsity ratio of η = 0.01.

After training the autoencoders, we also train linear classifiers on the representations. To do so,
we freeze the weights of each encoder and re-use the training dataset with its corresponding labels.
However, unlike the training of the autoencoders, the classifiers are only trained and tested on “biased”
data, i.e. the human-preferred conditions for each experiment: zero binocular disparity, both axes of
symmetry, zero ITD, and red images for earliest exposure. The classifiers have a single layer mapping
the latent space into a vector of size 10, corresponding to each digit of the MNIST images or audios,
with an additional Softmax activation on the output. We use the Adam optimizer with a learning rate
of γ = 10−3. The training is done for 10 epochs, after which the performance of the classifier is
evaluated on the test dataset.

All the experiments are repeated with three different seeds to randomize the initialization of the
models and sampling of the datasets. All results showed are averages over the three sets of runs.

C.5 Additional results

Here we show additional results from our experiments. Unless specified, these experiments are
performed with the binocular disparity dataset.
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a) Dependence on binocular disparity
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Figure 5: Analysis of the components of the priority function for a batch of test data as functions of
the binocular disparity (top) and digit labels (bottom). We show the average energies, reconstruction
errors, and priorities before and after the activation function for the PRL after 1, 10, and 30 epochs of
training. For comparison, we also show the values that would be attained by a model trained with
uniform sampling.

C.5.1 Compression priority function

The priority function is described in detail in Appendix C.2. It has three different components: the
energy of the input, the reconstruction error based on the representation model, and a k-winners-take-
all activation function. The contributions of each of these can be seen in Fig. 5. We use the entire
test dataset and take batches with uniformly sampled binocular disparities. We plot the energies,
reconstruction errors, and priorities before and after the activation function for each binocular disparity
and label. We compare PRL models at different stages of training (1 epoch, 10 epochs, and 30 epochs)
with a uniform model, even though the latter does not actually use any priority weighting during
training.

The results are very informative about the interest in using PRL. First of all, as expected, we see
that the energy of the inputs has only minor dependencies with disparity, but considerably larger
dependencies with label identity. This is a known fact about the MNIST dataset: in particular, the

17



digits 1 and 7 are easy to encode compared to 6 or 8. All different models have the same energies
because they are evaluated on the same data and with the same random manipulations. Looking at
the reconstruction performance we find that, as expected, the error is lowest for the zero-disparity
inputs with PRL, but there are only marginal differences for the uniform model. The result is that the
priority function pre activation has a maximum for zero-disparity for all PRL models, even after a
single epoch. Thus, the zero-disparity data is most used for training the PRL model, as evidenced in
the priority function post activation. On the other hand, the uniform model would roughly divide its
training data into three thirds, consisting of disparities of 0, 2, and 4 pixels.

As for the dependence on input labels, we find that there is some marginal variability in the priority
of the PRL model, but the uniform model would select labels 1 and 7 more often than the rest. The
fact that this effect is not seen in the PRL model is a testament to the priority for compression that is
learned with PRL: our model is exploiting binocular redundancies rather than merely favoring inputs
with low energy.

C.5.2 Learning curves

The learning curves for the main experiments are shown in Fig. 6. Each experiment has three plots.
First, on the left, the training loss collected at each of the 30 epochs and defined by the weighted
loss corresponding to each specific method. The middle plots show exclusively the reconstruction
errors evaluated on the test datasets and with uniformly-sampled random manipulations. In this
case, all three models are presented with the entire test data and no prioritization is possible, i.e.
the reconstruction errors shown are averages for all the images or audios. The last plots show
the reconstruction errors evaluated on the same data but where only the preferred manipulation is
performed on all images.

Since PRL prioritizes inputs with high compression, and these typically have low reconstruction error,
it is not surprising that PRL achieves lower training losses. This has an interesting consequence in the
exposure onset experiment. At the sixth epoch, when the green images start to be shown to the model,
its training loss increases, as does that of the uniform and full models. However, at the eleventh
epoch, when blue images are introduced, the two baseline models have higher losses because they
have to learn representations for this new type of input, whereas the PRL model can filter the blue
images and focus exclusively on its preferred red and green inputs. Additionally, we also find that
the full model has marginal advantages over the uniform sampling method across all experiments.
For the former, the training loss is computed for all elements in a batch, whereas for the latter it is
computed over a random fifth of the elements. Hence, we find that having access to the entire training
datasets provides the full model with further training opportunities that the uniform model does not
benefit from.

These marginal advantages of the full versus the uniform model also translate to the evaluations on
the test datasets with random manipulations. On the other hand, the PRL models perform notoriously
poorly when evaluated with all random manipulations. That is, even though the PRL model learns
continuously throughout the experiment, it does not improve its performance on random evaluations,
but rather exclusively on the preferred manipulations, as evidenced by the right column plots. This
behavior is quite peculiar and highlights the main interest behind our work: while conventional
passive approaches minimize a loss function over an entire dataset, PRL selectively filters which
inputs are effectively interesting and worth representing accurately, and which ones should instead be
ignored.

These results may appear somewhat underwhelming. The small advantage for the preferred manipula-
tions comes at the cost of considerably higher reconstruction errors for all other manipulations. This
is very much expected. PRL is not a method intended to improve representation learning everywhere,
but rather to achieve representations that match those of humans and non-human animals. Therefore,
the use of our model will not be of interest in many applications, mainly those where the goal is to
minimize reconstruction errors and maximize performance in downstream tasks. Instead, PRL can be
applied in settings aimed at recreating human representations and behaviors, such as those described
in our experiments.

18



a) Binocular disparity

0 10 20 30
Epoch

10 2

10 1

Tr
ain

in
g 

lo
ss

Train data (random disparities)
Full
Uniform
PRL

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (random disparities)

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (zero disparity)

b) Symmetry

0 10 20 30
Epoch

10 2

10 1

Tr
ain

in
g 

lo
ss

Train data (random symmetries)

0 10 20 30
Epoch

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (random symmetries)

0 10 20 30
Epoch

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (double symmetry)

c) Interaural time difference

0 10 20 30
Epoch

10 2

10 1

Tr
ain

in
g 

lo
ss

Train data (random ITDs)

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (random ITDs)

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (zero ITD)

d) Exposure onset

0 10 20 30
Epoch

10 2

Tr
ain

in
g 

lo
ss

Train data (random onsets)

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (random onsets)

0 10 20 30
Epoch

10 2

10 1

Re
co

ns
tru

cti
on

 er
ro

r

Test data (early onset)

Figure 6: Learning curves. Left plots show the training loss computed on the training data with
random manipulations. The plots on the center show the reconstruction errors for the test datasets
with random manipulations, and the plots on the right show the reconstruction errors on the test
datasets with the human-preferred manipulation. The horizontal color bars in the exposure onset plots
indicate the colors of the inputs being shown to the model at each epoch.

C.5.3 Latent space

In Fig. 7 we present two different visualization of the latent spaces of the PRL and uniform models.
First, we visualize the organization of the latent spaces using the t-SNE algorithm [71] for dimen-
sionality reduction on the entire test dataset at two binocular disparities: 0 and 4 pixels. The plots
reveal that both models achieve clustered representations that can differentiate between zero disparity
and higher disparities. Furthermore, we see that the uniform model successfully learns clustered
representations for the labels (i.e. the digits) of the dataset at both disparities. On the other hand, PRL
successfully clusters the representations at zero disparity but fails at the higher disparity. Interestingly,
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a) Dimensionality reduction visualizations
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Figure 7: Visualizations of the latent space for the PRL (left) and uniform (right) models trained on
the binocular disparity dataset. On the top we show the organization of the latent representations
using the t-SNE algorithm [71]. Red dots indicate images with zero disparity and blue dots images
with 4 pixels of disparity. Color intensity corresponds to image label. On the bottom, we generate
images with random latent vectors and the decoders of the two models.

the clusters for the zero-disparity inputs of the PRL model appear to be more defined than those of
the uniform model, which explains the higher accuracy achieved by the linear classifiers (see Fig. 3).

Fig. 7.b presents some synthetically generated inputs by feeding random latent vectors into the
decoders of the two models. A striking difference can be observed: while the PRL model exclusively
generates binocular images with zero disparity, the uniform model mostly outputs double-images
with varying degrees of disparity. Once again, these plots highlight how the PRL model is fine-tuned
for its preferred inputs and does not – rather cannot – accurately represent inputs with high disparity.

C.5.4 Hyperparameters analysis

Lastly, we analyze the PRL, uniform, and full models when changing different training parameters. All
experiments are carried out with the binocular disparity dataset. In Fig. 8 we report the reconstruction
errors averaged for all disparities, as well as the reconstruction errors restricted to the zero-disparity
inputs and the bias for these. When not possible, e.g. the evaluation of the k-winners-take-all with
the full model, we plot the baseline results for comparison.

Batch size For the different batch sizes, we always use 1/5 of the batch in the k-winners-take-all
activation function, both for the PRL and uniform models. Overall, we find that the PRL models
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c) Latent dimension
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Figure 8: Analysis of model hyperparameters. Left plots show the average reconstruction errors for
the test dataset with all binocular disparities, and the center plots only with zero-disparity. Right
plots show the bias for zero disparity. Colored dashed lines without markers are baseline results for
comparison. Gray dashed lines indicate change levels.

performs considerably worse with large batches than with smaller batches when evaluated on all
disparities, whereas the opposite is true for the full and uniform models. Larger batch sizes result
in a reduced performance on the zero-disparity inputs for the uniform and full models, whereas the
outcome of the PRL approach is mostly unchanged. Even at a batch size of 2000 inputs, since PRL is
effectively only training on 400 of those inputs, it can accurately compute its loss function on the
preferred inputs, at the expense of the representations of all other inputs. Interestingly, the bias for
zero disparity of the PRL is not affected by the batch size, but it disappears almost entirely for the
other two models with too large batches.

Activation k-winners-take-all The k-winners-take-all has little effect on the reconstruction error
for the uniform model, but it qualitatively changes the behavior of the PRL model. Up to k = 100,
PRL learns poor general representations and hence achieves a bias for zero disparity beyond the
threshold of the full model. However, for k > 100, the difference in bias for zero disparity disappears.
That is, if the training is done on large portions of the batches, then all possible disparities contribute to
the loss function. For our main experiments we use k = 50, which results in the largest bias advantage.
This value, corresponding to 1/5 of each batch, is larger than the the amount of zero-disparity inputs
in a batch.

Latent dimension The dimension of the latent space should be the main bottleneck for the repre-
sentations learned with an autoencoder. In Fig. 8.c we show that increasing the latent dimension does
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in fact reduce the reconstruction errors, although the differences are quantitative and not qualitative.
Likewise, and contrary to our initial expectations, the PRL model outperforms the full and uniform
models only for latent codes of length 6 or larger, and even then the differences are moderate. The
model architecture is achieving satisfactory performances even with very small latent spaces. This is
likely due to the use of three convolutional layers, admittedly an excessive computational power for a
dataset as simple as MNIST. In future research we will explore whether these results are maintained
when using a simpler autoencoder architecture, e.g. a sparse autoencoder with a single hidden layer.

Stochastic prioritization We introduce stochastic prioritization drawing inspiration from PER
[5]. The results of this analysis are shown in Fig. 4. In our experiments, we find that even a small
stochastic prioritization ϵ = 0.04 can result in comparable reconstruction errors to the full and
uniform models for all binocular disparities while retaining the lower reconstruction error with zero
disparity and a bias close to 1. Of course, as the stochastic prioritization increases further, the results
get closer to the uniform model. The optimal stochasticity may also depend on the experiment and
the other hyperparameters.
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