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Abstract
Visual State Space Models (VSSMs) have recently
emerged as a promising architecture, exhibiting re-
markable performance in various computer vision
tasks. However, its robustness has not yet been
thoroughly studied. In this paper, we delve into
the robustness of this architecture through compre-
hensive investigations from multiple perspectives.
Firstly, we assess its adversarial robustness using
whole-image and patch-specific attacks, finding it
superior to Transformers in whole-image attacks
but vulnerable to patch-specific attacks. Secondly,
we evaluate VSSMs’ robustness across diverse
scenarios, including natural adversarial examples,
out-of-distribution data, and common corruptions.
VSSMs generalize well to OOD and corrupted
data but struggle with natural adversarial exam-
ples. We also analyze their gradients in white-box
attacks, revealing unique vulnerabilities and de-
fenses. Lastly, we examine their sensitivity to im-
age structure variations, identifying weaknesses
tied to disturbance distribution and spatial infor-
mation. Through these comprehensive studies, we
contribute to a deeper understanding of VSSMs’s
robustness, providing valuable insights for refin-
ing and advancing the capabilities of deep neural
networks in computer vision applications.

1. Introduction
Deep neural networks represent a cornerstone of contempo-
rary research (Han et al., 2022; Wang et al., 2018), but their
robustness in the face of adversarial attacks (Goodfellow
et al., 2014; Madry et al., 2017; Fu et al., 2022) and other
perturbations (Hendrycks et al., 2021b;a; Hendrycks & Di-
etterich, 2019) remains a critical concern. Researchers are
increasingly focused on developing models that not only ex-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

cel in specific tasks but also demonstrate resilience against
adversarial attacks while maintaining strong generalization
capabilities across diverse scenarios. Recently, a novel and
promising addition to the landscape of neural network ar-
chitectures for visual representation learning has emerged,
known as the Visual State Space Model (Liu et al., 2024;
Zhu et al., 2024; Huang et al., 2024). This architecture
has gained significant attention for its outstanding perfor-
mance across various computer vision tasks, demonstrating
the potential to replace Transformers in a wide range of
applications. Despite the considerable successes in various
applications, an aspect that has not yet been thoroughly
studied is the robustness of VSSMs.

This paper addresses the existing gap in the understanding
of VSSMs’ robustness by undertaking a comprehensive
investigation. To comprehensively evaluate the robustness
of VSSMs, our analysis takes a multi-faceted approach,
thoroughly exploring the robustness of VSSMs from various
perspectives.

Firstly, we analyze the robustness of VSSMs against adver-
sarial attacks. We employ two types of adversarial attacks.
The first type targets the entire image, which includes Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014),
and Projected Gradient Descent (PGD) (Madry et al., 2017).
The second type focuses on attacking only several patches
in an image, which includes Patch-Fool (Fu et al., 2022).
This analysis reveals:

1. VSSMs have better adversarial robustness than Trans-
former architectures (Steiner et al., 2021; Touvron et al.,
2021; Liu et al., 2021).

2. The scalability of VSSMs is relatively weak against
adversarial attacks.

3. The robustness of VSSMs significantly decreases after
removing input-dependent parameter gradients.

Secondly, we assess the general robustness of VSSMs, evalu-
ating its performance against natural adversarial examples in
ImageNet-A (Hendrycks et al., 2021b), out-of-distribution
data in ImageNet-R (Hendrycks et al., 2021a), and common
corruptions in ImageNet-C (Hendrycks & Dietterich, 2019).
Understanding the model’s behavior in these diverse sce-
narios is crucial for establishing its reliability in real-world
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applications. This analysis reveals:

4. VSSMs exhibit superior generalizability when faced
with out-of-distribution data and common corruptions.

5. The scalability of VSSMs is relatively weak against
natural adversarial examples and common corruptions.

Furthermore, we perform experiments to inspect the gra-
dients of VSSMs and the back-propagation process within
VSSMs when subjected to white-box attacks. This explo-
ration aims to investigate how the novel components in
VSSMs behave under adversarial attacks. These novel com-
ponents have not been previously observed in architectures
designed for vision tasks. This analysis reveals:

6. Mamba block demonstrates strong defense capabilities
against white-box attacks.

7. The vulnerabilities of input-dependent parameters are
more easily exploited by patch attacks.

8. The parameter ∆ exhibited stronger robustness in hier-
archical architectures.

9. The robustness variations of parameter B in hierarchical
and non-hierarchical architectures are opposite to the ∆.

10. The parameter ∆ and B becomes the main vulnerability
in patch-wise attack.

11. The parameter C demonstrates defense capabilities
across all VSSMs against White-box attacks.

Finally, we turn our attention to exploring the sensitivity
of VSSMs to the structures of images. This investigation
encompasses a comparative analysis involving the random
removal of image patches and pixels. Additionally, we in-
troduce permutations in the order of image patches to assess
their impact. We also employ the Patch-Fool to system-
atically attack specific positions within the image patches.
This multifaceted examination aims to provide a nuanced
understanding of how VSSMs respond to variations in im-
age structure, offering valuable insights into its robustness
and potential vulnerabilities.

This analysis reveals:

12. VSSMs are more reliant on the integrity of the input
patch sequence.

13. VSSMs are more robust to pixel-level perturbations com-
pared to Transformer models.

14. VSSMs are highly sensitive to the spatial information of
images, especially the non-hierarchical VSSMs.

15. The closer the perturbation is to the center of the image,
the more vulnerable VMamba will be.

Our research offers a comprehensive understanding of the
robustness of VSSMs from various perspectives. Through
empirical analysis, we delve into the factors that may influ-
ence VSSMs’s robustness, shedding light on critical aspects

that warrant attention for further refinement. By systemati-
cally examining its performance under different conditions
and stressors, our study contributes valuable insights that
can inform future developments in enhancing the VSSMs ar-
chitecture (as discussed in Section 8). The findings provide
a roadmap for researchers to iteratively refine and optimize
VSSMs, ultimately advancing their robustness to achieve
superior performance compared to their current state.

2. Preliminaries
2.1. Vision Transformers

The Transformer (Vaswani et al., 2017) is a model archi-
tecture that relies solely on attention mechanisms, initially
designed for Natural Language Processing (NLP) tasks. Fol-
lowing the successes of Transformers in NLP tasks, Vision
Transformer (ViT) (Dosovitskiy et al., 2020; Su et al., 2022)
explores the application of a standard Transformer directly
to images with minimal modifications. The approach in-
volves dividing an image into patches, treating them akin to
tokens (words) in an NLP application, and presenting the
sequence of linear embeddings of these patches as input to
the Transformer.

The Swin Transformer (Liu et al., 2021) introduces a novel
hierarchical Transformer architecture with a distinctive em-
phasis on Shifted windows for representation computa-
tion. The proposed shifted windowing scheme enhances
efficiency by confining self-attention computation to non-
overlapping local windows, concurrently facilitating cross-
window connections. This hierarchical design offers flex-
ibility in modeling at multiple scales and maintains linear
computational complexity concerning image size. The Swin
Transformer’s notable attributes, including its efficient win-
dowing strategy, render it versatile and applicable across
various vision tasks.

2.2. State Space Models

A novel category of sequence models for deep learning
is emerging, which is known as Structured State Space
Sequence (S4) models. Using an implicit latent state
h(t) ∈ RN , S4 models can map a 1-dimensional function
or sequence x(t) ∈ RL 7→ y(t) ∈ RL:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ RN×N , B ∈ RN×1, and C ∈ RN×1 are
continuous parameters.

In practice, the continuous parameters in Eq. 1 need to be
first discretized. This can be achieved using a zero-order
hold (ZOH):

A = exp(∆A) B = (∆A)−1(exp(∆A)− I) ·∆B,
(2)
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where A, B are the discrete counterparts of the continuous
parameters A and B, and ∆ ∈ R> 0 is a specified sam-
pling timescale for the discretization. The discretization
leads to a discretized form of the model as follows:

ht = Aht−1 +Bxt, yt = Cht. (3)

A remaining issue is that the iterative process in Eq. 3 is
not computationally efficient. To enhance efficiency, it can
be sped up through parallel computation. With a global
convolution operation (denoted by ⊛), we obtain:

y = x⊛K

with K = (CB,CAB, ...,CA
L−1

B),
(4)

where K ∈ RL is a kernel used in the S4 model. This
method uses convolution to generate outputs across the
sequence at the same time, improving computational ef-
ficiency and scalability.

2.3. Selective State Space Models

Traditional State Space Models (S4) are known for their
linear time complexity but face limitations in capturing se-
quence context due to fixed parameterization. The Mamba
models (Gu & Dao, 2023), overcome these limitations by
implementing a dynamic and selective approach for manag-
ing interactions between sequential states. Unlike standard
SSMs that rely on constant transition parameters (A,B),
Mamba utilizes parameters that depend on the input, en-
abling more complex, sequence-aware parameterization.
This approach involves directly deriving parameters B,C,
and ∆ from the input sequence x, which allows for a richer
representation of sequence context.

By adopting selective SSMs, Mamba models not only main-
tain linear scalability with respect to sequence length but
also demonstrate strong performance in language modeling
tasks. This innovation has paved the way for their applica-
tion in vision tasks as well, inspiring the development of
new models that integrate Mamba. For example, Vim (Zhu
et al., 2024) combines Mamba with a ViT-like structure by
including bi-directional Mamba blocks instead of the usual
Transformer blocks. Similarly, VMamba (Liu et al., 2024)
presents an innovative 2D selective scanning method for
processing images in both horizontal and vertical directions
and builds a hierarchical model that is reminiscent of the
Swin Transformer (Liu et al., 2021).

3. Adversarial Robustness
We employ two types of adversarial attacks. The first type
targets the entire image. The second type focuses on attack-
ing only several patches in an image.

Table 1: Evaluation of SOTA methods on ImageNet-1K.
The top-1 accuracy is used to assess performance on clean
ImageNet-1K and under adversarial attacks (FGSM and
PGD). All models utilize input dimensions of 224× 224.

Categories Models Clean FGSM PGD
1/255 4/255 1/255 4/255

Transformer

ViT-S/16 + AugReg (Steiner et al., 2021) 74.7 17.9 6.0 5.4 0.2
ViT-B/16 + AugReg (Steiner et al., 2021) 76.8 28.1 10.9 12.1 0.7
DeiT-Ti (Touvron et al., 2021) 72.2 22.3 11.6 6.2 0.3
DeiT-S (Touvron et al., 2021) 79.8 40.6 29.0 16.4 2.2
DeiT-B (Touvron et al., 2021) 81.8 46.3 36.3 22.1 7.3
Swin-T (Liu et al., 2021) 81.2 33.7 24.2 8.0 1.1
Swin-S (Liu et al., 2021) 83.2 45.7 37.8 18.7 7.0
Swin-B (Liu et al., 2021) 83.5 49.2 43.3 22.8 9.1

VSSM

VMamba-T (Liu et al., 2024) 82.6 43.1 33.5 29.8 3.0
VMamba-S 83.6 47.7 39.4 23.2 7.7
VMamba-B 83.9 49.1 40.8 23.1 7.5
Vim-Tiny (Zhu et al., 2024) 76.1 38.8 28.8 19.0 5.2
Vim-Small 80.5 49.6 42.5 28.6 13.2
Vim-Base 81.9 50.9 38.6 32.0 10.6

VSSM w/o gradient of
∆, B and C

VMamba-T 82.6 38.8 22.7 8.6 0.3
VMamba-S 83.6 44.6 32.1 13.5 1.1
VMamba-B 83.9 41.0 24.0 11.4 0.3
Vim-Tiny 76.1 31.9 10.1 8.8 0.3
Vim-Small 80.5 38.4 15.0 13.9 0.7
Vim-Base 81.9 48.5 16.6 22.7 1.8

3.1. Attack Entire Image

To attack the entire image, we utilize Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2014) and Projected
Gradient Descent (PGD) (Madry et al., 2017) with a pertur-
bation magnitude of ε = 1/255 and ε = 4/255. FGSM op-
erates in a single step, whereas PGD represents a multi-step
variant of FGSM. Specifically, we iterate PGD for 5 steps.
Results in Table 1 reveals: 1. VSSMs have better adversar-
ial robustness than Transformer architectures: In various
attack scenarios, the VSSM model generally outperforms
Transformer-based models, demonstrating superior adver-
sarial robustness. This difference is particularly noticeable
in smaller models. For example, with a noise magnitude of
1/255, the Vim-tiny model shows a robustness accuracy that
is 16.5% and 12.8%, higher than DeiT-Ti under FGSM and
PGD attacks, respectively. Similarly, Vmamba-T exhibits a
robustness accuracy that is 9.4%, 21.8%, and 13.0% higher
than Swin-T under the same attacks.
2. The scalability of VSSMs is relatively weak against
adversarial attacks: However, this robustness advantage
diminishes as the model size increases. For example, with a
noise intensity of 1/255, the Vim-S model only outperforms
the DeiT-S model by 9.0%, 12.2%, and 10.3%, which is sig-
nificantly lower than the advantage seen in the tiny version.
3. The robustness of VSSMs significantly decreases af-
ter removing input-dependent parameter gradients: The
adversarial robustness of VSSMs heavily relies on input-
dependent parameters (∆, B, and C). When the gradients of
these parameters are excluded during the generation of ad-
versarial examples, the robustness of VSSMs drops sharply.
For instance, under FGSM with ε = 4/255, the robustness
accuracy of VMamba-T decreases from 33.5% to 22.7%,
while Vim-Small drops from 42.5% to 15.0%. This shows
that the gradients of input-dependent parameters are crucial
in enhancing the robustness of VSSMs against adversarial
attacks. Detailed discussion will be provided in 5.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

State Space Models: A Naturally Robust Alternative to Transformers in Computer Vision

Table 2: Robust Accuracy under Patch-
fool attack, ”P1” to ”P4” represent the
robust accuracy when a certain number
of patches are under attack.

Model Clean P1 P2 P3 P4

ViT-S/16 + AugReg 75.9 0.1 0.0 0.0 0.0
ViT-B/16 + AugReg 78.3 12.2 0.9 0.0 0.0
DeiT-T 72.6 4.9 0.0 0.0 0.0
DeiT-S 81.4 6.6 0.2 0.0 0.0
DeiT-B 81.9 25.4 1.7 0.0 0.0
Swin-T 81.5 40.3 16.6 5.7 2.2
Swin-S 84.0 52.6 22.9 10.7 6.0
Swin-B 84.5 43.7 15.7 5.1 2.2

VMamba-T 83.5 30.9 4.3 0.4 0.1
VMamba-S 84.3 40.6 8.3 1.7 0.2
VMamba-B 83.7 34.3 4.1 0.7 0.2
Vim-tiny 74.8 44.1 25.6 15.5 11.5
Vim-tiny† 76.7 47.0 26.6 16.0 11.6
Vim-small 84.7 63.5 45.1 29.6 21.0
Vim-small† 86.0 55.2 28.2 16.5 9.6

Table 3: Top-1 accuracy measures
performance on ImageNet-A and
-R, while the mean Corruption Er-
ror (mCE) is used for ImageNet-C.

Models A R C (↓)
ViT-S/16 + AugReg 9.0 31.9 53.4
ViT-B/16 + AugReg 11.7 36.9 47.8
DeiT-T 7.6 32.7 53.6
DeiT-S 19.5 41.9 41.2
DeiT-B 27.8 44.6 36.7
Swin-T 21.2 41.2 45.9
Swin-S 32.6 44.8 41.0
Swin-B 36.0 46.4 40.2

VMamba-T 26.6 45.3 39.6
VMamba-S 32.8 49.3 36.1
VMamba-B 36.8 49.5 36.1
Vim-tiny 9.5 38.8 46.9
Vim-tiny† 17.2 39.7 44.0
Vim-small 19.7 44.7 38.9
Vim-small† 28.3 44.3 37.5

Table 4: Robust accuracy with the gradients
of ∆, B, or C. All indicates all four parame-
ters have gradients. None indicates none of
the four parameters have gradients.

Attack
Methods Model Have/Has Gradients

None All ∆ B C

PGD

VMamba-T 11.0 29.8 12.5 10.0 14.2
VMamba-S 16.4 23.2 17.1 15.0 21.9
VMamba-B 12.7 23.1 16.3 12.8 17.9
Vim-tiny 10.9 19.0 9.1 12.4 11.5
Vim-tiny† 13.5 21.1 10.9 16.3 13.9
Vim-small 14.3 28.6 15.3 16.6 15.9
Vim-small† 17.7 30.9 18.2 21.5 19.3

P1

VMamba-T 60.5 30.9 40.9 59.9 60.8
VMamba-S 70.5 40.6 46.2 65.8 70.6
VMamba-B 71.2 34.3 41.5 66.6 71.8
Vim-tiny 65.1 44.1 48.0 59.9 65.2
Vim-tiny† 65.9 47.0 48.4 61.0 66.0
Vim-small 76.1 63.5 66.0 69.6 76.7
Vim-small† 75.6 55.2 63.9 71.9 75.8

3.2. Patch-wise Attack

To perform the patch-wise attack, we utilize Patch-Fool (Fu
et al., 2022). The results under patch-wise attacks are re-
ported in Table 2. In Patch-Fool experiments, the weight
coefficient α is fixed at 0.002. The initial step size η is
set to 0.2 and undergoes a 0.95 decay every 10 iterations,
with a total of 250 iterations. The targeted patch for the
attack is chosen randomly from all the 196 patches. Our
experiments include different numbers of targeted patches,
ranging from 1 to 4. Adversarial noise learning is optimized
using Adam. We randomly select 2,500 images from the
ImageNet validation set to evaluate patch-wise robustness,
following (Fu et al., 2022). The ”Clean” column shows ac-
curacy on unperturbed images, while ”P1” to ”P4” indicates
robust accuracy under increasing patch attacks.

Compared to DeiT and Swin models, the Vim model main-
tains higher accuracy across the P1 to P4 range, indicating
that the Vim model exhibits stronger robustness against
patch-wise white-box adversarial attacks. However, this
robustness advantage is not sustained in the hierarchical ar-
chitecture of VSSMs, specifically in VMamba. For instance,
in the case of P1, the robust accuracy of the T, S, and B ver-
sions of VMamba is lower than that of the Swin transformer
by 9.4%, 12.0%, and 9.5%, respectively. In response to
this phenomenon, we will discuss the robustness differences
between hierarchical and non-hierarchical architectures of
VSSMs in Section The role of parameters ∆, B, and C
in model robustness. In addition, in Section Sensitivity to
Information Loss, we provide a more detailed discussion
on the impact of the number of perturbed patches or pixels
on the performance of VSSMs.

4. General Robustness
The ImageNet-A dataset (Hendrycks et al., 2021b) com-
prises natural adversarial examples that challenge models

by placing ImageNet objects in unconventional contexts
or orientations. This assesses the model’s adaptability to
unexpected scenarios. In contrast, the ImageNet-R dataset
(Hendrycks et al., 2021a) introduces out-of-distribution data,
presenting abstract or rendered versions of objects to test
the model’s ability to generalize beyond its trained data
distribution. Lastly, the ImageNet-C dataset (Hendrycks &
Dietterich, 2019) introduces common corruptions, incorpo-
rating 19 distortions across 5 categories, such as motion blur,
Gaussian noise, fog, and JPEG compression. This dataset
emulates real-world distortions, providing insights into a
model’s resilience to diverse environmental challenges. The
results are reported in Table 3.

4. VSSMs exhibits superior generalizability when faced
with out-of-distribution data (ImageNet-R) and common
corruptions data (ImageNet-C): Notably, the VMamba
and Vim models consistently demonstrate superior perfor-
mance compared to the Swin and DeiT models, respectively,
on both ImageNet-R and ImageNet-C. For instance, on the
out-of-distribution data (ImageNet-R) and common corrup-
tion data (ImageNet-C), VMamba-T surpasses Swin-T by
4.1% and 6.3%, VMamba-S outperforms Swin-S by 4.5%
and 4.9%, VMamba-B exceeds Swin-B by 3.1% and 4.1%
respectively. Vim-Tiny surpasses DiT-T by 6.1% and 6.7%,
and Vim-small surpasses DiT-S by 2.8% and 2.3%.

One potential explanation is that VSSMs exhibit a superior
capability for managing long-range dependencies compared
to transformers (Yu & Wang, 2024). This allows them to
more effectively integrate features from various regions of
an image, enhancing the overall feature representation. In
other words, even if part of the image information is missing,
the model may still be able to understand the image by using
global information. Additionally, In the context of out-of-
distribution data, this enhanced feature representation aids
the model in recognizing and comprehending previously
unseen patterns or variations, leading to improved classifi-
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cation performance.

5. The scalability of VSSMs is relatively weak against
natural adversarial examples (ImageNet-A): The smallest
variants, VMamba-T and Vim-tiny, showcase substantial su-
periority, exhibiting significant improvements of 5.4% and
1.9% over Swin-T and DeiT-T on the ImageNet-A dataset,
respectively. However, this advantage was not sustained in
their larger variants. Specifically, VMamba showed only
marginal improvements of 0.1% and 0.8% compared to the
S and B versions of Swin, respectively. Similarly, Vim ex-
hibited a minimal enhancement of 0.2% relative to the S
version of DeiT. indicating that its performance may not
uniformly improve with model size across different Ima-
geNet variants. This phenomenon indicates a weakness
in the scalability of VSSMs on natural adversarial exam-
ples datasets, suggesting that their performance may not
uniformly improve with increases in model size.

5. The role of Input-dependent parameters in
model robustness.

To analyze the robustness of the VSSMs under white-box
adversarial attacks, we examine the effect of individual pa-
rameters on the robustness of models. This will be achieved
by measuring the robust accuracy of models using PGD or
Patch-Fool after individually activating the gradients of pa-
rameters B, C, and ∆. In Table 4, the All column represents
the robust accuracy of the model under the original white-
box setting, which estimates the full parameter gradients.
The None column represents the robust accuracy under a
white-box attack without the participation of gradients for
all parameters ∆, B, and C. The appended data columns
quantify the robust accuracy upon the gradient activation of
each respective parameter.

6. Mamba block demonstrates strong defense capabili-
ties against PGD attacks but shows vulnerability against
Patch-Fool: Table 4 indicates that disabling the gradient
of the mamba block leads to a substantial decrease in the
robust accuracy of VMamba and Vim under PGD attacks.
Specifically, the robust accuracy of VMamba’s T, S, and B
variants decreased by 4.3%, 6.8%, and 10.4%, respectively,
while Vim’s Tiny and Small variants decreased by 8.1% and
14.3%, respectively. These significant reductions in robust
accuracy highlight the critical role of the mamba block in
maintaining the robustness of VSSM against PGD attacks.
7. The vulnerabilities of input-dependent parameters
are more easily exploited by patch attacks. However,
for Patch-Fool attacks, without the gradient of the mamba
block, the robust accuracy of VMamba and Vim consistently
shows an upward trend. Specifically, VMamba’s T, S, and
B variants increase by 29.6%, 29.9%, and 36.9%, respec-
tively, while Vim’s Tiny and Small variants increase by 21%
and 12%. This indicates that the Mamba block exhibits

vulnerability under patch attacks. This difference raises an
intriguing question: why are input-dependent parameters
particularly critical in defending against patch attacks? The
answer lies in their localized nature. Input-dependent param-
eters are derived directly from individual patches and lack
a comprehensive understanding of the entire input context.
This patch-centric transformation makes them inherently
more susceptible to attacks that exploit isolated regions of
the input, such as Patch-Fool.

8. The parameter ∆ exhibited stronger robustness in
hierarchical architectures under PGD attacks: In the
scenario of PGD attack, by activating the gradient of the
parameter ∆, the robust accuracy of hierarchical VSSMs,
specifically the VMamba’s T, S, and B variants, increased
by 1.5%, 0.7%, and 3.6%, respectively. However, for the
non-hierarchical VSSMs, the robust accuracy of the Vim-
tiny decreased by 1.8%, while the Vim-small increased by
1%. This result suggests that the robustness conferred by
the parameter ∆ exhibits a more pronounced advantage
within hierarchical architectures. In VSSMs, the ∆ parame-
ter transforms continuous-time system parameters into their
discrete counterparts, enabling the model to capture the dy-
namics of input data across different time scales, thereby
filtering out irrelevant information and noise from the data
stream. Hierarchical architectures typically involve process-
ing information at different levels, where each layer can be
regarded as operating on a specific spatial or temporal scale.
This design allows the model to capture the dynamics of
input data across multiple levels, providing a more favorable
environment for the parameter ∆ to function effectively.

9. The robustness variations of parameter B in hierar-
chical and non-hierarchical architectures are opposite
to the ∆ parameter under PGD attacks: However, it is
noteworthy that the robustness variations of parameter B in
hierarchical and non-hierarchical architectures are opposite
to the ∆ parameter. By activating gradients of the param-
eter B, the VMamba’s T, S, and B variants experienced
respective decreases of 1.0% and 1.4%, and with a marginal
increase of 0.1%. Conversely, Vim displayed consistent
improvements in robustness across the Tiny and Small ver-
sions, with increases of 1.5% and 2.3%, respectively. This
phenomenon may reflect their complementary roles in the
model robustness. Parameter B primarily manages the map-
ping of those filtered input data by parameter ∆ into the
state space h(t) in VSSMs. In hierarchical architectures,
the parameter delta has demonstrated a strong ability to fil-
ter input data, which is often an advantage because it can
help the model ignore irrelevant information and focus on
important features. However, it could also make parame-
ter B overfit to those stable, undisturbed data distributions.
Thereby reducing the robustness of the parameter B in the
hierarchical architecture.
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Figure 1: Robust accuracy under varying information loss.

10. The parameter ∆ and B becomes the main vul-
nerability in patch-wise attack: Under the attack from
Patch-Fool, activating the gradient of the parameters ∆ or
B leads to a consistent decrease in the robustness of all
VSSMs. Specifically, the VMamba variants T, S, and B see
reductions of 19.7%, 24.3% and 29.7% for parameters ∆,
and 0.6%, 4.7%, and 4.6% for parameters B. For the tiny
and small versions of Vim, the decreases are 17.1% and
10.1% for parameter ∆, and 5.1% and 6.6% for parameter
B. This phenomenon indicates that compared to attacks on
the entire image(PGD), VSSMs seem to be more sensitive
to patch attacks. We will discuss this in detail in the Section
on Sensitivity to Information Loss.

11. The parameter C demonstrates defense capabilities
across all VSSMs against White-box attack: In VSSMs,
the primary role of parameter C is to selectively transform
the hidden state h(t) into the final output y(t). By activat-
ing gradients of the parameter C, both VMamba and Vim
consistently exhibited increases in robust accuracy. Specif-
ically, VMamba’s T, S, and B variants improved by 3.2%,
5.5%, and 5.2%, respectively, while Vim’s Tiny and Small
versions show increases of 0.6% and 1.6%, respectively.

(a) Origin Image (b) Patch-wise (c) Pixel-wise

Figure 2: Patch-wise and pixel-wise drop.

6. Sensitivity to Information Loss
The Transformer and VSSMs both require converting im-
ages into sequences of patches of a specified length L to pre-
dict labels Y . The Transformer models utilize self-attention
to facilitate parallel interactions between patches. In con-
trast, the VMamba model introduces an innovative 2D selec-
tive scanning method to process images in both horizontal
and vertical directions.

To analyze the impact of the patch interaction mechanisms
adopted by the two models on model robustness, we de-
sign two different experiments from the perspectives of both
dense and sparse perturbations. Dense perturbation means
destroying all information within a single patch, while
sparse perturbation means distributing an equal amount
of perturbation across multiple patches. The main differ-
ence between these two methods lies in the granularity of
the information omission. Patch-wise drop affects larger,
contiguous areas of the image, while the pixel-wise drop
is employed to evenly distribute perturbations across each
patch, which means the perturbation is more sparse and
covers a wider range.

The experimental results are shown in the Fig.1. The hor-
izontal axis (number of patches) quantifies the amount of
information equivalent to how many patches were lost, for
example, dropping 10 patches of size 16×16 is equivalent
to 256×10 pixels, and the vertical axis represents robust
accuracy. In this section, the drop (or loss) of patches or
pixels means setting the corresponding values to zero.

6.1. Sensitivity to the Dense Perturbation

The dense perturbation, i.e. patch-wise drops, randomly
selects and drops from the 196 patches (Fig. 2b). In
such a setup, the robust performance of the Swin model
consistently surpasses that of VMamba, while the DeiT
model demonstrates markedly superior robustness com-
pared to Vim across all model variants as demonstrated
in the first row of Fig. 1. This phenomenon indicates that
12.VSSMs are more reliant on the integrity of the input
patch sequence. There are two possible reasons for this
phenomenon: Firstly, patch-wise dropout can disrupt the
structure of the image to some extent, thereby affecting the
model’s ability to comprehend contextual information. This
factor impacts both the Transformer models and VSSMs
models. This reason will be further inspected in Section
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Sensitivity to the Relative Position of Patches. Secondly,
it may disrupt the continuity of the scanning trajectory of
the VSSMs. Specifically, delving into Eq. 3, if the input xt

at time step t is an all-zero matrix, the state update can be
simplified to ht = Aht−1, indicating that the new state is
entirely reliant on the previous state. It is noteworthy that
all elements of the matrix A are strictly within the range
of 0 to 1. As a result, with a sufficient number of dropped
patches, the state will gradually approach zero. This means
that the VSSMs may progressively simplify or forget previ-
ously stored information, potentially harming the model’s
long-term memory capability.

6.2. Sensitivity to Sparse Perturbation

In the sparse perturbation, we introduced pixel-wise drop
which employs a similar randomization strategy to a patch-
wise drop but is applied to the individual pixels across the
224x224 pixel space of the image (Fig. 2c). In the second
row of Fig. 1, we observed that 13. VSSMs are more
robust to pixel-level perturbations compared to Trans-
former models, as evidenced by the superior performance
of both the VMamba and Vim models relative to their corre-
sponding Transformer counterparts. This phenomenon may
be attributed to VSSMs’ superior long-range dependency
capabilities compared to Transformer models. This strength
likely allows the Mamba model to maintain a stable compre-
hension and processing of the overall input sequence, even
when faced with pixel-level perturbations.

7. Sensitivity to the Relative Position and
Absolute Position of Patches

When capturing contextual information within a sequence
of image patches, Transformers use positional embeddings
to encode both the position and spatial information of each
patch. In contrast, VSSMs achieve this contextual under-
standing through the order of its scanning trajectory. This
fundamental difference in how contextual relationships are
understood may result in varying sensitivities to perturba-
tions in image structure. In this section, we will conduct a
detailed analysis of VSSM’s robustness under image struc-
ture perturbations, considering both the relative and absolute
positions of patches.

7.1. Relative Position

As shown in Fig.3, when the image is divided into a 2x2 grid,
the main subject of the picture can still be easily identified.
However, when the grid number is increased to 14x14, it
becomes quite challenging to recognize the original subject
of the image after the shuffle operation. Therefore, we will
employ the number of grids as the horizontal axis in the
following experiments to represent the extent of disorders.

(a) Origin Image (b) 2×2 Grid (c) 14×14 Grid

Figure 3: Example images and their different extend of
disorder examples.

0 2 4 6 8 10 12 14 16
Number of Pa (%)

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 To
p-

1 
(%

)

Patch shuffle
VMamba-T
Swin-T
Vim-T
DeiT-T

(a) Tiny

0 2x2 4x4 8x8 14x14
Grid Size

0

20

40

60

80

Ac
cu

ra
cy

 To
p-

1 
(%

)

Patch shuffle
VMamba-S
Swin-S
Vim-S
DeiT-S

(b) Small

0 2x2 4x4 8x8 14x14
Grid Size

20

30

40

50

60

70

80

Ac
cu

ra
cy

 To
p-

1 
(%

)

Patch shuffle
VMamba-B
Swin-B

(c) Base

0 2x2 4x4 8x8 14x14
Grid Size

5

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 To
p-

1 
(%

)

Patch shuffle
VMamba-Swin-T
VMamba-Swin-S
VMamba-Swin-B
Vim-DeiT-T
Vim-DeiT-S

(d) Acc. Diff.

Figure 4: Figures (a), (b), and (c) represent the robust accu-
racy related to degrees of shuffle for the Tiny, Small, and
Base versions of VSSMs and Transformer-based models,
respectively. Figure (d) illustrates the difference in robust
accuracy between the models used for comparison.
Fig.4 shows the correlation between robust accuracy and
disorder. As the number of grids increases, both VSSMs
and Transformer-based models exhibit a decline in accuracy.
However, the decline is more pronounced in VMamba and
Vim models. For example, after the grid size reaches 8x8,
the robust accuracy of the three VMamba variants (T, S, B)
is significantly lower than that of the Swin model. Likewise,
the two Vim variants exhibit a marked decrease in robust
accuracy compared to the DeiT model once the grid size
exceeds 4x4. This indicates that 14. VSSMs are highly
sensitive to the spatial information of images, especially
the non-hierarchical VSSM.

7.2. Absolute Position

The 3D surface plots Fig. 5 illustrate the performance of
the VMamba and Swin models under a white-box adver-
sarial attack targeting the absolute positions of 196 image
patches. For the VMamba model, the plot on the left in-
dicates a vulnerability trend where patches near the center
are more prone to adversarial attacks, as evidenced by the
dips in accuracy within the central region. This central
susceptibility is further contextualized by the operational
dynamics of the VMamba model, where the image’s central
region is generally the culmination point within its scanning
trajectory. This indicates that 15. The closer the perturba-
tion is to the center of the image, the more vulnerable
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(b) Swin-T

Figure 5: Performance of the VMamba-T and Swin-T mod-
els under Patch-fool attacks targeting each of 196 image
patches, For the efficiency of this experiment, we randomly
selected 500 images from the ImageNet-1K validation set.

VMamba will be. Contrastingly, the Swin model, as shown
on the right, exhibits a more irregular and turbulent response
to the adversarial attacks. The sharp fluctuations in accu-
racy across different patch positions suggest that the Swin
model’s performance is unevenly affected by the perturba-
tions, with certain areas being more resilient than others.
Comparing the two, VMamba’s uniformity in performance
degradation across patch positions, with a notable central
vulnerability, contrasts with Swin’s more erratic response,
indicating different internal processing and utilization of
spatial information within the models.

8. Insights
8.1. Robustness of Input-dependent Parameters

Through a detailed analysis of the effects of parameters B,
C, and ∆ on the model’s robustness, it was observed that
parameters B and ∆ demonstrate a complementary rela-
tionship. Notably, during patch-wise attacks, the defense
capability associated with the ∆ parameter significantly de-
teriorates when compared to its performance in full-image
white-box attacks. These observations indicate that B and
∆ may possess distinct strengths and vulnerabilities in re-
sponding to different types of adversarial attacks. To address
this challenge and optimize the model’s overall robustness,
the following strategies can be considered:

• The first strategy involves Parameter-independent ad-
versarial training. For example, adversarial examples
could be generated specifically targeting attacks that
impact B and ∆, respectively. These parameters can
then be optimized separately to enhance their ability to
resist specific types of attacks.

• The second strategy revolves around joint optimiza-
tion. Consider the combined effects of B and ∆ during
adversarial training to find an optimal robustness bal-
ance between the two. This can be achieved through
a multi-objective optimization strategy, where both ro-
bustness metrics are taken into account to seek a holis-

tic optimization solution. This approach may involve
adjusting the loss function to simultaneously reflect the
robustness requirements of both parameters.

8.2. Reduce Sensitivity to Information Loss

For the two different types of information loss, Patch-wise
drop and Pixel-wise drop, VSSMs show different vulner-
abilities. Specifically, in the case of Patch-wise drop, the
loss of information not only disrupts the overall structure
of the image but also breaks the continuity of the model’s
scanning process, severely affecting the model’s long-range
dependency capabilities.

• To address this issue, we could develop adaptive scan-
ning strategies that allow the model to dynamically
adjust its scanning path in response to detected patch
drops. By identifying areas of information loss in the
image, the model can reroute its scanning trajectory
to prioritize intact areas and infer missing information
based on the context and spatial relationships of the
remaining patches.

On the other hand, in the scenario of Pixel-wise drop, the
impact on the overall structure of the image is relatively
minor and does not completely disrupt the continuity of the
scanning process. However, each scanning step generates
minor errors, leading to a significant deviation in the final
output from what is expected.

• A potential solution to mitigate this issue involves ro-
bust feature extraction techniques that tolerate minor
errors. Specifically, during the training process, we
can introduce a small perturbation to intermediate la-
tent state h(t) to reduce the model’s dependency on
the results of the previous scan, thereby enhancing the
model’s robustness.

9. Conclusion
In conclusion, our thorough examination of the VSSMs
emphasizes their considerable promise in computer vision
tasks. While excelling in performance across various do-
mains, our focus on robustness reveals nuanced aspects.
VSSMs demonstrate superior robustness to adversarial at-
tacks compared to Transformer architectures yet expose
scalability vulnerabilities. General robustness assessments
showcase remarkable out-of-distribution generalizability but
unveil weaknesses against natural adversarial examples and
common corruptions. Exploring VSSMs’ gradients and
back-propagation during white-box attacks exposes unique
vulnerabilities and defensive capabilities within its novel
components. Furthermore, sensitivity analysis elucidates
vulnerabilities associated with the distribution of distur-
bance area and spatial information, particularly accentuated
near the image center. This comprehensive analysis offers
several insights that can enhance the robustness of VSSMs.
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Table 5: Transferability of adversarial samples between the SSM and transformer models. The first column ”A vs. B”
indicates the two models used for assessment. The second and third columns respectively show the accuracy of the A and B
models on clean images. The fourth column, ”Left to Right”, represents the robust accuracy after transferring the adversarial
samples generated using model A’s gradients to model B, and vice versa. The last column, ”Left to Right(w/o)”, represents
the robust accuracy of adversarial examples generated using the gradient of VSSMs (excluding the gradient of the mamba
block) after being transferred to transformer models. All adversarial samples are generated by using PGD. Vim† is the
version adapted for Long Sequence Fine-tuning. Specifically, they maintained the original patch size but adjusted the patch
extraction stride to 8.

A vs. B SSM Transformer Left → Right Right → Left Left → Right(w/o)
1/255 4/255 1/255 4/255 1/255 4/255

VMamba-T vs. DeiT-Ti 82.6 72.2 69.3 65.0 80.5 76.7 68.8 63.3
VMamba-T vs. Swin-T 82.6 81.2 71.9 61.0 77.9 72.0 69.8 56.5
Vim-Ti vs. DeiT-Ti 76.1 72.2 61.6 46.1 67.2 50.6 59.8 40.2
Vim-Ti vs. Swin-T 76.1 81.2 77.6 72.6 74.2 71.1 77.1 70.2
Vim-Ti† vs. DeiT-Ti 78.3 72.2 65.2 54.4 73.9 66.5 63.4 48.0
Vim-Ti† vs. Swin-T 78.3 81.2 76.4 69.9 76.2 73.2 75.4 65.5

VMamba-S vs. DeiT-S 83.6 79.8 76.7 72.1 80.6 75.4 75.9 69.4
VMamba-S vs. ViT-S 83.6 74.7 72.1 67.8 81.6 77.6 71.4 65.6
VMamba-S vs. Swin-S 83.6 83.2 73.6 62.8 79.1 73.7 71.3 57.3
Vim-S vs. DeiT-S 80.5 79.8 72.3 60.2 71.6 58.5 70.2 53.0
Vim-S vs. ViT-S 80.5 74.7 69.1 58.9 74.3 62.9 67.3 53.4
Vim-S vs. Swin-S 80.5 83.2 79.5 74.6 78.4 75.5 78.6 71.2
Vim-S† vs. DeiT-S 81.6 79.8 74.7 66.5 76.7 69.5 72.7 59.6
Vim-S† vs. ViT-S 81.6 74.7 70.8 63.7 78.0 71.8 68.9 58.4
Vim-S† vs. Swin-S 81.6 83.2 79.0 73.5 79.5 76.5 77.5 68.6

VMamba-B vs. DeiT-B 83.9 81.8 78.4 73.8 80.0 73.9 77.5 70.9
VMamba-B vs. ViT-B 83.9 76.8 74.7 71.0 81.5 77.1 74.1 69.0
VMamba-B vs. Swin-B 83.9 83.5 73.7 63.1 78.7 73.2 70.9 56.3

A. Black-box Attacks and Transferability of Noises
In this section, we comprehensively assessed the transferability of adversarial samples between the VSSMs and transformer
models. In Table 5, the first column ”A vs. B” indicates the two models used for assessment. The second and third columns
respectively show the accuracy of the A and B models on clean images. The fourth column, ”Left to Right”, represents the
robust accuracy after transferring the adversarial samples generated using model A’s gradients to model B, and vice versa.
The last column, ”Left to Right(w/o)”, represents the robust accuracy of adversarial examples generated using the gradient
of VSSMs (excluding the gradient of the mamba block) after being transferred to transformer models.

Table 5 reveals that adversarial samples generated by the Swin model lead to the lowest robust accuracy when transferred to
all sizes of the VMamba model. Similarly, the Vim model demonstrates the lowest robust accuracy when adversarial samples
are transferred from the DeiT model across all sizes, with the ViT model following closely behind. This indicates that
VMamba shares similar image feature extraction characteristics with Swin, whereas Vim demonstrates a closer alignment
with DeiT. This similarity is likely attributable to the design of their respective model architectures. This assumption is
further illustrated in Fig.6 and Fig. 7, which show example perturbations generated for VMamba, Vim, and Transformer
models using the PGD method. Therefore, to reasonably assess the robustness differences, we prefer to compare VMamba
with Swin, and Vim with ViT and DeiT in the main paper.

It is also noteworthy that adversarial samples generated by VSSMs without using the Mamba block exhibit stronger
transferability. This further validates the discussion in the section The role of parameters ∆, A, B, and C in model
robustness, where it is mentioned that the Mamba block demonstrates strong defense capabilities against PGD attacks.
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(a) Origin Image (b) VMamba-T (c) VMamba-S (d) VMamba-B

(e) VMamba-B* (f) Swin-T (g) Swin-S (h) Swin-B

Figure 6: The example perturbations generated with PGD for VMamba and Swin model.

(a) Origin Image (b) DeiT-Ti (c) DeiT-S (d) DeiT-B (e) ViT-S/16

(f) ViT-B/16 (g) Vim-tiny (h) Vim-tiny+ (i) Vim-small (j) Vim-small+

Figure 7: The example perturbations generated with PGD for Vim, DeiT, and ViT model.
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B. Related Works
B.1. State Space Models

State Space Models (SSMs) have emerged in deep learning, demonstrating their effectiveness in inefficient long sequence
modeling. This success has garnered significant attention from both the Natural Language Processing and Computer Vision
communities. The Linear State-Space Layer (LSSL) (Gu et al., 2021b) combines recurrent, convolutional, and continuous-
time models to address their individual shortcomings. The LSSL model demonstrates state-of-the-art performance in
time-series tasks, surpassing previous approaches on sequential image classification, healthcare regression, and speech tasks.
The Structured State Space sequence model (S4) (Gu et al., 2021a) focuses on efficient modeling of long sequences by
optimizing the fundamental SSM. This approach demonstrates strong empirical results across diverse benchmarks, achieving
competitive accuracy on sequential CIFAR-10 and outperforming prior methods on the Long Range Arena benchmark,
including the challenging Path-X task. The S5 model (Smith et al., 2022) extends the structured state space paradigm
with the S5 layer, which leverages multi-input, multi-output SSMs for efficient parallel processing. The S5 layer achieves
state-of-the-art results on long-range sequence modeling tasks, showcasing its prowess in tasks like the Long Range Arena
benchmark’s Path-X. Mamba (Gu & Dao, 2023) is a sequence model that leverages structured state spaces (SSMs) to achieve
linear-time sequence modeling. Notably, Mamba surpasses the computational efficiency of Transformers with a 5× higher
throughput, excelling across modalities such as language, audio, and genomics.

The S4ND (Nguyen et al., 2022) model extends the continuous-signal modeling prowess of state space models (SSMs)
to multidimensional data like images and videos. S4ND excels in modeling large-scale visual data in 1D, 2D, and 3D as
continuous multidimensional signals, showcasing superior performance on practical tasks. When integrated into existing
state-of-the-art models by replacing Conv2D and self-attention layers, S4ND outperforms a Vision Transformer baseline on
ImageNet-1k and matches ConvNeXt in 2D image modeling. For video tasks, S4ND improves activity classification on
HMDB-51 compared to an inflated 3D ConvNeXt. VSSMs (Liu et al., 2024; Zhu et al., 2024; Ma et al., 2024; Han et al.,
2024; Patro & Agneeswaran, 2024; Huang et al., 2024; Yang et al., 2024; Pei et al., 2024) introduces a Visual State Space
Model inspired by state space models, and designed to achieve linear complexity while preserving global receptive fields.
Specifically, VMamba addresses direction-sensitive issues with the Cross-Scan Module (CSM) and exhibits promising
capabilities across various visual perception tasks, outperforming established benchmarks as image resolution increases.
These works collectively advance the understanding and efficiency of visual representation learning models.

B.2. Adversarial Robustness

Szegedy et al. (Szegedy et al., 2013) uncovered a significant vulnerability in state-of-the-art neural networks and machine
learning models. Their discovery highlighted the vulnerability of these models to adversarial examples. Adversarial
examples are instances that lead to misclassifications when they are slightly altered. Building upon the work of Szegedy
et al. (Szegedy et al., 2013), numerous novel methods have been developed to generate adversarial noises, enabling the
effective alteration of inputs to models.

Fast Gradient Sign Method attack (Goodfellow et al., 2014) (FGSM) has proven that the linear behavior in high-
dimensional spaces is adequate to induce adversarial examples, marking a crucial insight in the realm of adversarial
machine learning. This perspective has facilitated the development of a rapid adversarial example generation method,
thereby rendering adversarial training more practical. Let θ denote the parameters of a model, x denote the input, y denote
the targets, and J(θ,x, y) denote the loss function for training the neural network. The optimal max-norm constrained
perturbation, denoted as η can be calculated by:

η = ε sign (∇xJ(θ,x, y)) , (5)

where ε is a step size. Then, the adversarial example x′ = x+ η is obtained by adding the perturbation η to the original
input x.

Projected Gradient Descent attack (Madry et al., 2017) (PGD) offers a distinctive perspective on the adversarial attack
and defense problem by framing it as a saddle point problem

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈S

J(θ,x+ δ, y)

]
. (6)
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This formulation allows PGD to interpret the FGSM attack as a straightforward one-step scheme aimed at maximizing
the inner part of the saddle point formulation. A more powerful adversary is introduced through the multi-step variant,
essentially aligning with the principles of Projected Gradient Descent applied to the negative loss function:

xt+1 =
∏
x+S

(
xt + ε sign (∇xJ(θ,x, y))

)
. (7)

This approach broadens the understanding of adversarial attacks, providing a novel view that extends beyond the simple
one-step scheme.

Patch-Fool attack (Fu et al., 2022) introduces a novel strategy by constraining perturbed pixels within one patch or several
patches, unlike previous approaches that limit perturbation strength onto each pixel. This method can be viewed as a variant
of sparse attacks (Modas et al., 2019; Croce & Hein, 2019; Dong et al., 2020). This approach produces adversarial examples
with noisy patches, visually resembling and emulating natural corruptions within a small region of the original image. The
objective of Patch-Fool can be formulated as:

argmax
1≤p≤n,E∈Rn×d

J (x+ 1p ⊙E, y) (8)

where E is the adversarial perturbation, 1p ∈ Rn is a one-hot vector, and ⊙ represents the penetrating face product.

B.3. General Robustness

ImageNet-A (Hendrycks et al., 2021b) is a challenging dataset designed to expose vulnerabilities in machine learning
model performance. Created through a simple adversarial filtration technique that minimizes spurious cues, ImageNet-A
presents a formidable challenge for existing models, surpassing the difficulty level of the conventional ImageNet (Deng
et al., 2009) test set. Notably, a DenseNet-121 (Huang et al., 2017) model achieves a mere 2% accuracy on ImageNet-A,
reflecting a drastic 90% drop in performance. The dataset comprises real-world, unmodified examples that consistently
challenge diverse models, unveiling shared weaknesses in computer vision algorithms.

ImageNet-R (Hendrycks et al., 2021a) is a novel test set comprising 30,000 images that offers a distinctive challenge
for evaluating the robustness of machine learning models. This dataset includes diverse renditions of ImageNet object
classes, such as paintings and embroidery, introducing natural variations in textures and local image statistics not present
in conventional ImageNet (Deng et al., 2009) images. By incorporating these naturally occurring renditions, ImageNet-R
allows for a meaningful assessment of model performance in the face of realistic visual variations. The dataset serves as
a valuable benchmark to gauge the effectiveness of previously proposed methods aimed at enhancing out-of-distribution
robustness. Researchers can leverage ImageNet-R to rigorously test and compare various strategies for improving model
performance on real-world, visually diverse renditions, offering a more comprehensive evaluation of robustness in the realm
of image classification.

ImageNet-C (Hendrycks & Dietterich, 2019) is a dataset designed to evaluate the robustness of machine learning models
to various common visual corruptions. Comprising a collection of 75 widely encountered visual corruptions, this dataset
applies these distortions to images from the ImageNet (Deng et al., 2009). The introduction of ImageNet-C aims to establish
a standardized benchmark for assessing the robustness of models to image corruptions, addressing concerns related to
shifting evaluation criteria and cherry-picking results. By systematically subjecting images to a diverse set of corruptions,
the dataset provides a comprehensive framework for benchmarking the performance of current deep learning systems.
The findings from the evaluation underscore the considerable room for improvement in the robustness of models when
confronted with the challenges presented by ImageNet-C.

B.4. Vision Transformer

Vaswani et al. (Vaswani et al., 2017) first introduces the Transformer, a revolutionary architecture solely based on attention
mechanisms, showcasing superior performance in machine translation tasks. Transitioning to computer vision, Vision
Transformer (ViT) (Dosovitskiy et al., 2020) challenges the convention of coupling attention with convolutional networks,
proposing a direct sequence-based alternative based solely on attention mechanisms. ViT excels in image classification
while demanding fewer computational resources. Swin Transformer (Liu et al., 2021) further refines transformer architecture
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for vision tasks, introducing a hierarchical design and a shifted window approach, yielding state-of-the-art results in image
classification, object detection, and semantic segmentation. While ViT requires extensive pre-training, Steiner et al. (Steiner
et al., 2021) proposed a novel approach to minimize training costs. They conducts an empirical study on Vision Transformers,
highlighting their competitive performance with augmented regularization and increased compute, even when trained on
smaller datasets. DeiT (Touvron et al., 2021) relies on knowledge distillation to reduce training costs. They demonstrates
competitive results with a teacher-student strategy and introducing token-based distillation for effective knowledge transfer
in attention-based models.
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