Under review as submission to TMLR

Understanding Sparse Feature Updates in Deep Networks
using lterative Linearisation

Anonymous authors
Paper under double-blind review

Abstract

Larger and deeper neural networks generalise well despite their increased capacity to overfit
the data. Understanding why this happens is theoretically and practically important. A
recent approach has investigated infinitely wide limits of neural networks through their
corresponding Neural Tangent Kernels (NTKs), demonstrating their equivalence to kernel
regression with a fixed kernel derived from the network’s architecture and initialisation.
However, this "lazy training" cannot explain feature learning as such regimes correspond
to linearised training in the neural network weight space, which implies a constant NTK
kernel throughout training and, as such, does not perform feature learning. In practice, the
empirical NTK kernel for finite networks can change substantially, particularly during the
initial phase of stochastic gradient descent (SGD), highlighting the importance of feature
learning. In this work, we derive iterative linearisation — an interpolation between SGD and
the NTK kernel-based regression. Iterative linearisation enables us to precisely quantify the
frequency of feature learning and is shown to be equivalent to NTK kernel-based regression
in specific conditions. Empirically, only a surprisingly small amount of feature learning
is required to achieve comparable performance to SGD, however, disabling feature learning
negatively impacts generalisation. We further justify the validity of iterative linearisation by
showing that with large periodicity, it is a special variant of the Truncated Gauss-Newton
optimisation algorithm. We use this connection to provide novel insights on the role of
damping on feature learning and generalisation in Truncated Gauss-Newton.

1 Introduction

Deep neural networks perform well on a wide variety of tasks despite their over-parameterisation and capacity
to memorise random labels (Zhang et al., |2017). Even more surprisingly, generalisation behaviour improves
as the number of parameters and capacity increases (Nakkiran et al.l [2020). This correspondence between
parameter count and generalisation goes contrary to classical beliefs around learning theory and overfitting,
implying the existence of an inductive bias which encourages the networks to converge to well-generalising
solutions. One approach to understanding this inductive bias has been to examine infinite width limits of
neural networks using the Neural Tangent Kernel (NTK) (Jacot et all 2018 [Lee et al. |2019)). In contrast
to the performance scaling law for finite neural networks, infinitely wide neural networks often generalise
worse than standard neural networks, despite being larger. However, under specific conditions, they can
perform equivalently in certain scenarios (Lee et al., 2020). Similarly, despite their analytical tractability
based on kernel regression, they do not accurately predict the behaviour of finite networks in many cases. For
example, due to the lack of feature learning, they cannot be used for transfer learning (Yang & Hul 2021)).
Additionally, the empirical NTK (outer product of Jacobians) changes significantly throughout training
whereas NTK theory states in the infinite limit that this is constant. This finding raises important questions
about the role of feature learning, driven by changes in the empirical NTK, in the generalisation behaviour
of trained networks. Specifically, it prompts us to investigate how the frequency and extent of these feature
updates, captured by the changing kernel, influence the network’s ability to generalise to unseen data.

Following the NTK literature [Lee et al.| (2019)), we define the network’s features as the rows of the Jacobian
matrix of the network’s output with respect to its parameters. Note that this includes the final layer

Under review as submission to TMLR

activations as the derivative of the output of the network with respect to the final layer weights is the last
layer activations (the features used for the Neural Network Gaussian Process Kernel). We also examine the
first layer weights as features as a more intuitive definition and to show they align.

To address this challenge, we introduce iterative linearisation, a novel training algorithm that allows us to
interpolate between the standard, feature-learning-rich training of neural networks and the "lazy training"
(constant kernel) regime characteristic of infinite-width models under the NTK framework. Put simply, our
method involves periodically freezing the network’s features and training a simplified, linear model based
on these frozen features. By adjusting the frequency of these "feature updates," we can control the extent
to which the network learns new features. Our key insight is to control the frequency of feature updates
during training. Instead of updating the features at every step as in standard SGD, we linearize the network
around its current state and train this simplified, linear model for a fixed number of steps before updating
the linearisation. This allows us to systematically study the impact of feature learning on generalisation.
Through a series of experiments, we demonstrate that surprisingly infrequent feature updates are sufficient
to achieve performance comparable to SGD, highlighting the efficiency of feature learning. Furthermore, we
establish a connection between the feature update frequency in our method and damping in second-order
optimisation algorithms, providing a new perspective on the role of damping in generalisation.

Iterative linearisation works by training a proxy linear model. At each step s, we approximate the network’s
behaviour around its current weights using a first-order Taylor expansion:

et (@) = fo,(x) + Vo fo, ()T (6 — 0,) (1)

The proxy model is then trained for K steps before we re-linearize, effectively taking a new
snapshot of the network’s features to train a proxy linear model on. Training a linear proxy keeps the
Jacobian constant in between, thus the empirical NTK (Vg fq, (2)Vgfs,(z)") also stays constant, implying
that no feature learning is happening and following the NTK theory for those K steps.

In parallel, we show that iterative linearisation with large K approximates the Truncated Gauss-Newton
(TGN) algorithm and use this to connect our analysis to second order methods (Section 3.2). We examine
damping in TGN and connect it to the parameter K in iterative linearisation, finding that damping in TGN
has a similar effect on performance as reducing K, allowing more feature learning and better generalisation.

Contributions

e We formalise a new training algorithm, iterative linearisation, that allows us to control feature learn-
ing frequency and interpolate between lazy (NTK) and rich (feature learning) regimes of training,
providing a powerful tool for investigating the role of feature learning in neural networks

e We show empirically that only a small amount of feature learning is required for comparable gener-
alisation performance to SGD. Examples are also provided where too few feature updates results in
worse generalisation performance when train loss converges before features can be learnt.

o We investigate iterative linearisation with a low learning rate and large period and show intrinsic

connections to second order methods. We also provide intuition and empirical evidence as to how
damping in second order methods is connected to more regular feature updates.
We note that iteratise linearisation is a tool for understanding feature learning and generalisation in
neural networks. We do not propose it as a replacement for SGD as it is computationally expensive.
As such our experiments are limited to smaller models and two domains (simple low dimensional
datasets and image classification).

2 Background

2.1 Notation

Throughout this section and the rest of the paper we use the following notation:

e Parameters: 6, parameters at time step t: 6,

Under review as submission to TMLR

o Dataset inputs & labels: X,Y
o Neural network with parameters 0: fy(-)
o Neural network Jacobian of network outputs with respect to weights at time t: ¢ = Vg fy, (X)

« Neural network linearised at parameters 6, and evaluated with parameters 0;: fi%(z) = fo, (x) +

d);— (et - 95)
2.2 Lack of feature learning in the NTK regime

In the infinite-width limit, neural networks exhibit an intriguing phenomenon. Their training dynamics can
be described by a fixed kernel known as the Neural Tangent Kernel (NTK) (Jacot et al.,|2018). This kernel,
which depends only on the network architecture and initialisation, remains constant throughout training.
This "lazy training" (constant kernel) regime implies that the network behaves like a linear model and,
crucially, no feature learning occurs. While theoretically appealing, this regime often fails to capture the
generalisation behaviour of finite-width networks used in practice, where feature learning plays a vital role.
We begin with a brief summary of the NTK results and refer the reader to|Lee et al.| (2019) for more details.

First, let us consider a neural network fy(X;), where the network parameters 6 are iteratively updated
through Gradient Descent.
Orr1 = 0y — Ve L(f5,(X),Y) (2)

With learning rate 7 and loss £. We consider the MSE loss £(Y) = %Hf/ - Y|| We use X for the training
inputs and Y for the labels.

Moving to the continuous-time limit, we have Gradient Flow, where the learning rate approaches 0 and
parameter updates become a continuous trajectory (we use ¢; for the Jacobian at time t):

0; = —Vofo,(X) (fo,(X) =Y) = =0/ (fo,(X)=Y) (3)

Note that shows the gradient flow equation specifically for the MSE loss, resulting in the
residual term (fp, (X) —Y).

We now look at how the function fy, (X;) itself changes. We apply the chain rule f@t (X)= Ofe, (X) 0, = ¢, 0,

90
substituting in

fo.(X) == [¢/] (fo.(X)=Y). (4)
——
empirical NTK

The term in brackets is the empirical Neural Tangent Kernel (empirical NTK), (:)t(X,X) where the i,jth
entry is the inner product of the gradients of the network with respect to the parameters for datapoints ¢

and j:
A 0fo, (Xi) Ofe, (X
6, x)] = (Pt BT (5,07,)
Thus, function evolution is: ' .
Jo (X) = =04(X, X)(fo,(X) = Y) (6)

In the infinite width limit the empirical NTK, @t, converges to a constant kernel, ©, which we call the Neural
Tangent Kernel (NTK) (Jacot et al. [2018; [Lee et al, 2019 |Arora et all |2019)). This is a matrix dependent
only on the architecture and initialisation scheme, which does not change throughout training. From this
perspective, training the model in this infinite-width limit under gradient flow (or gradient descent with a

1We use MSE for simplicity here. While this is needed for some NTK results, it does not affect the algorithms we propose

where any differentiable loss function can be used — see

Under review as submission to TMLR

small step size) is equivalent to training the weight-space linearisation of the neural network (Lee et al.,
2019). Hence as © is constant, the network evolves as a linear model and the features do not change.

In contrast to the infinite width case, linearising finite networks results in significantly worse test loss (Lee
et al.l [2020). One common explanation is that this is due to the lack of sufficient random features at
initialisation, highlighting the importance of feature learning. In comparison, running gradient descent on
the full network allows features to be learned, thus reducing the reliance on initial random features. This
highlights the crucial role of feature learning in the success of finite-width neural networks. Note that results
on pruning at initialisation (Ramanujan et al.l [2020) in place of training are distinct from fixing the features
in iterative linearisation as pruning causes hidden layer representations to change and hence features are
affected by pruning.

2.3 Gauss-Newton algorithms

We want to use a correspondence to the Gauss-Newton algorithm to provide insights into our proposed
algorithm. In this section we define the Gauss-Newton algorithm and Truncated Gauss-Newton (TGN, from
Gratton et al.| (2007))), along with how they are related in preparation for this.

Algorithm 1 The Gauss-Newton algorithm

Input: initial parameters 6y, data {X,Y}

t<+0

while not converged do
¢t < Vo fo,(X)
Find an s; s.t. (¢ ¢¢)s: = —¢,/ (fo,(X) —Y)
9t+1 «— Ht + S
t—t+1

end while

Algorithm 2 Truncated Gauss-Newton (TGN)

Input: initial parameters 6, tolerances j3;, data {X,Y}

t<0

while not converged do
¢t < Vo fo,(X)
Find an s, .8, (67 60)sy = —67 (fo, (X) = ¥) 7 with rella < Bello7 (fo, (X) = V)l
Orp1 < O+ s5¢
t—t+1

end while

The Gauss-Newton algorithm is a variant of Newton’s Method where the Hessian H is replaced with an
approximation based only off of the first-order gradients H = #/ ¢¢. Here ¢, are the gradients of the network
with respect to parameters at time t. Where Newton’s method takes a step of A0 = —H ¢/ (f,(X) —Y),
Gauss-Newton instead takes a step of Af = — (gf);rd)t)fl #/) (fo,(X) —Y). We write it here assuming mean
squared error as our loss function (causing the residuals to appear in the gradient above) but the Generalised
Gauss-Newton (Schraudolphl [2002)) algorithm extends this. Iterating this step results in the Gauss-Newton
algorithm and approximates Newton’s method. It can equivalently be viewed as first linearising the model
and then solving exactly for the Newton step. For example, minimising the least squares loss L£(#) =
| fim(X) — YHE on the first order Taylor expansion f)(z) = fo, (z) + ¢/ (0 — 0;) results in the same update
step.

Damping in the form of A\l being added before inverting or an explicit step size are common variations to
improve numerical stability and optimisation convergence.

Truncated Gauss-Newton (TGN) relaxes the exact linear solve by allowing an error term r; such that the
linear least squares problem is only solved within a tolerance of ;. Such a solution could occur if we solve the

Under review as submission to TMLR

k=1 @ @ K =00

J o J \ J

Y Y Y
Gradient descent Iterative Linearisation Truncated
Gauss-Newton

Training regime Fully linearised training

Figure 1: Training regimes when always training to convergence. For small values of K, it will follow a
similar training trajectory to gradient descent. With a low enough learning rate, for very large K, it will
train until convergence for each linearisation giving the same results for all larger K — this is equivalent to
the Truncated Gauss-Newton algorithm. When K = oo then fully linearised training is performed. In the
middle is a section we label iterative linearisation which does not fit cleanly into any of the other regimes.

linear model using SGD rather than inverting the matrix and do not achieve exact convergence. TGN is a
useful algorithm for understanding the effect of not solving the linearised problem exactly and was intended
to understand the effect of terminating slightly before convergence or having numerical precision issues.
Gratton et al| (2007)) (Section 5.2) proves that under moderate conditions (twice continuously differentiable,
existence of a critical point such that the Jacobian has full rank and f; sufficiently small) TGN maintains
the local convergence of Gauss-Newton.

3 Iterative Linearisation

NTK theory says that if the width is large enough, training the weight-space linearisation is equivalent
to training the full network (Lee et al. [2019)). However, in practice, training the fully linearised network
performs very poorly for practically sized networks (Lee et al., |2020). In this section, we formalise iterative
linearisation in order to interpolate between the training of the standard network and the linearised network.

Consider standard (full batch) gradient descent on a neural network with a squared error loss (Equation (7))).

Ors1 =0, — 0o/, (fo,(X) —Y) where ¢, = Vo fs,(X) (7)

Here we can view the weights, 6;, and features, ¢, as two separate variables we update each step. However,
there is no requirement that we always update both, giving rise to the following generalised algorithm
(Algorithm 3|) where we only update the features every K steps:

Orir =0 =19, (fo,(X) + 6] (6 —b) —Y) (8)
Linearisation of fq, (X) at 65

¢s = Vo fo (X) 9)

where s = K * [%j such that every K steps, the neural network f(-) is re-linearised through its first order
Taylor expansion at the weights ;. We note that except at these re-linearisation steps, the features being
used do not change. In the extreme case of K = oo, the NTK training dynamics are followed and a linear
model which never learns features is trained.

shows pedagogically how this would work. While our original formulation used MSE loss, any
differentiable loss function can be used. For instance, with softmax cross-entropy, we linearise the network
but keep the softmax and cross-entropy in the (non-linearised) loss function. This ensures that the output
remains a probability distribution and prevents numerical issues. To avoid the need to store the Jacobian ¢,
explicitly, we perform a first-order Taylor expansion which can be computed efficiently using Jacobian-vector
products. This also enables stochastic updates via SGD rather than full-batch gradient descent, improving
scalability.

Using this framework, when K = 1 this is simply gradient descent and when K = oo it is fully linearised
training. Other values of K interpolate between these two extremes but for all K < oo it will do at least
some feature updates. See for more details. Note that we can also generalise this to be nonperiodic
in terms of when we update ¢ so we call this fized period iterative linearisation.

Under review as submission to TMLR

Algorithm 3 Iterative Linearisation (fixed period)

Input: learning rate 7, update periodicity K, initial parameters 0y, data {X,Y}
t<+0
while not converged do
¢s — Vofo,(x) if t mod K =0 else ¢;_1
Orr Oy — 6L (fo,(X)+ 0] (6, —6,) —Y)

Linearisation of fq, (X) at 65

t+—t+1
end while

3.1 Control of feature learning frequency

Consider if K = oo then training only involves this is purely linearised training
using random features defined by the neural network’s initialisation function. At this step, no feature
learning takes place. This is similar to linear models with fixed features. From this interpretation, the
entries of Jacobian ¢, are the features we use at time ¢, and K determines how frequently we update these
features. As we decrease K, we introduce more frequent feature updates, gradually moving away from the
NTK regime and towards the behavior of SGD. Thus, K serves as a dial that allows us to smoothly interpolate
between these two extremes.

We point out that feature learning only happens in [Equation (9)| not in [Equation (8)} This inspires us to
call [Equation (9)|the feature learning step. Furthermore, we conjecture the amount of feature learning from

training the proxy model (linearised NN) for K steps to be less than that from training the true model
(unlinearised NN) for K steps. See for empirical evidence for this fact. Intuitively, this will be
true due to the proxy model losing the learning signal information of the neural network. Therefore, after
training the linearised model for some amount of steps, any changes to the features are due to randomness.

3.2 Validity and Convergence of lterative Linearisation

Iterative linearisation is clearly reasonable for K = 1 as this reduces to standard SGD. For small K we
would expect similar behaviour (we show this empirically later in. It is not immediately obvious
that iterative linearisation with large K constitutes a valid learning algorithm. In this section we show a
fundamental connection between large K iterative linearisation and Gauss-Newton/Truncated Gauss-Newton
in order to show why iterative linearisation still has local convergence with large K.

To establish the validity of iterative linearisation as a learning algorithm, particularly for large values of K, we
first demonstrate a fundamental connection to the well-established Gauss-Newton method. In Gauss-Newton
(Algorithm 1f), each iteration requires finding any s; that satisfies the equation. This is typically found in
small instances by inverting the Hessian approximation (¢ ' ¢), but s; can be computed using gradient descent
instead, as is often done in practice for larger models. Note that this is an approximation to true Gauss-
Newton, however under certain convergence tolerances this approximation (Truncated Gauss-Newton) also
maintains local convergence (Gratton et al.| (2007)).

Assuming the learning rate is chosen such that gradient descent will converge, then it will reach a point
where it is within some tolerance of the true solution in a finite time. This is where the analysis of TGN
comes in as it provides local convergence guarantees under certain conditions of the tolerances, (Gratton
et al., 2007)).

To summarise, if we were to solve our linear model exactly, then we would recover the Gauss-Newton algo-
rithm. In practise no matter how large K is, it won’t converge perfectly, however to show local convergence
building off of |Gratton et al. (2007), we only need approximate convergence within some tolerance. If the
learning rate is small enough then this is guaranteed for large K.

We now turn our attention to the more general scenario where the linear subproblem is solved approximately.
In contrast to TGN, iterative linearisation allocates a fixed computational budget of K steps to solve the

Under review as submission to TMLR

linearised subproblem, regardless of its proximity to the true solution. This lets us explore the areas where
it is not equivalent to Truncated Gauss-Newton which are interesting in the context of feature learning in
neural networks, however it means that we need the extra step below to show local convergence.

The preceding arguments suggest that iterative linearisation should converge locally for sufficiently large K.
To formalize this, we now leverage the local convergence properties of Truncated Gauss-Newton (TGN). We
can see from the local convergence of TGN that there must exist a K such that iterative linearisation also has
local convergence. We do this by using a low enough learning rate to achieve convergence in the linear least
squares problem and setting K large enough to have ||r¢||2 < B¢|lé] (fo,(X) — Y)|2 on each iteration with
appropriately small 3; as given by Theorem 5 in (Gratton et al.| (2007). Therefore, for sufficiently large K,
iterative linearisation exhibits local convergence under the same conditions that guarantee the convergence
of TGN.

If finding s, with the inverse in the overparameterised setting, then in general damping will be required
to ensure that the matrix is invertible. This is due to the existence of many solutions to (¢, ¢s)s; =
—¢/ (fo,(X) —Y) in the overparameterised regime. Under enough damping such that the solutions at each
step are unique, all methods of finding s, will be identical up to numerical precision. In an overparameterised
setting with no damping this is not as clearly true. We provide an intuition below that there exist periodicity
K and learning rate i such that even in this setting it will find the same solution for each step if it can be
solved by inverting the matrix. We begin with a lemma on the closed-form solution of gradient flow (this is

a known result, but we include a proof in [Appendix B|for completeness).

Lemma 3.2.1. Gradient flow on a linear model fo(x) = ¢(z) "6 with squared error loss L(Y) = $||Y — V3
starting at weights 6y converges to 6y — (¢T¢)_1¢TTA(f90 (X)), when ¢ ¢ is invertible. Where ¢ = Vg fo,(X)

is the Jacobian on the dataset X and r(Y) = (Y =Y) is the loss residual.

Assume the same setup as before with a squared error loss. Additionally assume that (¢, ¢;) is invertible
at re-linearisation ¢. Solving a linear least squares problem using gradient descent, with a small enough
learning rate will converge to the same solution as gradient flow. shows that gradient flow will
converge to 0y — (¢ ¢1) "1, Vo(fe,(X) —Y). Hence for each linearisation there exists a learning rate such
that for smaller learning rates, it will converge to the solution obtained by inverting the matrix. We set K
to be large enough to converge to within numerical precision. Taking the minimum learning rate across all
linearisations and the maximum time horizon needed for any of those to converge allows a global setting of
n and K across all linearisations.

This exact equivalence relies on a squared error loss, however we can easily generalise to the idea of exactly
solving the convex problem that results from any convex loss function on the linearised neural network.
Though there will no longer be a closed-form solution, we can still solve this numerically as we will do in
From this perspective, we can see the Gauss-Newton algorithm as the special case where we
exactly solve iterative linearisation on a squared error loss.

3.3 Connecting Damping with Feature Learning: Insights from Gauss-Newton

As shown above, iterative linearisation approaches the Truncated Gauss-Newton algorithm as K increases
if the learning rate is small enough. This connection is not merely a mathematical curiosity; it provides
crucial insights into the interplay between optimisation dynamics, feature learning, and generalisation. We
now delve deeper into this connection, examining iterative linearisation from the perspective of damping in
second-order methods to understand how it affects feature learning.

To motivate the connection to iterative linearisation, we first briefly revisit the conventional role of damping
in second-order optimisation methods like Gauss-Newton. When using second order methods in practise,
damping is used in order to help with numerical stability for inverting the matrix and provide a trust region
for the proxy model to prevent excessively large steps that could lead to divergence or poor convergence.
Damping is typically implemented by adding a scaled identity matrix to the Hessian approximation before
inversion. Beyond its primary purpose, we show that damping has an interesting, and perhaps unexpected,
connection to the frequency of feature updates in iterative linearisation.

Adding damping to Gauss-Newton gives the new update below in

Under review as submission to TMLR

Orir =0 — (&) b + Aoy (fo, (X) = Y) (10)

While the solution to the linearised network with squared error loss £(0) = || f3*(6; X) — Y[|? is given by the
Gauss-Newton step, the solution to the linearised network with loss £(6) = || f5™(6; X) — Y[|? + A[|6 — 60|

is given by

We use this formulation of Gauss-Newton to highlight a correspondence between more damping and smaller
K in iterative linearisation and hence with more feature learning. The two methods converge as A\ — 0 and
K — oo, becoming the Truncated Gauss-Newton algorithm. As A — oo, damped Gauss-Newton approaches
gradient flow, while as K — 1, iterative linearisation approaches gradient descent. However, for a small
enough learning rate, these are equivalent. Intuitively, as A increases, the regularisation term increasingly
penalises large changes in the parameters, causing the linear model to be solved less precisely within the
K steps. Similarly, with smaller K, there are only a limited number of gradient steps; hence the network
parameters cannot move as far, and the linearised proxy model is solved less completely. A similar argument
can be applied to damping through an explicit step size for the Gauss-Newton step instead of a multiple of
the identity added to the Gauss-Newton matrix.

Intuitively, damping restricts the optimisation process from making drastic changes to the weights in a single
step. This can be seen as analogous to limiting the frequency of feature updates in iterative linearisation.
In both cases, the model is encouraged to make smaller, more incremental adjustments, which, as we will
show empirically, can lead to better generalisation.

This effect of damping is, to our knowledge, beyond what is understood in the literature. Generally, damping
is purely used for numerical stability and trust region effects, rather than generalisation or feature learning.

Such insights raise an interesting hypothesis that the benefit of second-order methods requiring fewer steps
may, at the extreme, result in worse generalisation in neural networks. This would be due to the lack of
feature updates before convergence and provides interesting insight into why damping may be important
beyond the numerical stability arguments normally used to justify it. We provide some evidence of this

hypothesis in

4 Experiments

We run experiments with both a simple CNN (a modified LeNet with extra channels — see
and a ResNet18 on CIFARI10 to understand the effect of changing feature learning frequency. We point
out that we do not aim for state-of-the-art performance (the networks only get to maximum ~ 80% for
CIFARI10) as it is not necessary to prove our claims. The key comparisons are between large and small
values of K in iterative linearisation, and between various damping values in second order methods. We use
cross-entropy loss in these experiments as, unlike NTK theory, no part of our derivation relied on MSE. In
order to improve numerical stability and ensure that the output is a probability distribution during training,
we do not linearise the softmax function. We also run some experiments in simple 1 and 2-dimensional
problems to further examine damping in Gauss-Newton and visualise feature learning. Further experiments,

model definitions and experimental details can be found in

We split out the experiments to support each of our core claims.

e Performance on par with SGD can be obtained with surprisingly few feature updates.
shows that with very few feature updates we can achieve similar test accuracy to SGD.

o Feature update frequency provides a good proxy for feature learning. shows that large
increases in K reduces the total amount of feature learning before convergence in a number of
settings and definitions of feature learning.

e Connecting to second order methods. shows the impact of damping on performance and
relates that back to feature learning and the periodicity (K) in iterative linearisation.

Under review as submission to TMLR

Test accuracy for K=1 and K=5 - 10°

0.8 - =
§ 0.6 83
o . -1 82 _—I\M\/\/—m
g 811 .
5 0.4- 7.75 8.00
@ le7
0.2 - K=1 —— K=5-106Acc(fi"(f)) —— K=5-10°8 Acc(f(6))
0 1 2 3 4 5 6 7 8
Step le7

Figure 2: Standard SGD and data augmentation (flips and random crops) for large K on a standard CNN
architecture. This shows test accuracy for K = 1 as well as both the neural network test accuracy and
the test accuracy of the linearised proxy network being trained. As can be seen, the performance is almost
equivalent for very large K given enough time to train. Note that as re-linearisation can occur in the middle
of an epoch but test performance is evaluated at the end of an epoch, the lines do not always drop to the
same point, this is simply an artefact of the measurement rather than underlying differences.

> 0.6 1
e .~ Y A A AN A
3 0.4
()
©
B 0.2 1
@
0.0 + T T T T T T T
102 107 108 10°
=== Truncated Gauss-Newton: 45.34%
--@- Maximum test accuracy
]
g 0.7 1 @i @ @i Y @ R R L _ETTT I ®....
E 0.64 T °
£ 0.5 A
> R B e e e e LI R L e e e L e e e TS SRR e
E 100 10! 102 103 104 10° 106 107 108
g Periodicity (K)

Figure 3: A sweep of K for a basic CNN, always training until convergence. Up until K = 10%, it follows the
same trajectory, however after that it briefly improves slightly before getting significantly worse generalisation
performance at K = 10%. We include a baseline of running Truncated Gauss-Newton on this plot for
comparison. We note that the first reading (except for at step 0) is at max(100, K') and plot the accuracy
at initialisation until then.

4.1 SGD performance can be achieved with a surprisingly small number of feature updates

We first compare large K to K = 1 to show that only infrequent feature updates are needed in order to
achieve comparable generalisation performance for this dataset. We show this in a typical setting of a CNN

on CIFARI10 adding data augmentation (Figure 2)) where the final results differ by under 1% (82.3% for

Under review as submission to TMLR

Dataset size

Dataset size

Empirical NTK vs NN Varying K

. o® g,l -e- K=1
§0.6- o a4 T | —e- k=10
5 ' & ",—k ,/‘ ",—k s
3 oA »,f’,r o K=107

P -~ ~ K=10
S 041 ,z,l" AT i
o _g- - ®- K=10
= :/ - —k- K=o

103 104 103 104

Figure 4: Data scaling behaviour of models as K changes. Here, we show the performance of neural networks
with various K when trained on subsets of the training data and trained until convergence. The rate at
which performance improves as the dataset size increases is equivalent for all finite K and worse for the case
where K = oo and the features are never updated. We note that K = 10® was too computationally expensive
to run for each of these but does begin to do worse than other values of K here. Note that the K = oo runs
used a higher learning rate (n=1e-3 instead of n=1e-5) for computational reasons, so we include on the left
plot a comparison with K = 1 with the same higher learning rate to show that this is not relevant to the
comparison.

K =1 and 81.4% for K = 5x 105). This result also holds when using ResNet18, as can be seen in
With BatchNorm it is far more sensitive due to linearisation of the normalisation layers not playing well
with batch statistics. It is extremely clear across these results that we get enough feature learning in 8-12
feature updates to achieve comparable generalisation to millions of feature updates when K = 1. As shown
in we achieve comparable generalisation (within 1%) while performing over 100,000 times fewer
feature updates.

In we vary K over 8 orders of magnitude for a basic CNN on CIFARI10 to understand the full
spectrum of the interpolation. Note that the first reading after step 0 (not on a log graph) is step max(100, K),
in order to show the initial performance we plot it as that performance up until the first reading. Up until
K = 10%, it performs about the same as K = 1 but requiring K times fewer feature updates, though a
similar number of steps. After K = 10%, performance begins to be erratic with it converging to a slightly
higher performance for a bit before dropping down at K = 10%. This convincingly shows that there is a wide
range of K values (1 < K < 10%) which are approximately the same as K = 1. At K = 10%, we begin to
approach Truncated Gauss-Newton as the performance drops. The orders of magnitude in the middle are
where and [I0] both fall, which tend to perform similarly well but can be unstable. We note that
our Truncated Gauss-Newton baseline is computed by solving the convex loss of the linearised model using

Adam as we do later in [Section 4.3

Previous graphs only compare finite K. To address this, we reproduce and extend the approach used in
Vyas et al. (2022) in and show that using the empirical kernel with K = oo scales poorly with
dataset size. Thus, a complete lack of feature learning hurts generalisation. However, any finite K chosen
scales similarly to K = 1 if trained until convergence on the training data. This is because K is too small
to make a difference in whether the amount of feature learning needed for the task is achieved. Specifically,
by the time it converges to 100% train accuracy, it has already learned enough features. We do not run for
K = 10® here for computational reasons but we note that larger values of K when we train do begin to
reduce performance as we approach Truncated Gauss-Newton. As such, for the setting we have, it is clear
that feature learning improves sample complexity however it is also clear that not much feature learning is
necessary to achieve comparable sample complexity.

Overall we have shown conclusively that for this setting, only a few feature updates are needed for comparable
performance. However there is still often some small generalisation benefit of the more feature learning that
occurs with lower K.

10

Under review as submission to TMLR

Layer 1 Features Layer 2 Features

o
~
1
1

o
)]
1
1

Linear probe test accuracy
o
(9]

1

1
R X
([
v =
X
-
o

o

0 2 4 6 8 0 2 4 6 8
Step le7 Step le7

Figure 5: Test accuracy of a linear probe trained on the features of the first (left) and second (right) layers of
features. As training progresses, the linear separability of the feature representations learnt at these layers
improves, with the large K features improving slower and levelling off at a lower point.

x=1 [1N IN] 1K1 150 1] 0 0 e) e e)) B e e}) B e
x=>5>x10° [N I I 1N I I I I I I I

« =1 I D Y D Y)) Y 9 Y G Y Y
k=sx10° HHHTIISEEEEEEEEEEDEEE

=1 IR R R EEEREER
x=>5>x10° [I I N I I O O O B

Filter 2 Filter 1 Filter O

Figure 6: Evolution of the first three convolutional filters of the first layer. Each column represents 10000
epochs and for each filter there is the evolution for K = 1 and K = 5 x 10%. Each image maps the [-0.5, 0.5]
range of the filter difference from initialisation to [0,1] in order to be plotted. As can be seen, the evolution
of the filters for K = 1 is much faster and the final filter for K = 5 x 10° is often similar to K = 1 at about
20% of the way through training.

4.2 Feature update frequency provides a good proxy for the amount of feature learning

One of the primary uses of iterative linearisation is to examine the effects of changing the amount of feature
learning. In order to do this, we first show that the amount of feature learning decreases with increased
periodicity. As feature learning is a complex process without a single quantitative measure, we use three
distinct methods to understand its behaviour: the linear separability of internal representations (linear
probes), direct visualization of convolutional filters, and analysis of learned weights on a synthetic task. If
increasing K is truly reducing feature learning, we would expect to see a corresponding degradation in the
quality of the learned features, potentially leading to worse generalisation. To investigate this, we employ
two distinct methods to analyze the features learned during training for the model shown in linear
probes and visualisation of convolutional filters. We additionally show the first layer features in an XOR toy
problem where they can be plotted in 2 dimensions.

For small K, it is quite clear from [Figure 3] that the network learns more per feature update, requiring fewer
feature updates to achieve the same test accuracy. This raises the question of when iterative linearisation
results in less overall feature learning versus simply clumping the feature learning from K steps into 1.

We analyse the features which are learnt during the training of in two ways. In we use
linear probes (Alain & Bengio| 2017) in order to plot the linear separability of the learnt features for the
task. This was done through training linear classifiers on the first and second-layer features and plotting the
linear probe test accuracy. We can see that the features for K = 5 x 10° improve slower than for K = 1
and levels off at a lower generalisation accuracy. This graph gives evidence that increasing K also reduces
the amount of feature learning, not only the frequency. However, this relationship is not linear: a single
K =1 results in less overall feature learning than 10° steps with K = 10°. The 1% performance gap in
is likely partially due to the smaller amount of feature learning shown here. However, considering

11

Under review as submission to TMLR

017 01 01y -, 01 019, o, 01 s 02 021, 02
< :
0.04 X 0.0 0.0 X 0.0 0.04 >< 0.0 00 0.04 00
4 4 -0.2
-0.1 -01] -0.1 -
—0.14 .. —014 -, -0.1 . 0.2
T T T T T T T T T T T T —0.2 T T T
-0.1 0.0 0.1 -0.1 0.0 0.1 -01 0.0 0.1 -0.2 0.0 0.2 -02 00 02
Feature alignment Feature alignment Feature alignment Feature alignment Feature alignment
600 7 J 604
600 | 400 100
] 300 75
400 400 404
200 50
] 200 4 204
200 100 25
0~ T T ' 01+ T T ' 0~ T T 04 0-
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
A=1.0 A=0.1 A=0.01 A=0.001 A=0.0001
. 0.050 -] . B . 0.10
0024 0.02 . 0.05 0.057- -, 0.05 0.05 005 01
0.025 4 ’ : 0.05
0.00
0.00 < 0.000 0.00 0.00 4 0.00 0.00 0.00 0.0 0.00
-0.02 —0.025 1 " oo % —005 ol . -005 014 -0.05
~0.02 1 W g, 00501 . —0.059 © ' . K) -0.10
-0.02 0.00 0.02 -0.05 0.00 0.05 -0.05 0.00 0.05 -0.05 0.00 0.05 -01 00 01
Feature alignment Feature alignment Feature alignment Feature alignment Feature alignment
1000 § 1000 1
200 4
750 7504 3007 200
150
]] 200
500 500 100 1004
250 4 2504 1004 504
0+ T T ! 0+ T T ' 0- 0+ 0-
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

Figure 7: Converged features after training a single hidden layer model wyo(w{ x + b) on XOR data for
various values of K and A. The feature location is the first layer weight rows (wy; for all ¢) and is coloured by
the corresponding second layer weight wo; . The second row shows the feature alignment which is defined by
the histogram of maximal cosine similarity with first layer features and any of the four true cluster means,
see for definition. The bottom two rows are similar but for different values of K. We see a
similar change though the specifics are different as K and A are not exactly comparable.

the relative gap in linear probe accuracy versus the gap in generalisation, it is clear that less feature learning
is not a large hindrance for least in the case of this combination of model, initialisation and dataset. This
measure of features looks at hidden layer activations rather than the Jacobian of the network, so it also
provides evidence that both interpretations (Neural Tangent Kernel vs. hidden layer representations) of
feature learning used in the literature align.

In |[Figure 6 we plot the evolution of the first 3 filters for the first convolutional layer, for both K = 1 and
K =5 x 109, with each column representing 10000 epochs. Each image shows the change in the filter up
to that epoch and maps from [-0.5,0.5] to [0,1] in order to be plotted. We can clearly see that the filters
evolve faster for K = 1 and after training is finished for K = 5 x 105, the features are comparable to those
of K =1 at about 20% of the way through training. This 20% matches when the linear probe for K =1
gets a similar test accuracy to the linear probe for K = 5-10° at the end of training.

This shows from two different measures that the intuitive idea that less frequent feature learning results in
less feature learning too holds up in this case.

Finally connects the reduced feature learning with another intuitive definition of features. Here
the setup is a 2-dimensional XOR problem with inputs X; € R? with X; = z; + €, 2Zj1, Zio ~
Rademacher, ¢; ~ N(0,0.1-1) and labels y; = X;; X X;2. We train a single hidden layer network with
different values of K to convergence and plot the features and feature alignment.

The top plot is the feature locations, we define this as the rows of the first layer weights (wy; for all i) which
we plot in 2D space and colour by the corresponding second layer weight wa;

The second plot is a histogram of the feature alignment for all features (rows in the first layer weights). The
feature alignment a(+) is the maximum cosine similarity with a cluster centre from the data.

12

Under review as submission to TMLR

1.00 A E
> >
g 0.75 -
S 35
o — o]
£ 0.50 1 — sgdK=1 <A
5 5 5 K=2x10°> Acc(f(i®
2 o5 4 —— adam K=2x 10 I — K=2x CC((')
’ adam K = 1 baseline —— K=2x10° Acc(fin@))
0 1 2 3 4 0 1 2 3 4
Step le6 Step le6

Figure 8: Iterative linearisation using Adam to completely optimise the convex problem each step. Here
we compare standard gradient descent (K = 1) and a variant of iterative linearisation where the resulting
convex objective from each linearisation is fully optimised (K = 2 x 10°) using Adam before re-linearising.
In contrast to previous results, this results in worse performance (69% vs 60%). Adam by itself achieves
over 70% on this task so the reduction in performance is due to fully optimising the linearised model and
not due to swapping the optimiser.

The bottom two plots are similar but for varying A and we will discuss the similarities between the two
further in the next section.

W:-C
max T T
ce{-1.132 [|[w|l2 - [Ic[|2

(11)

a(w) =

Each feature’s location shows the input-to-hidden-layer weights and the colour represents the output weight;
we do not plot the biases. Feature alignments are found per feature from the maximum cosine similarity
between a feature location and any [z,y], =,y € {—1,1} and plotted on a histogram below. We can see
the same degradation in feature quality with increased K that we have seen previously, but now the actual
features are easier to see explicitly. We also note that for such a simple case, the performance does not
degrade with higher K despite the poor quality features, as there are still enough well-located features to
clearly distinguish classes with a simple linear classifier on the learned features.

These findings confirm that increasing K reduces the amount of feature learning, not just the frequency,
supporting the use of iterative linearisation as a tool for studying the impact of feature learning on general-
isation.

4.3 Connecting to second-order optimisation methods

As covered in iterative linearisation is closely related to second-order optimisation. To further
validate the connection between damping and feature learning, we now perform iterative linearisation while
numerically solving the convex softmax cross-entropy loss of the linearised neural network using Adam
To make the graphs more readable we use a large constant K rather than a varying K, intended
to make sure that it reaches 100% train accuracy with each re-linearisation (see graph on the right) and
that these are spaced regularly in the graph. We use Adam to solve the linear problem faster than would
be possible using vanilla SGD for computational efficiency. Here the network converges to a solution which
generalises much less well with 60.3% accuracy vs 69.4% for K = 1. In this case, the network has achieved
a low enough train loss before it has a chance to learn features. This results in less feature learning and less
generalisation.

We ensure that this is not due to using Adam by comparing to an Adam K = 1 baseline (dotted line), which
achieves over 70%. K = 2 x 10° also converges to the same test accuracy as using K = 108 with SGD in
This gives confidence that we can safely swap SGD for Adam for the next experiment which would
be completely infeasible to run with SGD.

13

Under review as submission to TMLR

® Mean of runs
w 0.3 A .
g . Individual run
o Q ®
2021 e . . s e -~
o L @ = Q O?' . . i _
=)
o g ° ¢ SR ¢ 0 06 8 8 Be
107! 100 10! 102 103 104
Damping factor (A)
/‘\‘ /
‘ /;/ \4}
\ 4
, \ 4
A=10"1 A=100 A=10! A=102
071 .- No weight decay: 45.34% .. @@
306 =
< R J
k]
© 0.5 .,.~~.
-0 8 O e
10-8 10"7 10"6 10"5 10'_4 10"3 10"2 10"1

Figure 9: Improvement of generalisation as damping increases. The top plot shows test RMSE as damping
is changed (runs with train RMSE over 2.5 are removed), with a reduction in the mean test RMSE and
an increase in consistency — in particular note the number of high RMSE points with low damping factor
despite the minimums being similar. The centre plot shows samples of the learnt functions as the damping
parameter (A) changes, where there is a clear trend towards smoother functions as damping increases. The
bottom plot shows this more clearly, on CIFAR10 with a basic CNN. Here damping is simulated by modifying
the weight decay on [|§ — 6p]|? in iterative linearisation loss using Adam to fully solve each time as the full
problem is both too large to add AI before inverting and no longer has a closed form solution due the the
cross-entropy loss.

In we also conjectured that there is a parallel between damping in second order methods and
feature update frequency in iterative linearisation, with both impacting how far the weights can move to
optimise the proxy model. To further investigate this connection, we show in that the increase in
damping also improves generalisation. The top part of the figure examines varying damping on a 1D toy
problem across many random initialisations. We can see that increasing damping improves test RMSE in
worst case and average case performance, while best case remains fairly constant. Plotting example functions
learnt for 4 different damping values in the middle graph shows visually how the learnt functions become
smoother as the damping increases. Finally the bottom graph simulates damping when training a CNN
with softmax, when we cannot simply invert the matrix. We do this by modifying the loss function to add
a A|0s — 0||? regularisation term (equivalent to damping with value A as shown in and solving
the linear least squares using Adam. Here the exact same phenomena is found where increased damping
improves generalisation performance. We encourage the reader to compare the generalisation trend with

reducing damping in the bottom plot of to the trend for increasing K in which shows the
beginning of a very similar trend before it becomes computationally infeasible for large K.

Finally, we refer back to (described in the previous section) where we compare the features learnt
with varied values of K and A. We can clearly see that small K and large A do a lot of feature learning and
align well to the data. This alignment decreases as K increases or A decreases. The exact ways that they

14

Under review as submission to TMLR

change are of course different but the general idea of less feature learning is clear. This provides further
evidence for the parallel between these two methods.

These results provide strong empirical evidence for two important points. The first is the parallel between
the feature learning impact of damping vs iterative linearisation periodicity with smaller values of K being
similar to more damping and resulting in increased feature learning. The second is that more exact second
order methods may force us to add more damping to ensure good generalisation.

5 Related Work

The algorithm we introduce, iterative linearisation, is very similar to Truncated Gauss-Newton (TGN) as
studied in |Gratton et al.| (2007) but with a very different focus which affects how it is used and some of the
details. The algorithm differs in the condition of when to re-linearise — TGN uses a term to estimate if it is
close to the solution and this is used to prove that under certain conditions it is close enough to Gauss-Newton
to achieve local convergence. In contrast, iterative linearisation re-linearises every K steps and explicitly
tries to give a different solution to that of Gauss-Newton in order to adjust feature learning. |Gratton et al.
(2007) examine TGN from a mathematical perspective and show local convergence and convergence rates.
We empirically examine iterative linearisation in deep learning settings and how it affects feature learning.

A number of papers have looked into feature learning with regards to the NTK regime. [Fort et al.| (2020)
compare allowing feature learning initially before fixing the empirical NTK, showing that only a few feature
learning epochs are needed to achieve similar performance. We build on this, reducing down to 10-15 feature
learning updates to achieve comparable performance and show examples where this breaks down. [Lewkowycz
et al.| (2020) obtains similar conclusions about feature learning happening early in training. In contrast, Vyas
et al.| (2022)) look at the continuing changes of the NTK later in training, finding that there is some continued
benefit in more feature learning under certain conditions. Our work builds on both of these, finding that
there can still be room for improvements with more feature learning, but the improvements are very marginal
after only very few feature updates.

Buffelli et al.|(2024]) proposes an exact way of computing the GN step efficiently in reversible neural networks
and shows that this generalises less well. They consider small step sizes and find similar feature learning
between GN and SGD with both less than Adam. In contrast, we consider the full GN step and find that
this performs less feature learning than SGD until enough damping is added.

Allowing feature learning in the infinite width has received significant attention. Yang & Hul (2021) use
a different parameterisation scaling to allow feature learning which performs better than finite networks,
though it can only be computed exactly in very restricted settings. Feature learning has also been studied
in the mean field limit (Mei et al., 2018} |Chizat & Bachl |[2018) on single hidden layer neural networks where,
unlike the NTK limit, feature learning still occurs. There are a number of recent works looking at feature
learning in this limited setting in a more theoretical way (Abbe et all |2023; |Bietti et al., |2023)), including
under a single feature update with isotropic (Ba et all 2022)) and structured data (Demir & Dogan, 2025;
Hosseini et al., 2023). One relevant result from this line of research is that even a single gradient step can
be enough to move to a feature learning regime. Our empirical findings align with this principle. While our
experiments on deep networks do not find that a single update is entirely sufficient, we similarly observe
that only a small number of feature learning updates are necessary to achieve the majority of performance
gains. The quantitative difference is likely because our empirical setting, involving deep architectures and
real-world datasets, is significantly removed from the idealized theoretical frameworks used in these papers.

Chizat et al| (2019)) consider a different interpolation between finite and infinite networks, finding that as
they get closer to their infinite width analogues, they perform less well empirically as they approach this
limit. This interpolation is cleaner theoretically but more difficult to connect to feature learning, so we do
not use it in this investigation.

Much of the second-order optimisation literature considers damping in detail. Typically, in order to im-
prove the numerical stability of the matrix inversion (Dauphin et al.| 2014} Martens| 2010) or optimisation
speed (Martens & Grossel, [2015)) due to trust regions of the proxy model, not understanding its effect on
generalisation.

15

Under review as submission to TMLR

A number of results look at measuring feature learning empirically, but there is no accepted quantifiable
measure of feature learning. |Zeiler & Fergus| (2014) is representative of a number of papers that use a similar
approach of finding inputs that activate filters. While illuminating in some cases, this can be difficult to
quantify precisely. A more quantifiable method is|Alain & Bengio| (2017)) which uses linear probes to evaluate
the hidden representation at different levels. Unfortunately, this has less direct connection to feature learning,
only to the effectiveness of the current features, though we would expect these to be correlated. We use
ideas from both of these directions to help understand feature learning in our models.

6 Conclusion

This paper has formalised iterative linearisation, a novel training algorithm that interpolates between gradi-
ent descent on the standard and linearised neural network as a parallel to infinite width vs finite networks.
We justify it as a valid learning algorithm with reference to an intrinsic connection to the Gauss-Newton
method. We show that by decreasing the frequency of feature updates within iterative linearisation, we
can control the amount of feature learning during training, providing a powerful tool to help understand
optimisation in neural networks.

In the case of datasets like CIFAR10, we show that a very small amount of feature learning is sufficient to
achieve comparable test accuracy to SGD across a variety of settings such as full/mini-batch, use of data
augmentations, model architecture and dataset size. We also show that some feature learning is required for
good generalisation, connecting this with the fact that a fixed empirical Neural Tangent Kernel does not learn
features and thus does not generalise well. This provides the important insight that while feature learning
is necessary, SGD performance can be achieved with significantly less feature learning than expected. This
supports the conclusion of not needing too many feature learning steps from [Fort et al.| (2020)) in a different
setting with an order of magnitude fewer feature learning steps but spread throughout training.

We connect the feature update frequency in iterative linearisation to damping in Gauss-Newton, providing
a feature learning-based explanation for damping, backing this up with both theoretical insights connecting
them and empirical observations showing the generalisation benefit of increasing damping or decreasing K.
Our evidence for this insight includes almost identical theoretical behaviour at the extremes
and similar behaviour empirically in the middle , as well as an intuition connecting damping
and periodicity K.

We note one major takeaway for practitioners from this work, which is to be aware of the feature learning
capabilities of their algorithm and ensure that early training has enough feature learning. This includes
larger damping values early in training if using second order optimisation, or saving on computation by
doing less recalculation of features later in training if using an algorithm which can support that.

6.1 Limitations and Future Work

Due to computational complexity with the need for small learning rates, most experiments are a single run
and on smaller architectures. As such, it is possible that these results do not generalise fully to transformers
and larger models. For the same reason, we only use CIFAR10 and some low-dimensional datasets. Extending
to transformers and more complex datasets would improve the rigour of this line of investigation.

There is no accepted way to measure feature learning quantitatively, so we make do with simplistic proxies.
Better measurement tools or more in-depth analysis would help provide more evidence of our claim that
increasing K decreases feature learning.

In this paper, we only consider fized period iterative linearisation, where we update the feature vector ¢
at regular intervals. However, [Fort et al.| (2020]) showed that the empirical NTK changes faster earlier in
training, so it makes sense for K to be more adaptive if this approach is to be used to inspire more efficient
training algorithms. In particular, when fine-tuning large models such as LLMs, there may be a way to
improve efficiency by not always updating features in this way.

16

Under review as submission to TMLR

Acknowledgments

Temporarily removed for blind review

Broader impact statement

This is a paper looking at the underpinnings of generalisation in deep learning, as such it takes a small
step towards improving the reliability and robustness of deep learning techniques. Additionally, insight into
understanding feature learning could prove important in interpretability research and understanding model
behaviour. This line of research also has the potential to result in improved training algorithms with all of
the potential positive and negative societal consequences such as reduced energy consumption for large scale
training and easier access to advanced models for both helpful and nefarious purposes. We acknowledge that
these risks and benefits are shared across foundational deep learning research..

References

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. SGD learning on neural networks: leap
complexity and saddle-to-saddle dynamics. In Gergely Neu and Lorenzo Rosasco (eds.), The Thirty Sixzth
Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India, volume 195 of
Proceedings of Machine Learning Research, pp. 2552-2623. PMLR, 2023. URL https://proceedings.
mlr.press/v195/abbe23a.html.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
HJ4-rAVtl.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8139-8148, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ballbeffb853a8c4-Abstract.html.

Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-dimensional
asymptotics of feature learning: How one gradient step improves the representation. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/
paper_files/paper/2022/hash/f7e7fabd73b3df96c54a320862afcb78-Abstract-Conference.html.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models with
gradient flow. CoRR, abs/2310.19793, 2023. doi: 10.48550/ARXIV.2310.19793. URL https://doi.org/
10.48550/arXiv.2310.19793.

Davide Buffelli, Jamie McGowan, Wangkun Xu, Alexandru Cioba, Da shan Shiu, Guillaume Hennequin, and
Alberto Bernacchia. Exact, tractable gauss-newton optimization in deep reversible architectures reveal
poor generalization, 2024. URL https://arxiv.org/abs/2411.07979.

Lénaic Chizat and Francis R. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolo Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 3040-3050, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
alafcb8c6ca9540d057299ec3016d726—-Abstract.html.

17

https://proceedings.mlr.press/v195/abbe23a.html
https://proceedings.mlr.press/v195/abbe23a.html
https://openreview.net/forum?id=HJ4-rAVtl
https://openreview.net/forum?id=HJ4-rAVtl
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/f7e7fabd73b3df96c54a320862afcb78-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f7e7fabd73b3df96c54a320862afcb78-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2310.19793
https://doi.org/10.48550/arXiv.2310.19793
https://arxiv.org/abs/2411.07979
https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html

Under review as submission to TMLR

Lénaic Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable program-
ming. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pp. 2933-2943, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
2e614c557843b1df326cb29c57225459-Abstract .html.

Yann N. Dauphin, Razvan Pascanu, Caglar Giilgehre, KyungHyun Cho, Surya Ganguli, and Yoshua Ben-
gio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 29332941, 2014. URL https://
proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

Samet Demir and Zafer Dogan. Asymptotic analysis of two-layer neural networks after one gradient
step under gaussian mixtures data with structure. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=tNn6Hskmti.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M. Roy, and
Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geom-
etry and the time evolution of the neural tangent kernel. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
405075699f065e43581f27d67bb68478-Abstract.htmll

Serge Gratton, Amos S. Lawless, and Nancy K. Nichols. Approximate gauss-newton methods for nonlinear
least squares problems. SIAM J. Optim., 18(1):106-132, 2007. doi: 10.1137/050624935. URL https:
//doi.org/10.1137/050624935.

Alireza Mousavi Hosseini, Denny Wu, Taiji Suzuki, and Murat A. Erdogdu. Gradient-based feature
learning under structured data. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems 2028, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
€21955c93dede886af1d0d362c756757-Abstract-Conference.html,

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and generaliza-
tion in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolo
Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 8580-8589, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
5adbelfa34e62bb8abec6b91d2462f5a-Abstract.html.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient
descent. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pp. 8570-8581, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
0d1a9651497a38d8b1c3871c84528bd4-Abstract.html.

Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,

18

https://proceedings.neurips.cc/paper/2019/hash/ae614c557843b1df326cb29c57225459-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ae614c557843b1df326cb29c57225459-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://openreview.net/forum?id=tNn6Hskmti
https://proceedings.neurips.cc/paper/2020/hash/405075699f065e43581f27d67bb68478-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/405075699f065e43581f27d67bb68478-Abstract.html
https://doi.org/10.1137/050624935
https://doi.org/10.1137/050624935
http://papers.nips.cc/paper_files/paper/2023/hash/e21955c93dede886af1d0d362c756757-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e21955c93dede886af1d0d362c756757-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html

Under review as submission to TMLR

NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/ad086£59924fffe0773f8d0ca22ea712-Abstract.html,

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning
rate phase of deep learning: the catapult mechanism. CoRR, abs/2003.02218, 2020. URL https://arxiv.
org/abs/2003.02218.

James Martens. Deep learning via hessian-free optimization. In Johannes Fiirnkranz and Thorsten Joachims
(eds.), Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24,
2010, Haifa, Israel, pp. 735-742. Omnipress, 2010. URL https://icml.cc/Conferences/2010/papers/
458 . pdf]

James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pp. 2408-2417. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/
martens15.htmll

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layers
neural networks. CoRR, abs/1804.06561, 2018. URL http://arxiv.org/abs/1804.06561.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BlgbsA4twr.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pp. 11890-11899. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.
01191. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_
in_a_Randomly_Weighted_Neural_ Network_CVPR_2020_paper.html.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Comput., 14(7):1723-1738, 2002. doi: 10.1162/08997660260028683. URL https://doi.org/10.1162/
08997660260028683.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the NTK for understanding generalization
in deep learning. CoRR, abs/2206.10012, 2022. doi: 10.48550/arXiv.2206.10012. URL https://doi.org/
10.48550/arXiv.2206.10012.

Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural networks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 11727-11737. PMLR, 2021. URL http://proceedings.mlr.press/v139/yang2ic.html.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David J.
Fleet, Toméas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision - ECCV 2014 - 15th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, volume 8689 of
Lecture Notes in Computer Science, pp. 818-833. Springer, 2014. doi: 10.1007/978-3-319-10590-1__53.
URL https://doi.org/10.1007/978-3-319-10590-1_53,

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=Sy8gdB9xx.

19

https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2003.02218
https://icml.cc/Conferences/2010/papers/458.pdf
https://icml.cc/Conferences/2010/papers/458.pdf
http://proceedings.mlr.press/v37/martens15.html
http://proceedings.mlr.press/v37/martens15.html
http://arxiv.org/abs/1804.06561
https://openreview.net/forum?id=B1g5sA4twr
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://doi.org/10.1162/08997660260028683
https://doi.org/10.1162/08997660260028683
https://doi.org/10.48550/arXiv.2206.10012
https://doi.org/10.48550/arXiv.2206.10012
http://proceedings.mlr.press/v139/yang21c.html
https://doi.org/10.1007/978-3-319-10590-1_53
https://openreview.net/forum?id=Sy8gdB9xx

Under review as submission to TMLR

A lterative linearisation with a general loss function

In we show how to get to iterative linearisation from standard gradient under mean squared error
loss. The use of mean squared error is more instructive due to its similarities with NTK results, however it
is not strictly necessary. For completeness we include here the same idea but for a general loss function £(+).

Standard gradient descent on a function fy(-) parameterised by 6, with step size and data X can be written
as

Orr1 = 0y — nv9£(f9t (X>)

We can apply the chain rule, resulting in

01 = 0: — Vo fo, (X)L (fo,(X))

Where r(-) is the derivative of £(-) (in the case of mean squared error, this is the residual: 7(Y) =Y —Y).
Now again using ¢; = Vg fo,(X), we can write this as

Ory1 = Or — nder(fo, (X))

With a similar argument to [Section 3] we note that we don’t need to update the features ¢; every step,
resulting in the following formulation.

Orp1 =0 — 77‘15};1% (il,rtl(X) - Y) (12)
P = Vo fo,(X) (13)
where s = K « | £ |

This now lets us use softmax followed by cross-entropy in the loss £(-) while maintaining the same interpre-
tation, as we do for the CIFARI10 results.

B Proof of closed form solution of gradient flow

Lemma B.0.0. Gradient flow on a linear model fy(x) = ¢(x) "6 with squared error loss L(Y) = £||Y — Y2
starting at weights 0y converges to 6y — ((qub)_lcéTrA(f@D (X)), when ¢ ¢ is invertible. Where ¢ = Vg fo,(X)
is the Jacobian on the dataset X and r(Y) = (Y —Y) is the loss residual.

Proof. The differential equations defining how 6; and fy, change are given by.

0 = —¢"r(fo,(X)) (14)
fo.(X) = —(¢ ")r(fo, (X)) (15)

The evolution of the function only depends on the residual so the differential equation can be solved in closed
form as follows by substituting z; = r(fs, (X)).

16
17
18
19

2 = —(¢¢T)Zt
2= e (98Tt
fo,(X) =Y = =@ (fy, (X))

(
(
(
o (X) =Y + @000 (fy (X)) (

)
)
)
)

20

Under review as submission to TMLR

Solving for the weights can be done using the solution to fy, (X) above.

br = 0" r(fo,(X)) (20)

= —¢ e (90 (£, (X)) (21)
br=0" (667) e (W) (o, (X)) + C (22)

0 =00 =—0" (607) " (1—e () r (fa, (X)) (23)
O = 00— " (667) " 7 (fs,(X)) (24)

This solves it in a kernelised regime. If we assume that (gf)Tgb) is invertible then we can write ¢ ((i)d)T) o
(6T¢) " (67¢) ¢T (¢967) " = (07 ¢) 147 to get the standard formulation of By — (¢ ¢)"1¢ T r (fa, (X))

C Further experiments and experimental details

C.1 Further Experiments

Test Accuracy

Without BatchNorm or Data Aug

O

With BatchNorm and Data Aug

0.8 1 B
0.6 1 B
0.4 — k=1 - — k=1
—— K=10° Acc(fi"(9)) —— K=10° Acc(fi"(9))
0.2 1 —— K=106 Acc(f(6))] —— K=105 Acc(f(8))
0 1 2 3 4 0 1 2 3 4
Step le6 Step le6

Figure 10: ResNet18 runs with and without BatchNorm and data augmentation. Large K iterative lineari-
sation again achieves similar test performance to SGD. Runs with BatchNorm are far more likely to diverge
due to linearising the BatchNorm layer hence why K is much smaller for that run.

Test Accuracy

Full batch

Mini batch

Comparison

0.50 A

0.25 A

— k=1
— K=10*%

— k=1
— K=10° T

K=1GD
K=10* GD
—— K=15GD
K =10 SGD

0 50000
Step

100000 0.0

0.5

1.0 15
Step le6

2.0 0.00 0.25 0.50 0.75 1.00

Step le6

Figure 11: Full batch and mini-batch iterative linearisation for various values of K on a standard CNN
architecture on CIFAR10. The left and centre plots compare iterative linearisation to standard training on
full-batch and mini-batch gradient descent, respectively. The full batch runs use a learning rate of le-3,
whereas the mini-batch is scaled down to le-4 for stability. As such, we scale K up by a factor of 10, too.
The steps of the full batch runs are similarly scaled down by a factor of 10 for the comparison plot on the

right.

We show in[Figure 10| the results for a ResNet18. While these clearly work similarly, they are computationally
expensive, and the one with BatchNorm would require a lot of tuning of K and n and many days of training

21

Under review as submission to TMLR

to get as clean graphs as we have for a simple CNN. We include them for completeness and as evidence this
behaviour generalises.

We also include in a comparison between full batch and mini batch training for CIFAR10 with our
simple CNN setup. This covers a gap between our full batch theoretical work and the practical mini batch
results.

C.2 Experimental Setup

C.2.1 Simple CNN experiments

All CIFARI10 experiments (except those with ResNets which used a ResNet-18) use a modified variant of
LeNet where both convolutional layers have 50 channels. This results in two convolutional layers, each with
kernel size 5 and 50 channels and max pooling after each. These are followed by dense layers of sizes 120
and 84 and an output layer of size 10. All inner activations are ReLLU and the output layer uses softmax.
This was chosen as simply a slightly larger and more modern version of LeNet. Learning rates are given in
plot captions and batch sizes were either 256 or full batch. For and [4] optimal early stopping was
used.

C.2.2 ResNet18 experiments

For the ResNet results in we show performance on a ResNet-18 without BatchNorm or data
augmentation (left) with a learning rate of 7e-7 and K = 10° and on a ResNet-18 with BatchNorm and data
augmentation (right) with a learning rate of le-5 and K = 10°.

C.2.3 MLP experiments

All 1 dimensional regression tasks are trained on a quintic function (%xs — %xB + 2z — 1) — chosen for
having non-trivial features and bounded outputs in the [-4, 4] range — with 20 uniformly spaced datapoints
used for training data and 1000 uniformly spaced datapoints for the test data. The neural network was a 5
layer MLP with 50 neurons per layer with ReLLU activations and squared error loss. They were trained full
batch through the Gauss-Newton algorithm described in using the given A values for damping.

22

