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Abstract

In machine learning, a critical class of decision-making problems involves Avoiding
Undesired Future (AUF): given a predicted undesired outcome, how can one make
decision about actions to prevent it? Recently, the rehearsal learning framework
has been proposed to address AUF problem. While existing methods offer reliable
decisions for single-round success, this paper considers long-term settings that in-
volve coordinating multiple future outcomes, which is often required in real-world
tasks. Specifically, we generalize the AUF objective to characterize a long-term de-
cision target that incorporates cross-temporal relations among variables. As directly
optimizing the AUF probability PAUF over this objective remains challenging, we
derive an explicit expression for the objective and further propose a quadratic
programming (QP) reformulation that transforms the intractable probabilistic AUF
optimization into a tractable one. Under mild assumptions, we show that solutions
to the QP reformulation are equivalent to those of the original AUF optimization,
based on which we develop two novel rehearsal learning methods for long-term
decision-making: (i) a greedy method that maximizes the single-round PAUF at
each step, and (ii) a far-sighted method that accounts for future consequences in
each decision, yielding a higher overall PAUF through an L/(L+1) variance reduc-
tion in the AUF objective. We further establish anO(1/

√
N) excess risk bound for

decisions based on estimated parameters, ensuring reliable practical applicability
with finite data. Experiments validate the effectiveness of our approach.

1 Introduction

Machine learning (ML) methods have demonstrated remarkable success in diverse real-world predic-
tion tasks [1]. Instead of solely focusing on the prediction, Zhou [2] emphasizes another important
issue, i.e., if an ML model predicts that something undesired is going to occur, how to find effective
actions to prevent it from happening. This problem is known as avoiding undesired future (AUF) [2].

Consider a portfolio management system as an example, which employs an ML model using economic
indicators (X) to predict monthly portfolio returns (Y). If a predicted return is undesirably low, an
ideal system would have the ability of suggesting to alter allocation weights (Z) across asset classes
(e.g., stocks, bonds) to enhance profitability. Due to expensive transaction costs, alterations must be
carefully justified. Let S denote the desired region specified by decision-makers, AUF can be framed
as finding alterations zξ that maximize the probability of Y ∈ S. In real-world tasks, decisions
are often temporally coupled, e.g., aggressive risk-seeking might boost short-term returns while
increasing future vulnerability. This motivates a more practical AUF goal: finding a sequence of
alterations (zξt , . . . , z

ξ
t+L) to maximize the probability that the aggregated outcome Ȳ , 1

L+1

∑
i Yi

falls within S. This long-term formulation captures cross-period trade-offs, promotes sustainable
performance, and encompasses the single-round setting as a special case (L = 0).
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Figure 1: Relations between correlation, causation,
and influence (reproduced from Zhou [2]).

Generally, the AUF probability PAUF(·) mea-
sures the likelihood that · falls into the desired
region S conditioned on the selected alterations.
However, the dependence of PAUF on alter-
ations is typically inaccessible and highly com-
plex, particularly in long-term settings, which
makes the identification of effective decisions
challenging. In such cases, leveraging the struc-
tural relations among variables {X,Z,Y} be-
comes essential. While correlation is often sufficient for prediction, it is generally inadequate for
guiding alterations [2]. Causal relations, in contrast, would be more informative, but identifying
them usually requires restrictive and untestable assumptions and may involve factors that are not
actionable [3, 4]. Recognizing that correlation is insufficient and causation is somewhat too luxu-
rious to decision-making, Zhou [5] propose the influence relation as the foundational concept for
decision-making, which is different from correlation and causation, as depicted in Fig. 1; and propose
to study rehearsal learning approaches to identify and exploit influence relation.

Building on this, rehearsal learning approaches [6, 7] have been developed and been shown effective
in single-round AUF, where the objective is to ensure Y ∈ S for immediate outcomes. These methods
typically leverage distributional properties of Y to reformulate the problem as identifying alterations
that satisfy a constraint PAUF ≥ τ , thereby circumventing the intractable probabilistic optimization.
Extending this idea into long-term settings, however, introduces several fundamental challenges:
(i) Temporal dependencies among outcomes Yi across different rounds complicate the analysis of
PAUF, as one must now account for the aggregation of correlated Yi rather than a single outcome; (ii)
Long-term decision-making demands alterations that closely approximate the optimal PAUF at each
round, since even small deviations can accumulate into substantial performance degradation over time;
(iii) The dimensionality of alteration sequence grows with the horizon length, substantially increasing
computational complexity. These challenges lie beyond the capabilities of existing approaches.

To enable the rehearsal learning framework in long-term AUF scenarios, new methods are demanded
to address the aforementioned challenges. In this paper, we first generalize the decision objective
to a long-term aggregated form, which subsumes existing formulations as special cases. Under
this generalized formulation, we show that the aggregated objective can be explicitly decomposed
into: (i) the cumulative effect of selected alterations and (ii) the aggregated noise unrelated to
alterations, making it feasible to design decision-making strategies that bypass the explicit modeling of
temporal dependencies among outcomes Yi. Leveraging this decomposition, we propose a quadratic
programming (QP) reformulation of the original intractable optimization. This reformulation yields
a tractable optimization target, and scalable to long time horizons. We further establish theoretical
guarantees for the optimality of the QP solution under mild assumptions, which effectively mitigates
the error accumulation issues inherent in the aforementioned constraint-based formulations. Notably,
we make an independent contribution that our result applies to the class of log-concave noise
distributions, which generalizes beyond the Gaussian noise assumption [6–8]. Based on the results
above, we develop two new rehearsal-based methods focused on long-term outcomes: (i) a greedy
approach that maximizes the single-round PAUF at each step, outperforming existing rehearsal-based
methods, and (ii) a far-sighted approach that anticipates the future consequences of current decisions,
consistently achieving a higher overall PAUF by attaining an L/(L+ 1) variance reduction rate in the
AUF objective. Finally, recognizing that true structural parameters are often unknown in practice, we
establish an excess risk bound for decisions made using parameters estimated from observational data.
Experiments validate our theory and demonstrate the effectiveness and efficiency of our approach.

Our contributions can be summarized as follows:

1. We generalize the AUF problem to a long-term perspective and derive an explicit expression for
the objective, offering greater practical flexibility while subsuming existing formulations.

2. We introduce a QP reformulation, making the AUF optimization tractable and efficiently solvable.
The optimality of the QP solution is then established under mild assumptions.

3. We develop two new rehearsal-based algorithms based on the QP reformulation, and the far-sighted
one can achieve better performance in long-term scenarios due to its variance-reduction property.

4. We establish an O(1/
√
N) bound on the excess risk incurred when using estimated parameters

instead of the true ones, guaranteeing reliable performance in practical scenarios.
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2 Preliminaries

A probabilistic graphical model, termed the structural rehearsal model (SRM), was proposed by Qin
et al. [6] to characterize influence relations among variables in the AUF problem. The SRM comprises
a set of rehearsal graphs and corresponding structural equations, denoted as {〈Gt,θt〉}, where t
represents the decision round. Each graph Gt = (Vt,Et) encodes the variables Vt and induced
edges Et at round t, while the parameter set θt includes both the generating parameters associated
with Et and the noise parameters related to Vt. The formal definition of SRM is provided in Appx. B.
Notably, existing research on rehearsal learning considers only the graph structure and influence
relations within a single decision round, neglecting cross-round influences. That is, they assume no
edges exist between V it1 and V jt2 for t1 6= t2.

In this work, we extend the SRM to a multivariate time series setting {Vt}t∈[0,K] that captures both
lagged and contemporaneous influences within a finite time window K. Specifically, let Ecross

t denote
all cross-time edges pointing into variables at time t, i.e., edges from V it′ to V jt for all 0 ≤ t′ < t and
1 ≤ i, j ≤ |V|. The complete graph is then defined as GK = (∪t∈[0,K]Vt,∪t∈[0,K](Et ∪Ecross

t )),
as illustrated in Fig. 2. GK models the qualitative influence relations among variables across different
time steps, where Vt represents the variable set in the AUF problem and Et ∪ Ecross

t captures the
influence relations among variables at time t. There are two types of edges: (i) a directed edge
V it′ → V jt (i 6= j, t′ ≤ t) indicates that V it′ unilaterally influences V jt ; whereas (ii) a bidirectional
edge V it ↔ V jt (i 6= j) signifies mutual influence between V it and V jt . For instance, birth rates
unilaterally influence demographic structures, whereas supply and demand in an idealized market
exhibit mutual dependence, as changes in one directly affect the other.

To quantitatively describe these influences, let Θt = θt ∪ θcross
t denote the extened parameter set

of GK in time t, where θcross
t corresponds to the parameters associated with Ecross

t . The structural
equations governing the variables V jt can then be parameterized by Θt:

V jt := f jt

(
PAj

t , ε
j
t ; Θ

j
t

)
for 0 ≤ t ≤ K and 1 ≤ j ≤ |V|, (1)

where PAj
t , {u | u→ V jt in GK} represents parents of V jt , and εjt denote the noise. The structural

function f jt (·) and the probability density function (PDF) of εjt are parameterized by Θj
t . In this

work, we make the first-order Markov assumption of the time series for simplified expression (can be
straightforwardly extend to general cases), under which we focus on a basic yet essential class of the
AUF problem, characterized by stationary linear structural equations f jt s in Eq. (1), i.e.,

Vt = AVt + BVt−1 + εt, for 1 ≤ t ≤ K, (2)

where A and B are determined by Θt and satisfy ρ((I−A)−1B) < 1 (ρ(·) denotes the maximal
absolute eigenvalue) to ensure stationarity [9]; and where εt follows a white noise process with
E[εt] , 0, and E[εtε

T
s ] , 0 for any t 6= s, otherwise an invariant Σ. In this work, the noise is

assumed to follow a symmetric log-concave distribution, i.e., the PDF fε(v) is log-concave and
satisfies fε(v) = fε(−v) for all v. This family includes many common zero-mean distributions,
such as Gaussian, uniform, and Laplace. Finally, the decision-making task focuses on identifying
suitable alterations Rh(zξ), which disrupts existing influence links, as detailed in Appx. B.
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Figure 2: An example illustrating variables and edges at rounds t − 1 and t. Red edges indicate
cross-round influence relations. The variable sets X, Z, Y are enclosed by dashed lines.
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3 The proposed approach

In this section, we first present a generalized formulation of the AUF problem in Sec. 3.1, incorpo-
rating long-term aggregation over target variables. In Sec. 3.2, we derive an explicit expression for
the aggregated AUF objective w.r.t. the alteration sequence and propose a QP reformulation with
theoretical guarantees of optimality, offering a new perspective for rehearsal learning. Building on
this theoretical foundation, in Sec. 3.3, we propose two novel rehearsal-based algorithms for solving
the formulated problem. Finally, in Sec. 3.4, we establishe theoretical guarantees on both the variance
reduction and the excess risk. All proofs of the theoretical results are provided in Appx. C.

3.1 Formulation

We treat the AUF problem as a sequence of immediate decision-making processes during a certain
time period t, · · · , t+ T . In each decision round, the decision maker should make timely decisions
based on all available information; while the final decision target is to maximize the probability of
Ȳ ∈ S within this time period. Each decision round involves two critical time points: the moment
when the ML prediction is made after observing X and the moment just before the generation
of the concerned outcome Y, as illustrated in Fig. 2. Specifically, in a given decision round t,
the decision maker first observes Xt = xt and incorporates it into the historical dataset, defined
as Dt , {xt} ∪ {xi, zξi ,yi}i<t. The ML model then predicts the values of the target variables
Yt, . . . ,Yt+T over a future horizon. Let S ⊆ R|Y| denote the predefined desired region for the
target variables Ȳ, if the predicted values fail to satisfy the predefined criterion, i.e., Ȳ 6∈ S , corrective
decisions should be made to prevent undesirable outcomes. This decision-making problem in time t
can be formally expressed as the following probabilistic optimization problem:

arg max
{zξi }

t+T
i=t

P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(zξt , · · · , zξt+T )

)
.

s. t. zξi ∈ ∆(Z) for i = t, · · · , t+ T,

(3)

where T + 1 is the length of the remaining target time horizon specified by the decision-maker, ∆(Z)

represents the feasible domain of each alteration zξi , and the rehearsal operator Rh(·) denotes the
execution of the alteration sequence Zi

a
= zξi for i = t, . . . , t+ T . This operator modifies the local

graph structure by disrupting specific influence links, as detailed in Appx. B.

Previous studies primarily focused on a simplified setting where T , 0, and assumed a Gaussian
distribution on the target probability [6, 10]. In this paper, we consider a more general formulation
where the AUF objective is defined over aggregated target variables across a time period, which can
reduce to the prior setting. This generalization is commonly encountered in practical scenarios. For
instance, when Yi denotes the annual GDP growth rate, the objective might be to maintain a high
average rate over several consecutive years. Additionally, we generalize the noise distribution to
a symmetric log-concave family, which includes Gaussian, uniform, and Laplace distributions as
special cases, thereby expanding the practical applicability.

The main challenges of the formulated problem in Eq. (3) are twofold: (i) The target variables
Yi across time are generally dependent, making it substantially more difficult to characterize the
distribution and probabilistic properties of their aggregation compared to the single-time case,
particularly under non-Gaussian noise. (ii) The dimensionality of decision variables grows with the
horizon length T , introducing additional computational overhead and rendering direct extensions
of prior rehearsal learning methods infeasible. For instance, the asymptotic solution by sampling
methods in Qin et al. [6] becomes intractable in polynomial time unless the decision variable is
singleton (i.e., |zξ| = 1), complicating its application to the aggregated setting.

3.2 QP reformulation of the AUF problem

In this subsection, we first derive a functional expression for the aggregated target variables w.r.t.
the selected alteration sequence and the noise sequence. Based on this expression, we propose a QP
reformulation of AUF problem in Eq. (3), which is computationally efficient to solve. Furthermore,
we establish a theoretical guarantee for the optimality of the QP solution under mild assumptions.
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To maximize PAUF, the first step is to derive the functional expression for the AUF objective Ȳ
w.r.t. the selected alteration sequence. Recall from Sec. 3.1 that decisions are made after observing
Xt = xt and just before Zt occurs. In this time point, the aggregation of Y can be derived as follows:

Proposition 3.1. Let z̃ξt and ẽt denote
[
zξt+T

T
, zξt+T−1

T
, · · · , zξt

T
]T

and
[
εTt+T , ε

T
t+T−1, · · · , εTt

]T
.

Given Θ (⊇ A,B in Eq. (2)), Dt (including vt−1 and xt) and alteration sequence z̃ξt , it holds that:

1

T + 1

t+T∑
i=t

Yi = Mxt + Nvt−1 + Hz̃ξt + Fẽt, (4)

where M ∈ R|Y|×|X|,N ∈ R|Y|×|V|,H ∈ R|Y|×(T+1)|Z| and F ∈ R|Y|×(T+1)|V| are constant
matrices based on parameters Θ and time period T , while εt, · · · , εt+T are i.i.d. noise vectors.

Although the target variables Yi are dependent across different i ∈ [0, T ], Prop. 3.1 shows that their
aggregation can be explicitly decomposed into: (i) a mean component, determined by the value of
alteration variables z̃ξt given the observed xt and vt−1; and (ii) a stochastic component, governed by
the aggregated temporal noise, with dependence captured by Fẽt. Moreover, Prop. 3.2 shows that the
distribution family can be preserved under symmetric log-concave noise.

Proposition 3.2. Let e , Fẽt denote the aggregated noise term as defined in Eq. (4). If εi follows a
symmetric log-concavely distribution, it always holds that e is also log-concavely distributed and
symmetric about the origin, for any finite time point t ∈ Z+ and finite time window T ∈ Z+.

As established in Prop. 3.2, the distribution family is preserved under aggregation of the target
variables Y, thereby retaining desirable properties of log-concave distributions, such as the unimodal-
ity [11]. Nevertheless, directly solving the probabilistic optimization in Eq. (3) remains challenging,
as the resulting PDF of the aggregated outcome can still exhibit considerable complexity.

To avoid directly solving the probabilistic optimization, existing rehearsal-based methods typically
reformulate it by imposing a constraint of the form PAUF ≥ τ , and then search for plausible
alterations that satisfy this constraint. Specifically, Qin et al. [6] propose a Monte Carlo (MC) method
that samples from the distribution P (Y | x, Rh(zξ)), and approximates the solution by requiring
that a proportion greater than τ of the samples satisfy Yi ∈ S. In contrast, Du et al. [7] search for a
probabilistic region P such that P(Y ∈ P | x, Rh(zξ)) = τ , and ensure that all points within P fall
into the desired region S after performing the alteration. These methods are theoretically grounded
under Gaussian noise assumption to ensure PAUF ≥ τ , but the optimality can not be guaranteed.

Instead, we leverage the unimodality property of log-concave distributions to guide the decision-
making process. Recall that the goal is to shift as much probability mass as possible into the desired
region S. As shown in Eq. (4), the alterations affect only the mean of the target variables, while the
variance is determined by Fẽt. Therefore, if S is a closed region in R|Y|, then adjusting zξ to move
the peak of the unimodal distribution toward the center of mass of S can effectively increase the
likelihood of favorable outcomes. Let M,N,H be defined as in Prop. 3.1, and let s denote the center
of mass of S . This heuristic motivates a deterministic QP reformulation that minimizes the distance
between the shifted mean and the region S, formulated as:

arg min
z̃ξt

∥∥∥Mxt + Nvt−1 + Hz̃ξt − s
∥∥∥2
2
. (5)

While this heuristic idea is simple to implement, there remains a risk that the resulting solution may
deviate significantly from the true maximizer of the PAUF, even in simple scenarios (see Appx. A for
a discussion). To clarify the conditions under which the QP reformulation is effective, we introduce
the following assumptions and establish the optimality of the reformulation under these conditions.
Assumption 3.3. The following assumptions constrain the system and the problem formulation.
1. (Linear system) The structural functions fi in Eq. (1) are linear with additive noise terms εjt ,

where εt follows a symmetric log-concave distribution, as defined in Eq. (2).
2. (Unique targets) Let µt = E[1/(T + 1)

∑t+T
i=t Yi | Dt, Rh(z̃ξt )] denote the mean vector of the

AUF target as defined in Eq. (4), which is an affine function of z̃ξt . Given t and T , vector ∂µit/∂z̃ξt
cannot be expressed as a linear combination of the set {∂µjt/∂z̃ξt}j 6=i for any 1 ≤ i ≤ |Y|.

3. (Symmetric S) The desired region S in Eq. (3) is a centrally symmetric (about s) convex region.
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Remark. Note that the first two assumptions pertain to the underlying system, while the last one
concerns the AUF problem itself. Specifically, the linear system assumption permits a broader class
of symmetric log-concave noise distributions, generalizing prior works that often assume Gaussian
noise for theoretical tractability. The unique targets assumption is also reasonable: if it were
violated, i.e., ∃i such that ∂µit/∂z̃ξt can be expressed as a linear combination of {∂µjt/∂z̃ξt}j 6=i, then
the variable Y i would be redundant in the decision-making process, as its constraints would be fully
captured by those on the other target variables, and Y i could therefore be omitted. Finally, since the
desired region S is defined by the decision-maker, it is typically specified manually. While previous
studies primarily consider convex polytopes as the region shape, our symmetric S assumption
accommodates additional shapes such as circular and elliptical regions, though non-symmetric ones
are excluded. This assumption is practical in many settings. For instance, interval constraints on each
dimension of Ȳ (i.e., ai ≤ Ȳ i ≤ bi for each i) naturally satisfy it and are common in real-world
applications. Building on these assumptions, we establish theoretical guarantees for the QP.

Theorem 3.4. Let ∆(Z) = R|zξ| and z̃?t denote the solution to the QP defined in Eq. (5). Under
Ass. 3.3 with any finite t, T ∈ Z+, the following inequality holds for any alternative z̃at :

P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃?t )

)
≥ P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃at )

)
.

Thm. 3.4 provides an optimality guarantee for decisions made (by Eq. (5)) immediately after observing
Xt = xt in round t. This solution is not necessarily globally optimal from the future perspective at
time t+ T , since less information is available at time t compared to t+ T . Nevertheless, Thm. 3.4
exhibits more favorable applicability in prior AUF settings that consider only the target outcome Y
of the current decision round (i.e., T = 0), because the solution in this case coincides with the global
optimum and thus outperforms existing methods. Moreover, even when T 6= 0, the solution can
also be viewed as the best possible decision at time t given all available information. This naturally
motivates an iterative method that solves for z̃?t at each round and executes only the current zξt . In
what follows, we formally propose such two new rehearsal-learning methods based on Thm. 3.4.

3.3 Rehearsal learning methods based on the QP reformulation

In this subsection, we utilize aforementioned results to develop two new rehearsal learning algorithms
for solving the AUF problem defined in Eq. (3), including a greedy algorithm and a far-sighted one.

Algorithm 1 GMuR (Greedy Multi-round Rehearsal)
Input: start/end time t0/te, SRM para. Θ, desired region S

1: Determine the symmetric center s of desired region S
2: Compute M,N,H in Eq. (4) by T = 0 and Θ
3: . Computation formula in Eq. (9), Appx. C
4: Let Hha denote the matrix HT(HHT)−1

5: Compute H1 = HhaM, H2 = HhaN, sH = Hhas
6: for t = t0 to te do
7: Observing vt−1 and xt
8: Execute zξt = sH −H1xt −H2vt−1
9: Receive yt and set Dt+1 = Dt ∪ {xt, zξt ,yt}

Output: suggested alterations {zξt}tet=t0

A greedy approach. Recall that the
goal of AUF is to shift the probabil-
ity mass of the average target vari-
ables Ȳ over a time period into the
desired region S as much as possi-
ble. A straightforward approach is
to greedily maximize the probability
of Yi ∈ S at each round i, which
intuitively leads to a relatively high
probability of Ȳ ∈ S as well. This
procedure is summarized in Alg. 1.
Since we focus on single-round opti-
mality in each decision round, we set
T = 0 and compute the invariant ma-
trices M,N,H using the formula defined in Eq. (9), Appx. C. Then, in each decision round from
time t0 to te, the alteration zξt is chosen by selecting a solution of the QP reformulation defined in
Eq. (5). Note that in this case, the greedy nature of the approach implies zξt , z̃?t because T = 0.

By using the GMuR approach described in Alg. 1, Thm. 3.4 guarantees that each alteration zξt
maximizes the probability of Yt ∈ S. This further ensures that the GMuR approach outperforms
prior rehearsal-based methods under Ass. 3.3, since those methods are specifically designed for the
single-round AUF setting, which also aims to optimize the probability of Yt ∈ S. Moreover, this
method is computationally efficient as the matrices M,N,H remain invariant across rounds due to
the fixed horizon T = 0, resulting in an overall time complexity ofO(|z||y|2+(te−t0)|v||z|), which
outperforms existing rehearsal-based methods [6, 7] in time complexity as discussed in Appx. 4.
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Algorithm 2 FarMuR (Far-sighted Multi-round Rehearsal)
Input: start/end time t0/te, SRM para. Θ, desired region S

1: Determine symmetric center s of S, Set L = te − t0
2: for t = t0 to te do
3: Observing vt−1 and xt, update T = te − t
4: Compute M,N,H in Eq. (4) by T and Θ
5: . Computation formula in Eq. (9), Appx. C
6: Reweight (M,N,H) = T+1

L+1 · (M,N,H)

7: Compute z̃t = HT(HHT)−1(s−Mxt −Nvt−1)

8: Execute zξt , z̃t[: |z|] and drop others
9: Receive yt and set Dt+1 = Dt ∪ {xt, zξt ,yt}

10: Update s = s− yt/(L+ 1)
Output: suggested alterations {zξt}tet=t0

A far-sighted approach. Although
the GMuR approach maximizes the
probability that the current target Y
fall into S , it overlooks the sequential
nature of the AUF objective, which
concerns the aggregate Ȳ over a hori-
zon. To mitigate potential informa-
tion loss, we propose a far-sighted
strategy in Alg. 2, which selects alter-
ations by considering not only current
targets but also future ones. Specifi-
cally, the method iteratively updates
and reweights the matrices M,N,H
according to the remaining horizon T
and total horizon L, repeatedly solves
for z̃?t , and executes only the current zξt . After each decision round, it also adjusts the region center s.

The FarMuR approach accounts for the aggregation of Y over the remaining time horizon at each
decision round, resulting in time-varying matrices M,N,H. As a consequence, the time complexity
of Alg. 2 increases to O((te − t0)|z||y||v|), higher than that of Alg. 1. However, this increased
computational cost leads to improved performance, as discussed in the following subsection.

3.4 Theoretical analysis

Recall that Alg. 1 and Alg. 2 shift E[Ȳ] toward s. As Ȳ follows a unimodal distribution as shown in
Prop. 3.2, the probability mass falling within S is affected not only by E[Ȳ] but also by Var[Ȳ].
Theorem 3.5. When Y is singleton (i.e., |Y| = 1), let Var0 = Var[Yt | Dt, Rh(zt)], and let At:t+L
denote the rehearsal learning process as in Alg. 1 or Alg. 2 that iteratively selects and performs
alterations from round t to round t+L. Define Var1 and Var2 as Var[ 1

L+1

∑t+L
i=t Yi | At:t+L] under

At:t+L corresponding to Alg. 1 and Alg. 2, respectively. Then the following holds:
Var1
Var0

=
1

L+ 1
, and

Var2
Var0

=
1

(L+ 1)2
.

Thm. 3.5 shows that the variance of the decision objective reduces when L increases, leading to
improved PAUF as expectations are the same (, s as seen in Appx. C.4). Moreover, the alteration
sequence selected by Alg. 2 yields a more substantial variance reduction than that of Alg. 1, resulting
in a higher PAUF of a same L. This phenomenon is demonstrated in Fig. 4, and the intuition is that
the variance of Ȳt:t+L = 1

L+1

∑t+L
i=t Yi under the rehearsal learning process can be decomposed as:

1

(L+ 1)2

t+L∑
i=t

Var
[
Yi

∣∣∣ At:t+L]+
2

(L+ 1)2

t+L∑
j=t+1

j−1∑
i=t

Cov
[
Yi, Yj

∣∣∣ At:t+L] . (6)

Intuitively, the variance of the aggregation is determined by the two components above. Since the
rehearsal learning method in Alg. 2 subtracts a weighted Yi from region center s at each round, it
introduces additional negative correlations between consecutive outcomes Yi+1 and Yi. As a result,
an additional negative term appears in the second component of Eq. (6) for the aggregation At:t+L
generated by Alg. 2, further reducing the overall variance compared to the GMuR approach.

Another important consideration is how decision-making is affected when the true parameter set Θ is
unknown, and an estimate Θ̂ is used to approximate matrices M,N,H in QP reformulation Eq. (5).

Theorem 3.6. When N samples are used to estimate Θ̂ as in Appx. C.5, let z̃Θ̂
t denote the alteration

selected by solving Eq. (5) with Θ̂, and z̃?t denote the one selected with true Θ. Under additional
assumptions that Θ is bounded and noise is Gaussian, it holds that ‖z̃Θ̂

t − z̃?t ‖2 ≤ O(1/
√
N).

Thm. 3.6 ensures that reliable alterations can be identified by our approach without requiring prior
knowledge of the true system parameters Θ. Importantly, the samples used for parameter estimation
need not be collected through interactions, but can instead be obtained from historical observations.
This contrasts with classical reinforcement learning (RL) settings [12], including both online and
offline RL as discussed in Appx. 4. Further discussion of our approach is provided in Appx. A.
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4 Related work

In this section, we review related work on rehearsal learning and two other related directions:
Rehearsal Learning. Rehearsal learning aims to uncover the influence relations among variables in
AUF and leverage these relations for decision-making [6, 7, 10, 8, 13]. Specifically, prior rehearsal
learning methods typically reformulate the intractable probabilistic AUF optimization into a constraint
of the form PAUF ≥ τ , with theoretical guarantees established under linear structural equations with
additive Gaussian noise. Qin et al. [6] propose a mixed-integer linear programming (MILP) approach
based on sampling techniques to solve the reformulated AUF problem. Du et al. [7] consider decision
costs and potential variations in influence relations, and derive an explicit computational formula
for contour lines P(Y ∈ S | x, Rh(zξ)) = τ for any τ , leading to a more efficient algorithm. These
two approaches could not theoretically maximize PAUF. Qin et al. [10] then propose a heuristic
method to address AUF problem under potentially nonlinear and non-Gaussian settings, though
there is no theoretical guarantee and it underperforms prior rehearsal learning approaches when the
underlying system is linear. Du et al. [8] present an optimization-based approach to directly optimize
the AUF probability, which achieves the optimal AUF probability under the CARE condition though
it only considers single-round AUF and assumes Gaussian noise, a setting to which our method
naturally reduces. Tao et al. [13] establish a sequential decision-making approach that formulates
the single-round AUF into a sequence of sub-problems and solves them sequentially, considering a
different setting from ours. Hence, we do not include the latter three methods in our experimental
comparison. Our approaches are theoretically established to achieve higher AUF probabilities than
prior methods, even under non-Gaussian noise, while also being more efficient w.r.t. |V|.

Xt Zu
t Yt

Za
t

Figure 3: An example illustrating
the potential distribution shift.

Reinforcement Learning (RL). RL has achieved notable suc-
cess across a wide range of decision-making tasks [12]. Classical
RL methods [14–16] rely on extensive interactions with the en-
vironment, which are infeasible in AUF where interactions are
rare [2, 6]. While recent advances in offline and hybrid offline-
online RL [17–20] aim to reduce the reliance on online interaction
by utilizing pre-collected datasets, they do not match the AUF
setting because the reward function could diverge between obser-
vational and online data. In contrast, rehearsal learning leverages fine-grained structural information
among variables, enabling effective decision-making from observational data without requiring
interactions. To illustrate the challenge faced by RL in this context, consider the example in Fig. 3.
Let Xt represent the state, Zat (an actionable variable) the action, and I(Yt ∈ S) the reward. Due
to the presence of unactionable variable Zut , the conditional distribution P (Yt | xt, zat ) differs from
P (Yt | xt, Rh(zat )), whereRh(zat ) denotes the result of applying an action based solely on the action-
able component. As a result, the reward function inferred from observational data, I(Yt ∈ S | xt, zat ),
can deviate significantly from the one with actions, I(Yt ∈ S | xt, Rh(zat )). This discrepancy renders
the standard (s, a, r) tuples extracted from observational data ineffective for learning reliable online
policies, underscoring the necessity of exploiting structural information in AUF. In addition, a class
of model-based RL, namely causal RL methods [21–23] incorporates structural information to handle
certain types of confounding during offline policy evaluation. However, unlike our approach that
explicitly exploits graphical structure (including all ancestral relations), these methods use structure
more narrowly and further difficulty in AUF scenarios where the reward (Ȳt ∈ S) may vary across
rounds. Moreover, rehearsal learning emphasizes identifying the underlying influence relations,
which is crucial for human-in-the-loop decision-making. The learned influence relations serves
as interpretable guidance for human decision-makers, and since rehearsal itself does not alter the
environment, humans can safely choose whether to adopt the suggested decisions; this property lies
beyond the scope of RL, which directly interacts with and potentially alters the environment.

Causality. Extensive research has explored the use of structural models to support decision-making,
most of which is grounded in the framework of SCMs [3]. Some approaches aim at system identifi-
cation through active interventions or incorporating expert knowledge [24–31], but typically do not
consider downstream objectives such as estimating or optimizing causal effects. Additionally, causal
bandit methods have been developed to address optimal arm identification problems [32–40]. These
approaches generally aim to identify a universally optimal action that maximizes the expected reward.
In contrast, rehearsal learning supports mutually influenced relations, and aims to maximize the AUF
probability by identifying context-specific optimal actions tailored to different observed contexts x,
and allows for a more flexible specification of desired region S beyond simple maximization.
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5 Experiments

Variance: 9.30
PrAUF:21.1%

original Y distribution
desired region

(a) No action

Variance: 9.12
PrAUF:50.8%

Y distribution with
selected alteration
desired region

(b) Action for single-round

Variance: 4.39
PrAUF:68.3%

1
2 (Y + Y + ) with
short-sight alteration
desired region

(c) GMuR approach

Variance: 2.25
PrAUF:82.2%

1
2 (Y + Y + ) with
far-sight alteration
desired region

(d) FarMuR approach

Figure 4: Results on the toy example. Y and Y+ denote values of the target variable in adjacent
decision rounds. The results illustrate that variance reduction leads to a significantly higher PAUF.

We visualize our approaches using a toy example modeling a simplified Texas Hold’em game, fol-
lowed by evaluations on synthetic and real-world datasets. Our methods are compared against baseline
approaches and established rehearsal learning methods, including QWZ23 [6] and MICNS [7]. We
do not include RL methods in our comparisons because: (i) they are unsuitable for the AUF setting
due to limited interaction opportunities and discrepancies between reward functions in interactional
versus observational data, as discussed in Appx. 4; and (ii) previous studies [6, 7] have demonstrated
their inadequate performance for AUF tasks. Experimental details are provided in Appx. D.

Xt+ Zt+ Yt+

Xt Zt

X Z Y

Vt

Vt+

Yt

Figure 5: The underlying graphical model

Toy example for visualization. Consider an example
involving a simplified Texas Hold’em game, where the
variables X,Z,Y are all singletons, and their graphical
relations are illustrated in Fig. 5. Let Xt denote the
average skill level of the opponents in hand t, Zt the
action you take in that hand, and Yt the yield from
hand t. Due to overlapping participation across nearby
hands, there exist cross-round influences, represented
by red edges. Specifically, Xt → Xt+ captures the
dependence of future opponent skill levels on current
ones, and Zt → Yt+ reflects the impact of your current action on future yields via revealed playing
style. The AUF target is to maintain a moderate average yield over the course of the game. Specifically,
suppose we plan to play L+ 1 hands on the table; let w = 1

L+1

∑L
i=0 Yi denote the average yield,

and we aim to keep it within a safe interval a ≤ w ≤ b. This is because too low a yield leads to
financial loss, while too high a yield may cause potential disputes. Assume that the variables Xt and
Zt are fully observable and rationally controllable, and the noise term is Gaussian.

As illustrated in Fig. 4, if no policy is applied, the actions are passively influenced by Xt, resulting in
an AUF probability P(a ≤ w ≤ b) of only 21%, as shown in Fig. 4(a). When we actively perform
alterations on Zt, the AUF probability increases to 51% for a single-hand outcome, as demonstrated
in Fig. 4(b), representing the optimal performance guaranteed by Thm. 3.4. For sequential play (with
L = 1), the results obtained using the short-sighted and far-sighted policies are shown in Fig. 4(c)
and 4(d), respectively. These results demonstrate that our proposed far-sighted FarMuR approach
outperforms the short-sighted GMuR approach by better controlling the variance. It is worth noting
that the variance in this example is deliberately chosen for clear demonstration purposes. In real
games, the variance should not be so small, which would otherwise lead to a significantly lower AUF
probability under distributions of Y or Ȳ , even within a short sequence of rounds under any policy.
In what follows, we first briefly introduce the datasets, with details/graph structures listed in Appx. D.

Synthetic Data. We construct a synthetic dataset with dimensions of Xt, Zt, and Yt set to 2, 4, and
2, respectively, to evaluate cases involving multi-dimensional outcomes Y. Variables Z3 and Z4

are designed to exhibit mutual influence, such that changes in either affect the other. The desired
region for target Ȳ is defined as a circular region S = {y | ‖y − s‖2 ≤ 0.8}. The parameters of the
structural equations, as well as the variances of the additive noise terms, are manually specified.

Bermuda Data. The Bermuda dataset records environmental variables in the Bermuda area and has
been widely used in prior research [6, 7, 41, 42]. The generation order of variables in this dataset
is recorded [43]. The dimensions of Xt, Zt, and Yt are 3, 7, and 1, respectively, and the desired
region S for Ȳ is defined as S = {NEC ∈ [1.9, 2.0]}. The parameters of the structural equations are
estimated by fitting least-squares linear models to the normalized data, and the additive noise terms
are modeled by residuals using either Gaussian or Laplace distributions.
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Table 1: AUF probability P(Ȳ ∈ S | At:t+L) (%) evaluated on two datasets, where L denotes the
horizon length te − t0. Each value is estimated using 1000 Monte Carlo samples, averaged over 5
random seeds. Results are reported as mean ± standard deviation, best results are highlighted in bold.

Dataset Win. Len. L No action QWZ23 [6] MICNS [7] Ours (GMuR) Ours (FarMuR)

Synthetic
(Gaussian)

L = 0 0.9 ± 0.19 4.5 ± 0.46 4.9 ± 0.46 4.9 ± 0.32 4.9 ± 0.32
L = 4 3.7 ± 0.82 20.3 ± 0.64 20.1 ± 0.97 20.7 ± 0.72 65.1 ± 0.94
L = 8 3.5 ± 0.72 32.2 ± 1.12 31.3 ± 0.75 32.4 ± 0.33 95.0 ± 0.42

Synthetic
(Laplace)

L = 0 1.0 ± 0.19 8.4 ± 0.72 9.9 ± 0.82 10.2 ± 0.65 10.2 ± 0.65
L = 4 3.9 ± 0.57 21.3 ± 0.87 21.5 ± 1.10 21.9 ± 0.31 72.8 ± 1.51
L = 8 3.8 ± 0.37 33.4 ± 0.72 33.8 ± 1.60 34.6 ± 1.35 93.2 ± 0.31

Bermuda
(Gaussian)

L = 0 1.8 ± 0.26 7.3 ± 1.19 7.2 ± 0.47 10.3 ± 0.85 10.3 ± 0.85
L = 4 0.9 ± 0.29 15.5 ± 1.34 15.9 ± 1.19 21.9 ± 0.26 47.9 ± 1.29
L = 8 0.4 ± 0.13 20.8 ± 1.75 20.2 ± 2.78 28.2 ± 1.37 74.3 ± 1.77

Bermuda
(Laplace)

L = 0 1.6 ± 0.15 7.9 ± 0.87 7.5 ± 0.67 14.1 ± 1.29 14.1 ± 1.29
L = 4 0.8 ± 0.27 17.6 ± 1.31 15.1 ± 1.64 23.8 ± 1.19 59.4 ± 0.94
L = 8 0.4 ± 0.12 24.1 ± 0.77 21.5 ± 1.61 30.1 ± 1.71 80.3 ± 1.03
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Figure 6: Results on the Bermuda dataset, illustrating the variance reduction w.r.t. the time horizon L,
average executing time w.r.t. L, and gap ‖z̃Θ̂

t − z̃?t ‖2 w.r.t. the number of observational samples N .

The full results on the two datasets are presented in Tab. 1, demonstrating that our methods outperform
existing rehearsal learning approaches as well as the no-action baseline (reflecting the distribution
without alteration), under both Gaussian and Laplace noise. Specifically, the GMuR approach Alg. 1
dominates existing methods, as guaranteed by Thm. 3.4, while the FarMuR approach Alg. 2 further
improves the AUF probability by leveraging stronger variance reduction, as shown in Thm. 3.5.

Fig. 6 presents additional results on the Bermuda dataset, confirming that the FarMuR method
achieves a higher variance reduction rate (left panel, cf. Thm. 3.5) and demonstrates the convergence
of excess risk for both our approaches (right panel, cf. Thm. 3.6). The execution time is plotted
against L (middle panel), thus the slopes of the lines represent the time complexity w.r.t. other factors
beyond L, such as |V|, and our methods are significantly more efficient than existing approaches.
Although the difference in slopes between our two methods is not prominent in Fig. 6 (as the scale is
dominated by the much larger execution times of prior methods), Fig. 10 clarifies that the FarMuR
method exhibits a steeper slope than the GMuR method. This highlights a trade-off: as L increases,
the FarMuR method offers superior AUF performance but at the cost of increased execution time
compared to the GMuR approach. Additional results are provided in Appx. D due to space constraints.

6 Conclusion

In this work, we consider an essential class of decision-making tasks termed AUF. Recognizing that
practical AUF often hinges on outcomes over extended time horizons, we generalize the rehearsal
learning framework and propose an generalized AUF problem formulation to better accommodate
long-term scenarios. To address the inherent challenges stemming from the probabilistic nature
of the formulated problem, we introduce a QP reformulation and establish its optimality under
mild conditions, even with non-Gaussian noise, thereby enhancing the framework’s practical utility.
Building on the QP reformulation, we develop two novel rehearsal-based algorithms that significantly
outperform existing methods. Furthermore, we provide theoretical guarantees for our approach,
including variance reduction properties and an excess risk bound when using estimated structural
parameters. Experimental results validate both the effectiveness and efficiency of our methods.
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A Discussion of our approach

In this section, we discuss the proposed approaches in this work, including the QP reformulation and
the two proposed algorithms. First, although the heuristic idea defined in Eq. (5) yields a tractable
QP reformulation, it is not always optimal. When assumptions as defined in Ass. 3.3 do not hold, the
QP reformulation can be far from optimal. In what follows, we present a counterexample in Fig. 7
that violates the unique target assumption in Ass. 3.3 thus not optimal.

Desired region S
f1(Y | Rh(zξ

1)) by Eq. (3)
f2(Y | Rh(zξ

2)) by Eq. (5)

Y1

Y2

Center o of S

Contours of PDF f1

Contours of PDF f2

line µy line ν

Figure 7: A counterexample of QP reformulation.

A counterexample. Consider a simple example
where T = 0, |Y| = 2, and |Zξ| = 1, with
the underlying structural equations defined in
Eq. (1) are linear Gaussian. In this case, let
µ = E[Y | D,Rh(zξ)]; it has been proven that
µ ,

[
b1z

ξ + c1, b2z
ξ + c2

]
as shown in Eq. (4),

where ci and bi are constants [6]. Hence, there
always exist fixed constants α, β and c such that
[α, β]µT , c, indicating that the trajectory of
µ can be represented as a sloped line according
to different values of zξ, as illustrated in Fig. 7.
Let the diamond region shaded in red denote the
desired region S , and draw the vertical line ν from center s of S; the intersection point between ν and
the trajectory of µ corresponds to the solution to Eq. (5), and the probability P(Y ∈ S | x, Rh(zξ))
equals the overlapping area of its probability density function (PDF) and the region S. It is evident
that this approach does not maximize the AUF probability, as the intersection point is far from the
solution to the original Eq. (3), which is the center of the ellipses shaded in blue. In this case, the
center µy(zξ) of the target variables Y can only moving within a sub-dimentional space of the
target space R|y|, thus, even when the domin of zξ can take the whole space, ∆(Z) = R|zξ|, it not
necessarily contains a point zξ such that µy(zξ) matches s.

Furthermore, we emphasize that our proposed methods primarily address scenarios with fixed start
time t0 and end time te. Nevertheless, Thm. 3.4 guarantees that the QP reformulation remains
optimal (conditioned on existing information) in any current decision round for arbitrary t and T .
Consequently, our approaches can be readily extended to scenarios with varying time horizons, such
as when te is not fixed but instead maintains a constant distance L from the current time t.

B Definition

In this section, we provide comprehensive definitions and discussions of the Structural Rehearsal
Model (SRM), a probabilistic graphical model introduced by [6] to represent influence relations
among variables in AUF problem. The SRM comprises a set of rehearsal graphs and associated
parameters (for the structural equations) {〈Gt,θt〉}. The original definitions and discussions of the
SRM can be found in Qin et al. [6].

The rehearsal graph Gt models the qualitative influence relations among variables, which is denoted
by Gt = (Vt,Et). Specifically, Vt represents the variable set of the AUF problem and Et represents
the edges expressing influence relations among variables in round t. There are two types of edges in
Gt, a directional edge X → Y means that X influences Y , and a bi-directional edge X ↔ Y means
that X and Y are mutually influenced. For example, sunlight unilaterally influences the plant growth,
whereas rainfall and river flow are mutually influenced, as changes in either one affect the other. The
definition of the rehearsal graph is as follows.

Definition B.1 (Mixed graph, [6]). Let G = (V,E) be a graph, where V denotes the vertices and
E the edges. G is a mixed graph if for any distinct vertices u, v ∈ V, there is at most one edge
connecting them, and the edge is either directional ( u→ v or u← v ) or bi-directional (u↔ v).

Definition B.2 (Bi-directional clique, [6]). A bi-directional clique C = (Vc,Ec) of a mixed graph
G = (V,E) is a complete subgraph induced by Vc ⊆ V such that any edge e ∈ Ec is bi-directional.
C is maximal if adding any other vertex does not induce a bi-directional clique.

Definition B.3 (Rehearsal graph, [6]). Let G = (V,E) be a mixed graph. Let {Ci}li=1 denote all
maximal bi-directional cliques of G, where Ci = (Vc

i ,E
c
i ). G is a rehearsal graph if and only if:
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(d) GRh(Z2=z2,Z3=z3)

Figure 8: An example reproduced from Du et al. [7]. Fig. 8(a) is a rehearsal graph, Fig. 8(b)∼8(d)
show alteration graphs under different alterations. When an alteration is applied to certain variables,
all incoming arrows to these variables are removed, while the rest structure remains unchanged.

1. Vc
i ∩Vc

j = ∅ for any i 6= j.
2. ∀i ∈ [l], if there is any edge pointing from some u ∈ V\Vc

i to some v ∈ Vc
i , then ∀v ∈ Vc

i ,
u→ v.

3. There exists a topological ordering for {Ci}li=1 following the directions of directional edges
between Cis.

The topological order of bi-directional cliques {Ci}li=1 reflects the generation order. We generalize
the definition to time series cases (GK), with the definition of structural equations as in Sec. 2.

Besides, the decision-making process focuses on identifying suitable alterations, as defined in
Eq. (3) and Eq. (5). An alteration ξ refers to a decision action specified by human decision-makers,
represented as a set of vertex-value pairs (e.g., ξ ← {Z1 = z1} in Fig. 8(b)). Meanwhile, the rehearsal
operation, denoted by Rh(·), corresponds to executing a given alteration, thereby modifying the
original graph structure as illustrated in Fig. 8(b)–Fig. 8(d). Specifically, the rehearsal operation
removes all original influence links that point into vertices involved in ξ, and fixes the values of
these vertices according to ξ; meanwhile, it preserves the influence relations among the remaining
vertices in the resulting graph GRh(ξ). In the time series setting where alterations are performed over
the current and the following T time steps, the operation is denoted by Rh(zξt , z

ξ
t+1, . . . , z

ξ
t+T ) to

represent this sequential process, the same as Eq. (3) and Eq. (5).

C Proofs

C.1 Proof of Prop. 3.1

Proposition 3.1. Let z̃ξt and ẽt denote
[
zξt+T

T
, zξt+T−1

T
, · · · , zξt

T
]T

and
[
εTt+T , ε

T
t+T−1, · · · , εTt

]T
.

Given Θ (⊇ A,B in Eq. (2)), Dt (including vt−1 and xt) and alteration sequence z̃ξt , it holds that:

1

T + 1

t+T∑
i=t

Yi = Mxt + Nvt−1 + Hz̃ξt + Fẽt,

where M ∈ R|Y|×|X|,N ∈ R|Y|×|V|,H ∈ R|Y|×(T+1)|Z| and F ∈ R|Y|×(T+1)|V| are constant
matrices based on parameters Θ and time period T , while εt, · · · , εt+T are i.i.d. noise vectors.

Proof. Let Ex , (Ix×x,0x×z,0x×y)
T, Ez , (0z×x, Iz×z,0z×y)

T, Ey , (0y×x,0y×z, Iy×y)
T,

and let Vt = [Xt,Zt,Yt] denote the variable list. Under natural process, it holds that:
Vt = AVt + BVt−1 + εt.

Then under control sequence without observing x, it holds that:

Vt | Rh(zξt ) := Ezz
ξ
t +

(
ExET

x + EyET
y

)
(AVt + BVt−1 + εt) ,

If we can observe Xt = xt under control sequence, then it holds that:

Vt | xt, Rh(zξt ) := Exxt + Ezz
ξ
t +

(
EyET

y

)
(AVt + BVt−1 + εt) ,

Starting from time point just observed Xk = xk, it holds that (omiting "| Dt, Rh(zξt , · · · , zξt+T )"):

Vk+i =

{
Ezz

ξ
k+i +

(
ExET

x + EyET
y

)
(AVk+i + BVk+i−1 + εk+i) i ≥ 1,

Exxk + Ezz
ξ
k +

(
EyET

y

)
(AVk + Bvk−1 + εk) i = 0.

(7)
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Considering that only vk−1 and xk are observed, we want to express Vk+i by vk−1, xk, and
{zξk, · · · , }.

Let U =
(
I−

(
ExET

x + EyET
y

)
A
)−1

Ez, C =
(
I−

(
ExET

x + EyET
y

)
A
)−1 (

ExET
x + EyET

y

)
,

and Γ = CB, it can be derived that (it can be verified that ET
z Vk+i , zξk+i):

Vk+i = Uzξk+i + ΓVk+i−1 + Cεk+i, i ≥ 1.

Meanwhile, let Ũ denote
(
I−EyET

yA
)−1

Ez, C̃ denote
(
I−EyET

yA
)−1

EyET
y , Γ̃ denote C̃B,

and Ξ denote
(
I−EyET

yA
)−1

Ex (it can be verified that ET
z Vk , zξk and ET

xVk , xk):

Vk = Ξxk + Ũzξk + Γ̃vk−1 + C̃εk (8)

Iteratively using the equations above, it can be derived for i ≥ 1 that:

Vk+i =ΓiVk +

i−1∑
j=0

Γj
(
Uzξk+i−j + Cεk+i−j

)

=Γi
(
Ξxk + Ũzξk + Γ̃vk−1 + C̃εk

)
+

i−1∑
j=0

Γj
(
Uzξk+i−j + Cεk+i−j

)

= Γi
(
Ξxk + Γ̃vk−1

)
︸ ︷︷ ︸

constant

+

ΓiŨzξk +

i−1∑
j=0

ΓjUzξk+i−j


︸ ︷︷ ︸

affect of control variables

+

ΓiC̃εk +

i−1∑
j=0

ΓjCεk+i−j


︸ ︷︷ ︸

affect of random noises

Clearly, the value of Yk+i, i.e., ET
yVk+i, is affected by the sequence of control variable {zt+i}pi=0,

and the more closer, the influence will be more big, because the invertible series limits that ‖Γ‖2 < 1.

Meanwhile, noticing that
∑T
i=0 Yt+i = ET

y

∑T
i=0 Vt+i, thus

∑t+T
i=t Yi can be expressed as:

ET
y

T∑
i=0

Γi
(
Ξxt + Γ̃vt−1

)
+ ET

y

T∑
i=1

i−1∑
j=0

Γj
(
Uzξt+i−j + Cεt+i−j

)
+ ET

y

T∑
i=0

Γi
(
Ũzξt + C̃εt

)

=

(
ET

y

T∑
i=0

Γi

)(
Ξxt + Γ̃vt−1

)
+ ET

y

[
IU, (I + Γ)U, · · · ,

T−1∑
i=0

ΓiU,

T∑
i=0

ΓiŨ

]


zξt+T
zξt+T−1

...
zξt+1

zξt



+ ET
y

[
IC, (I + Γ)C, · · · ,

T−1∑
i=0

ΓiC,

T∑
i=0

ΓiC̃

]
εt+T
εt+T−1

...
εt+1

εt


(9)

In this case, let M = 1
T+1ET

y

T∑
i=0

ΓiΞ, H = 1
T+1ET

y

[
IU, (I + Γ)U, · · · ,

T−1∑
i=0

ΓiU,
T∑
i=0

ΓiŨ

]
,

N = 1
T+1ET

y

T∑
i=0

ΓiΓ̃, F = 1
T+1ET

y

[
IC, (I + Γ)C, · · · ,

T−1∑
i=0

ΓiC,
T∑
i=0

ΓiC̃

]
, Prop. 3.1 is proven.
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C.2 Proof of Prop. 3.2

Lemma C.1 (Prékopa, 1973, Theorem 7). Let f, g be logarithmic concave functions defined in the
space Rp. Then the convolution of these functions, i.e.,∫

Rp
f(x− y)g(y)dy,

is also logarithmic concave in the entire space Rp.

Lemma C.2 (Dharmadhikari and Joag-Dev, 1988, Lemma 2.1). Suppose a p-dimentional random
vector v is log-concavely distributed, and let M denote a constant matrix with shapes Rm×p, m ≤ p.
Then Mv is also log-concavely distributed.

Lemma C.3. Suppose p-dimentional random vectors v1,v2 are independent and are log-concavely
distributed. Then v1 + v2 is also log-concavely distributed.

Proof. Let f1, f2 denote the PDF of random vectors v1,v2, and let f denote the PDF of random
vector v = v1 + v2. By definition, it can be derived that:

f(v) =

∫
Rp
fv1v2(v − v1,v1)dv1

=

∫
Rp
f2(v − v1)f1(v1)dv1

By Lemma C.1, the PDF f is logarithmic concave, thus v1 +v2 is also log-concavely distributed.

Proposition 3.2. Let e , Fẽt denote the aggregated noise term as defined in Eq. (4). If εi follows a
symmetric log-concavely distribution, it always holds that e is also log-concavely distributed and
symmetric about the origin, for any finite time point t ∈ Z+ and finite time window T ∈ Z+.

Proof. For the assert of log-concave distribution, it can be proved by induction that:

• For k = 2, by Lemma C.2 and Lemma C.3, it can be proven that F1εt+1 + F2εt also obeys a
log-concave distribution, where Fi is the i-th part of F;

• Assuming that for k = k′(≥ 2), it also holds that
∑k′

i=1 Fiεt+k′−i obeys a log-concave distribu-
tion;

• For k = k′ + 1, it holds that
∑k′+1
i=1 Fiεt+k′+1−i = Fk′+1εt +

∑k′

i=1 Fiεt+k′+1−i. By
Lemma C.2, Lemma C.3 and the inductive hypothesis,

∑k′+1
i=1 Fiεt+k′+1−i also obeys a log-

concave distribution.

For symmetric property, it can be proven that −e =d −Fẽt =d F(−ẽt) =d Fẽt =d e, where
=d means obeying the same distribution. The third =d holds because the noise is assumed to be
symmetric in Ass. 3.3.

C.3 Proof of Thm. 3.4

Lemma C.4 (Anderson, 1955). Let x ∈ Rd be a random vector with probability density function
f(x) such that (i) f(x) = f(−x) and (ii) {y | f(y) ≥ u} is convex for every u(0 ≤ u <∞). If P
is a convex set on Rd, symmetric about the origin, then let c denote an arbitrary constant vector on
Rd, it holds that:

P (x+ kc ∈ P) ≥ P (x+ c ∈ P) , 0 ≤ k ≤ 1.

Theorem 3.4. Let ∆(Z) = R|zξ| and z̃?t denote the solution to the QP defined in Eq. (5). Under
Ass. 3.3 with any finite t, T ∈ Z+, the following inequality holds for any alternative z̃at :

P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃?t )

)
≥ P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃at )

)
.
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Proof. Recognizing that when we simultaneously shift the distribution and the desired region, the
probability mass will not change, i.e., given ∀υ ∈ R|Y|, let S ′ denote the region of the same shape as
S while centered at s′ = s− υ (s is the symmetric center of region S), then it always holds that:

P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃?t )

)
, P

(
1

T + 1

t+T∑
i=t

Yi − υ ∈ S ′
∣∣∣ Dt, Rh(z̃?t )

)
.

Meanwhile, recall from Prop. 3.1 that after alteration z̃ξt ,
1

T+1

∑t+T
i=t Yi can be expressed as:

1

T + 1

t+T∑
i=t

Yi = Mxt + Nvt−1 + Hz̃ξt + Fẽt.

Hence, let υ , υ(z̃ξt ) = Mxt + Nvt−1 + Hz̃ξt and let e denote Fẽt, it always holds that:

P

(
1

T + 1

t+T∑
i=t

Yi ∈ S
∣∣∣ Dt, Rh(z̃ξt )

)
, P

(
e ∈ S ′

∣∣∣ Dt, Rh(z̃ξt )
)

, P
(
e− s′ ∈ S0

∣∣∣ Dt, Rh(z̃ξt )
)
,

where S ′ is the region of the same shape as S while centered at s′ = s− (Mxt + Nvt−1 + Hz̃ξt ),
and S0 is the region of the same shape as S while centered at the origin 0.

If we can prove that: (a) e is a random vector always satisfying the constraints (i) and (ii) in
Lemma C.4; and (b) s′ = 0 if z̃ξt = z̃?t , then Thm. 3.4 can be straightforwardly proven according to
Lemma C.4.

We first prove (a) that e is a random vector always satisfying the constraints (i) and (ii) in Lemma C.4.
Since it is guaranteed by Prop. 3.2 that e is always symmetric about the origin for ∀ finite time point
t ∈ Z+ and finite time window T ∈ Z+, thus the symmetric property is holds for (i) in Lemma C.4.
For (ii) in Lemma C.4, let fe(·) denote the PDF of random vector e, it can be derived that for ∀u ≥ 0:

{y | fe(y) ≥ u} ⇔ {y | log fe(y) ≥ log u}.
Meanwhile, following from Prop. 3.2 that e is always log-concavely distributed for ∀ finite time point
t ∈ Z+ and finite time window T ∈ Z+, by definition of log-concave distribution, the logarithmic
PDF log fe(·) is concave. Hence, for ∀y1,y2 ∈ {y | log fe(y) ≥ log u} and λ ∈ [0, 1], it can be
derived that:

log fe(λy1 + (1− λ)y2) ≥λ log fe(y1) + (1− λ) log fe(y2)

≥λ log u+ (1− λ) log u = log u,

i.e., λy1 + (1 − λ)y2 ∈ {y | log fe(y) ≥ log u} always holds, illustrating that the set {y |
log fe(y) ≥ log u} is always concave. Because log u is a reversible function and takses value in
(−∞,∞) ) [0,∞), thus we have proven that (ii) in Lemma C.4 always satisfies for e.

Then, we prove (b) that z̃ξt = z̃?t can lead to s′ = 0. Recall from Eq. (5) that the alteration z̃?t is
selected by:

z̃?t = arg min
z̃ξt

∥∥∥Mxt + Nvt−1 + Hz̃ξt − s
∥∥∥
2
.

Consider linear equations define as:

Hz̃ξt = s−Mxt −Nvt−1, (10)

Since H is row full rank otherwise conflict the unique target assumption defined in Ass. 3.3 (and thus
the row number is greater or equal than the column number), the augmented matrix [H || s−Mxt −
Nvt−1] must have the same rank as matrix H. This to say, there at least one solution exist for Eq. (10),
and choosing z̃?t as the solution to Eq. (10), it can lead to s′ = s− (Mxt + Nvt−1 + Hz̃ξt ) , 0.

In summary, we have proven that (a) e is a random vector always satisfying the constraints (i) and (ii)
in Lemma C.4; and (b) s′ = 0 if z̃ξt = z̃?t ; hence, the proof of Thm. 3.4 is established.
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C.4 Proof of Thm. 3.5

Theorem 3.5. When Y is singleton (i.e., |Y| = 1), let Var0 = Var[Yt | Dt, Rh(zt)], and let At:t+L
denote the rehearsal learning process. Define Var1 and Var2 as Var[ 1

L+1

∑t+L
i=t Yi | At:t+L] under

At:t+L corresponding to Alg. 1 and Alg. 2, respectively. Then the following holds:

Var1
Var0

=
1

L+ 1
, and

Var2
Var0

=
1

(L+ 1)2
.

Proof. Recall from Eq. (8), conditioned on Rh(zξt ) and Dt (including xt, vt−1), Yt can be expressed
as:

Yt | Dt, Rh(zξt ) = eT
yVt = ct + εyt ,

where ey , Ey since Ey is a zero vector with only its last element equal to 1; ct is a constant
depending on zξt , xt, and vt−1; and εyt denotes the additive noise associated with the variable Yt, i.e.,
the last element of εt in Eq. (2). Hence, it follows that:

Var0 = 〈ct + εyt , ct + εyt 〉 , 〈εyt , εyt 〉 . (11)

To compute Var1, we review the rehearsal learning process At:t+L from the GMuR method Alg. 1.
Since Alg. 1 only focuses on the current Yi in each decision round i, T , 0 and it can be derived
from Eq. (9) that:

In Alg. 1: M = eT
yΞ, N = eT

yΓ̃, H = eT
yŨ.

Note that H is a row vector in this case, thus it can be derived that:

HT(HHT)−1 =
1

HHT
HT,

and from line 8 of Alg. 1, it follows that (since H is a row vector):

zξi =
1

HHT
HT

(
s− eT

yΞxi − eT
yΓ̃vi−1

)
. (12)

Starting from time t, it can be derived for t ≤ i ≤ t+ L that:

Yi =eT
y

(
Ξxi + Ũzξi + Γ̃vi−1 + C̃εi

)
=eT

yΞxi + Hzξi + eT
yΓ̃vi−1 + εyi (eT

yŨ , H)

=eT
yΞxi +

(
s− eT

yΞxi − eT
yΓ̃vi−1

)
+ eT

yΓ̃vi−1 + εyi

=s + εyi

The 3rd equality holds from Eq. (12). Hence, it can be computed (under At:t+L from Alg. 1) that:

Var1 =

〈
1

L+ 1

t+L∑
i=t

Yi,
1

L+ 1

t+L∑
i=t

Yi

〉

=
1

(L+ 1)2

t+L∑
i=t

〈Yi, Yi〉+
2

(L+ 1)2

t+L∑
j=t+1

j−1∑
i=t

〈Yi, Yj〉

=
1

(L+ 1)2

t+L∑
i=t

〈s + εyi , s + εyi 〉+
2

(L+ 1)2

t+L∑
j=t+1

j−1∑
i=t

〈
s + εyi , s + εyj

〉
=

1

(L+ 1)2

t+L∑
i=t

〈εyi , εyi 〉 ,
1

L+ 1
〈εyt , εyt 〉

(13)

To compute Var2, we review the rehearsal learning process At:t+L from the FarMuR method Alg. 2.
It can be derived from Eq. (9) that in the last round (i.e., i = t+ L or i = te) of Alg. 2:

In Alg. 2, decision round te: M =
1

L+ 1
eT

yΞ, N =
1

L+ 1
eT

yΓ̃, H =
1

L+ 1
eT

yŨ.
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Note that in round i = te, the expression of M,N,H are similar to those in Alg. 1 because it is the
last decision round. Thus, it can be derived (similar with Eq. (12)) that:

zξt+L =
1

HHT
HT

(
st+L −

1

L+ 1
eT

yΞxt+L −
1

L+ 1
eT

yΓ̃vt+L−1

)
. (14)

Hence, it follows that:

Yt+L =eT
y

(
Ξxt+L + Ũzξt+L + Γ̃vt+L−1 + C̃εt+L

)
=eT

yΞxt+L + (L+ 1)Hzξt+L + eT
yΓ̃vt+L−1 + εyt+L (eT

yŨ , (L+ 1)H)

=eT
yΞxt+L +

(
(L+ 1)st+L − eT

yΞxt+L − eT
yΓ̃vt+L−1

)
+ eT

yΓ̃vt+L−1 + εyt+L

=(L+ 1)st+L + εyt+L

=εyt+L + (L+ 1)

(
s− 1

L+ 1

t+L−1∑
i=t

Yi

)
The 3rd equality holds from Eq. (14) and the 5th equality holds from the updating operation (line 9
of Alg. 2). It can be further derived that:

1

L+ 1

t+L∑
i=t

Yi =s +
1

L+ 1
εyt+L.

Hence, it can be computed (under At:t+L from Alg. 2) that:

Var2 =

〈
1

L+ 1

t+L∑
i=t

Yi,
1

L+ 1

t+L∑
i=t

Yi

〉

=

〈
s +

1

L+ 1
εyt+L, s +

1

L+ 1
εyt+L

〉
=

1

(L+ 1)2
〈
εyt+L, ε

y
t+L

〉
,

1

(L+ 1)2
〈εyt , εyt 〉

(15)

Combining Eq. (11), Eq. (13), and Eq. (15) completes the proof of Thm. 3.5.

C.5 Proof of Thm. 3.6

Theorem 3.6. When N samples are used to estimate Θ̂ as in Appx. C.5, let z̃Θ̂
t denote the alteration

selected by solving Eq. (5) with Θ̂, and z̃?t denote the one selected with true Θ. Under additional
assumption that Θ is bounded and noise is Gaussian, it holds that ‖z̃Θ̂

t − z̃?t ‖2 ≤ O(1/
√
N).

We first present the estimation of Θ̂ (including Â and B̂) as follows. In practical scenarios, the
true parameter values are typically unknown. In such cases, we aim to estimate the parameters A

and B from the historically collected data. Let Pj =
[
PAj

1 . . . PAj
N

]T
denote the matrix of

parent values for the j-th variable, and vj =
[
V j1 , . . . , V

j
N

]T
the corresponding observed values of

the variable itself. Then, the parameters associated with the generation of the j-th variable can be
estimated via the following least squares estimation (LSE):

arg min
βj

1

2

∥∥vj −Pjβj
∥∥2
2
.

Note that the parameter vector βj represents the j-th row of the concatenated coefficient matrices A
and B. Then the proof of Thm. 3.6 is detailed as follows.
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Proof. Define Ω , [A B]. According to Lemma C.3 of Du et al. [7], under the assumptions that
Θ is bounded and the noise follows a Gaussian distribution, the parameter estimation error satisfies:∥∥∥Ω̂−Ω

∥∥∥2
F

=
∥∥∥Â−A

∥∥∥2
F

+
∥∥∥B̂−B

∥∥∥2
F
≤ O

(
1

N

)
.

We first analyze the Lipschitz continuity of the matrix functions M(Ω), N(Ω), and H(Ω) defined
in Eq. (9). Note that (I −A) is invertible (i.e., full rank), which is Lipschitz continuous w.r.t. A
as proven as: Let A1,A2 ∈ R|V|×|V| be matrices such that I−A1 and I−A2 are invertible. Let
the constant γ > 0, supi=1,2

∥∥(I−Ai)
−1∥∥

F
≤ γ denote the upper bound of the F norm. It can be

derived that:∥∥(I−A1)−1 − (I−A2)−1
∥∥
F

=
∥∥(I−A1)−1(A1 −A2)(I−A2)−1

∥∥
F

≤
∥∥(I−A1)−1

∥∥
F
· ‖A1 −A2‖F ·

∥∥(I−A2)−1
∥∥
F

≤γ2 ‖A1 −A2‖F .

In this case the resolvent (I −A)−1 inherits the above Lipschitz property. Besides, the Lipschitz
continuity of matrix multiplications (bounded matrices) can also be proven as: For ∀Ω1,Ω2 and
bounded matrices P(Ω),Q(Ω) that are Lipschitz continuous w.r.t. Ω can be multiplicated together,
it follows that:

P(Ω1)Q(Ω1)−P(Ω2)Q(Ω2) = P(Ω1) [Q(Ω1)−Q(Ω2)] + [P(Ω1)−P(Ω2)] Q(Ω2).

Applying the triangle inequality for the Frobenius norm, it follows that:
‖P(Ω1)Q(Ω1)−P(Ω2)Q(Ω2)‖F

=‖P(Ω1) [Q(Ω1)−Q(Ω2)] ‖F + ‖ [P(Ω1)−P(Ω2)] Q(Ω2)‖F
≤‖P(Ω1)‖F ‖Q(Ω1)−Q(Ω2)‖F + ‖P(Ω1)−P(Ω2)‖F ‖Q(Ω2)‖F
≤UP ‖Q(Ω1)−Q(Ω2)‖F + UQ‖P(Ω1)−P(Ω2)‖F
≤(UPLQ + UQLP )‖Ω1 −Ω2‖F .

UP and UQ are finite upper bounds because P,Q are bounded matrices.

Since M(Ω), N(Ω), and H(Ω) are constructed via matrix multiplications and such resolvents, they
all have Lipschitz continuity w.r.t. Ω. Finally, because H is row full rank otherwise conflict the
unique target assumption defined in Ass. 3.3, it can be verified that HHT is full rank.

Hence, the pseudo-inverse solution z̃t(Ω) = HT(HHT)−1(s−Mxt −Nvt−1) is Lipschitz contin-
uous w.r.t. Ω because it has been proven that matrix multiplication and full-rank inverse (similar to
the proof of (I−A)−1) preserve Lipschitz continuity. Combining this with the parameter estimation
error bound, we conclude:∥∥∥z̃Θ̂

t − z̃?t

∥∥∥2
2
,
∥∥∥z̃t(Ω̂)− z̃t(Ω)

∥∥∥2
2
≤ L

∥∥∥Ω̂−Ω
∥∥∥2
F
≤ O

(
1

N

)
.

Taking square roots completes the proof:
∥∥∥z̃Θ̂

t − z̃?t

∥∥∥
2
≤ O(1/

√
N).

D Experimental details

We provide the detailed information of Sec. 5 and additional experiments in this section. First, all
experiments were run on a Nvidia Tesla A100 GPU and two Intel Xeon Platinum 8358 CPUs. Then
we provide true parameters of the synthetic dataset, with variables in the dataset illustrated in Fig. 9.

The synthetic dataset includes V = [X1, X2, Z1, Z2, Z3, Z4, Y 1, Y 2], and it holds that Vt =
AVt + BVt−1 + εt, where the instantaneous influence relations are recorded in:

A =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0.5 1.3 0 0 0 0
0 0 2 0.4 0 0 0 0
0 0 −1 0 0 0.9 0 0
0 0 1.6 0 0 −0.5 0 0


,
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Figure 9: The rehearsal graph for synthetic data.

and the lagged influenced relations are recorded in:

B =



0 0 0 0 0 0 0 −0.6
0 0 0 0 0 0 −0.6 0
0 0.6 0 0 0 0 0 0

0.6 0 0 0 0 0 0 0
0 0 0 0.7 0 0 0 0
0 0 0 0.2 0 0 0 0
0 0 0 0 0 0.3 0 0
0 0 0 0 0 0 0 0


.

Last, the noise mean E[εt] , 0, with Cov[εt] , Σ =



4 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 6 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 3 1.6 0 0
0 0 0 0 1.6 6 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 12


.

This to say, in the demonstrated experimental results in the main paper, if εt obeys a Gaussian
distribution, then εt ∼ N (0,Σ); while if εt obeys a Laplace distribution, then the scale parameter
b for each dimension can be computed by 2b2 = σ2, and the covariance of mutually influenced
variables can be additionally computed.

Fig. 11 reports additional results on the synthetic dataset, including the variance reduction rate w.r.t.
the time window length T (left, as in Thm. 3.5), the execution time w.r.t. T (middle), and the excess
risk ‖z̃Θ̂

t − z̃?t ‖2 w.r.t. the number of observational samples N (right, as in Thm. 3.6), which are
similar to those on the Bermuda dataset in Sec. 5. Note that the execution time of both our methods
(O(|z||y|2+(te−t0)|v||z|) for the GMuR method andO((te−t0)|z||y||v|) for the FarMuR method)
is significantly reduced compared to the previous methods (O

(
(T + 1)l|V|3

)
for Du et al. [7] with l

is the iteration times of the ulterlized optimization algorithm, and 6∈ O ((T + 1)|V|p), ∀p ∈ Z+, for
Qin et al. [6]). Meanwhile, as discussed in Qin et al. [6], the performance of QWZ23 [6] is unstable
on this dataset because the outcome variable Y is not singleton, leading to an irregular execution
time curve because its time complexity w.r.t. other factors, such as |V|, could be varying.
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Figure 10: Results on the Bermuda dataset (left) and the synthetic dataset (right), illustrating the
average executing time w.r.t. T for our FarMuR method and GMuR method.

Meanwhile, Fig. 10 reports additional results on the Bermuda dataset (left) and the synthetic dataset
(right), illustrating the average executing time w.r.t. L for our FarMuR method and the GMuR method.
This results (combining with the AUF probability in Tab. 1) illustrate the trade-off between execution
time and AUF performance for the GMuR and FarMuR approaches as L increases.

The variables in the Bermuda dataset are illustrated in Fig. 12, including:

• Light (X1): Light levels at the bottom;

• Temp (X2): Temperature at the bottom;

• Sal (X3): Sea surface salinity;

• DIC (Z1): Dissolved inorganic carbon of seawater;

• TA (Z2): Total alkalinity of seawater;

• ΩA (Z3): Saturation with respect to aragonite in seawater;

• Nut (Z4): PC1 of NH4, NiO2 + NiO3, SiO4;

• Chla (Z5): Chlorophyll-a at sea surface;

• pHsw (Z6): pH of seawater;

• CO2 (Z7): PCO2
of seawater;

• NEC (Y 1): Net ecosystem calcification.

The parameters associated with instantaneous influence relations ((A)) and the noise covariance
matrix (Cov[εt]) are estimated by fitting least-squares linear models to the real-world data [41, 43],
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Figure 11: Results on the synthetic dataset, showing the variance reduction w.r.t. the time horizon T ,
average executing time w.r.t. T , and gap ‖z̃Θ̂

t − z̃?t ‖2 w.r.t. the number of observational samples N .
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Figure 12: The rehearsal graph for Bermuda data.

while the parameters associated with the lagged influence relations (B) are manually determined:

B =



0.6 0 0 0 0 0 0 0 0 0 0
0 0.6 0 0 0 0 0 0 0 0 0
0 0 0.6 0 0 0 0 0 0 0 0
0 −0.1 0.23 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −0.1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1.1 0.6


.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope as illustrated in Sec. 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Sec. A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions in Ass. 3.3, and a complete
proof for each theoretical result as illustrated in Appx. C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and data for the main experimental results are provided in the
supplemental material. Experimental details are introduced in Sec. 5 and Appx. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and data for the main experimental results are provided in the
supplementalmaterial. The dataset used in the experiments is also accessible from the link
of the reference.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The code and data for the main experimental results are provided in the
supplemental material. Experimental details are introduced in Sec. 5 and Appx. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars are suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments as illustrated in figures and tables in
Sec. 5 and Appx. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources (type of
compute workers, time of execution) needed to reproduce the experiments as illustrated in
Appx. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper has discussed in Sec. 1 that our proposed algorithm could be used
to make decisions in certain cases, which may potentially lead to some positive societal
impacts.

28

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset used in the experiment is properly cited including a URL in
reference. Meanwhile, the original papers of models used in the competitive experiment are
properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and model introduced in the paper are well documented, and the
documentation is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor researc h with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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