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ABSTRACT

We present DINO (DETR with Improved deNoising anchOr boxes), a strong end-
to-end object detector. DINO improves over previous DETR-like models in per-
formance and efficiency by using a contrastive way for denoising training, a look
forward twice scheme for box prediction, and a mixed query selection method
for anchor initialization. DINO achieves 49.4AP in 12 epochs and 51.3AP in 24
epochs on COCO with a ResNet-50 backbone and multi-scale features, yielding a
significant improvement of +6.0AP and +2.7AP, respectively, compared to DN-
DETR, the previous best DETR-like model. DINO scales well in both model size
and data size. Without bells and whistles, after pre-training on the Objects365
dataset with a SwinL backbone, DINO obtains the best results on both COCO
val2017 (63.2AP) and test-dev (63.3AP) with model size under 1 billion
parameters. Compared to other models on the leaderboard, DINO achieves bet-
ter results with smaller model size and pre-training data size. The code will be
available.

Figure 1: AP on COCO compared with other detection models. (a) Comparison to models with a
ResNet-50 backbone w.r.t. training epochs. Models marked with DC5 use a dilated larger resolution
feature map. Other models use multi-scale features. (b) Comparison to SOTA models w.r.t. pre-
training data size and model size. SOTA models are from the COCO test-dev leaderboard. In
the legend we list the backbone pre-training data size (first number) and detection pre-training data
size (second number). ∗ means the data size is not disclosed.

1 INTRODUCTION

Object detection is a fundamental task in computer vision. Remarkable progress has been accom-
plished by classical convolution-based object detection algorithms (Ren et al., 2017; Tian et al.,
2019; Lin et al., 2020; Bochkovskiy et al., 2020; Ge et al., 2021). Despite that such algorithms
normally include hand-designed components like anchor generation and non-maximum suppression
(NMS), they yield the best detection models such as DyHead (Dai et al., 2021a), Swin (Liu et al.,
2021b) and SwinV2 (Liu et al., 2021a) with HTC++ (Chen et al., 2019a), as evidenced on the COCO
test-dev leaderboard (pap).

In contrast to classical detection algorithms, DETR (Carion et al., 2020) is a novel Transformer-
based detection algorithm. It eliminates the need of hand-designed components and achieves com-

1



Under review as a conference paper at ICLR 2023

parable performance with optimized classical detectors like Faster RCNN (Ren et al., 2017). Dif-
ferent from previous detectors, DETR models object detection as a set prediction task and assigns
labels by bipartite graph matching. It leverages learnable queries to probe the existence of objects
and combine features from an image feature map like soft ROI pooling (Liu et al., 2022).

Despite its promising performance, it converges slow and the meaning of queries is unclear. To
address such problems, many methods have been proposed, such as introducing deformable atten-
tion (Zhu et al., 2021), decoupling positional and content information (Meng et al., 2021), providing
spatial priors (Gao et al., 2021; Yao et al., 2021; Wang et al., 2021), etc. Recently, DAB-DETR (Liu
et al., 2022) proposes to formulate DETR queries as dynamic anchor boxes (DAB), which bridges
the gap between classical anchor-based detectors and DETR-like ones. DN-DETR (Li et al., 2022)
further accelerate convergence by introducing a denoising (DN) technique. These improvements
promote the development of DETR-like models, while it remains not on the list of first-choice de-
tectors in the field.

The best detection models nowadays are based on improved classical detectors like DyHead (Dai
et al., 2021b) and HTC (Chen et al., 2019a). For example, the best result presented in SwinV2 (Liu
et al., 2021a) was trained with the HTC++ (Chen et al., 2019a; Liu et al., 2021b) framework. Two
main reasons contribute to the phenomenon: 1) Previous DETR-like models are inferior to the im-
proved classical detectors. Most classical detectors have been well studied and highly optimized,
leading to a better performance compared with the newly developed DETR-like models. 2) The per-
formance of DETR-like model has not been tested on large backbone with large-scale pre-training
data. We aim to address both concerns in this paper.

Specifically, by improving the denoising training, query initialization, and box prediction, we design
a new DETR-like model based on DN-DETR, DAB-DETR, and Deformable DETR. We name our
model as DINO (DETR with Improved deNoising anchOr box). As shown in Fig. 1, the comparison
on COCO shows the superior performance of DINO. In particular, DINO demonstrates a strong
performance, setting a new record of 63.3 AP for models with less than 1 billion parameters on the
COCO test-dev leaderboard (pap).

As a DETR-like model, DINO contains a backbone, a multi-layer Transformer encoder, a multi-layer
Transformer decoder, and multiple prediction heads. Following DAB-DETR, we formulate queries
in decoder as dynamic anchor boxes and refine them step-by-step across decoder layers. Following
DN-DETR, we add ground truth labels and boxes with noises into the Transformer decoder layers
to help stabilize bipartite matching during training. We also adopt deformable attention (Zhu et al.,
2021) for its computational efficiency. Moreover, we propose three new methods as follows. First,
to reduce duplicate predictions, we propose a contrastive denoising training by adding both positive
and negative samples of the same ground truth at the same time. After adding two different noises
to the same ground truth box, we mark the box with a smaller noise as positive and the other as
negative. The contrastive denoising training helps the model to predict more precise boxes and
avoid duplicate outputs of the same target. Second, to overcome the shortsightedness of refining
boxes in each decoder layer, which is a greedy way proposed in Deformable DETR, while keeping
the advantages of fast convergence, we propose a new look forward twice scheme to correct the
updated parameters with gradients from later layers. Third, the dynamic anchor box formulation
of queries links DETR-like models with classical two-stage models. Hence we propose a mixed
query selection method, which helps better initialize the queries. We select initial anchor boxes as
positional queries from the output of the encoder, similar to (Zhu et al., 2021; Yao et al., 2021).
However, we leave the content queries learnable queries aligned with CDN part where queries are
also learnable queries which encourages the first decoder layer to focus on the spatial prior.

We validate the effectiveness of DINO with extensive experiments on the COCO (Lin et al., 2014)
detection benchmarks. As shown in Fig. 1, DINO achieves 49.4AP in 12 epochs and 51.3AP
in 24 epochs with ResNet-50 multi-scale features, yielding a significant improvement of +6.0AP
and +2.7AP, respectively, compared to the previous best DETR-like model DN-DETR. In addition,
DINO scales well in both model size and data size. After pre-training on the Objects365 (Shao
et al., 2019) data set with a SwinL (Liu et al., 2021b) backbone, DINO achieves impressive results
on both COCO val2017 (63.2AP) and test-dev (63.3AP) benchmarks, as shown in Table 4.
Our DINO reduces the model size to 1/15 compared to SwinV2-G (Liu et al., 2021a). Moreover,
DINO outperforms Florence (Yuan et al., 2021) with only 1/60 backbone pre-training dataset and
1/5 detection pre-training dataset.

2



Under review as a conference paper at ICLR 2023

To summarize, our contributions are three-fold. 1) We design a new end-to-end DETR-like object
detector with several novel techniques, including contrastive denoising training, look forward twice,
and mixed query selection for different parts of the DINO model. 2) We conduct intensive abla-
tion studies to validate the effectiveness of different design choices in DINO. As a result, DINO
achieves 49.4AP in 12 epochs and 51.3AP in 24 epochs with ResNet-50 and multi-scale features,
significantly outperforming the previous best DETR-like model DN-DETR. 3) We show that, with-
out bells and whistles, DINO can achieve the best performance on public benchmarks with model
size under 1 billion parameters. After pre-training on the Objects365 (Shao et al., 2019) dataset with
a SwinL (Liu et al., 2021b) backbone, DINO achieves 63.2AP on COCO val2017 and 63.3AP on
COCO test-dev benchmarks.

2 RELATED WORK

Classical Object Detectors: Early convolution-based object detectors are either two-stage or one-
stage models, based on hand-crafted anchors or reference points. Two-stage models (Ren et al.,
2015; He et al., 2017) usually use an region proposal network (RPN) (Ren et al., 2015) to propose
potential boxes, which are then refined in the second stage. One-stage models (Redmon & Farhadi,
2017; 2018) directly output offsets relative to predefined anchors. Recently, some convolution-
based models such as HTC++ (Chen et al., 2019a) and Dyhead (Dai et al., 2021a) have achieved top
performance on the COCO 2017 (Lin et al., 2014). The performance of convolution-based models,
however, rely on the way they generate anchors and need hand-designed components like NMS.

DETR and Its Variants: Carion et al. (Carion et al., 2020) proposed a Transformer-based end-
to-end object detector named DETR (DEtection TRansformer) without using hand-designed com-
ponents like anchor design and NMS. Many follow-up papers have attempted to address the slow
training convergence issue of DETR introduced by decoder cross-attention. For instance, Dai et al.
(Dai et al., 2021a) proposed a dynamic decoder to focus on important regions from multiple feature
levels. Another line of works is towards a deeper understanding of decoder queries in DETR. Many
papers associate queries with spatial position from different perspectives. Deformable DETR (Zhu
et al., 2021) predicts 2D anchor points and designs a deformable attention module that only attends
to certain sampling points around a reference point. DAB-DETR (Liu et al., 2022) further extends
2D anchor points to 4D anchor box coordinates to represent queries and dynamically update boxes
in each decoder layer. Recently, DN-DETR (Li et al., 2022) introduces a denoising training method
to speed up DETR training. It feeds noise-added ground-truth labels and boxes into the decoder and
trains the model to reconstruct the original ones. Our work is based on DAB-DETR and DN-DETR,
and also adopts deformable attention for its computational efficiency.

Large-scale Pre-training for Object Detection: The best performing detectors nowadays are
mostly achieved with large backbones pre-trained on large-scale data. For example, Swin V2 (Liu
et al., 2021a) extends its backbone size to 3.0 billion parameters and pre-trains its models with 70M
privately collected images. Florence (Yuan et al., 2021) first pre-trains its backbone with 900M
privately curated image-text pairs and then pre-trains its detector with 9M images with annotated or
pseudo boxes. In contrast, DINO achieves better results with a publicly available SwinL (Liu et al.,
2021b) backbone and a public dataset Objects365 (Shao et al., 2019) (1.7M annotated images) only.

3 DINO: DETR WITH IMPROVED DENOISING ANCHOR BOXES

3.1 PRELIMINARIES

As studied in Conditional DETR (Meng et al., 2021) and DAB-DETR (Liu et al., 2022), queries in
DETR (Carion et al., 2020) are formed by two parts: a positional part and a content part, which are
referred to as positional queries and content queries in this paper. DAB-DETR explicitly formulates
each positional query in DETR as a 4D anchor box (x, y, w, h), where x and y are the center co-
ordinates of the box and w and h correspond to its width and height. Such an explicit anchor box
formulation makes it easy to dynamically refine anchor boxes layer by layer in the decoder.

DN-DETR (Li et al., 2022) introduces a denoising (DN) training method to accelerate the train-
ing convergence of DETR-like models. It shows that the slow convergence problem in DETR is
caused by the instability of bipartite matching. To mitigate this problem, DN-DETR proposes to
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Figure 2: The framework of our proposed DINO model. Our improvements are mainly in the Trans-
former encoder and decoder. The top-K encoder features in the last layer are selected to initialize the
positional queries for the Transformer decoder. Our decoder also contains a Contrastive DeNoising
(CDN) part with both positive and negative examples.

additionally feed noised ground-truth (GT) labels and boxes into the Transformer decoder and train
the model to reconstruct the ground-truth ones. The noise (∆x,∆y,∆w,∆h) is constrained by
|∆x| < λw

2 , |∆y| < λh
2 , |∆w| < λw, and |∆y| < λh, where (x, y, w, h) denotes a GT box and

λ1 is a hyper-parameter to control the scale of noise. Since DN-DETR view decoder queries as
anchors, a noised GT box can be viewed as a special anchor with a GT box nearby as λ is usually
small. In addition to the orginal DETR queries, DN-DETR adds a DN part which feeds noised GT
labels and boxes into the decoder to provide an auxiliary DN loss. The DN loss effectively stabilizes
and speeds up the DETR training and can be plugged into any DETR-like models.

Deformable DETR (Zhu et al., 2021) is another early work to speed up the convergence of DETR.
To compute deformable attention, it introduces the concept of reference point so that deformable
attention can attend to a small set of key sampling points around a reference. The reference point
concept makes it possible to develop several techniques to further improve the DETR performance.
The first technique is query selection (or “two stage”), which selects features and reference boxes
from the encoder as inputs to the decoder directly. The second technique is iterative bounding box
refinement with a careful gradient detachment design between two decoder layers. We call this
gradient detachment technique “look forward once” in our paper.

Following DAB-DETR and DN-DETR, DINO formulates the positional queries as dynamic anchor
boxes and is trained with an extra DN loss. DINO additionally introduces three methods, which will
be described in Sec. 3.3, Sec. 3.4, and Sec. 3.5, respectively.

3.2 MODEL OVERVIEW

As a DETR-like model, DINO is an end-to-end architecture which contains a backbone, a multi-
layer Transformer (Vaswani et al., 2017) encoder, a multi-layer Transformer decoder, and multiple
prediction heads. The overall pipeline is shown in Fig. 2. Given an image, we extract multi-scale
features with a backbone, and then feed them into the Transformer encoder with corresponding po-
sitional embeddings. After feature enhancement with the encoder layers, we propose a new mixed
query selection strategy to initialize anchors as positional queries for the decoder. Note that this
strategy does not initialize content queries but leaves them learnable. More details of mixed query
selection are available in Sec. 3.5. With the initialized anchors and the learnable content queries,
we use the deformable attention (Zhu et al., 2021) to combine the features of the encoder outputs
and update the queries layer-by-layer. The final outputs are formed with refined anchor boxes and
classification results predicted by refined content features. As in DN-DETR, we have an extra DN
branch to perform denoising training. Beyond the standard DN method, we propose a new con-
trastive denoising training approach by taking into account hard negative samples, which will be
presented in Sec. 3.3. To overcome the shortsightedness of the greedy way for box refinement in
previous works, a novel look forward twice method is proposed to pass gradients between adjacent
layers, which will be described in Sec. 3.4.

1The DN-DETR paper (Li et al., 2022) uses λ1 and λ2 to denote noise scales of center shifting and box
scaling, but sets λ1 = λ2. In this paper, we use λ in place of λ1 and λ2 for simplicity.
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3.3 CONTRASTIVE DENOISING TRAINING
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Figure 3: The structure of CDN group and a demonstration of positive and negative examples. Although both
positive and negative examples are 4D anchors that can be represented as points in 4D space, we illustrate them
as points in 2D space on concentric squares for simplicity. Assuming the square center is a GT box, points
inside the inner square are regarded as a positive example and points between the inner square and the outer
square are viewed as negative examples.

DN-DETR is effective in stabilizing training and accelerating convergence. With the help of De-
Noising (DN) queries, it learns to make predictions based on noised Ground-Truth (GT) boxes,
which leads to fast convergence. However, each DN query in DN-DETR is matched with a GT box
and lacks the ability to predict background for “no object”. Since predicting background is also
important for DETR-like model to reduce duplicate predictions, we propose a Contrastive DeNois-
ing (CDN) approach to rejecting hard negative examples. To maximize the utilization of denoising
queries, we also propose to use adaptive number of denoising groups.
Implementation: DN-DETR has a hyper-parameter λ to control the noise scale. The generated
noises are no larger than λ as DN-DETR wants the model to reconstruct the ground truth (GT)
from moderately noised queries. In our method, we have two hyper-parameters λ1 and λ2, where
λ1 < λ2. As shown in the concentric squares in Fig. 3, we generate two types of CDN queries: pos-
itive queries and negative queries. Positive queries within the inner square have a noise scale smaller
than λ1 and are expected to reconstruct their corresponding ground truth boxes. Negative queries
between the inner and outer squares have a noise scale larger than λ1 and smaller than λ2. They are
expected to predict “no object”. We usually adopt a small λ2 because hard negative samples closer
to GT boxes can better help the model suppress duplicate predictions. As shown in Fig. 3, each CDN
group has a set of positive queries and negative queries. If an image has n GT boxes, a CDN group
will have 2× n queries with each GT box generating both a positive and a negative queries. Similar
to DN-DETR, we also use multiple CDN groups to improve the effectiveness of our method. The
reconstruction losses are l1 and GIOU losses for box regression and focal loss (Lin et al., 2020) for
classification. The loss to classify negative samples as background is also focal loss. Furthermore,
to better utilize DN queries. We improve DN-DETR’s design of using a fixed number of denoising
groups with an adaptive number of denoising groups. For each image, we fix the total number of
denoising queries as N . For an image with n objects, the number of CDN groups is N

2n .
Analysis: The reason why CDN works is because it explicitly introduces hard negative examples
that are very similar to positive example. Such negative examples encourage the model to learn
subtle differences between positive and negative boxes for more precise box predictions. The abil-
ity to distinguish positive and negative example also enables the model to further reduce duplicate
predictions on the basis of DETR. DETR eliminates the need of using NMS to suppress duplicate
boxes. Instead, it relies on bipartite matching to pick up only one query for each GT box and sup-
press other queries by pushing them away or lowering their confidence. However, the suppressed
queries are normally not hard negative. As a result, DETR cannot completely avoid duplicate boxes,
especially for low confidence boxes. CDN addresses this issue by introducing explicitly designed
negative queries, which further enhance the effect of bipartite matching on avoiding duplicate boxes.
For example, on the COCO dataset, we compare CDN with its counterpart DN, both using 300 pre-
dictions. The numbers of duplicate predictions for each method are shown in Table 3.3. For all the
thresholds from 0 to 0.3, CDN constantly predicts fewer duplicate boxes than DN.
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Threshold 0.00 0.05 0.10 0.15 0.20 0.25 0.30

DN total 292.65 158.51 59.91 24.16 10.26 3.94 0.52
duplicate 67.91 31.53 9.63 3.53 1.30 0.53 0.26

CDN total 292.65 164.62 60.21 23.45 9.90 3.83 0.62
duplicate 53.72 25.87 7.35 2.55 0.97 0.40 0.20

Table 1: For a fair comparison, we only change CDN to DN and keep other hyper-parameters unchanged. For
each model, we choose the top 300 predictions and filter them according to confidence scores with 7 thresholds
from 0 to 0.3. For each threshold ti, “total” and “duplicate” denote the numbers of total and duplicate predic-
tions with scores greater than ti, respectively. We view predictions with IoU > 0.8 as duplicate predictions.
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Figure 4: (a)(b) Comparison of box update in Deformable DETR and our method. (c) APs of look forward
once and look forward twice in each decoder layer. “LFO” and “LFT” denote look forward once and look
forward twice, respectively.

3.4 LOOK FORWARD TWICE

We propose a new approach to improving box prediction in this section. The iterative box refine-
ment in Deformable DETR blocks gradient back propagation to stabilize training. We name the
method look forward once since the parameters of the i-th decoder layer Li are updated based on
the auxiliary loss of boxes b(pred)i only, as shown in Fig 4 (a), where b

(pred)
i denotes the predicted

boxes in Li. Such a parameter update approach is a greedy method, in which each decoder layer
approximates ground truth boxes individually while trying not to influence its previous layers by
blocking gradient. Such a method stabilizes training and helps convergence in early training stages.
However, it may lead to a sub optimal result. On the other hand, allowing gradient to propagate
from all latter layers will make the model hard to converge. To address this issue, we propose to
only allow Li−1 to be influenced by gradients from itself and Li as shown in 4 (b). Since parameters
in Li−1 are optimized to approximate ground truth boxes in both Li−1 and Li, we name our method
as look forward twice, which is more comprehensive compared with the look forward once method.
Implementation: We compare the implementations of look forward once (LFO) and look forward
twice (LFT) as follows. Since LFO and LFT share the same process from b′i−1 to b′i, we first show
this process. Denote b′i−1 and bi−1 as the boxes before and after stopping gradient. We have

bi−1 = sg
[
b′i−1

]
, (1)

where sg[·] denotes stopping gradient. bi−1 is used as the input anchor box in Li to obtain ∆bi as
follows.

∆bi = Li(bi−1; θi), (2)

where Li denotes the i-th Decoder layer with θi as its parameters. We ignore other inputs to Li for
simplicity. b′i is obtained as follows.

b′i = σ
(
σ−1(bi−1) + ∆bi

)
. (3)

where σ(·) and σ−1 denote the sigmoid and inverse sigmoid functions. Note that such a box update
approach is to guarantee that the updated boxes have normalized x, y, w, h values between 0 and 1.
Equation 3 is marked with green line in Fig. 4(a) where gradients are propagated from b

(pred)
i to θi

through ∆bi. In LFO, the prediction b
(pred)
i is equal to b′i. While in LFT, we update box predictions

b
(pred)
i based on b′i−1 instead of bi−1 as follows.

b
(pred)
i = σ

(
σ−1(b′i−1) + ∆bi

)
, (4)

Equation 4 is marked with green line in Fig. 4(b). Similarly, b(pred)i+1 is obtained as follows.

b
(pred)
i+1 = σ

(
σ−1(b′i) + ∆bi+1

)
= σ

(
σ−1(b′i−1) + ∆bi +∆bi+1

)
(5)
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Equation 5 is marked with red line in Fig. 4(b), where the gradients from b
(pred)
i+1 are propagated to

θi through ∆bi.
Fig. 4 (c) shows a comparison of the performances of look forward once (LFO) and look forward
twice (LFT) in different layers. For layer 0 to 2, LFO performs better than LFT. While LFT exceeds
LFO in layer 3 to 6. This observation verifies our intuition that LFT sacrifices performance in early
layers to achieve better final performance.

3.5 MIXED QUERY SELECTION

Encoder Decoder

Static Anchors
and Content Queries

(a) Static Queries

Static Content 
Queries 

Encoder

Query Selection

Decoder

Dynamic Anchors

(c) Mixed Query Selection(b) Vanilla Query Selection

Encoder

Query Selection
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Dynamic Anchors and 
Dynamic Queries

Figure 5: Comparison of three different query initialization methods. “static” means that queries will keep
the same for different images in inference. A common implementation for these static queries is to make them
learnable. Note that in (b) the selected reference points go through a positional encoding and linear transform
to obtain the query embeddings as implemented in deformable DETR.

In DETR (Carion et al., 2020) and DN-DETR (Li et al., 2022), decoder queries are static embeddings
without taking any encoder features from an individual image, as shown in Fig. 5 (a). They learn
anchors or positional queries from training data and set the content queries as 0 vectors. Deformable
DETR (Zhu et al., 2021) learns both the positional and content queries, which is another implemen-
tation of static query initialization. To further improve the performance, Deformable DETR (Zhu
et al., 2021) has a query selection variant (or ”two-stage”). It selects positions with top K clas-
sification scores as reference points and the content queries are linear transform of the positional
embeddings of the reference points. In addition, features in the selected positions go through a clas-
sification head and a box head to calculate auxiliary loss. We call the implementation in Deformable
DETR as vanilla query selection as shown in Fig. 5. Vanilla query selection helps the model con-
verge especially in early training epochs. However, its content queries are not aligned with those in
CDN part—the content queries in CDN part are learnable class embeddings. Therefore, we propose
to use selected positions as anchors and learnable query embeddings as the content queries. We
call our method as mixed query selection. We show in Table 5 that our simple and intuitive method
achieves better result.

4 EXPERIMENTS

4.1 SETUP

Dataset and Backbone: We conduct evaluation on the COCO 2017 object detection dataset (Lin
et al., 2014), which is split into train2017 and val2017 (also called minival). We report
results with two different backbones: ResNet-50 (He et al., 2016) pre-trained on ImageNet-1k (Deng
et al., 2009) and SwinL (Liu et al., 2021b) pre-trained on ImageNet-22k (Deng et al., 2009). DINO
with ResNet-50 is trained on train2017 without extra data, while DINO with SwinL is first pre-
trained on Object365 (Shao et al., 2019) and then fine-tuned on train2017. We also report the
test-dev results for DINO with SwinL.
Implementation Details: In appendix F, we provide implementation details, including all the hyper-
parameters and engineering techniques used in our models.

4.2 MAIN RESULTS

12-epoch setting: With our improved anchor box denoising and training losses, the training process
can be significantly accelerated. As shown in Table 2, we compare our method with strong baselines
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Model Epochs AP AP50 AP75 APS APM APL GFLOPS Params FPS
Faster-RCNN(5scale) Ren et al. (2015) 12 37.9 58.8 41.1 22.4 41.1 49.1 207 40M 21∗

DETR(DC5) Carion et al. (2020) 12 15.5 29.4 14.5 4.3 15.1 26.7 225 41M 20
Deformable DETR(4scale)Zhu et al. (2021) 12 41.1 − − − − 196 40M 24
DAB-DETR(DC5)† Liu et al. (2022) 12 38.0 60.3 39.8 19.2 40.9 55.4 256 44M 17
Dynamic DETR(5scale) Dai et al. (2021b) 12 42.9 61.0 46.3 24.6 44.9 54.4 − 58M −
Dynamic Head(5scale) Dai et al. (2021a) 12 43.0 60.7 46.8 24.7 46.4 53.9 − − −
HTC(5scale) Chen et al. (2019a) 12 42.3 − − − − − 441 80M 5∗

DN-Deformable-DETR(4scale)† Li et al. (2022) 12 43.4 61.9 47.2 24.8 46.8 59.4 265 48M 23
DINO-4scale† 12 49.0(+5.6) 66.6 53.5 32.0(+7.2) 52.3 63.0 279 47M 24
DINO-5scale† 12 49.4(+6.0) 66.9 53.8 32.3(+7.5) 52.5 63.9 860 47M 10

Table 2: Results for DINO and other detection models with the ResNet50 backbone on COCO val2017
trained with 12 epochs (the so called 1× setting). For models without multi-scale features, we test their
GFLOPS and FPS for their best model ResNet-50-DC5. DINO uses 900 queries. † indicates models that use
900 queries or 300 queries with 3 patterns which has similar effect with 900 queries. Other DETR-like models
except DETR (100 queries) uses 300 queries. ∗ indicates that they are tested using the mmdetection Chen et al.
(2019b) framework.

Model Epochs AP AP50 AP75 APS APM APL

Faster-RCNN Ren et al. (2015) 108 42.0 62.4 44.2 20.5 45.8 61.1
DETR(DC5) Zhu et al. (2021) 500 43.3 63.1 45.9 22.5 47.3 61.1
Deformable DETR Zhu et al. (2021) 50 46.2 65.2 50.0 28.8 49.2 61.7
SMCA-R Gao et al. (2021) 50 43.7 63.6 47.2 24.2 47.0 60.4
TSP-RCNN-R Sun et al. (2020) 96 45.0 64.5 49.6 29.7 47.7 58.0
Dynamic DETR(5scale) Dai et al. (2021a) 50 47.2 65.9 51.1 28.6 49.3 59.1
DAB-Deformable-DETR Liu et al. (2022) 50 46.9 66.0 50.8 30.1 50.4 62.5
DN-Deformable-DETR Li et al. (2022) 50 48.6 67.4 52.7 31.0 52.0 63.7
DINO-4scale 24 50.4(+1.8) 68.3 54.8 33.3 53.7 64.8
DINO-5scale 24 51.3(+2.7) 69.1 56.0 34.5 54.2 65.8
DINO-4scale 36 50.9(+2.3) 69.0 55.3 34.6 54.1 64.6
DINO-5scale 36 51.2(+2.6) 69.0 55.8 35.0 54.3 65.3

Table 3: Results for DINO and other detection models with the ResNet-50 backbone on COCO val2017
trained with more epochs (24, 36, or more).

including both convolution-based methods (Ren et al., 2015; Chen et al., 2019a; Dai et al., 2021a)
and DETR-like methods (Carion et al., 2020; Zhu et al., 2021; Dai et al., 2021b; Liu et al., 2022;
Li et al., 2022). For a fair comparison, we report both GFLOPS and FPS tested on the same A100
NVIDIA GPU for all the models listed in Table 2. All methods except for DETR and DAB-DETR
use multi-scale features. For those without multi-scale features, we report their results with ResNet-
DC5 which has a better performance for its use of a dilated larger resolution feature map. Since
some methods adopt 5 scales of feature maps and some adopt 4, we report our results with both 4
and 5 scales of feature maps.

As shown in Table 2, our method yields an improvement of +5.6 AP under the same setting using
ResNet-50 with 4-scale feature maps and +6.0 AP with 5-scale feature maps. Our 4-scale model
does not introduce much overhead in computation and the number of parameters. Moreover, our
method performs especially well for small objects, gaining +7.2 AP with 4 scales and +7.5 AP
with 5 scales.
Comparison with the best models with a ResNet-50 backbone: To validate the effectiveness of
our method in improving both convergence speed and performance, we compare our method with
several strong baselines using the same ResNet-50 backbone. Despite the most common 50-epoch
setting, we adopt the 24 (2×) and 36 (3×) epoch settings since our method converges faster and
yields only a smaller additional gain with 50-epoch training. The results in Table 3 show that, using
only 24 epochs, our method achieves an improvement of +1.8 AP and +2.7 AP with 4 and 5 scales,
respectively. Moreover, using 36 epochs in the 3× setting, the improvement increases to +2.3 and
+2.6 AP with 4 and 5 scales, respectively. The convergence curve comparison is shown in Fig. 6.
We also show our results using SwinL backbone without bells and whistles in Appendix B.

4.3 COMPARISON WITH SOTA MODELS

To compare with SOTA results, we use the publicly available SwinL (Liu et al., 2021b) backbone
pre-trained on ImageNet-22K. We first pre-train DINO on the Objects365 (Shao et al., 2019) dataset
and then fine-tune it on COCO. As shown in Table 4, DINO achieves the best results of 63.2AP and
63.3AP on COCO val2017 and test-dev with model size under 1 billion parameters, which
demonstrate its strong scalability to larger model size and data size. Note that all the previous SOTA
models in Table 4 do not use Transformer decoder-based detection heads (HTC++ (Chen et al.,
2019a) and DyHead (Dai et al., 2021a)). It is the first time that an end-to-end Transformer detec-
tor is established as a SOTA model on the leaderboard (pap). Compared with the previous SOTA
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Figure 6: Training convergence curves evaluated on COCO val2017 for DINO and two previous state-of-
the-art models with ResNet-50 using multi-scale features.

Method Params Backbone Pre-training
Dataset

Detection Pre-training
Dataset

Use
Mask End-to-end

val2017 (AP) test-dev (AP)
w/o TTA w/ TTA w/o TTA w/ TTA

SwinL Liu et al. (2021b) 284M IN-22K-14M O365 ✓ 57.1 58.0 57.7 58.7

DyHead Dai et al. (2021a) ≥ 284M IN-22K-14M Unknown* − 58.4 − 60.6

Soft Teacher+SwinL Xu et al. (2021) 284M IN-22K-14M O365 ✓ 60.1 60.7 − 61.3

GLIP Li et al. (2021) ≥ 284M IN-22K-14M FourODs Li et al. (2021),GoldG+ Kamath et al. (2021) − 60.8 − 61.5

Florence-CoSwin-HYuan et al. (2021) ≥ 637M FLD-900M Yuan et al. (2021) FLD-9M Yuan et al. (2021) − 62.0 − 62.4

SwinV2-G Liu et al. (2021a) 3.0B IN-22K-ext-70M Liu et al. (2021a) O365 ✓ 61.9 62.5 − 63.1

DINO-SwinL(Ours) 218M IN-22K-14M O365 ✓ 63.1 63.2 63.2 63.3

Table 4: Comparison of the best detection models on MS-COCO. Similar to DETR Carion et al. (2020), we
use the term “end-to-end” to indicate if a model is free from hand-crafted components like RPN and NMS.
The term “use mask” means whether a model is trained with instance segmentation annotations. We use the
terms “IN” and “O365” to denote the ImageNet Deng et al. (2009) and Objects365 Shao et al. (2019) datasets,
respectively. Note that “O365” is a subset of “FourODs” and “FLD-9M”. * DyHead does not disclose the
details of the datasets used for model pre-training.

models, we use a much smaller model size (1/15 parameters compared with SwinV2-G (Liu et al.,
2021a)), backbone pre-training data size (1/60 images compared with Florence), and detection pre-
training data size (1/5 images compared with Florence), while achieving better results. In addition,
our reported performance without test time augmentation (TTA) is a neat result without bells and
whistles. These results effectively show the superior detection performance of DINO compared with
traditional detectors.

4.4 ABLATION

#Row QS CDN LFT AP AP50 AP75 APS APM APL

1. Optimized DN-Deformable DETR† Li et al. (2022) No 46.3 63.8 50.3 28.2 49.6 61.7
2. Row1+CDN∗ No ✓ 47.2 65.0 51.2 29.4 50.7 62.5
3. Row2+vanilla query selection Zhu et al. (2021) Vanilla ✓ 47.8 65.6 52.5 31.1 51.1 62.5
4. Row2+mixed query selection Mixed ✓ 48.6 66.0 52.9 31.3 51.9 62.7
5. DINO (ours, Row4+look forward twice) Mixed ✓ ✓ 49.0 66.6 53.5 32.0 52.3 63.0

Table 5: Ablation comparison of the proposed algorithm components. We use the terms “QS”, “CDN”, and
“LFT” to denote “Query Selection”, “Contrastive De-Noising Training”, and “Look Forward Twice”, respec-
tively. † We propose an optimized DN-Deformable DETR with our technical improvements. The technical
details are shown in Appendix A. ∗ We also use adaptive number of denoising groups here.

Effectiveness of New Algorithm Components: We validate the effectiveness of our proposed
methods in Table 5. We build an optimized DN-Deformable DETR as our strong baseline, which
performs better than the one in Table 2. We include all the pipeline optimization and engineering
techniques (see section 4.1 and Appendix F) in the strong baseline. The result of the strong baseline
is available in Table 5 Row 1. According to Table 5, our three new methods in DINO further improve
the performance significantly even without considering any engineering techniques.

5 CONCLUSION

In this paper, we have presented a strong end-to-end Transformer detector DINO with contrastive
denoising training, look forward twice, and mixed query selection, which significantly improves
both the training efficiency and the final detection performance. As a result, DINO outperforms
all previous ResNet-50-based models on COCO val2017 in both the 12-epoch and the 36-epoch
settings using multi-scale features. Motivated by the improvement, we further explored to train
DINO with a stronger backbone on a larger dataset and achieved a strong result, 63.3 AP on COCO
2017 test-dev. This result establishes DETR-like models as a mainstream detection framework,
not only for its novel end-to-end detection optimization, but also for its superior performance.
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A OPTIMIZED DN-DEFORMABLE DETR

The optimized DN-Deformable DETR differs from the original DN-Deformable DETR in the fol-
lowing three parts. Firstly, the optimized DN-Deformable DETR adopts deformable attention in
both encoder and decoder while the original one only adopts deformable attention in encoder. With
deformable attention in decoder, the optimized one is able to use more decoder queries. For exam-
ple, we use 900 here. Secondly, the optimized one use different weight for matcher and loss, while
the original one follows DETR to use same weight for loss and matcher. For example, we use class
weight 1.0 for loss and 2.0 for matcher. Finally, we set dropout rate to be 0. We find these three
technical improvements can improve the performance.

B RESULTS USING SWINL BACKBONE WITHOUT PRE-TRAINING ON OBJECT
365

We also evaluate our method on COCO val2017 with SwinL as backbone without pre-training on
Object 365. The results are without any bells and whistles. We compare with other methods using
Swin-L backbone.

Model Epochs AP AP50 AP75 APS APM APL

Cascade Mask RCNN-SwinL Cai & Vasconcelos (2018) − 55.0 − − − − −
HTC++-SwinL Chen et al. (2019a) − 57.1 − − − − −
DINO-4scale-SwinL 36 58.0 76.7 63.4 41.3 61.9 73.7
DINO-5scale-SwinL 36 58.5 77.0 64.1 41.5 62.3 74.0

Table 6: Results for DINO and other detection models with the SwinL backbone on COCO val2017.

C TEST TIME AUGMENTATIONS (TTA)

We aim to build an end-to-end detector that is free from hand-crafted components. However, to
compare with traditional detection models, we also explore the use of TTA in DETR-like models.
We only use it in our large model with the SwinL backbone. Our TTA does not obtain an inspiring
gain compared with traditional detectors, but we hope our exploration may provide some insights
for future studies.

We adopt multi-scale test and horizontal flip as TTA. However, the way of ensembling different
augmentations in our method is different from that in traditional methods which usually output du-
plicate boxes. In traditional methods, the ensembling is done by first gathering predictions from all
augmentations and ranked by a confidence score. Then, duplicate boxes are found and eliminated
by NMS or box voting. The reason why predictions from all augmentations are gathered first is that
duplicate boxes appear not only among different augmentations but also within one augmentation.
This ensembling method decreases the performance for our method since DETR-like methods are
not prone to output duplicate boxes since their set-based prediction loss inhibits duplicate predic-
tions and ensembling may incorrectly remove true positive predictions (Carion et al., 2020). To
address this issue, we designed a one-to-one ensembling method. Assume we have n augmenta-
tions Aug0, Aug1, ..., Augn−1, where Augi has predictions Oi and a pre-defined hyper-parameter
weight wi. Oi =

{
(bi0, l

i
0, s

i
0), (b

i
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1), ..., (b

i
m−1, l
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m−1, s
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}
where bij , l

i
j and sij denote the

j-th boundbox, label and score, respectively. We let Aug0 be the main augmentation which is the
most reliable one. For each prediction in O0, we select the prediction with the highest IOU from
predictions of each of other augmentations O1, ...,On−1 and make sure the IOU is higher than a
predefined threshold. Finally, we ensemble the selected boxes through weighted average as follows

b =
1∑
Ii

n−1∑
i=o

Iiwisiidx(i)b
i
idx(i) (6)

where Ii = 1 when there is at least one box in Oi with IOU higher than the threshold and Ii = 0
otherwise. idx(i) denotes the index of the selected box in Oi.
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D TRAINING EFFICIENCY

We provide the GPU memory and training time for our base model in Table 7. All results are
reported on 8 Nvidia A100 GPUs with ResNet-50 (He et al., 2016). The results demonstrate that
our models are not only effective but also efficient for training.

Model #images per GPU Traning Time GPU Mem. Epoch AP
Faster RCNN (Ren et al., 2015)* 8 ∼ 60min/ep 13GB 108 42.0
DETR (Carion et al., 2020) 8 ∼ 16min/ep 26GB 300 41.2
Deformable DETR (Zhu et al., 2021)⋆ 2 ∼ 55min/ep 16GB 50 45.4
DINO(Ours) 2 ∼ 55min/ep 16GB 12 49.0

Table 7: Training efficieny for different models with ResNet-50 backbone. All models are trianed
with 8 Nvidia A100 GPUs. All results are reported by us. * The results of Faster RCNN are tested
with the mmdetection framework. ⋆ We use the vanilla Deformable DETR without two-stage and
bbox refinement during testing.

E ADDITIONAL ANALYSIS ON OUR MODEL COMPONENTS

# Encoder/Decoder 6/6 4/6 3/6 2/6 6/4 6/2 2/4 2/2
AP 47.4 46.2 45.8 45.4 46.0 44.4 44.1 41.2

Table 8: Ablation on the numbers of encoder layers and decoder layers with the ResNet-50 backbone
on COCO val2017. We use the 12-epoch setting and 100 DN queries without negative samples
here.

Analysis on the Number of Encoder and Decoder Layers: We also investigate the influence of
varying numbers of encoder and decoder layers. As shown in Table 8, decreasing the number of
decoder layers hurts the performance more significantly. For example, using the same 6 encoder
layers while decreasing the number of decoder layers from 6 to 2 leads to a 3.0 AP drop. This per-
formance drop is expected as the boxes are dynamically updated and refined through each decoder
layer to get the final results. Moreover, we also observe that compared with other DETR-like models
like Dynamic DETR (Dai et al., 2021a) whose performance drops by 13.8AP (29.1 vs 42.9) when
decreasing the number of decoder layers to 2, the performance drop of DINO is much smaller. This
is because our mixed query selection approach feeds the selected boxes from the encoder to enhance
the decoder queries. Therefore, the decoder queries are well initialized and not deeply coupled with
decoder layer refinement.

# Denoising query 100 CDN 1000 DN 200 DN 100 DN 50 DN 10 DN No DN
AP 47.9 47.6 47.4 47.4 46.7 46.0 45.1

Table 9: Ablation on number of denoising queries with the ResNet-50 backbone on COCO valida-
tion. Note that 100 CND query pairs contains 200 queries which are 100 positive and 100 negative
queries.

Analysis on Query Denoising: We continue to investigate the influence of query denoising by vary-
ing the number of denoising queries. We use the optimized dynamic denoising group (detailed in
Appendix F.1). As shown in Table 9, when we use less than 100 denoising queries, increasing the
number can lead to a significant performance improvement. However, continuing to increase the
DN number after 100 yields only a small additional or even worse performance improvement. We
also analysis the effect of the number of encoder and decoder Layers in Appendix E.
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F MORE IMPLEMENTATION DETAILS

F.1 ADAPTIVE DN GROUPS

In DN-DETR, all the GT objects (label+box) in one image are collected as one GT group for de-
noising. To improve the DN training efficiency, multiple noised versions of the GT group in an
image are used during training. In DN-DETR, the number of groups is set to five or ten according
to different model sizes. As DETR-like models adopt mini-batch training, the total number of DN
queries for each image in one batch is padded to the largest one in the batch. Considering that the
number of objects in one image in COCO dataset ranges from 1 to 80, this design is inefficient and
results in excessive memory consumption. To address this problem, we propose to fix the number
of DN queries and dynamically adjust the number of groups for each image according to its number
of objects.

F.2 LARGE-SCALE MODEL PRE-TRIANING

Objects365 (Shao et al., 2019) is a large-scale detection data set with over 1.7M annotated images
for training and 80, 000 annotated images for validation. To use the data more efficiently, We select
the first 5, 000 out of 80, 000 validation images as our validation set and add the others to training.
We pre-train DINO on Objects365 for 26 epochs using 64 Nvidia A100 GPUs and fine-tune the
model on COCO for 18 epochs using 16 Nvidia A100 GPUS. Each GPU has a local batch size
of 1 image only. In the fine-tuning stage, we enlarge the image size to 1.5× (i.e., with max size
1200 × 2000). This adds around 0.5 AP to the final result. To reduce the GPU memory usage, we
leverage checkpointing (Chen et al., 2016) and mixed precision (Micikevicius et al., 2018) during
training. Moreover, we use 1000 DN queries for this large model.

F.3 OTHER IMPLEMENTATION DETAILS

F.3.1 BASIC HYPER-PARAMETERS.

For hyper-parameters, as in DN-DETR, we use a 6-layer Transformer encoder and a 6-layer Trans-
former decoder and 256 as the hidden feature dimension. We set the initial learning rate (lr) as
1 × 10−4 and adopt a simple lr scheduler, which drops lr at the 11-th, 20-th, and 30-th epoch
by multiplying 0.1 for the 12, 24, and 36 epoch settings with RestNet50, respectively. We use the
AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) optimizer with weight decay of 1×10−4

and train our model on Nvidia A100 GPUs with batch size 16. Since DN-DETR (Li et al., 2022)
adopts 300 decoder queries and 3 patterns (Wang et al., 2021), we use 300 × 3 = 900 decoder
queries with the same computation cost. Learning schedules of our DINO with SwinL are available
in the appendix.

F.3.2 LOSS FUNCTION.

We use the L1 loss and GIOU (Rezatofighi et al., 2019) loss for box regression and focal loss (Lin
et al., 2020) with α = 0.25, γ = 2 for classification. As in DETR (Carion et al., 2020), we add
auxiliary losses after each decoder layer. Similar to Deformable DETR (Zhu et al., 2021), we add
extra intermediate losses after the query selection module, with the same components as for each
decoder layer. We use the same loss coefficients as in DAB-DETR (Liu et al., 2022) and DN-
DETR (Li et al., 2022), that is, 1.0 for classification loss, 5.0 for L1 loss, and 2.0 for GIOU loss.

F.3.3 DETAILED MODEL COMPONENTS.

We also optimize the detection pipeline used in DAB-DETR (Liu et al., 2022) and DN-DETR (Li
et al., 2022). Following DN-Deformable-DETR (Li et al., 2022), we use the same multi-scale ap-
proach as in Deformable DETR (Zhu et al., 2021) and adopt the deformable attention. DN-DETR
uses different prediction heads with unshared parameters in different decoder layers. In addition, we
introduce dynamic denoising group to increase denoising training efficiency and alleviate memory
overhead (see Appendix F.1). In this work, we find that using a shared prediction head will add ad-
ditional performance improvement. This also leads to a reduction of about one million parameters.
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Item Value
lr 0.0001
lr backbone 1e-05
weight decay 0.0001
clip max norm 0.1
pe temperature 20
enc layers 6
dec layers 6
dim feedforward 2048
hidden dim 256
dropout 0.0
nheads 8
num queries 900
enc n points 4
dec n points 4
transformer activation “relu”
batch norm type “FrozenBatchNorm2d”
set cost class 2.0
set cost bbox 5.0
set cost giou 2.0
cls loss coef 1.0
bbox loss coef 5.0
giou loss coef 2.0
focal alpha 0.25
dn box noise scale 0.4
dn label noise ratio 0.5

Table 10: Hyper-parameters used in our models.

In addition, we find the conditional queries (Meng et al., 2021) used in DAB-DETR does not suit
our model and we do not include them in our final model.

F.3.4 TRAINING AUGMENTATION.

We use the same random crop and scale augmentation during training following DETR (Carion
et al., 2020). For example, we randomly resize an input image with its shorter side between 480 and
800 pixels and its longer side at most 1333. For DINO with SwinL, we pre-train the model using the
default setting, but finetune using 1.5× larger scale (shorter side between 720 and 1200 pixels and
longer side at most 2000 pixels) to compare with models on the leaderboard (pap). Without using
any other tricks, we achieve the result of 63.1 on val2017 and 63.2 on test-dev without test
time augmentation (TTA) (see Appendix C), outperforming the previous state-of-the-art result 63.1
achieved by SwinV2 (Liu et al., 2021a) with a much neater solution.

F.3.5 MULTI-SCALE SETTING.

For our 4-scale models, we extract features from stages 2, 3, and 4 of the backbone and add an extra
feature by down-sampling the output of the stage 4. An additional feature map of the backbone stage
1 is used for our 5-scale models. For hyper-parameters, we set λ1 = 1.0 and λ2 = 2.0 and use 100
CDN pairs which contain 100 positive queries and 100 negative queries.

F.4 DETAILED HYPER-PARAMETERS

We list the hyper-parameters for those who want to reproduce our results in Table 10.

16



Under review as a conference paper at ICLR 2023

#parameters GFLOPs FPs
DINO-Swin-L-4Scale 217.6 1284.5 8.1
DINO-Swin-L-5Scale 217.2 703.5 12.8

Table 11: The inference speed and computation cost of our laege model.

# epochs AP AP50 AP75 APS APM APL

DINO-LFT 12 49.0 66.6 53.5 32.0 52.3 63.0
DINO-LF3 12 48.3 65.5 52.7 31.2 51.7 62.5
DINO-LF4 12 48.2 65.4 52.9 30.4 51.8 62.9

Table 12: The experiments of Look Forward Three (LF3) and Four times (LF4).

G INFERENCE SPEED AND GFLOPS

We list the inference cost of our 4-scale and 5-scale model with Swin-L backbones in Table 11. Note
that our model for Table 4 is a 5-scale model.

H WHY DINO IMPROVES AP ON SMALL OBJECTS BY LARGE

There are several reasons for the large AP improvement on small objects (APs).

1. In Table 5, our optimized DN-Deformable DETR has APs of 28.2 which is +3.4 higher
than that of the original DN-Deformable DETR in Table 2. The original one uses dense
attention in the decoder while the optimized one uses deformable attention which is better
for local attention and therefore improves APs. In addition, we fixed a problem in the
original DN-Deformable DETR’s Transformer encoder—their deformable attention is not
properly initialized using the initialization method in Deformable DETR. The Transformer
encoder is a critical component that processes multi-scale image features and multi-scale
image features are critical for small objects. Therefore, the optimized one has higher APs.

2. In Table 5, we can see that CDN improves APs by 1.2. By introducing negative noised
queries, CDN encourages the model to pick up the anchor nearest to the center of a GT box
to make predictions and explicitly suppresses farther anchors. Since small object detection
is more sensitive to the quality of anchors, DINO with high-quality anchors can achieve
better APs.

3. Query selection improves APs by 1.9. Query selection provides high-quality anchor ini-
tialization which is especially beneficial to small objects. The reason is similar to reason 2
that small object detection is more sensitive to the quality of anchors.

I MORE DETAILS ABOUT LOOK FORWARD TWICE (LFT)

We propose LFT because the original Look Forward Once scheme for box refinement is greedy,
which will lead to sub-optimal results. We propose LFT to make the model far-sighted. But there is
a trade-off. When we increase the number of layers to ”look forward”, the model becomes harder
to converge. We conduct experiments of Look Forward Three and Four times as shown in Table 12.
The results become worse when we continue to increase the number of layers to “look forward”.

Following is a detailed explanation of why LFT is worse than LFO in layers 0 to 2 but outperforms
LFO in layers 3 to 6 as shown in Fig. 4.

There are actually three factors affecting the performance of layer i.

1. The performance of layer i− 1. Since the predictions of layer i are based on predictions of
layer i− 1, better predictions in layer i− 1 lead to better predictions in layer i.

2. Whether allows gradients to backpropagate from layer i to layer i−1. Allowing the gradient
to propagate to layer i− 1 helps performance in layer i.
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3. Whether allows gradients backpropagate from layer i + 1 to layer i. Allowing gradient to
propagate from layer i+ 1 to layer i jeopardizes performance in layer i.

For layer 0, there is no layer i − 1, so factors 1 and 2 do not affect the performance. According to
factor 3, LFO is better than LFT.

For layers 1 to 5, LFO has an advantage in factor 3 and LFT has an advantage in factor 2. Because
factor 2 affects the performance more than factor 3, The gap between LFT is narrowed down from
layer 0 to 2 and LFT exceeds LFO in layer 3.

In the last layer (when i = 6), there is no layer i + 1 (factor 3 does not affect the result) and LFT
has the advantage in both factors 1 and 2. Therefore, LFT exceeds LFO in the last layer.

J VISUALIZATIONS

(a) DN-DETR (a) DINO (c) GT

Figure 7: Visualization of cases DINO outperforms DN-DETR.

We present a comparison of visualizations in Fig. 7. The results show that our DINO has better
predictions than DN-DETR.

K LVIS RESULTS

To evaluate DINO’s performance on other detection datasets, we conducted experiments on more
challenging LVIS (Gupta et al., 2019) dataset.
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Model Backbone Val v1.0
AP APr APc APf

Supervised-RFS (Gupta et al., 2019) R50 25.4 12.3 24.3 32.4
MaskRCNN-LOCE (He et al., 2017) R50 27.4 - - -
GLIP∗(Li et al., 2021) Swin-L 26.9 17.1 23.3 35.4
DINO† R50 31.2 24.5 29.8 35.7

Table 13: The results on LVIS val v1.0. ∗ denotes zero-shot results. † denotes DINO is trained for
12 epochs and is not fully conveged.
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